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S1. PROOFS

PROOF OF LEMMA 4: Define B, = - 31, Bio7(1 — P) 23, Py — Pi(1 = Py)?).
Letting (é]L 4 — é)z be a second-order approximation of 014 — é, we first show that
E[(6;.4 — 0)2] =B, and V[8]—1(V[(8,.4 — 6),]) = O(1/ p). Then we finish the proof of
the first claim by showing that the approximation error is ignorable. The bias bound fol-
lows immediately from the equality ., P, = Pi(1 — P;), which leads to 0 < } 7/, P;, <
P2(1— Py)~.

We have 6;, , — 6 = (é,LA - é)z + AE,, where

A A~ " n . 1 3P3 P2
(04— 0)2= § 6-12 <Bii - Bu Bllal B;; (az 1—+>)
i p - u
i=1

fora; = (1 — P,-,-)‘I(IS,-,- — P;) and approximation error

13P24+ P2 3P2+ P))(1 + &) &
AE, = Z&ZB,,( (;' D+a) )
i=1 p (I+a) (1 —=Py) 1+ a;

For the mean calculation involving (65,4 — 0),, we use independence between B;;, P;;, and
&7, unbiasedness of Bl,, P,,, and &2, and the variance formula

= 13P+ P t#i

Via] == —
=Py ~p 1-P, p(1—P,)

Taken together, this implies that

13P, +P;
[(GJLA - 9)2 ZB,,O’ (V[a 1— —4})) =B,.
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For the variance calculation, we proceed term by term. We have for y = (y, ..., y,) that

[Z &7 (Byi — B»} [ [Z &7 By yﬂ szp‘liijﬁE[A“
i=1

i=1 i=1 (=1

O(p~'trace(A4?)),

i=1

i=1

) " EIBiByIE[6767]
1
ﬂ pB) Wil

i=1 (=1

O(ptrace(A?) + p~trace(A2)"” trace(42)"),

where A, = S_124,4,5;2 for £ =1, 2,

V|:Z &2B,(a2 - V[Ez,—]):|

i=1
= ZZE[BiiBU]E o; O'e] COV(a a )
i=1 ¢=1

= O(p~>trace(A%) + ptrace(A2)"” trace(A42)'"),

i 22 —Pi(1—=Py)’_

\Y &Z(Bn Bu) & = 0(p73trace(/~12)),
; p(1—Py)’

- 2) Pi—Pi(1-Pi)_
VY Bi(67 - 0t) -2

O(p2v[a)).

p(1—Py)’
From these bounds, it follows that V[8]"2((0,.4 — 6), — B,) =0,(1) since trace(A%) =
O(V[6]) and p~*V[6]>V[0,1V[6:] = o(1).

We now treat the approximation error while utilizing that E[a}] = O(1/p?), Ela}] =

O(1/p?*), and max;|a;| = o,(log(n) /+/P) which follows from Achlioptas (2003, Theo-
rem 1.1 and its proof). Proceeding term by term, we list the conclusions

Z é'izéi,fl? + Z 5’,-231‘1‘&? p*0 (E[él,PI — 0]+ E[éZ,PI — 6,]),
i=1 i=1
N log(n) A .
2B, = P8 6 (B[, b — 0,1+ E[fyp — 65]),
;0} 1+a L o (E[61p1 — 611 + E[6,51 — 65])
2": A 3P2+P2 (3P2 + P2)(1 + &;)°
(1+a)*(1 - Py)
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log(n a n
= (pz + 55(/4))0p(]E[01,PI — 6]+ E[02p1 — 02]),

which finishes the proof. Q.E.D.

PROOF OF LEMMA B.1: The proof of Lemma B.1 uses the notation and verifies the
conditions of Lemmas A2.1 and A2.2 in Sglvsten (2020) referred to as SS2.1 and SS2.2,
respectively. First, we show marginal convergence in distribution of S, and U,. Then, we
show joint convergence in distribution of S, and U,,. Let V,, = (vy, ..., v,), where {v;};
are as in the setup of Lemma B.1. Before starting, we note that max; (f[z = (O(1) and
23 L > iWiota; =1 imply trace(W?) = 31, 3", Wi = O(1) s0 that Ap(W?) =
o(1) & trace(W*) = o(1).

We first consider the marginal distribution of S,.

RESULT S1.1: If max; E[v}] 4+ 072 = O(1), Y., w?o? = 1, and max; w? = o(1), then
S, N(0,1).

In the notation of SS2.1, we have AYS, = w;v; and E[7T,, | V,] =1+ %ZL wi(v? — a}),
so it follows from max; E[v}] + o, > = O(1), Y7 w?0? = 1, and Lemma B.1(i) that

L

1 " " E[v?
EIT, V15> 1, Y E[(A%,)7]=1, D E[(A’S,)"] <max [U;]w? = o(1),
i=1 i=1 ! gi

so Result S1.1 follows from SS2.1.

Next, we consider the marginal distribution of U,,.

REsULT S1.2: If max;E[v]] + o;7 = O(), 2Y0, Y, ;W}om,00, =1, and
trace(W*) = o(1), then U, < N(0,1).

In the notation of SS2.1, we have

AU, =2v; ) Wi, and E[T, | V1= "> (vi+ 07) WuWvovs,
i i=1 C#i k#i
and

n n

SE[(A%) =2, Y E[(A%)"] <2° maxE[v!] maxo; ‘ max Y W2,

i=1 i=1 £

1/2

where max; Y, W < trace(W*)"" = o(1). Now, split E[T, | V/,] — 1 into three terms

n
_ 27772 2 2
a,= E E U'iWiz(Ul"'Uz_o'z)’

i=1 (i

bn:2zzz o WuWiviv, +ZZWigvi(vﬁ - a;),

i=1 C£i kit i=1 e£i
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= ZZ Z WWi (v; — 07)vevy.

i=1 £i kit

Convergence in L£'. The random variables a,, b,, and ¢, are a linear sum, a quadratic sum,
and a cubic sum. We treat similar sums later, so we record sufficient conditions for their

convergence in £'. For brevity, let 7, =" 3" ,and Y00, L, =370 300 D i CEC.
Use the notation u; = (v;1, Vip, Vi3, Vi) € R* to denote independent random vectors in or-
der that the result applies to combinations of v; and v? — ¢? as in a,, b,, and ¢,. For the
inferential results we also treat quartic sums and provide the sufficient conditions here.

