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THIS APPENDIX PROVIDES supplementary material to accompany the main
text. Appendix A discusses the psychological foundations for our approach.
Appendix B provides full arguments for all the results in the main text con-
cerning history-dependent equilibria; essentially, up to and including Proposi-
tion 4. Appendix C proves our assertions for the simplified model of Section 5.4
in the paper, and provides associated computational results. Appendix D pro-
vides detailed arguments for results involving Markov-perfect equilibria. Ap-
pendix E describes the algorithm for computing subgame-perfect equilibrium
values, and the parameter choices for the examples in the main text. Ap-
pendix F provides computed examples with and without poverty traps. Ap-
pendix G shows that a poverty trap is present even when a MPE is used as
punishment. Finally, Appendix H presents the details of the model with taste
shocks and lockbox saving regimes. Referenced equations that appear in this
appendix are labeled as (a.1), (a.2), etc. Other equation references are to equa-
tions in the main text.

APPENDIX A: PSYCHOLOGICAL FOUNDATIONS

The defining feature of the self-control mechanisms that we model in this pa-
per is that people intentionally create and execute plans for self-reinforcement,
establishing incentives by punishing themselves for deviations from (or reward-
ing themselves for conformity with) desired behavior.1 Psychological foun-
dations for this mechanism are found in the literatures on self-regulation
and behavior modification. For example, in one early study of self-regulation,
Bandura and Kupers (1964) observed, “[b]y contrast [to rats or chimpanzees],
people typically make self-reinforcement contingent on their performing cer-
tain classes of responses which they have come to value as an index of personal
merit. They often set themselves relatively explicit criteria of achievement, fail-
ure to meet which is considered undeserving of self-reward and may elicit self-
denial or even self-punitive responses; on the other hand, they tend to reward
themselves generously on those occasions when they attain their self-imposed

1Certainly, one can frame any form of self-reinforcement as either a reward or a punishment;
it is the difference in outcomes that creates incentives. Psychologists do not, however, view this
framing as neutral, and there is some evidence that people can achieve self-control more effec-
tively by framing self-administered consequences as rewards rather than as punishments; see, for
example, Mahoney, Moura, and Wade (1973). Such framing effects are beyond the scope of our
investigation.
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standards.”2
 Rehm (1977) noted that “[s]elf-reinforcement has been a major

focus of self-control research and many clinical uses of self-administered re-
ward and punishment programs have been described.”3 Likewise, according to
Kazdin (2012), “Self-reinforcement and self-punishment techniques have been
incorporated into intervention programs and applied to a wide range of prob-
lems. . . ”

As explained in the Introduction, we model the decisions of a time-
inconsistent individual by studying a dynamic game played by his successive
incarnations. In that setting, the individual engages in self-reinforcement by
deploying history-dependent strategies, which specify contingent patterns of
behavior that serve as rewards and/or punishments, as in the psychological
literature. Subgame perfection takes this a step further: it ensures that self-
reinforcement is credibly implementable. With this interpretation, the scope
for exercising self-control through self-punishment/reward is sharply defined
by the set of outcomes that can arise in subgame-perfect Nash equilibria.

Not surprisingly, psychologists do not typically employ the language of game
theory or the formal logic of subgame perfection. Yet they have long recog-
nized that credibility problems limit the scope for effective self-reinforcement.
Ainslie (1975) succinctly summarized the problem thus: “Self-reward is an in-
tuitively pleasing strategy until one asks how the self-rewarding behavior is
itself controlled. . . ”4

The logic of using history-dependent strategies to overcome the credibility
problem is a recurring theme in Ainslie’s work. In particular, he observed that
people often successfully adopt personal rules (e.g., “always go to bed early”),
which they enforce by construing local deviations to have global significance
(e.g., “if I go to bed late today, then I will go to bed late every night”); see
Ainslie (1975, 1991). Viewed through our game-theoretic lens, a personal rule

2Similarly, Mischel (1973) observed: “The essence of self-regulatory systems is the subject’s
adoption of contingency rules that guide his behavior in the absence of, and sometimes in spite
of, immediate external situational pressures. Such rules specify the kinds of behavior appropriate
(expected) under particular conditions, the performance levels (standards, goals) which the be-
havior must achieve, and the consequences (positive and negative) of attaining or failing to reach
those standards.” See also Bandura (1971, 1976).

3Similarly, Bandura (1976) noted that “[a]mong the various self-regulator phenomena that
have been investigated within [the social learning] framework, self-reinforcement occupies a
prominent position. In this process, individuals regulate their behavior by making self-reward
conditional upon matching self-prescribed standards of performance. . . [C]ontrol is vested to a
large extent in the hands of individuals themselves: they set their own goals, they monitor and
evaluate their own performances, and they serve as their own reinforcing agents.”

4He goes on to argue: “A subject does not actually recruit additional reward by planning to de-
lay a cigarette until he has finished a difficult task. On the contrary, he sets himself a second task:
He must both defer smoking and work on his original task on the basis of the same differential
reward that has always confronted him.” See also Rachlin (1974) and Kazdin (2012).
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is an equilibrium path for a dynamic intrapersonal game, and the global conse-
quences that support it are the off-equilibrium paths triggered by deviations.5

Our interpretation of Ainslie’s writings differs from that of both Benabou
and Tirole (2004) and Ali (2011). They interpreted an individual’s contingent
beliefs about his own future actions as evidence-based forecasts rather than
deliberately contrived arrangements. Some passages in Ainslie’s writings are
consistent with this interpretation.6 Yet in other passages, he emphasized that
people intentionally create this conditionality. Ainslie (1991) is particularly in-
structive on this point. For example, he wrote that “. . . insofar as [the indi-
vidual] has become aware of this phenomenon, he will be able to induce it
where it has not occurred spontaneously, by arbitrarily defining a category of
gratification-delaying behaviors that will thereafter prevail or not as a set.”
Accordingly, he described personal rules as the mechanism by which “. . . the
person can arrange consistent motivation” (emphasis added) for a “prolonged
course of action.” Indeed, after describing the choices of a time-inconsistent
decision maker as involving an “intertemporal prisoner’s dilemma,” he char-
acterized personal rules as “a solution to the bargaining problem” between an
individual’s “successive motivational states.” Moreover, citing Klein and Lef-
fler (1981), he noted that “[t]he same logic is the basis for what is called a
‘self-enforcing contract’ between individuals.” To illustrate the use of a per-
sonal rule, he examined a simple numerical model of a hyperbolic discounter
who, in each of a succession of periods, decides whether to stay up late or go to
bed early. Because his model involved no uncertainty concerning preferences,
it entails no inference problem. Yet he informally described a subgame-perfect
equilibrium in which the individual exercises self-discipline (going to bed early
every night) by contriving a conditional self-punishment (staying up late for ten
consecutive nights), and he described this solution in game-theoretic terms:
“Insofar as [the individual] sees his current choice as a precedent and not an
isolated incident, he will face the incentives of a repeated prisoner’s dilemma.”

Portions of Ainslie (1991), including the aforementioned numerical exam-
ple, appear to invoke Nash (or, more generally, Markov) reversion as a solution
to the credibility problem. Yet Ainslie (1975) also described more complex pat-
terns of self-reinforcement. For instance, he discussed the case of an individual
who, in order to keep his shoes shined, adopts a personal rule specifying that
he must shine them before breakfast (otherwise he will refrain from shining
them in the future). Ainslie posited that, upon oversleeping, the subject might
be tempted not only to skip this chore, but also to skip the punishment. A sec-
ondary punishment is required for that contingency; Ainslie suggested that the

5Laibson (1997), Bernheim, Ray, and Yeltekin (1999), and Benhabib and Bisin (2001) have
previously adopted this interpretation.

6For example, Ainslie (1991) wrote, “If [an individual] makes an impulsive choice, he will have
little reason to believe he will not go on doing so, and if he controls his impulse, he has evidence
that he may go on doing that.” However, in context, one can also read this passage as a reference
to the expectations that prevail in a particular intrapersonal equilibrium.
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subject might skip breakfast (and thereby conform to the letter of his rule).
Thus, according to Ainslie (1975), complex patterns of self-reinforcement sim-
ply require “skill at private side bets.”

The literature also provides insight into the processes by which people ar-
rive at credible schemes of self-reinforcement. Ainslie (1991) discussed trial
and error, but a broader literature emphasizes social learning. For example,
one classic experiment shows that “children’s patterns and magnitude of self-
reinforcement closely matched those of the model to whom they had been ex-
posed. Adults generally served as more powerful modeling stimuli than peers
in transmitting self-reinforcing responses” (Bandura and Kupers (1964); see
also Bandura (1971, 1976)).

Finally, the psychological literature offers an interesting alternative perspec-
tive on the issue of renegotiation-proofness. As this literature notes, an individ-
ual may initially arrive at an equilibrium strategy by modeling others. In that
event, any subsequent effort to change that strategy may be viewed by later
selves as a deviation. Ainslie (1975) certainly recognized this point; he noted
that a decision to call off a “private side bet” might lead the individual to “per-
ceive the bet as having been lost,” and thereby jeopardize “the credibility of
any similar private side bets.”