RESULT S1.3: Let S,,l = Z?:I w;V;, Sn2 = Z;;( WipV;i1Vp2, S,,3 = Zgﬁ@;ﬁk Wik Vi1V Vi3, and
Sy = Z?##k#m ®iokmVil V2 Vi3 Unmg Where the weights w;, i, 0k, and iy, are non-random.
Suppose that E[u;] = 0, max; E[u;u;] = O(1).

LIS, @ = o(1), then Sy > 0.

2. IF Y0, @2 =o(1), then S, > 0,

3. IF X0 02 = 0(1), then S,5 55 0,

b I @2 = 0(1), then Sy 55 0.

Consider S,3; the other results follow from the same line of reasoning. In the notation
of SS2.2, we have

0
A;S;3 =i E E Wik Ve Vg3 + Vi E E Wik Ve1 Vg3 + U3 E E @ kiVe1 Vg2
Ui kit Ui kit Ui kil

Focusing on the first term, we have

n 2 n
ZE[(UH Z Z wilkvlzvk’j) :| < IlliaXIE[u;ui]3 Z (w?zk + wwkwiu)
i=1

Ui ki itk

< 2maxE u u; Z 0
i#0+£k

so the results follow from SS2.2, 7, ., @}, = o(1), and the observation that the last
bound also applies to the other two terms in A?S,;.

Returning to Result S1.2, we need to see how a, il> 0, b, i]> 0, and ¢, £—1> 0 follow from
Result S1.3. Let W, = Y _;_, Wy W, and note that trace(W“) =30 3" W2, We have

Y (o) <masaty W

L#£D

n 2 n n
S Y (X ot ) <maxal S W

i=1 £ “k#il i=1 ¢=1

Z Z (max W2)

i=1 {#i
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iZZW;Wiz:O(maxZW;),

i=1 C£i kit (£

all of which are o(1) as trace(W*) = o(1).
Finally, we consider the joint distribution of (S,,U,)". Let (u;, u;)’ € R* be given and
non-random with u? + u3 = 1. Define W, = u,S,, + uoUd,. Lemma B.1 follows if we show

that W, % A7(0, 1). In the notation of $S2.1, we have
A?Wn = U W;v; + Up2v; Z Wi,
0£i

and

1 n n
EIT, |V,]=u; (1 P ACE af)) +u3 Y YD (vi+ oF) W Wawu
i=1

i=1 £ ki
n
+ u 1,3 Z 2:(1)12 + o7)w;Wiv;.
i=1 i

The proofs of Results S1.1 and S1.2lead to Y7 E[(AYW,)*1=0(1), >\ E[(AW,)*] =
0(1), and that the first two terms of E[T}, | V;,] converge to uf + u% = 1. Thus, the lemma
follows if we show that the conditional covariance 33", 3", (v; + o7)w; W, v; converges

to 0 in £'. This conditional covariance involves a linear and a quadratic sum:

n 2 n
;(Z Ufsziz> < max o} mlaxx\f(W) ;wﬁ = O<m?X)‘%(W)>’

o#i
YD wwr =y Y Wimaxiv? = O(maxib?),
i=1 i i=1 i ! !
and Result S1.3 ends the proof. Q.E.D.

PROOF OF LEMMA 5: The proof continues in two steps. First, it shows that @[9] has
positive bias of smaller order than V[@] when |B| = O(1). Second, it shows that V[é] —

E[RA’[@]] =0 p(V[@]). Combined with Theorem 2, these conclusions establish the claims of
the lemma. L
Bias of V[6]. For the first term in V[6], a simple calculation shows that

E|:4ZZ::(ZCM)Q> ,} —4Z(ZC,(xlﬂ) o +4ZZCMO' o?

LFL i i=1 (#i

+ 4 Z Z Z Cmicmg (Pmi,IPmZ,Z + pmi,ZI)mé,l)0-1'20-22

i=1 t#£i m=1

—V[O]—i—ZZZC,N ol

i=1 {(#i
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For the second term in XA’[@], we note that if Py Py, _; = 0 for all k, then independence
between error terms yields E[o}0;] = E[67_,]E[67 _,] = o} 0;. Otherwise if Py, + Py, =

0, then )

E[U?;zz E|:<8i - ZPij,lgj) (8i - ZPik,zé‘k) (x/zﬁ + 8@) (845 - Zplm,—ism)]

j#i k#i mz#t

= 0','20'22 "‘XZBE[(&' - ZPij,lﬁ‘j) (&' - ZPik,zé‘k) ZPZm,—igm]s

i k#i mse

where the second term is zero since P,; _; = 0 and P, P;;, = 0 for all j. The same argument
applies with the roles of i and ¢ reversed when Py;; + Py, = 0.
Finally, when (i, £) € B, we have

— _ 2 _
E[ofo?] = (o7 (07 + ((xe = X)) ) + O(n ™)) Lig, <oy
where the remainder is uniform in (i, £) and stems from the use of y as an estimator of

X'B. Thus, for sufficiently large n, E[C,((r o?] is smaller than C,@(r o}, leading to a positive
bias in @'[é]. This bias is

Y Cuo (0 c, g + ((xe = ¥V B) T, 20)) + O(VIOI/n),
(i,0)eB
which is ignorable when |B| = O(1).

Variability of @[é]. Now, \7[9] — E[ﬁ’[é]] involves a number of terms all of which are lin-
ear, quadratic, cubic, or quartic sums. Result S1.3 provides sufficient conditions for their
convergence in £! and therefore in probability. We have already treated versions of linear,
quadratic, and cubic terms carefully in the proof of Lemma B.1. Thus, we report here the
calculations for the quartic terms (details for the remaining terms can be provided upon
request) as they also highlight the role of the high-level condition A (P,P,) = O(1) for
s=1,2.