Ainslie (1975) nevertheless described one potentially feasible form of rene-
gotiation in the context of his shoe-shining example: the individual can modify
his rule for shining shoes as long as he does not do so “just before he was due to
shine them again.” The principle appears to be that one is always free to revise
a personal rule, but not for the current period; to avoid confounding revisions
and deviations, any changes must be arms-length and limited to plans for sub-
sequent behavior. Plainly, a continuation equilibrium that reverts toH(·) after
a single period is immune to revisions according to this criterion; indeed, it sat-
isfies a strong form of “renegotiation-proofness” (given that the continuation
is unimprovable within the entire equilibrium set). Moreover, Ainslie’s reason-
ing arguably implies that reasonable self-punishments must have this structure,
else they would be revised.

In this context, it is therefore noteworthy that, with an appropriate interpre-
tation of cases in which the continuation value lies above H−(A) but strictly
below H(A), the worst self-punishment equilibria have this property. To see
this, we adopt a slightly different interpretation from the one offered in Propo-
sition 3. Under this interpretation, the agent binges for one period only, and
provided there is some noise in asset returns or she can arrange small side bets
(not necessarily fair to her, so that any risk-neutral second party would accept
such a bet), she can return to the highest continuation value function in the
very next period.7

7As an example, the equilibrium strategy might specify that, in addition to consuming slightly
more than A− Y

α
, the individual also makes a small wager with another party, leaving her with



POVERTY AND SELF-CONTROL 5

APPENDIX B: PROOFS OF RESULTS CONCERNING
HISTORY-DEPENDENT EQUILIBRIA

LEMMA 1: Let V be an equilibrium value at A, with associated asset choice x.
Then

V ≥
[
u

(
A− B

α

)
+ δL(B)

]
+ 1 −β

αβ
u′
(
A− B

α

)
(x−B)

≥
[
u

(
A− B

α

)
+ δ

1 − δu
(
α− 1
α

B

)]

+ 1 −β
αβ

u′
(
A− B

α

)
(x−B)�

PROOF: The equilibrium payoff associated with V is (1−β)u(A− x
α
)+βV ,

so

(1 −β)u
(
A− x

α

)
+βV ≥ u

(
A− B

α

)
+βδL(B)�

Given that u is concave, it follows that

V ≥
[
u

(
A− B

α

)
+ δL(B)

]
+ 1 −β

β

[
u
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α

)
− u

(
A− x

α

)]
(a.1)

≥
[
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(
A− B

α

)
+ δL(B)

]
+ 1 −β

αβ
u′
(
A− B

α

)
(x−B)�

By (5) and At ≥ B at any date t, we have u(ct) ≥ u(υB) for any ct at date
t, so that L(A) ≥ (1 − δ)−1u(υB) > −∞. Now, by applying (a.1) to A = B
and V = L(B), or (if needed) a sequence of equilibrium values in V(B) that
converge down to L(B),

L(B)≥ u
(
B− B

α

)
+ δL(B)�(a.2)

Combining (a.1) and (a.2), the proof is complete. Q.E.D.

PROOF OF OBSERVATION 1: This is an immediate consequence of Lemma 1.
Q.E.D.

continuation assets of either Y or Y − ε, with appropriate probabilities. The wager need not be
fair. One can also smooth out expected continuation values by introducing a small amount of
noise in the return α. While we do not formally consider a stochastic model, the same arguments
in the proof of Proposition 3 go through.
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PROOF OF PROPOSITION 1:

CLAIM: If W is nonempty, has closed graph, and satisfies (8), then it generates
W ′ with the same properties (plus convex-valuedness).

We first prove that W ′ is nonempty-valued. Consider the function HW on
[B�∞) defined byHW(A)≡ maxW(A) for allA≥ B. It is easy to see thatHW
is u.s.c. It follows that maxx∈[0�α(1−υ)A] u(A− x/α)+ βδHW(x) is well-defined
and admits a (possibly non-unique) solution for everyA≥ B. Let x(A) denote
some solution at A, and define

w≡ u
(
A− x(A)

α

)
+ δHW

(
x(A)

)
�

Clearly, w is supported atA by W . Equation (9) is satisfied: pick x= x(A) and
V =HW(x(A)). And (10) is satisfied: for each alternative x′, take V ′ to be any
element of W(x′).

CLAIM: W ′ has closed graph.

Take any sequence {An�wn} such that (i) wn is supported at An by W for
all n, and (ii) (An�wn)→ (A�w) (finite) as n→ ∞; then w is supported at A
by W . To see this, note that for each n, there is xn feasible for An and value
Vn ∈W(xn) such that (9) and (10) are satisfied. Obviously {xn�Vn} is a bounded
sequence; pick any limit point (x�V ). Then x is certainly a feasible asset choice
at A, and V ∈ W(x) (because W has closed graph by assumption). Using the
continuation (x�V ) at A, it is immediate that (9) is satisfied for w. To prove
(10), let x′ be any feasible asset choice atA. Then there is {x′

n}, with x′
n feasible

for An for all n, such that x′
n → x′. Because wn is supported at An by W , and

(xn�Vn) satisfies (10), there is V ′
n ∈W(x′

n) such that

u

(
An − xn

α

)
+βδVn ≥ u

(
An − x′

n

α

)
+βδV ′

n(a.3)

for every n. Let V ′ be any limit point of {V ′
n}. Then, because W has closed

graph, V ′ ∈W(x′). Choose an appropriate subsequence of n such that {x′
n� V

′
n}

converges to (x′� V ′). Passing to the limit in (a.3), we must conclude that (10)
holds for (A�w) at x′.

These arguments prove the claim that the limit value w is supported at A
by W . With the claim in hand, by taking suitable convex combinations it is easy
to prove that the correspondence W ′ generated by W has closed graph. It is
trivially convex-valued.

Now, consider the sequence {Vk}. Because V0 is nonempty-valued with
closed graph, and satisfies (8), the same is true of the Vk’s. Moreover, for each
t ≥ 0 and all A≥ B,

Vk(A)⊇ Vk+1(A)�
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Take the infinite intersection of these nested compact sets (at eachA) to argue
that

V∗(A)≡
∞⋂
t=0

Vk(A)

is nonempty for every A. Furthermore, because Vk(A) is convex for all k≥ 0,
so is V∗(A). Moreover, V∗ has compact graph on any compact interval [B�D],8
and therefore it has closed graph everywhere. We will show that V∗ generates
itself. To this end, we first show for each A, every w supported at A by V∗ lies
in V∗(A). Pick such a value w at A. Then there is a feasible continuation asset
choice x at A and V ∈ V∗(x) such that (9) holds, and for every feasible choice
x′ at A, there is V ′ ∈ V∗(x′) such that (10) holds. But these continuations are
available in Vk for every k, which means that w is supported at A by every Vk.
It follows that w ∈ Vk+1(A) for every k, so that w ∈ V∗(A).

We complete the argument by showing that for every A, maxV∗(A) and
minV∗(A) are supportable at A by V∗.9 The same argument works in either
case, so we show this for maxV∗(A). Because V∗(A) = ⋂∞

t=0 Vk(A), the se-
quence of values wk ≡ maxVk(A) converges to H(A). Moreover, wk cannot
be a proper convex combination of other values in Vk(A), so wk is supportable
at A by Vk, for every k. That is, for each k, there is xk feasible for A and value
Vk ∈ Vk(xk) such that (9) and (10) are satisfied for wk. It is easy to see that
{xk�Vk} is a bounded sequence. Pick any limit point (x�V ) of {xk�Vk}. Then x
is a feasible choice at A, and V ∈ V∗(x).10 Using the continuation (x�V ) at A,
then, (9) is satisfied for w= maxV∗(A) (under V∗).

Now, let x′ be any feasible asset choice at A. Because wk is supported at
A by Vk, and (xk�Vk) has been chosen such that (10) is satisfied, there exists
V ′
k ∈ Vk(x′) such that

u

(
A− xk

α

)
+βδVk ≥ u

(
A− x′

α

)
+βδV ′

k(a.4)

for every k. Let V ′ be any limit point of {V ′
k}. Then, by the argument already

used (see footnote 10), V ′ ∈ V∗(x′). Choose an appropriate subsequence of n
such that {x′

n� V
′
n} converges to (x′� V ′). Passing to the limit in (a.4), we see that

(10) holds for (A�w) at x′.

8On any compact interval, the (restricted) graphs of the Vk’s are compact and their infinite
intersection is the graph of V∗ on the same interval, which must then be compact.

9Because V∗(A) is convex, it equals [minV∗(A)�maxV∗(A)]. We have shown that all w sup-
portable at A by V∗ must indeed lie in V∗(A). So, provided we can show that maxV∗(A) and
minV∗(A) are supportable at A by V∗, it must follow that V∗(A) is the convex hull of all values
supported at A by V∗.