The quartic term in 4 37, (3", Cuoye)* 0718 Yy spysie @itmk Ei€0EmEr Where

1 ifi=¢,

O = ) CiCuMm M2 and My, =1, ifie
—Le,s .

j=1
Letting ® denote Hadamard (element-wise) product and M, = I, — P,, we have

Z wt(imk - Z wtémk - Z )‘/” (MlMl,)j/" (MzMé)jj/

i#l#m#£k i,¢,m,k
= trace((C* © Cz) (M\M; © M,M,))
< Amax (MM © MoM)) trace(C? © C?) = O(trace(C*)) = O(V[é]z),

where Ap(MiM; © MyM)) = O(1) follows from An,(P,P)) = O(1) and we estab-
lished the last equality in the proof of Theorem 2. The quartic term involved in
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230 > Cu o?o} has variability of the same order as Z;#m#k Wiemk Ei€eEmEL, Where
n
®igmk = CieMip 1My + Z CiM,p 1M 1M, 5.
j=1
Letting C= (éig)i,[, we find that

> wwmk<22 +ZZZ Cy (M) (M), (M),

i#l#Em#k

= O(Z C? + trace((C* © M\M}) (MM © MzMé))) = O(trace(C?)).
NG

We have C=C o C + 20COP)(COP)+2(COP)(CO P,), from which we obtain
that

trace(éz) = 0((rrll%x C:+ AmaX(C2)> trace(C2)> = O(V[é]z),
where we established the last equality in the proof of Theorem 2. Q.E.D.

Section 6.2 proposed standard errors for the case of g > 0, but omitted a few definitions
as they were analogous to those for the case of ¢ = 0. Those definitions are C;, = C;,, + .

zznm:] CmiquL’q(Pmi,lel,Z + Pmi,ZPml,l)v Where Cilq = Bilq - 271Mil(Mngiiq + MN Bllq)
for By, = By — Yo, Aswiwy,. Furthermore,

Al%—l ’ a-lz,—i if Py, Py, _; =0 for all k,
O/'_Z\O_'/z— ~i2 Agz,l- else ifPig,l‘FPig,z:O,
i Y0 A2 ~2 .
! i,*l -0, else if Pli,l +Pgi,2 = 0,

A

ro =971, « oOtherwise.

PROOF OF LEMMA 6: The statements V[Bq]‘WA’[Bq] L I, and V[éq]”@[@q] 21 follow
by applying the arguments in the proofs of Theorem 1 and Lemma 5. Thus, we focus on
the remaining claim that

1250 where C =2 Z V'w;, (Z Cthyl)

V[éq]l/z C#£i

for all non-random v eARq )Vith vv=1.
Unbiasedness of C[v'b,, 6,]. Since &7 is unbiased for o7, it follows that

E[C[vb 2ZUWW<ZC,gqxlﬁ)(T +2va1q(ZC,pq]E 8,07 ) C[v'b,, 6,]

CH£Q 1231

as split sampling ensures that E[&,67] =0 for £ # i.
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Variability of ¢ [v’Bq, éq]. Now, 14 [v’Bq, éq] -C [v/Bq, éq] is composed of the following lin-
ear, quadratic, and quartic sums:

ZUqu[ s —o- ZCwqx[B+a' chgqsz

i i

+ Z Ciéqo-zz Z(Miz,lMik,Z + Mie,zMik,l)Sk],
£ k£t

Z VWi, |:Z Cigx,B Z ZM”” Mg 2emer + Z Clgq(‘)g 8 - a'

[£3] m  k#m CH£T

+ Z Cieq Z(Mil,lMik,Z + M 2 My 1) & (6‘? - ng)]a
o4 ke

vazq Z Czéq Z Z Mzm 1Mlk 280EMEk-

i m#L k#m L

These seven terms are o p(V[v’Bq]'/ 2V[éq]l/ 2) by Result S1.3 as outlined in the following:

Z VW) <Z Cwqx[B> (miaxw;qwqu[@qD = o(V[v'b,]VI8,1),
i=1

1Z34

2
n n
/
( E v W,-ingq)
=1 i=1

= O (A (C)V[v,]) = O(AL, V[, ]) = o (V[v'B,VI6,1),

n n
/
(E UWin Cilinl,lMik,2)
k=1 \ i=1 ¢

= O(maxw;.qw,-q trace(C,M, ©® C,,Ml)> = o(V[v'b,]VId,1),

N

2

Z Z <Z v Wig Z ClquzBth 1M1k 2)

m=1 k=1 CH£i
= O(Z <Z Cl(qxlﬂ) )
i=1 LH#Q
ZZ itq U""lq = (m?XWQquqV[éqD,
i=1 (#i

k=1 (=1

>3 ( St )
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= O(V[v'b, ] Amax ((C, © M1)(C, @ My)')) = o(V[v'b,]VI6,1),

D)D) NTRHTS M) OV ()

=1 m=1 k=1

Q.E.D.

Before turning to a proof of Lemma 7, we give precise definitions of the curvature and
critical value used in the construction of our proposed confidence interval. The curvature
as introduced for the general problem considered by Andrews and Mikusheva (2016)
does not have a closed form representation, but we show that it does in the special case
considered here. For implementation, the closed form solution circumvents numerical
approximation.

Critical Value Function. For a given curvature k > 0 and confidence level 1 — «, the
critical value function z, . is the (1 — @)th quantile of

1\ 1
p(xq,xl,K)z\/xf,Jr (Xl +—> -=,
K K

where x? and x? are independently distributed random variables from the y-squared
distribution with g and 1 degrees of freedom, respectively P(Xq> Xis k) is the Euclidean
distance from ( Xq> x1) to the circle with center (0, ——) and radius 2 +. The critical value
functlon at k =0 is the limit of z, , as « | 0, which is the (1 — a)th quantile of a central
x? random variable. See Andrews and Mlkusheva (2016) for additional details.

Curvature. For generic Sq, our proposed confidence interval C? (Sq) inverts hypotheses
of the type H, : 6 = ¢ versus H; : 0 # ¢ based on the value of the test statistic

min P4 =Pg) -1 (g =By
bg,04:8(0g,64,0=0 \ 0, — 0,) ~ 1 \0,—6,)’

where g(b,, 0,,¢) =Y ;_, )\elﬁ +6,—candb, = by, ..., Bq)/. This testing problem de-
pends on the manifold § = {x = 2;1/2(bq, 0,) : g(b,, 6,,c) =0} for which we need an
upper bound on the maximal curvature. We derive this upper bound using the parameter-
ization x(y) = Z Y20y ey Vg € — Y t_; Acy?) which maps from R? to S, is a homeomor-
phism, and has a \ Jacobian of full rank:

diag(1,...,1)
172
dX(y) 2 |: 2/\1}.)1’---5_2/\‘1-).)‘Ii|.