10To see why, pick any n in the sequence. Then for k ≥ n, Vk ∈ Vk(xk) ⊆ Vn(xk), so that V ∈
Vn(x) by the closed-graph property of Vn. It follows that V ∈ Vn(x) for every n, so that V ∈ V∗(x)
as asserted.
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This shows that V∗ generates V∗. It is immediate that V∗ contains every cor-
respondence that generates itself,11 so it is the same as our equilibrium corre-
spondence V . Q.E.D.

Given Proposition 1, let H(A) and L(A) be the maximum and minimum
values of the equilibrium value correspondence V . Because the graph of V
is closed, H is upper semicontinuous (u.s.c.) and L is lower semicontinuous
(l.s.c.). In what follows, we take care to account for possible discontinuities in
L, which are unfortunately endemic. Let x be a feasible choice of continua-
tion asset at A. Consider all limits of sequences of the form {L(xn)}, where
xn ∈ [B�α(1 − υ)A] for all n and xn → x. Each limit is an equilibrium value at
x, because V has closed graph. Moreover, the collection of all such limits at x
(given A) is compact, so a largest value M(x�A) exists. That defines the func-
tion M(x�A) for A≥ B and x ∈ [B�α(1 − υ)A]. An individual can guarantee
herself a continuation value that is arbitrarily close to M(x�A), starting from
A (by making an asset choice arbitrarily close to x).

LEMMA 2: For given A, M(x�A) is u.s.c. in x, and for given x, it is nonde-
creasing in A. It is independent of A as long as x < α(1 − υ)A.

PROOF: Pick xn feasible for A such that xn → x ∈ [B�α(1 − υ)A] and a
corresponding sequence Mn =M(xn�A). Suppose without loss of generality
that Mn →M . For each n, there is yn ∈ [B�α(1 − υ)A] such that |yn − xn| <
1/n, and |L(yn)−Mn|< 1/n. It is then easy to see that yn → x andL(yn)→M .
So M is a limit value at x, which implies M(x�A)≥M . Therefore M(x�A) is
u.s.c. in x. To prove that M(x�A) is nondecreasing in A, observe that every
sequence of the form {L(xn)}, where xn ∈ [B�α(1 − υ)A], is fully available at
A′ >A, whenever it is available at A. It is also obvious that for any x, exactly
the same limit values of {L(xn)} are available when x < α(1 − υ)A, so that
M(x�A) is then unchanging in A whenever the strict inequality holds. Q.E.D.

Lemma 2 implies that the following “best deviation payoff” at A is well-
defined:

D(A)= max
x
u

(
A− x

α

)
+βδM(x�A)�(a.5)

where it is understood that x ∈ [B�α(1 − υ)A]. Lemma 2 also implies that
D(A) is an increasing function. Note that D does not necessarily use worst
punishments everywhere, but nonetheless a deviant can get payoff arbitrarily
close to D(A). That implies the following:

11Let V ′ be any self-generating correspondence. Then if V ′ ⊆ Vk, we have V ′ ⊆ Vk+1. But V ′ ⊆
V0, so it follows that V ′ ⊆ Vk for every k, which implies V ′ ⊆ V∗.
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LEMMA 3: The pair (x�V ) is an equilibrium continuation at A if and only if
x ∈ [B�α(1 − υ)A], V ∈ V(x), and

u

(
A− x

α

)
+βδV ≥D(A)�(a.6)

PROOF: Sufficiency: if (x�V ) is not an equilibrium continuation, then there
exists y �= x such that u(A−x/α)+βδV < u(A− y/α)+βδL(y). But L(y)≤
M(y�A), so u(A− x/α)+βδV < u(A− y/α)+βδM(y�A)≤D(A).

Necessity: if (x�V ) is an equilibrium continuation at A, then x ∈ [B�
α(1 − υ)A] and V ∈ V(x). Moreover, for every feasible y , and sequence of
feasible {yn} with yn → y ,

u

(
A− x

α

)
+βδV ≥ u

(
A− yn

α

)
+βδL(yn)�

where the inequality holds trivially for yn = x (because V ≥ L(x)) and by in-
centive compatibility for yn �= x. Passing to the limit in that inequality, we must
conclude that

u

(
A− x

α

)
+βδV ≥ u

(
A− y

α

)
+βδM(y�A)�

Maximizing the right-hand side of this inequality over y , we obtain the desired
result. Q.E.D.

LEMMA 4: If d solves (a.5), then {d�M(d�A)} is an equilibrium continuation
at A.

PROOF: Because V has closed graph,M(d�A) ∈ V(d). Now apply Lemma 3.
Q.E.D.

LEMMA 5: L(A) is increasing on [B�∞).

PROOF: Let A′′ > A′ ≥ B. Consider the equilibrium that generates value
L(A′′) starting from A′′, with associated continuation {A′′

1� V
′′}. By Lemma 3,

u

(
A′′ − A′′

1

α

)
+βδV ′′ ≥ u

(
A′′ − x

α

)
+βδM(

x�A′′)(a.7)

for x ∈ [B�α(1 − υ)A′′]. It follows that V ′′ >M(x�A′′) for all x < A′′
1, which

implies

L
(
A′′) = u

(
A′′ − A′′

1

α

)
+ δV ′′ > u

(
A′′ − x

α

)
+ δM(

x�A′′)(a.8)
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for all x <A′′
1. Now construct an equilibrium from A′: the choice A′′

1 (if feasi-
ble) is followed by V ′′, while each x ∈ [B�α(1−υ)A′] is followed byM(x�A′).12

Note that

u

(
A′ − A′′

1

α

)
+βδV ′′ > u

(
A′ − x

α

)
+βδM(

x�A′′)(a.9)

≥ u
(
A′ − x

α

)
+βδM(

x�A′)�
for x ∈ (A′′

1�α(1 − υ)A′] (assuming this set is nonempty), where the first in-
equality uses the strict concavity of u, A′ <A′′, and (a.7), and the second uses
Lemma 2.

To complete the description of equilibrium, we must choose a particular con-
tinuation at A′: pick continuation {y�V } to maximize payoff over the speci-
fied continuations above. Given (a.9), that is tantamount to choosing from the
greatest of the payoffs

u

(
A′ − x

α

)
+βδM(

x�A′)
for x ∈ [B�min{α(1 − υ)A′�A′′

1}], and the payoff at x=A′′
1 (if feasible), which

is

u

(
A′ − A′′

1

α

)
+βδV ′′�

and a solution is well-defined, because M is u.s.c. in x, and the replacement of
M(A′′

1�A) by V ′′ at A′′
1 (if feasible for A′) only increases payoff. The chosen

continuation {y�V } must be an equilibrium, and by (a.9), y ≤A′′
1. If y < A′′

1,
then by (a.8) and Lemma 2,

L
(
A′′)> u(A′′ − y

α

)
+ δM(

y�A′′)

> u

(
A′ − y

α

)
+ δM(

y�A′) ≥L(A′)�
and if y =A′′

1, then again

L
(
A′′) = u

(
A′′ − A′′

1

α

)
+ δV ′′ > u

(
A′ − y

α

)
+ δV ′′ ≥L(A′)�

So in both cases, L(A′′) > L(A′), as desired. Q.E.D.

12Recall that M(x�A′) is indeed an equilibrium value at x because V has closed graph.
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Lemma 5 makes it easy to visualize M(x�A). With L increasing, let L+(A)
denote the right-hand limit ofL atA, that is, the common limit of all sequences
{L(An)} as An ↓A, with An >A for all n. Clearly, L+ is an increasing, right-
continuous function.

LEMMA 6: For any A and x ∈ [B�α(1 − υ)A), M(x�A) equals L+(x). At
x= α(1 − υ)A, it equals L(x).

PROOF: Obvious, given Lemma 5 and the definitions of L and M . Q.E.D.

LEMMA 7: (a) Let d(A) solve (a.5). If A1 <A2, then d(A1)≤ d(A2). More-
over, a largest solution d∗(A) is well-defined for each A, and it is nondecreasing
in A.

(b) d∗(A) is right-continuous at anyA such that limn d
∗(An) < α(1−υ)A for

An ↓A.

PROOF: Let xi ≡ d(Ai) for i = 1�2. Suppose, on the contrary, that x1 > x2.
Notice that x1 is feasible at A2 (becauseA1 <A2 and x1 is feasible at A1), and
that x2 is feasible at A1 (because x2 < x1). Therefore

u

(
Ai − xi

α

)
+βδM(xi�Ai)≥ u

(
Ai − xj

α

)
+βδM(xj�Ai)

for i= 1�2 and j �= i. Combining these two inequalities, and using Lemma 2 to
conclude that M(x1�A2)≥M(x1�A1), while M(x2�A2)=M(x2�A1),13

[
u

(
A2 − x2

α

)
− u

(
A2 − x1

α

)]
≥

[
u

(
A1 − x2

α

)
− u

(
A1 − x1

α

)]
�

But the above inequality contradicts the strict concavity of u. So x1 ≤ x2, as
desired.