The maximal curvature of S, K(S ), is then given as K(Eq) = MaXjrs K; Where

(I—P)V(uou) “ 0
= sup | R [ 2M1,... —2) }
| dxul’ ’

and Py = dx(y)(dx(p)'dx(y))~'dx(y)".
Curvature When g = 1. In this case, the maximization over u drops out and we have

@)’

Vi —
Vv

K(Sl) = max - where v = 5['/2(1, —2A1p)
ye

vV
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_ 120 _ Vb ~_ Cihbg S
and V' =3 /7(0, —2A,). The value y* = TR for p = CTRTETRTERE both a minimizer

: - 2IM1V1by1
of v'v and (v'V)?, so we obtain that «(3,) = m
Curvature When q > 1. In this case, we first maximize over y and then over u. For a fixed
u, we want to find

N : q i |
max 5 whereV, =320, —ZZ Ay |, vy =312 (u', —2u'D,y)
=1

- q / .
yeR Uu,yvu,y

and D, = diag(A;, ..., A,). The value for y that solves —2D,y = V[b,]-'C[b,, §,] sets
P;V, = 0 and minimizes v ;v, ;. Thus we obtain

|u'D,ul
2 max —_—
uek? ' V[b,] 'u

(V16,1 — CIb,, 6,1 V16,17 Cb,, 6,1) "

K(3,) =

- 2| A (V15,12 D,V1b,12) |
(V10,1 — C16,, 8,1V15,17'CIb,, 8,1)"

where }\1(-) is the eigenvalue of largest magnitude. This formula simplifies to the one
derived above when g = 1.

PROOF OF LEMMA 7: The following two conditions are the inputs to the proof of The-
orem 2 in Andrews and Mikusheva (2016), from which it follows that

liminfP(6 € C? ) = liminfP min (9" B bq) 3 (?q B bq> <z
100 g 100 (b.69):8(bg.04.0=0 \ Oy — 0, ) 1 \ O, — 0, o
= 1- a,
where g(b,, 6, 0) = 3" A,b2+ 6, — 0 and b, = (by,...,b,)".

Condition (i) requires that 3,"2((,, 8,) — E[(B), 6,)']) > N(0, I,4), which follows

from Theorem 3 and Z;IEA‘, Ry .
Condition (ii) is satisfied if the conditions of Lemma 1 in Andrews and Mikusheva
(2016) are satisfied. To verify this, take the manifold

S={teR™: ) =0}
for

g0 =3 [Doq 8} S125 + (2E[b, 1, 1) [Doq ﬂ S5,

The curvature of S is K, £(0) =0, and g is continuously differentiable with a Jacobian of
rank 1. These are the conditions of Lemma 1 in Andrews and Mikusheva (2016). Q.E.D.
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S2. CALCULATION OF C!(3)) IN PRACTICE

To calculate our proposed confidence interval, one can rely on an implicit representa-

tion of C;j(il) which is Cj(il) = [Aib] _ + 61, \ibi 4 6,1, where b, . and 6, . are
solutions to

bi:= l;1 + Za,,((il)(v[l;ﬂ(l - Zl(bl,i)))l/zy (S1)
N 2N Ea - -
01+ =0,— ”W(bl — i) 2,5, (VI0)(1 - p2)abiw) ", (S2)
1

for a(by) = (1+ (sgn(A)k(E)b Vb2 4 5/ T— 5N .
This construction is fairly intuitive. When p = 0, the interval has endpoints that com-
bine
1/2

Moy £z, 5 (Vb1 - a(bi))) and 6, %z, 5 (VI6,ab2))"”,

where a(bl) estimates the fraction of V[] that stems from 6; when E[él] = 131. When p is

nonzero, C;’(S 1) involves an additional rotation of (51 , 6, ). This representation of C? (51 )
is, however, not unique as (S1), (S2) can have multiple solutions. Thus, we derive the
representation above together with an additional side condition that ensures uniqueness
and represents b; .. and 6, 1 as solutions to a fourth-order polynomial.

Derivation. The upper end of C?(2)) is found by noting that maximization over a lin-

ear function in 6, implies that the constraint must bind at the maximum. Thus, we can
reformulate the bivariate problem as a univariate problem:

0 o A V6 L
max )\1b1+01= m_aX)\lb1+01—p~ ~ (b1 —bl)
(b1,61)€Ea (1) by V[b,1?

oA ~ (b, — b))?
+ | V61— 2<z2 . —7)
1 ( p ) a,k(31) V[bl]

where we are implicitly enforcing the constraint on b, that the term under the square root
is nonnegative. Thus, we will find a global maximum in b; and note that it satisfies this
constraint. The first-order condition for a maximum is

V1002 by —by | VI6i(1-p)
pP-——= ~ = = T,
Vi Vb |, (i =b)?

T Vb

2\b, +

which after a rearrangement and squaring of both sides yields % =(1—a(b))z? Gy
1 @, k(=1

This in turn leads to the representation of b, . given in (S1). All solutions to this equation
satisfy the implicit nonnegativity constraint since any solution b satisfies

2 (131_[7])2 _

2 2
Z, Gy @[I;I] a(bl)zw(Sl > 0.

)
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Aslightly different arrangement of the first-order condition reveals the equivalent quartic
condition

(b, — 1)2< n <Sgn()\1)'<(51)151 + p )2)

Vb1 Vb1 V1-p
B (sgn()n)x(iobl p )2 )
= —— + -,
V[bl]l/z 1— 132 a,k(21)

(S3)

which has at most four solutions that are given on closed form. Thus, the solution b; | can
be found as the maximizer of

: V6,12 «
/\]b% + 01 pv[l};l] ( 1 1) +Za K(zl)(V[a ]a(bl)

1

)1/2

among the at most four solutions to (S3). More importantly, the maximum is the upper
end of C/(3). Now, for the minimization problem, we instead have
VI6:'

) min . Alb'%—l—é]:mln)\lb.%—{—& pT( 1—b.])
(b1,61)€Ea(3)) by Vb 1"?

o _ (Bl - Bl)z
, (b =b))?
— V1601 —PZ)(ZQ,K@Q T T )

Vbi]

which when rearranging and squaring the first-order condition again leads to (S3) as a
necessary condition for a minimum. Thus, b, _ and the lower end of C/(%;) can be found
by minimizing

ST (1010
107+ 6 — PQ[A] (1— 1)—Za,,<(gl)( [641a(b))

over the at most four solutions to (S3).

S3. INFERENCE WITH NON-EXISTING SPLIT SAMPLE ESTIMATORS

The standard error estimators considered in Lemmas 5 and 6 rely on existence of the
independent and unbiased estimators x;8_; , and x;B_, ,. Here, we propose an adjustment
for observations where these estimators do not exist. The adjustment ensures that one can
obtain valid inference as stated in the lemma at the end of the section.

For observations where it is not possible to create x;8_;, and x;B8_,,, we construct
X;B_;, to satisfy the requirements in Lemma 6 and set P;,, = 0 for all £ so that x/ B_i,= 0.
Then we define Q; = 1, P2 ,=0) S an indicator that x;8_; , could not be constructed as
an unbiased estimator.

Based on this, we let

Vz[ﬂ] 4Z<ch)’z) gy —ZZZCK‘T Uzza

AL i=1 (&
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where 77, = (1 — Q)7 + Q;(y: — y)* and

Gy 07 if Py _Py._;=0forall k and Q; = Q,, =0,
~i2 : (}[2,—1‘ CISC lf Pil,l + PiK,Z = O and Qi = Qli — 0,
/2\2 A-Z,[-(}Kz ClSCifP[il—l—Peiz:()andQK:QMZO,
g0, = A” 5 ) ; ;
O =" 1ig, 0 else if Q;, =0,
(yl .)_})2 a_ZZ —i° 1( ,[<0} else if Qli = O,
=9 =¥ 1, otherwise,

where we let Q; = 1(p, , 200, The definition of @2[@] is such that XA’Z[@] = KA’[@] when two
independent unbiased estimators of x’8 can be formed for all observations, that is, when
Q; =0 for all i.

Similarly, we let

) WigW,, 07, 2wi, (Z Cilqyl) i,
ﬁq,z - Z l#l B
,q (Z Cth}’l) (Z Cwqﬂ) 0- -2 Z Czeq i O-Z 2

C#£Q (3 [z

where 67, = (1 - Q)67 + Qi(y; — y)* and o707, is defined as o7 07, but using C‘,-gq instead
of Cj.

The following lemma shows that these estimators of the asymptotic variance lead to
valid inference when coupled with the confidence intervals proposed in Sections 5 and 7.

LEMMA S3.1: Suppose that Y, Py x, = x,B, either 3, Py x,p = x;B or
max, Pizz’2 =0, Py, 1Py, =0 forall £, and Ay (PsP)) = O(1) where Py = (P )i

1. If the conditions of Theorem 2 hold, then liminf,_, .. P(6 € [0 + z,V,[6]'2]) > 1 — a

2. Ifthe conditions of Theorem 3 hold, then liminf, . ,P(8 € C g(ﬁ,,,z)) >1—oq.

PROOF OF LEMMA S3.1: As in the proof of Lemma 5, it suffices for the first claim to
show that Vz[é] has a positive bias in large samples and that Vz[é] - E[Vz[é]] iS 0 p(V[é]).
The second claim involves no new arguments relative to the proof of Lemma 5 and is

therefore omitted. Thus, we briefly report the positive bias in V,16].
We have that

E[V.[01] = VI6l+4 ) (Zcmﬁ) (xi— %)'B)’

Q=1 ™ {#i

+2 Z Czla- 0-( C¢>0 ((XZ—X) 'B) (<0)

(i,0)eB;

+2 Z éizo'zz(o' G0y T ((x, —x) :B) ,/<0})

(i,0)eB,y

+2 Y Cu(02021 ¢+ (203 ((x — 2B’

(i,0)eB;
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((x —X)B(x,—Xx) B) ) C(<0)
+O(VI1/n),

where the remainder stems from estimation of y and ;, B3,, BB; refer to pairs of observa-

tions that fall in each of the three last cases in the definition of o?07,.
The proof of the second claim contains two main parts. One part is to establish that the

bias Eq » Is positive semi-definite in large samples, and that E[Zq 2] Zq 2 — q+1 is 0,(1).
These arguments are only sketched as they are analogues to those presented in the proof
of Lemma 5 and the first part of this lemma. The other part is to show that this positive
semi-definite asymptotic bias in the variance estimator does not alter the validity of the
confidence interval based on it. ) R

Validity. First, we let QDQ’ be the spectral decomposition of E[3,,] />3 E[3, ]2
Here, QQ' = Q'Q =1, and all diagonal entries in the diagonal matrix D belong to (0, 1]
in large samples. Now,

P(6 € CI(3,0)

: by — b, — b
=P 4 - 7] < 2 A 1
((b;,eqyg}ézeq,e)_o (0 —0 ) [Eq 2] <0 -0 ) - Z“’K(]Elzq,zb) +o(),

where the minimum distance statistic above satisfies

. b, — . —b,
~ E _
(bil’eq)/};}geqﬂ):o (6 _ 9 ) [Eq 2] (0 _ o ) mm(f x)'(§—x),
where S, = {x:x = Q/}E[EAq,g]‘l/z((b’q, 0,) — E[(B’q, éq)’]), g(b,, 0,,0) = 0} and the ran-

dom vector § = Q/E[ﬁq,z]’l/z((ﬁ/q, 8,0 — EL(b, 6,)']) has the property that D~'/2¢ A
N, I,:1). From the geometric consideration in Andrews and Mikusheva (2016), it fol-

lows that S, has curvature of k(E[2,,]) since curvature is invariant to rotations. Further-
more,

min(¢ —x)'(¢ = x) < P (1€ €1, K(EL2,2]))

=p*([(07¢)_[. [(07¢),

where & = (£, ¢ ,) and D™ 2& = (D712¢),, (D7'2£)" ) and the first inequality follows
from the proof of Theorem 1 in Andrews and Mikusheva (2016). Thus,

k(EL3,21)),

liminfP(6 € C! (2,, 2)) = hmlnf[F’(mln(f X)(E—x)<z* . )

n— 00 - ayK(]E[Eq,ZJ)

> liminfP(p? (x,, X1, K(E[2,2])) = Z s, ) =1 @

since ([£_111, 1€1) > (xg» x1)-
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Bias and Variability in ﬁq,z. We finish by reporting the positive semi-definite bias in Eq,z.
We have that

/

. Wiq Wiq A
]E[Eq,z] =2q + Z g-l,z 22Cilx/zﬁ 22@2%,3 + |:8 g] +O(V[9]/ﬂ),
i:Q;=1 C#£i C#i
where
B=2 3" CuyoX(0?1c, 0+ ((xe = 2YB) Ly, o))
(i,0)eBy
+ 2 Z Cllqo-[ 1 ,[ >0} ((xl - x) B) t(q<0)
(i,0)eBy
+2 Z éieq("izo'zzl{émpm + (20'1»2(()(,'@ - )_C),B) ((x — %) Blx; — XY B) ) {Cieg<0) )
(i,0)eBs3

for By, B,, B; referring to pairs of observations that fall in each of the three last cases in
the definition of o7 d?7,. Q.E.D.