Next we show that a largest maximizer d∗(A) exists at each A. Let dn
each solve (a.5) at A, and say that dn → d. Because M(x�A) is u.s.c. in x
(Lemma 2),

lim
n→∞

u

(
A− dn

α

)
+βδM(

dn�A
) ≤ u

(
A− d

α

)
+βδM(d�A)�

but the left-hand side of this inequality is the maximized value of (a.5) for every
n, so the right-hand side must have the same value, which shows that d also
solves (a.5). That proves the existence of a largest maximizer d∗(A) at every
A, and the arguments so far show that d∗(A) is nondecreasing, so the proof of
part (a) is complete.

13Note that x2 < x1 ≤ α(1 − υ)Ai for i= 1�2. By Lemma 2, M(x2�A2)=M(x2�A1).
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For part (b), fix A and let d ≡ limn d
∗(An) < α(1 − υ)A for An ↓A (noting

that {d∗(An)} is monotone). Clearly, d is feasible at A. To prove the right-
continuity of d∗ at A, we show that d maximizes (a.5) at A. Suppose not. Let
d′ maximize (a.5) at A; then

u

(
A− d′

α

)
+βδM(

d′�A
)
> u

(
A− d

α

)
+βδM(d�A)�(a.10)

Notice that d′ ≤ d (by part (a), already proved), so d′ < α(1 − υ)A ≤
α(1 −υ)An for all n. So by Lemma 2, M(x�A) is independent ofA at (d′�A),
and an analogous assertion is true of An. Therefore, not only is d′ feasible for
all An, we also have

lim
n
u

(
An − d′

α

)
+βδM(

d′�An
) = u

(
A− d′

α

)
+βδM(

d′�A
)
�(a.11)

Define dn ≡ d∗(An), and note that for n large, dn < α(1 − υ)A≤ α(1 − υ)An.
Using the independence of M in An and recalling that M(x�A) is u.s.c. in x
(Lemma 2),

lim
n
u

(
An − dn

α

)
+βδM(

dn�An
) ≤ u

(
A− d

α

)
+βδM(d�A)�(a.12)

Combining (a.10)–(a.12), we must conclude that for n large,

u

(
An − d′

α

)
+βδM(

d′�An
)
> u

(
An − dn

α

)
+βδM(

dn�An
)
�

which contradicts the fact that dn maximizes (a.5) for all n. Q.E.D.

Define the maintenance value of an asset level A by V s(A) ≡ 1
1−δu(

α−1
α
A),

and the maintenance payoff by Ps(A) ≡ [1 + βδ

1−δ ]u(α−1
α
A). Say that an asset

level S is sustainable if there is a stationary equilibrium path from S, or equiv-
alently (by Lemma 3) if Ps(S)≥D(S).

LEMMA 8—Observation 2 in the Main Text: Let S > B be a sustainable asset
level, and μ≡ S/B. Then, if {A∗

t } is an equilibrium path from A0:
(a) {μA∗

t } is an equilibrium path from μA0.
(b) For all t with μA∗

t > S and for every A< S,

u

(
μA∗

t − μA∗
t+1

α

)
+β

∞∑
s=t+1

δs−tu
(
μA∗

s − μA∗
s+1

α

)

> u

(
μA∗

t − A

α

)
+βδM(

A�A∗
t

)
�
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PROOF: Part (a). Let policy φ sustain {A∗
t } from A0. Define a new pol-

icy ψ:
(i) For any ht = (A0� � � � �At) with As ≥ S for s = 0� � � � � t, let ψ(ht) =

μφ(ht
μ
).

(ii) For ht with Ak < S for some smallest k≤ t, define h′
t−k = (Ak� � � � �At).

Let ψ(ht) = φ�(h
′
t−k), where φ� is the equilibrium policy with value L(Ak)

at Ak.
For any history ht with As ≥ S for s= 1� � � � � t, the asset sequence generated

through subsequent application of ψ is the same as the sequence generated
through repeated application of φ from ht

μ
, but scaled up by the factor μ. It

follows that

Pψ(ht)= μ1−σPφ

(
ht

μ

)
and Vψ(ht)= μ1−σVφ

(
ht

μ

)
�(a.13)

We now show that ψ is an equilibrium. First, consider any ht such that
Ak < S at some first k≤ t. Then, as of period k, the policy function ψ shifts to
the equilibrium with value L(Ak). So ψ(ht) is optimal given the continuation
policy function.

Next consider any ht such that As ≥ S for all s ≤ t. Consider, first, any
deviation to A ≥ S. Note that ht/μ is a feasible history under the equilib-
rium φ, while the deviation to (A/μ) ≥ (S/μ) = B is also feasible. It follows
that

Pφ

(
ht

μ

)
≥ u

(
At

μ
− A

μα

)
+βδVφ

(
ht�A

μ

)
�

Multiplying through by μ1−σ and using (a.13), we see that

Pψ(ht)≥ u
(
At − A

α

)
+βδVψ(ht�A)�(a.14)

which shows that no deviation to A≥ S can be profitable.
Now consider a deviation to A< S. Because S is sustainable,

Ps(S) ≥D(S)(a.15)

≥ u
(
S − A

α

)
+βδM(A�S)

by Lemma 3. At the same time, (a.14) applied to A= S implies

Pψ(ht)≥ u
(
At − S

α

)
+βδVψ(ht�S)�(a.16)
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Using (a.13) along with L(B)≥ V s(B) (see Observation 1), (a.16) becomes

Pψ(ht) ≥ u
(
At − S

α

)
+βδμ1−σVφ

(
ht

μ
�B

)
(a.17)

≥ u
(
At − S

α

)
+βδμ1−σL(B)

≥ u
(
At − S

α

)
+βδμ1−σV s(B)

= u

(
At − S

α

)
+βδV s(S)

=
[
u

(
At − S

α

)
− u

(
S

(
1 − 1

α

))]
+ Ps(S)�

Combining (a.15) and (a.17),

Pψ(ht) ≥
[
u

(
At − S

α

)
− u

(
S

(
1 − 1

α

))]
(a.18)

+ u
(
S − A

α

)
+βδM(A�S)

=
[
u

(
At − S

α

)
− u

(
S − S

α

)]

−
[
u

(
At − A

α

)
− u

(
S − A

α

)]

+ u
(
At − A

α

)
+βδM(A�S)

≥ u
(
At − A

α

)
+βδM(A�S)�

where the second inequality follows from the concavity of u and the fact that
A < S ≤ At . But, because M(A�S) ≥ L(A) = Vψ(ht�A), the right-hand side
of (a.18) is at least as large as the payoff from the deviation, which is u(At −
[A/α])+βδVψ(ht�A). It follows that the deviationA is unprofitable, so that ψ
is an equilibrium.

Part (b). The second inequality in (a.18) holds strictly when At > S and A<
S, by the strict concavity of u. Apply (a.18) (with strict inequality) at date t,
with ht equal to the history on the equilibrium path and setting M(A�S) =
M(A�A∗

t ) (Lemma 2). Q.E.D.
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LEMMA 9: For any asset level A and any path {At} with At ≤A for all t ≥ 0,

V s(A)−
∞∑
t=0

δtu

(
At − At+1

α

)
≥ u′

(
α− 1
α

A

)(
δ− 1

α

)
(A−A1)≥ 0�(a.19)

PROOF: Let Δ stand for the left-hand side of (a.19); then

Δ=
∞∑
t=0

δt
[
u

(
α− 1
α

A

)
− u

(
At − At+1

α

)]

≥ u′
(
α− 1
α

A

) ∞∑
t=0

δt
[
A− A

α
−At + At+1

α

]

= u′
(
α− 1
α

A

) ∞∑
t=0

δt
[
(A−At)− A−At+1

α

]

= u′
(
α− 1
α

A

)[
(A−A0)+

(
δ− 1

α

) ∞∑
t=0

δt(A−At+1)

]

≥ u′
(
α− 1
α

A

)(
δ− 1

α

)
(A−A1)≥ 0�

where the first inequality uses the concavity of u and the last uses δα > 1.
Q.E.D.

Let X(A) be the largest and Y(A) the smallest equilibrium asset choice
at A.

LEMMA 10: X(A) and Y(A) are well-defined and nondecreasing, and X is
u.s.c.