S4. VERIFYING CONDITIONS

This section fills in details omitted from the discussion of Examples 1-3 in Sections 2
and 8.

EXAMPLE S1: We first derive the representations of 2 given in Section 2. When there
are no common regressors, the representation in (4) follows from B;; = ﬁ(l — Teiy/n)
g(i

and
1
5 _Zygt(ygt _1Zygs>= Z 0',,
T, —1 T, st gtg(l) =g
which yields that
u 1 T,
BUAZ - e [

With common regressors, it follows from the formula for block inversion of matrices that

X' =AS;(D,X) = %((1 — (I - Py)X(X'(I —Pp)X')" X')(D - d1,),0)

= %(D —dl,— (I —-Pp)XT,0),

where D = (dl, ceey d,,)/, X = (xg(l)m), ceey xgm),(,,))/, PD = DS;;D/, 1n = (1, ceey 1)/, and
S4¢ = D'D. Thus, it follows that

P (di —d- ﬁ’(gg(m(w - ’_Cgu'))) _

i =
n
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The no common regressors claims are immediate. With common regressors, we have
Pig = Ty Ligi=gion + 1 Kgiirer — X)W oy — Xg0y) = Tyt Limey + O(n71),
where W = L Zg’:l S (Xg — ¥,) (X — X) 50 P; < C < 1 in large samples. The eigen-
values of A4 are equal to the eigenvalues of

1 1
(IN —nSy,*dd's;,"”) (IN + = S;ﬁfD xXwx' DS‘“Z),

which in turn satisfies that ¢+ <A, <2 for¢=1,..., N —1and ¢, > ¢; > 0 not depending
on n. w;w; = O(P;) so Theorem 1 applies when N is fixed and min, 7, — co. Finally,

A s N2 _ 1<
max V(6] (¥;8) =N 10<n;a;xa§, + g~ Z||xg<,-)t<,->||zaj>,

i=1

maxV[érl(Ic;.ﬁ)2 la(max xiB) <Z|M,[|> )

and >_;_,|M;| = O(1) so Theorem 2 applies when N — oc.

EXAMPLE S2: A is diagonal with N diagonal entries of 1 Tg , S0 Ay = ;— for g =
1,...,N.trace(A4?) < mm;lszzg p Zg T, = O(\y). max; ww; _maxg % o(1) when

min, Szz’g — oo. Furthermore, V[6]~! = O(ﬁ), o)

A - 2 22t52
V[6] " max(¥;8) = O(max %) =o0(1),

gt oy

and M;, =0if g(i) # g(¢) so

2 2
i oo 1)) <o) o
[6] ml_ax(xlﬁ) n m;lx Z max \/_Sxxg o(1)

ig()=g

d VNSpx 1
T

both under the condition that N — oo an — 00. Used above:

(Zgireciy — Ze) (Zgaipewy — Zg(iy) 1

Py = Tg(z)l(g(l) =gy T S {g()=g(0)}>
22,8(0)
B. — 1 Zgiyiy = Zeiy Ty
mn - .
no Seei Sigi
Finally,
= \2
, (zir — z1)
maxw; w;, = max ————— = 0(1),
i 1 ! Szz,l
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. o 22,82
V0,1 max(¥;,B)" = 0<max%) =o(1),

§22,1 22,8

A T ’
- o 0( (78') > =o(1),
[ q] mlax(xlqﬁ) gZaZX \/NSxx,g 0( )

under the conditions that \/T—[jS”»z — o0 and S, ; — oo. Thus, Theorem 3 applies when
XS..1=0(1).

EXAMPLE S3: Let fl = (1(j(g,t):0}5 fi,)/ = (l(j(g,l):()); l{j(g,t):l}a ceey l(j(g,l):J))/ and define
the following partial design matrices with and without dropping i, from the model:

n n N N
Sy=Y_"Ff,  Sy=D_ffl,  Sysr=D_ALAfL Siai= D AfAf
i=1 i=1 g=1 8=l

where A fg = fi o) — fi o1 Letting D be a diagonal matrix that holds the diagonal of S, Fafs
we have that

E = DS]:]C1 and £ = Dil/ZSAf'Af'Dil/z.

Sajas is rank deficient with Sy 441,41 = 0, from which it follows that the nonzero eigenval-
ues of E'2LE"* (which are the nonzero eigenvalues of S;; Sajaj) are also the eigenvalues

of Sapar(Sy + Slf’f 1]’1 ). Finally, from the Woodbury formula we have that A4 is invertible
with

5 - S, fS,) 1,1
i =n(Sy —nff 1=n<51+nff—_ff_>:n(S1+ d f),
fr ( Ir ) Ir 1 _nf,S;f]f ff Sf'f"ll

SO

1 1
Ajsi-e (SAfAfA/:f] ) B nAji1-¢ (El/z»CEl/z) '

With E;; =1 for all j, we have that

N A4
’ NS
Yy YV
=1 =1

since A, <2 (Chung (1997), Lemma 1.7). An algebraic definition of Cheeger’s constant C

1S
- Z Z Safaf.jk

jeX k¢X

C= min . ’
X0 VS v Di<iST P D
SUSS ]'ZIGX =2 Z;:O Ji i
jeX
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and it follows from the Cheeger inequality A, > 1—+/1 — C? (Chung (1997), Theorem 2.3)
that vJ A, — oo if v/JC — 0.