PROOF: By Lemma 3, X(A) (resp. Y(A)) is the largest (resp. smallest)
value of A′ ∈ [B�α(1 − υ)A] satisfying

u

(
A− A′

α

)
+βδH(

A′) ≥D(A)�(a.20)

X(A) and Y(A) are well-defined because H is u.s.c.
To show that X(A) is nondecreasing, pick A1 <A2. Equation (a.20) implies

that

u

(
A1 − X(A1)

α

)
+βδH(

X(A1)
) ≥ u

(
A1 − y

α

)
+βδL(y)
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for all y ∈ [B�α(1 − υ)A]. It follows from the concavity of u that

u

(
A2 − X(A1)

α

)
+βδH(

X(A1)
) ≥ u

(
A2 − y

α

)
+βδL(y)(a.21)

for all y ∈ [B�X(A1)]. If the inequality extends to all y ∈ [B�α(1 − υ)A], the
claim would be established. Otherwise there is x′ ∈ (X(A1)�α(1 − υ)A2] such
that

u

(
A2 − X(A1)

α

)
+βδH(

X(A1)
)
< u

(
A2 − x′

α

)
+βδL(x′)�(a.22)

Combine (a.21) and (a.22) to see that

u

(
A2 − x′

α

)
+βδL(x′)> u(A2 − X(A1)

α

)
+βδH(

X(A1)
)

(a.23)

≥ u
(
A2 − y

α

)
+βδL(y)

for all y ≤X(A1). We now construct an equilibrium starting from A2 as fol-
lows: any choice A<X(A1) is followed by the continuation equilibrium gen-
erating L(A), and any choice A ≥ X(A1) is followed by the continuation
equilibrium generating H(A). Because H is u.s.c., there exists some z∗ that
maximizes u(A2 − z

α
) + βδH(z) on [X(A1)�α(1 − υ)A2]; in light of (a.23)

and the fact that u(A2 − x
α
) + βδH(x) ≥ u(A2 − x

α
) + βδL(x), all choices

A<X(A1) are strictly inferior to z∗. Thus z∗ is an equilibrium choice at A2,
so that X(A2)≥ z∗ ≥X(A1).

To show that Y(A) is nondecreasing, pick A1 <A2. If Y(A2)≥ α[1 −υ]A1,
we are done, so suppose that Y(A2) < α[1 − υ]A1. Construct an equilibrium
from A1 as follows. For any A ∈ [B�Y(A2)], assign the continuation value
H(A), and for A ∈ (Y(A2)�α[1 − υ]A1], assign the continuation value L(A).
Finally, for the equilibrium asset choice at A1, assign A′, where A′ solves

max
A∈[B�Y(A2)]

u

(
A1 − A

α

)
+βδH(A)�

(Because H is u.s.c., a solution exists.) We claim that A′ maximizes payoff
over all the above specifications, so that {A′�H(A′)} is an equilibrium con-
tinuation. It certainly does so over choices in [B�Y(A2)], by construction. For
A ∈ (Y(A2)�α[1 − υ]A1],

u

(
A2 − Y(A2)

α

)
+βδH(

Y(A2)
) ≥ u

(
A2 − A

α

)
+βδM(A�A2)�
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so by the concavity of u and Lemma 2,

u

(
A1 − Y(A2)

α

)
+βδH(

Y(A2)
) ≥ u

(
A1 − A

α

)
+βδM(A�A2)

≥ u
(
A1 − A

α

)
+βδM(A�A1)�

which proves the claim. Because A′ ≤ Y(A2), it follows that Y(A1)≤ Y(A2).
Finally, we show that X is u.s.c. For any A∗ ≥ B, limA↑A∗ X(A) ≤ X(A∗)

because X(A) is nondecreasing. Now consider any decreasing sequence
Ak ↓A∗, and let X∗ denote the (well-defined) limit of X(Ak). For each k,
u(Ak −X(Ak)/α) + βδH(X(Ak)) ≥ D(Ak). Because H is u.s.c. and D(A)
is nondecreasing, u(A∗ −X∗/α)+βδH(X∗)≥ limk→∞D(Ak)≥D(A∗). That
implies X(A∗) ≥X∗ = limA↓A∗ X(A). (In fact, because X(A) is nondecreas-
ing, X(A∗)= limA↓A∗ X(A).) Q.E.D.

LEMMA 11: If X(A)=A, then A is sustainable.

PROOF: Let A1 =A along with some value V1 be an equilibrium continua-
tion at A. Then

u

(
α− 1
α

A

)
+βδV1 ≥D(A)

by Lemma 3. By Lemmas 9 and 10, V1 ≤ (1 − δ)−1u(α−1
α
A). Using this in the

inequality above, we see that Ps(A)≥D(A), so that A is sustainable. Q.E.D.

LEMMA 12: In the non-uniform case, βδ(α− 1)/(1 − δ) < 1.

PROOF: If βδ(α−1)/(1−δ)≥ 1, then by Proposition 6, part (i), there exists
a linear Markov equilibrium policy function φ(A) = kA with k ≥ 1, which
implies uniformity, a contradiction. Q.E.D.

LEMMA 13: Under non-uniformity, the problem

max
x∈[0�α(1−υ)A]

[
u

(
A− x

α

)
+βδV s(x)

]

has a unique solution x(A) with x(A) = ΓA, where 0 < Γ < 1. Moreover, the
maximand is strictly decreasing in x for all x≥ x(A).

PROOF: The maximand is a continuous, strictly concave function, so it has
a unique, continuous solution x(A) for each A. Moreover, by strict concav-
ity, the maximand must strictly decline in x for all x ≥ x(A). Define ξ =
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βδ(α − 1)/(1 − δ). By non-uniformity and Lemma 12, we have ξ < 1. Rou-
tine computation reveals that x(A)= ΓA, where

Γ = α

1 + ξ−1/σ(α− 1)
�

which (given σ > 0 and ξ < 1) implies Γ < 1. Q.E.D.

LEMMA 14: For anyA0 ≥ B, maximize
∑∞

t=0 δ
tu(At − At+1

α
), subject to At+1 ∈

[B�α(1 − υ)At], and At+1 ≤X(At) for all t ≥ 0. Then a solution exists, and any
solution path {A∗

t } is also an equilibrium path starting from A0, generating the
value H(A0).

PROOF: u is continuous and X(At) is u.s.c. (Lemma 10), so a solution {A∗
t }

exists. Let {V ∗
t } be the sequence of continuation values associated with {A∗

t }.
Consider an equilibrium path from date t, call it {Aτ}, sustaining X(A∗

t ) at A∗
t

and providing continuation value H(X(A∗
t )) thereafter. This path necessarily

satisfies Aτ+1 ≤X(Aτ) for all τ ≥ t, so the definitions of {A∗
t } and {V ∗

t } imply
that

u

(
A∗
t − A∗

t+1

α

)
+ δV ∗

t+1 ≥ u
(
A∗
t − X

(
A∗
t

)
α

)
+ δH(

X
(
A∗
t

))
�(a.24)

Also, because A∗
t+1 ≤X(A∗

t ) and β< 1, we have(
1
β

− 1
)
u

(
A∗
t − A∗

t+1

α

)
≥

(
1
β

− 1
)
u

(
A∗
t − X

(
A∗
t

)
α

)
�(a.25)

Adding (a.24) to (a.25) and multiplying through by β, we obtain

u

(
A∗
t − A∗

t+1

α

)
+βδV ∗

t+1(a.26)

≥ u
(
A∗
t − X

(
A∗
t

)
α

)
+βδH(

X
(
A∗
t

)) ≥D(
A∗
t

)
�

where the second inequality follows from the fact that {X(A∗
t )�H(X(A

∗
t )} is

supportable at A∗
t . Because (a.26) holds for all t ≥ 0, {A∗

t } is an equilibrium
path.

Because it is obvious that any equilibrium path must satisfy the constraints
of the maximization problem in the statement of the lemma, it follows that the
value of this path must be H(A0). Q.E.D.

LEMMA 15: Suppose that for some A∗ ≥ B, X(A) >A for all A≥A∗. Then
starting from any A ≥A∗, there is an equilibrium path with monotonic and un-
bounded accumulation, so that strong self-control is possible. Moreover, some
such equilibrium path maximizes value among all equilibrium paths from A.
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PROOF: We first claim that for anyA>A∗ with limA′↑AX(A′)=A, there is
ε > 0 with

X
(
A′) =A for A′ ∈ (A− ε�A)�(a.27)

Suppose on the contrary that there is A > A∗ and η > 0 such that A′ <
X(A′) <A for allA′ ∈ (A−η�A). BecauseX(A) >A, Lemma 14 and δα > 1
together imply

H(A) > V s(A)+ γ(a.28)

for some γ > 0.14 Consider any equilibrium continuation {X(A′)�V1} from
A′ ∈ (A−η�A). Because A′′ <X(A′′) <A for all A′′ in that interval, A′

t < A
for the resulting equilibrium path. It follows from Lemma 9 that V s(A) > V1.
Combining this inequality with (a.28) and noting that X(A′)→A as A′ →A,

u

(
A′ − A

α

)
+βδH(A) > u

(
A′ − X

(
A′)
α

)
+βδV1 ≥D(

A′)
for all A′ <A but close to A. So all such A′ possess an equilibrium continua-
tion of {A�H(A)}, which contradicts X(A′) <A′, and establishes the claim.

We now complete the proof by claiming that any path {At} from A ≥ A∗

which solves the problem of Lemma 14 involves monotonic and unbounded
accumulation. Suppose this assertion is false. Then at least one of the following
must be true:

(i) there exists some date τ such that Aτ ≥Aτ+1 ≤Aτ+2, and/or
(ii) the sequence {At} converges to some finite limit.
Let {ct} be the consumption sequence generated by {At}. In case (i), cτ ≥

cτ+1. Recalling that δα > 1, we therefore have

u′(cτ) < δαu′(cτ+1)�(a.29)

Moreover, because X(Aτ) >Aτ and Aτ ≥Aτ+1, we have

Aτ+1 <X(Aτ)�(a.30)

In case (ii), there exists T such that, for τ > T , (a.29) again holds because
cτ and cτ+1 are close. As far as (a.30) is concerned, there are two subcases to
consider:

(a) There is τ > T with Aτ+1 ≤ Aτ. Here, (a.30) holds because X(Aτ) >
Aτ ≥Aτ+1.

(b) For t > T , At is strictly increasing with limit Ā <∞. If limt→∞X(At) >

Ā, (a.30) plainly holds for some τ sufficiently large. Otherwise limt→∞X(At)=
14If δα > 1 andX(A) >A, then the problem of Lemma 14 is not solved by the stationary path

from A: a small increase in assets followed by asset maintenance would achieve greater value.
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Ā. But in this case, we know from the first claim above that for some τ,
X(Aτ)= Ā >Aτ+1, so that (a.30) holds yet again for some τ sufficiently large.

In short, (a.29) and (a.30) always hold (for some τ). Now alter the path {At}
by increasing the period-(τ+ 1) asset level from Aτ+1 to Aτ+1 +η, leaving as-
set levels unchanged for all other periods. Because X(A) is nondecreasing,
Aτ+2 ≤ X(Aτ+1 + η), and for small η we have Aτ+1 + η < X(Aτ) by (a.30);
thus, the new path is feasible and also satisfies the constraints that define the
value-maximizing path {At}. Taking the derivative of period-τ value with re-
spect to η,

dVτ

dη
= δτ

[
−u′(cτ)

1
α

+ δu′(cτ+1)

]
> 0�

where the inequality holds as a consequence of (a.29). This contradicts the
definition of {At} as a path that solves the problem in Lemma 14, and so estab-
lishes the lemma. Q.E.D.

PROOF OF PROPOSITION 2: Part (i) is obvious. “Only if” in part (ii) is also
obvious, while “if” follows from Lemma 15. Likewise, the “only if” part of part
(iii) is obvious, while the “if” part is a consequence of the fact that X is u.s.c.
Part (iv) once again is obvious. Q.E.D.

We set the stage for Proposition 3 by establishing that H is increasing, so
that H− is well-defined:

LEMMA 16: H(A) is increasing on [B�∞).

PROOF: Recall that H(A) is the value of the maximization problem in
Lemma 14, with A0 = A. Because X is nondecreasing, it follows that H is
increasing in A.15 Q.E.D.

PROOF OF PROPOSITION 3: Let Y be the smallest equilibrium choice of con-
tinuation asset atA, and let V be the lowest value such that (Y�V ) is a contin-
uation equilibrium from A. By Lemma 3, we have

u

(
A− Y

α

)
+βδV ≥D(A)�(a.31)

If (a.31) is slack, it is easy to show that Y must equal B and that V can be set
equal to L(B).16 That generates the lowest possible equilibrium value atA and
there is nothing left to prove; see the first inequality in Observation 1.

15Starting from any higher asset level, it is feasible to choose the continuation asset A1 (and
then continuing with the earlier path {A1�A2�A3� � � �}).

16If strict inequality holds in (a.31), reduce continuation assets, always using a continuation
on the upper envelope of the value correspondence, and sliding down the vertical portion of



POVERTY AND SELF-CONTROL 21

Otherwise (a.31) is binding for Y . In this case,

u

(
A− Y

α

)
+βδV =D(A)≤ u

(
A− A′

α

)
+βδV ′(a.32)

for any other equilibrium continuation {A′� V ′} at A. Because A′ ≥ Y by defi-
nition, (a.32) shows that V ′ ≥ V . It follows that

u

(
A− Y

α

)
+ δV ≤ u

(
A− A′

α

)
+ δV ′�(a.33)

so that once again, {Y�V } implements minimum value at A.
To complete the proof of part (i), suppose that Y >B while at the same time,

V <H−(Y). Then it is obviously possible to reduce Y slightly while increasing
continuation value at the same time.17 Moreover, we can do this to ensure that
the new continuation has higher payoff, so it must be supportable as an equi-
librium. Yet it has a lower continuation asset, which contradicts the definition
of Y .

For part (ii), we adopt public randomization. Punish at A using Y , and
implement the equilibrium continuation value V , which lies between H−(Y)
and H(Y) (by part (i)), by randomizing over two specific continuation values:
(a) H(Y), and (b) the value obtained by choosing the lowest equilibrium con-
tinuation asset at Y—call it Z—and following up with H(Z).

For this randomization to work, two conditions must be met. First,
(Z�H(Z)) must be an equilibrium continuation at asset level Y . Second, the
value V must lie between the value generated by (Z�H(Z)), and H(Y). The
first condition is trivially met, because Z is the lowest equilibrium continuation
at Y , and can certainly be supported by the highest continuation value H(Z).
For the second condition, we will now verify that

H−(Y)≥ u
(
Y − Z

α

)
+ δH(Z)�(a.34)

LEMMA 17: Z < (1 − υ)αY .

PROOF: Proposition 6 in the main text shows that there is always a Markov
equilibrium policy φ with φ(A) < (1 − υ)αA for every A≥ B.18 Because Z ≤
φ(Y), the lemma follows. Q.E.D.

H at any point of discontinuity. (Public randomization allows us to do this.) Note that payoffs
and continuation values change continuously as we do this. Eventually we come to Y = B with
continuation value L(B).

17Because V <H−(Y), there exists Y ′ <Y and V ′ ∈ V(Y ′) such that V ′ > V .
18We should, of course, point out that Proposition 6 is established using separate arguments

that rely on none of the lemmas in this section.
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LEMMA 18: For each ε > 0, there is γ > 0 and η> 0 such that if A′ ∈ [Y − γ�
Y ] and (A′′� V ′′) is a continuation from A′ with A′′ ≥Z−η, then Z is a feasible
choice at A′, and the condition

u

(
A′ − A′′

α

)
+βδV ′′ ≥ u

(
A′ − Z

α

)
+βδH(Z)(a.35)

implies

u

(
A′ − A′′

α

)
+ δV ′′ ≥ u

(
A′ − Z

α

)
+ δH(Z)− ε�(a.36)

PROOF: Given ε and invoking Lemma 17, choose γ and η positive but small
enough so that Z is feasible for Y − γ (and therefore for all A′ ≥ Y − γ), and
so that

Δ≡ u
(
Y − γ− Z −η

α

)
− u

(
Y − γ− Z

α

)
≤ βε

1 −β�(a.37)

If (a.35) holds for some A′ ∈ [Y − γ�Y ] and continuation (A′′� V ′′) with A′′ ≥
Z −η, then

βδ
[
H(Z)− V ′′] ≤ u

(
A′ − A′′

α

)
− u

(
A′ − Z

α

)
(a.38)

≤ u
(
A′ − Z −η

α

)
− u

(
A′ − Z

α

)

≤ u
(
Y − γ− Z −η

α

)
− u

(
Y − γ− Z

α

)
= Δ�

where the third inequality follows from the concavity of u. But (a.35) also im-
plies that

u

(
A′ −A′′

α

)
+δV ′′ ≥ u

(
A′ − Z

α

)
+δH(Z)−δ(1−β)[H(Z)−V ′′]�(a.39)

Combining (a.37), (a.38), and (a.39), we see that

u

(
A′ − A′′

α

)
+ δV ′′ ≥ u

(
A′ − Z

α

)
+ δH(Z)− (1 −β)Δ

β

≥ u
(
A′ − Z

α

)
+ δH(Z)− ε�

which establishes (a.36), as required. Q.E.D.
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With Lemma 18 in hand, we return to the verification of (a.34). Let An be
any sequence of assets, with An < An+1 for every n and with An → Y . For
every n, choose an equilibrium continuation (Zn�V n) to maximize equilibrium
payoff from An:

u

(
An − Zn

α

)
+βδV n�

where Zn ∈ [B�(1 − υ)αAn] and V n ∈ V(Zn) for every n.
Fix ε > 0, and look at all indices n with An ≥ Y − γ, where γ is given by