For the stochastic block model, we consider J odd and order the firms so that the first
(J + 1)/2 firms belongs to the first block, and the remaining firms belong to the second
block. We assume that A fg is generated i.i.d. across g according to

Af =W(1 —D)+BD,

where (W, B, D) are mutually independent, P(D=1)=1—-P(D =0) = p, < %, W
is uniformly distributed on {v € R’*' : v'1;,; = 0,v'v =2, max;v; = 1,v'c = 0}, and B
is uniformly distributed on {v € R’™ : v'1;,; = 0,v'v = 2, max;v; = 1, (V'¢)* = 4} for
¢= (1,4, —1{;41))"- In this model, Ej; = 1 for all j. The following lemma characterizes
the large sample behavior of S, and £. Based on this lemma, it is relatively straightfor-
ward (but tedious) to verify the high-level conditions imposed in the paper.

LEMMA S4.1: Suppose that 10’%) + @ — 0asn— ooand J — oo. Then
J—|— 1 1]+11 1/+11
‘ L' SAfAf_I]+1 leﬂ =o0,(1) and H[' L—1T4+ ]+J1+] 0,(1),

1 1,
where L =1;,, — M (1 —2pn) 7 _ and ||-|| returns the largest singular value of its ar-

gument. Additionally, max; A, |/\,_; — A =o0,(1) where A, > --- > A, are the nonzero eigen-
values of L.

PROOF: First, note that

J+1 2+42py 1.1, cc’ 4p, cc
—]ES — L= I — +
S 1—1(’“ T+l T+1) TSI
and L7 = 1,,, — 2l _ () _ Ly g,
= J+1 J+1 2p J+17
J+1 1.1
”ﬁ‘ _]E[SAfAf] -+ ﬁ
. 24 2p, 1,41, cc 2 cc
=1 Y T T+1) T U-1741
S J-1"

Therefore, we can instead show that ||S|| = 0, (1) for the zero-mean random matrix

12d +1

S=(L"

—— (Saja; — ELSajafl)( »CT ng
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: 2pp—1 3 ¢
where s, = /ZLAf, — V\/Q% Afjer=.
, J o1 al o J 1
S8y = 0(; - n—pb> and gE_l E[s5,5,5, ]| = O(n + n_ph)

Oliveira (2009, Corollary 7.1) yields that P(|S|| > 1) < 2(J + 1) exp(—*(: + 1)/

npp
(8¢ + 4ct)) for some constant ¢ not depending on n. Letting ¢ o \/ ogl/on) y JlogU/on) oy

npp
Llog/on) —, () yields the conclusion

5, that approaches zero slowly enough that k’gfl;/ o) 4
that [|S]| = 0,(1).

Since £ = D‘l/zSAfAfD‘l/z, the second conclusion follows from the first if ||]nl1D —
I;41]l = 0,(1). We have JnllE[D] =1I,,, and %Dﬁ = Zg;l(Af'ée,)z where e; is the
jth basis vector in R/*! and ]P’((Af;;ej)2 =1)=1- ]P’((Afg’ej)2 =0) = J+1 Thus, it fol-
lows from V(£ +1D,]) < 2%+ and standard exponential inequalities that || :lD — L=

J+1 7 Jlog(J
max;|Z2 D — 1| = 0,(1) since 70

— 0.

Finally, we note that || £ £ — I,H + ”1 ”1 | < e implies
VLv(l—€)<vLv<vLv(l+e),

which together with the Courant-Fischer min-max principle yields (1 — €) < i—’ <1+
=
€). Q.E.D.
Next, we will verify the high-level conditions of the paper in a model that uses ;%5 L in
place of S,z and /f in place of A and 71,4, in place of D. Using an underscore to
denote objects from this model, we have

J+1 1-2
+ +2( Pb)

+1, . .
mgaXng = mgax AfgéTAfg =2 D =o(1),
- trace((£1)’) T -1 1
trace(ﬁz) = ((2_ )) =—+ > =o(1),
n n 4(npyp)
A 1 B 1

. A trace((£1)’) U —=Dap+ 1

>N

=1

< 1. Furthermore,

which is o(1) if and only if +/J p, — oo, and Z’ /\2 <

2
maxw’, =n~' max(c'(£ )UzAfg) _< 2 >= =o(1),
8

‘ V2pon
max(%,8)" = n* max(y'L'Af,)" <20 [mgax(Af;z/f)z + (1 - 7) (Prer1 = Par2) ]

np,

=0(n+ (npy) ),
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which is o(V[8]) if v/7 p, — oo as trace(&z) = O(V[6]) and

max(¥,,8)" =~ max(#'af,)’ = 0(n~) = o(V10).

Finally,
max X ,8 (ZB ) (mgaXngtrace(;l)),
where
J+1 1 —4p? ~
B, = LYAf, =2 b — O(trace(A4?)),
maxB,, (LA, =2 o~ Oftrace( )
~ J—-1 1
trace(A4) = +—=0(1),
n 2pyn

SO max, Qgg trace(é) = O(trace(ﬁ))o(l).
Finally, we use the previous lemma to transfer the above results to their relevant sample
analogues:

mga‘X|ng - ng|

J+1
x|Af <S§w ﬂ)Afg

~2

'L A trace(A")
DA

= ma
8
=T A () (] 4 ) () P f
T oon e | 8 \F J+1 Sapare” ~ it T B ¢
o +1 1,1
=0(H£ SAfAf I +le+l )mgxﬁgg:o(m;legg),
d 2 Ae—A 2
5 L= A .
|trace(A4 gzn)\z_ % _trace(4)0<meax 5 f):op(trace(ﬁ )
. . ~2 ~
SO IS N ST I

J J
YA YN
=1 =1

with a similar argument applying to Furthermore,

2 )\2
ZJ /\z - ZJ ,\2

J41 12 2
maxwgl _max(Afg<—£T) (EJ+ ISZfAf> 6]1)

1/2
<|(e7475i)

mgangg =0,(1)
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and max,| (¥, 8)> — (£,8)°| = op(trace(ﬁ)) since

- oo JH1 : 1,01, v\
— = A D — 1
l’IlgaX(ng igﬁ) n ( f [‘ <‘CSAfAf J+1+ T+1 \/m

2
WA _ o, (trace(22)),

. 1,1
< | LSyjafD = La + —2 ZeeT 1

J+1

and this also handles max,-l(fcbﬁ)2 —gl ' 1B)*| = 0,(1) as the previous result does not
depend on the behavior of +/J p,. Finally,

max

mgax|ng — Egg|

1,1 .
Afﬁ( ﬁST DSt L—I .+ 2 f“)gAfg

AfAf AfAf= J+1
n i J+ 1 n : 1]+11}+1
= T+ 1700 ]+ 1SAfAf£ I+ J+1 mfxﬁgg
=o0,|maxB,, ),
p( g —gg)
L. ‘1 Ae—A
|trace(A4 — A)| = T - == trace(A)O(maX T = )
nay na, Ay
= o,,(trace(é)).