Lemma 18. We claim that

Zn ≥Z −η for all but finitely many n�(a.40)

where η is given by Lemma 18. For suppose that (a.40) is false along some
infinite subsequence. We know that

u

(
Ak − Zk

α

)
+βδV k ≥ u

(
Ak − Z

α

)
+βδH(Z)

for k along that subsequence. Letting (Z∗� V ∗) denote a limit point of
(Zk�V k), we have

u

(
Y − Z∗

α

)
+βδV ∗ ≥ u

(
Y − Z

α

)
+βδH(Z)�

It follows that (Z∗� V ∗) is an equilibrium continuation at Y . But Z∗ ≤ Z − η,
which contradicts the fact that Z is the lowest equilibrium asset choice at Y .
Therefore (a.40) holds. Moreover, for all such n, (a.35) holds for A′ = An,
A′′ =Zn, and V ′′ = V n. By Lemma 18, (a.36) must hold as well, so that

u

(
An − Zn

α

)
+ δV n ≥ u

(
An − Z

α

)
+ δH(Z)− ε(a.41)

for all n large enough. But H is nondecreasing by Lemma 16, so

H−(Y)≥H(
An

) ≥ u
(
An − Zn

α

)
+ δV n(a.42)

for all n. Combining (a.41) and (a.42) and passing to the limit in n, we must
conclude that

H−(Y)≥ u
(
Y − Z

α

)
+ δH(Z)− ε�

Because ε > 0 is arbitrary, (a.34) is established.
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It follows that the public randomization described above works to imple-
ment the worst punishment at A. Notice that such an implementation returns
the individual to her highest continuation value function after at most two pe-
riods. Q.E.D.

PROOF OF PROPOSITION 4, PART (i): First suppose that there is ε > 0 with
X(A) ≥A on [B�B + ε]. By non-uniformity, X(A′) < A′ for some A′. X is
nondecreasing, so X(S)= S for some S > B, with X(A′) < A′ for some A′ ∈
(S�S + ε′), for every ε′ > 0.19 By Lemma 11, S is sustainable. Define μ≡ S/B.
By Lemma 8(a), μX(A′/μ) is an equilibrium choice for everyA′ ∈ [S�S+με].
But then X(A′)≥ μX(A′/μ)≥A′ for all such A′, a contradiction.

It follows immediately that X(B) = B, and for all ε > 0, there exists Aε ∈
(B�B + ε) such that X(Aε) < Aε. But if the result is false, there is also A′

ε ∈
(B�Aε) withX(A′

ε)≥A′
ε. BecauseX(A) is nondecreasing, these observations

imply the existence of Sε ∈ (B�B+ ε) such that X(Sε)= Sε. By Lemma 11, Sε
is sustainable for all ε > 0. But for ε sufficiently small,

D(Sε)≥ u
(
Sε − B

α

)
+βδL(B)≥ u

(
Sε − B

α

)
+βδV s(B) > Ps(Sε)�

where the first inequality follows from the definition of D, the second from
Lemma 1, and the third from Lemma 13. This is a contradiction. Q.E.D.

LEMMA 19—Observation 3 in the Main Text: Suppose that asset levels S1 and
S2, with S1 < S2, are both sustainable, and that X(A) > A for all A ∈ (S1� S2).
Then there exists A∗ ≥ B such that X(A) >A for all A>A∗.

PROOF: Let μi ≡ Si/B for i = 1�2; then μ1 < μ2. We claim that there is
A∗ ≥ B such that for allA>A∗, there are Ã ∈ (S1� S2) and integers (m�n)≥ 0
with A= μn1μm2 Ã.

We first show that there is A∗ such that for all A>A∗, A ∈ (μk1S1�μ
k
2S2) for

some k. Because μ1 < μ2, there is an integer � with μk+2
1 < μk+1

2 for all k ≥ �.
For all such k, (μk1S1�μ

k
2S2)= (μk1S1�μ

k+1
2 B) overlaps with (μk+1

1 S1�μ
k+1
2 S2)=

(μk+2
1 B�μk+1

2 S2). So
⋃∞

k=�(μ
k
1S1�μ

k
2S2)= (μ�1S1�∞). Take A∗ to be any number

greater than μ�1S1.
Next we show that for each integer k≥ 1 and A ∈ (μk1S1�μ

k
2S2), there is Ã ∈

(S1� S2) along with an integer m ∈ {0� � � � �k} such that A= μm1 μ
k−m
2 Ã. Divide

the interval (μk1S1�μ
k
2S2) (which is the same as the interval (μk+1

1 B�μk+1
2 B))

into a sequence of semi-open sub-intervals (preceded by an open inter-
val) that coincide at their endpoints: (μk+1

1 B�μk1μ2B), [μk1μ2B�μ
k−1
1 μ2

2B), . . . ,

19Take S to be the infimum of all A with X(A) <A.
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[μ1μ
k
2B�μ

k+1
2 B). A must lie in one of these intervals; call it [μm+1

1 μk−m
2 B�

μm1 μ
k−m+1
2 B), which we can rewrite as [μm1 μk−m

2 S1�μ
m
1 μ

k−m
2 S2). (The left edge

is open if it is the first interval.) Thus, setting Ã = Aμ−m
1 μm−k

2 , we have
Ã ∈ (S1� S2) and A= μm1 μk−m

2 Ã, as desired.
To complete the proof, pick any A > A∗ along with some Ã ∈ (S1� S2), in-

teger k ≥ 1, and m ∈ {0� � � � �k} for which A = μm1 μ
k−m
2 Ã. By repeated ap-

plication of Lemma 8(a), we see that X(A) ≥ μm1 μ
k−m
2 X(Ã); noting that

X(Ã) > Ã, we have X(A) >A. Q.E.D.

Let us refer to the assertion of Proposition 4, part (ii), as the Conclusion.
Lemma 19 (together with Lemma 15) implies the Conclusion, provided that
the supposition of Lemma 19 is satisfied. Via Lemma 19, several other situa-
tions also imply the Conclusion. Define E(A)≡ Ps(A)−D(A).

LEMMA 20: E(A) > 0 for some A>B implies the Conclusion.

PROOF: Because u is continuous and D is increasing, there is an interval
[S1� S2] such that E(A′) > 0 for all A′ ∈ [S1� S2] (e.g., take S2 =A and S1 to be
an asset level slightly below S2). Clearly, S1 and S2 are both sustainable (indeed,
every A′ ∈ [S1� S2] is).

For each A′ ∈ [S1� S2), define z(A′) as the largest value in [S1� S2] satisfying

u

(
A′ − z

(
A′)
α

)
+βδV s

(
z
(
A′)) ≥D(

A′)�(a.43)

Because E(A′) > 0, we have z(A′) >A′. Moreover, because E(z(A′)) > 0, we
know that z(A′) is sustainable. So (a.43) and Lemma 3 imply the existence of
an equilibrium starting from A′ in which assets increase to z(A′) immediately
and then remain at z(A′) forever. It follows that X(A′) ≥ z(A′) > A′ for all
A′ ∈ (S1� S2). Therefore the condition of Lemma 19 is satisfied: there are assets
S1 and S2 with S1 < S2, both sustainable, with X(A′) > A′ for all A′ ∈ (S1� S2).
The Conclusion follows. Q.E.D.

Say that a sustainable asset S is isolated if there is an interval around S with
no other sustainable asset in that interval.

LEMMA 21: If S is sustainable and not isolated, then the Conclusion is true.

PROOF: Assume that S is sustainable and not isolated. By non-uniformity
and Lemma 8, there is A∗ > S with X(A∗) > A∗. If X(A′) > A′ for all A′ ≥
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A∗, the Conclusion follows (Lemma 15). Otherwise, X(A′) ≤ A′ for some
A′ >A∗. Because X is nondecreasing, there is S∗ >A∗ such that X(S∗)= S∗,
and X(A′) >A′ for all A′ ∈ [A∗� S∗).20 By Lemma 11, S∗ is sustainable.

Because S is not isolated, for every ε > 0 there is sustainable S′ with
|S′ − S| < ε. Let μ ≡ S/B and μ′ ≡ S′/B. By Lemma 8(a), S1 ≡ μS∗ and
S2 ≡ μ′S∗ are sustainable. Remember that X(A′) > A′ for all A′ ∈ [A∗� S∗).
Using this information, it is easy to see that if S and S′ are close enough, then
X(A) >A for all A ∈ (S1� S2),21 because all such A can then be written in the
form μ′A′ for someA′ ∈ (A∗� S∗). But now all the conditions of Lemma 19 are
met, so that the Conclusion follows. Q.E.D.

A special case of a sustainable asset level is what we will refer to as an upper
sustainable asset level Ŝ, one for which X(Ŝ) = Ŝ, while X(A) > A over an
interval of the form [Ŝ − θ� Ŝ) for some θ > 0. (Note that by Lemma 11, Ŝ is
sustainable.)

LEMMA 22: Let Ŝ be upper sustainable. Then there is ε > 0, such that for every
A ∈ [Ŝ� Ŝ + ε], there is an equilibrium which involves first-period continuation
asset A1 < Ŝ, and has value V (A) < V s(Ŝ).