S5. RELATION TO EXISTING APPROACHES

Next, we verify that the bias of éHo is a function of the covariation between o?

and (B, P;). Specifically, the bias of Oyo is o wBio? T ST Op, o2 where o, o?

n 2 =2 =2 1 n 2 n 2
Yim Bilo} —6%),0% =307, 85 =21 Biis 0p, 2 =, Z;:] P;(o? — a*). This is so
. ) 1 n A2 1 n n :
since 6% = — > L (yi —X;B)° = — > 1.1 D, Mi&ig,, from which we get that

E[fuo] — 6= Bjo; — (ZB”> — ZM”(T

i=1 i=1

:ZBii(Uiz_a'z) - n—k ZMH - OBy, a? +Sank0-Pii70','2'

From this formula and the discussion of Example 1, it immediately follows that the

homoscedasticity-only estimator 6y is first-order biased in unbalanced panels with het-
eroscedasticity

Comparison to Jackknife Estimators

We finish by comparing the leave-out estimator 8 to estimators predicated on jackknife
bias corrections. We start by introducing some of the high-level assumptions that are typ-
ically used to motivate jackknife estimators. We then consider some variants of Examples
1 and 2 where these high-level conditions fail to hold and establish that the jackknife
estimators have first-order biases while the leave-out estimator retains consistency.
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High-Level Conditions. Jackknife bias corrections are typically motivated by the high-
level assumption that the bias of a plug-in estimator 6p; shrinks with the sample size in a
known way and that the bias of % >, 0p1._; depends on sample size in an identical way,
that is,

D, D
E[em]—0+—+ =5

(S4)

1 A D, D,
El=) Op_i|=0 f Dy, Ds.
[nz P, :| +n—1+(n—1)2 or some Dy, D,

Under (S4), the jackknife estimator éjK = népl n-l Zl . 9P1 _; has a bias of — n(n 1)

For some long panel settings, the bias in fp; is shrmkmg in the number of time periods
T such that

. D, D .
E[6p1] = 0 + 71 + Tj for some Dy, D,.

In such settings, it may be that the biases of % ZL 91:1,_, and %(épl,l + épl,z) dependon T
in an identical way, that is,

1 < s D, D,
Bl = o | =0 d
[T; P ’] Tt oy ™

2D, N 4D,
T T

1 A N
E[E(HPLI + 9PI,2)] =0+

From here, it follows that the panel jackknife estimator Opjx = T 6p — = Z[T . Op1._, has

a bias of — T(T 5 and that the split panel jackknife estimator GSPJK = 201:1 - -(9p1 1+ BPI 5)
has a bias of —%, both of which shrink faster to zero than 2t if T — oo. Typical suffi-

cient conditions for bias-representations of this kind to hold (to second order) are that (i)
T — oo, (ii) the design is stationary over time, and (iii) 6p; is asymptotically linear (see,
e.g., Hahn and Newey (2004), Dhaene and Jochmans (2015)). Below, we illustrate that
jackknife corrections can be inconsistent in Examples 1 and 2 when (i) and/or (ii) do not
hold.

Examples of Jackknife Failure
EXAMPLE S1—Special Case: Consider the model

Ya=0,+¢&, (g=1,...,N,t=1,...,T>2),

a?. For T even, we

where o7, = o> and suppose the parameter of interest is § = + Ly =1 -

have the followmg bias calculations:

E[§ ]_0+02 E 12,1:@ —9+02+ o
P11 — T’ ni:l PL—i | — T I’l(T—l)’
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2 20_2

E 1XT:é N E| L B0+ b | = 6+
T — PL,—t | — T — 17 2 PI,1 PI,2 —_— T .

The jackknife estimator 9JK has a first-order bias of — which, when T = 2, is as large

)
R T(T-1)’ R
as that of 6p; but of opposite sign. By contrast, both of the panel jackknife estimators, 6p;x
and the leave-out estimator, are exactly unbiased and consistent as n — oo when T is

fixed.

This example shows that the jackknife estimator can fail when applied to a setting where
the number of regressors is large relative to sample size. Here, the number of regressors
is N and the sample size is N T, yielding a ratio of 1/7 and 1/7 — 0 is necessary for
consistency of 6. While the panel jackknife corrections appear to handle the presence
of many regressors, this property disappears when adding the “random” coefficients of
Example 2.

EXAMPLE S2—Special Case: Consider the model
Yo =0g+Xg0,+ &5 (g=1,...,N,t=1,...,T >3),

where 02, =02 and =+ Y | 52,

An analytically convenient example arises when the regressor design is “balanced”
across groups as follows: (Xg1, Xg2, ..., Xgr) = (X1, X2, ..., X7), Where xi, x,, x5 take dis-
tinct values and Y|, x, = 0. The leave-out estimator is unbiased and consistent for any
T > 3, whereas for even T > 4 we have the following bias calculations:
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where x_, = ﬁ Zs;&t Xy, X1 = % > X, and X, = % Zz:r/2+1 Xt

The calculations above reveal that non-stationarity in either the level or variability of
x, over time can lead to a negative bias in panel jackknife approaches, for example,
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where the first inequality is strict if ¥, # ¥, and the second if Y/ 2 x2 £ Y/ 11 X7+ In fact,
the following example (xi, x2, ..., x7) =(—1,2,0,...,0, —1) renders the panel jackknife

corrections inconsistent for small or large T

~ 7/5 1 A 8/5 1
E[0px] =6 — %0'2 + 0<7) and E[fspx] =60 — %0’2 + 0(?)

Inconsistency results here from biases of first order that are negative and larger in mag-
nitude than the original bias of 6p; (which is o2/6).
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