PROOF: Using Lemma 13 and the fact that Ŝ is upper sustainable, there are
ζ > 0 and ε1 > 0 such that for every A ∈ [Ŝ� Ŝ+ ε1],

u

(
A− Ŝ − ζ

α

)
+βδV s(Ŝ − ζ)≥ u

(
A− A1

α

)
+βδV s(A1)(a.44)

whenever A1 ≥ Ŝ, while at the same time,

X
(
A′′)>A′′ for all A′′ ∈ [Ŝ− ζ� Ŝ)�(a.45)

By part (i) of this proposition, there is Ã > B such that every equilibrium
from A ∈ [B�Ã) monotonically descends to B. By Lemma 8(a) and the fact
that Ŝ is sustainable, there must be a corresponding equilibrium which mono-
tonically descends from A to Ŝ for every A ∈ [Ŝ� μ̂Ã), where μ̂= Ŝ/B. Define
ε2 ≡ min{ε1� μ̂Ã− Ŝ}.

Using the first inequality in (a.19) of Lemma 9,

V s(Ŝ)≥
∞∑
t=0

δtu

(
At − At+1

α

)
+ u′

(
α− 1
α

Ŝ

)(
δ− 1

α

)
ζ

20To see this, pick S >A∗ such that X(S)= S, and now take the infimum over all such values
of S; call it S∗. Clearly, S∗ >A∗ because X(A∗) >A∗ and X is nondecreasing.

21We presume that S < S′ without loss of generality.
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for any path {At} starting from Ŝ with the property that At ≤ Ŝ for all t ≥ 0,
and A1 ≤ Ŝ − ζ. But then there exists ε3 > 0 such that

V s(Ŝ) >

∞∑
t=0

δtu

(
At − At+1

α

)
(a.46)

for any path {At} withAt ≤ Ŝ for all t ≥ 1,A1 ≤ Ŝ− ζ, andA0 ≤ Ŝ+ ε3. Define
ε≡ min{ε2� ε3}.

Pick any A ∈ [Ŝ� Ŝ + ε], and consider any “descending equilibrium” as de-
scribed just after (a.45), with payoff P(A). Suppose that it has continuation
(A1� V1). By Lemma 9, we know that V1 ≤ V s(A1), so

u

(
A− A1

α

)
+βδV s(A1)≥ P(A)�(a.47)

Combining (a.44) and (a.47), we must conclude that

u

(
A− Ŝ − ζ

α

)
+βδV s(Ŝ − ζ)≥ P(A)�(a.48)

Now observe that (a.45), coupled with Lemma 14, implies that H(Ŝ − ζ) ≥
V s(Ŝ − ζ). Using this information in (a.48), we must conclude that

u

(
A− Ŝ − ζ

α

)
+βδH(Ŝ − ζ)≥ P(A)�(a.49)

So the continuation {Ŝ − ζ�H(Ŝ − ζ)} is an equilibrium from every A ∈
[Ŝ� Ŝ + ε]. To complete the proof, note that any path {At} associated with this
equilibrium satisfiesAt ≤ Ŝ for all t ≥ 1,22 A1 ≤ Ŝ−ζ, andA0 ≤ Ŝ+ ε≤ Ŝ+ ε3.
Therefore (a.46) applies. Q.E.D.

Recall the definition of d∗(A) as the largest maximizer of (a.5).

LEMMA 23: If d∗(A) = A and d∗(A′) ≤ A′ over A′ ∈ [A�A + ε] for some
ε > 0, then A is sustainable.23

22This follows from X(Ŝ)= Ŝ and the fact that X is nondecreasing.
23In fact, a stronger property holds: if d∗(A) ≥A, then A is sustainable. That result follows

directly from the existence of an everywhere-non-accumulating Markov-perfect equilibrium. Be-
cause we do not use the stronger property, nor do we focus on Markov equilibrium, we omit the
proof.
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PROOF: We first show that

L+(A)≤ V s(A)�(a.50)

By Lemma 5, L is increasing. So there is a sequence {An} with An ↓ A and
L(An) (and L+(An)) converging to L+(A). For each n, consider an equilib-
rium with the lowest value V (An) among those that implement Y(An).24 Then

(1 −β)u
(
An − Y(An)

α

)
+βV (An)≥D(An)(a.51)

for all n. If strict inequality holds along a subsequence of n, then it is easy
to see that L(An)≤ V (An)= u(An −B/α)+δL(B) along that subsequence.25

Passing to the limit, L+(A)≤ u(A−B/α)+δL(B)≤ V s(A), where the second
inequality comes from part (i) of the proposition, already proved, which yields
L(B) = V s(B), together with Lemma 9. So (a.50) holds in this case. In the
other case, we may presume that

(1 −β)u
(
An − Y(An)

α

)
+βV (An)=D(An)(a.52)

for all n. But in turn,

D(An)= u
(
An − d∗(An)

α

)
+βδM(

d∗(An)�An

)
�(a.53)

Combining (a.52) and (a.53), we see that for every n,

(1 −β)u
(
An − Y(An)

α

)
+βV (An)(a.54)

= u
(
An − d∗(An)

α

)
+βδM(

d∗(An)�An

)
�

Now we pass to the limit in (a.54). By assumption, d∗(An)≤An for all n large,
so limn d

∗(An) < α(1−υ)A.26 By Lemma 7, d∗ is right-continuous atA, and so
d∗(An) converges to d∗(A)=A. By Lemma 6, M(d∗(An)�An)= L+(d∗(An))
for all n large enough, which converges to L+(d∗(A))=L+(A). Letting (Y�V )
denote any limit point of {Y(An)�V (An)}, we therefore have

(1 −β)u
(
A− Y

α

)
+βV = u

(
α− 1
α

A

)
+βδL+(A)�(a.55)

24In line with Proposition 3, this value equals L(An), but we do not use this fact anywhere in
the proofs.

25Follow the same argument as in footnote 16.
26That follows from α(1 − υ) > 1, given αδ > 1 and 1 − υ > γ, where γ is the Ramsey rate of

saving.
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It follows that

β(1 − δ)L+(A)(a.56)

≤ βV −βδL+(A)

= u
(
α− 1
α

A

)
− (1 −β)u

(
A− Y

α

)

≤ u
(
α− 1
α

A

)
− (1 −β)u

(
α− 1
α

A

)
= β(1 − δ)V s(A)�

where the first inequality uses V (An) ≥ L(An) for all n, so that V ≥ L+(A),
the equality follows from transposing terms in (a.55), and the second inequality
uses d∗(An) ≥ Y(An) for all n, and d∗(An)→ A, so that A ≥ Y . But (a.56)
again implies (a.50).

With (a.50) in hand, we must conclude that

u

(
α− 1
α

A

)
+βδV s(A) ≥ u

(
α− 1
α

A

)
+βδL+(A)

= u

(
α− 1
α

A

)
+βδM(A�A)

=D(A)

(where the last equality follows from d∗(A)=A), which means that A is sus-
tainable. Q.E.D.

In the rest of the proof, we make the assumption (by way of ultimate con-
tradiction) that the Conclusion is false. Note that because many of the steps to
follow are based on this presumption, they cannot all be regarded as relation-
ships that truly hold in the model.

LEMMA 24: Suppose that the Conclusion is false. Then
(a) d∗(Ŝ) < Ŝ for any upper sustainable asset level Ŝ, and
(b) d∗(A)≤A for all A≥ B, with strict inequality whenever X(A) �=A.

PROOF: Part (a). Suppose not; then, since X(Ŝ) = Ŝ (by the upper sus-
tainability of Ŝ), it follows from Lemma 4 that d(Ŝ) = Ŝ. We know that
M(Ŝ� Ŝ)=L+(Ŝ) (see footnote 26 and recall Lemma 6), but by Lemma 22,

M(Ŝ� Ŝ)=L+(Ŝ) < V s(Ŝ)�
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Invoking (a.5) along with d(Ŝ)= Ŝ, we must therefore conclude that

D(Ŝ)= u

(
α− 1
α

Ŝ

)
+βδM(Ŝ� Ŝ) < u

(
α− 1
α

Ŝ

)
+βδV s(Ŝ)

= Ps(Ŝ)�

or E(Ŝ)= Ps(Ŝ)−D(Ŝ) > 0. By Lemma 20, the Conclusion follows, a contra-
diction.

Part (b). If false, then d∗(A) > A for some A ≥ B, or d∗(A) ≥ A for
some A ≥ B with X(A) �= A. By Lemma 4, X(A) ≥ d∗(A), so in either
case X(A) > A. Note that there is A′ > A such that X(A′) ≤A′, otherwise
Lemma 15 assures us that the Conclusion holds. Define Ŝ by the infimum
value of such A′. Then it is immediate that Ŝ is upper sustainable, and that
X(A′′) >A′′ for all A′′ ∈ [A� Ŝ).

Recall that d∗(A) ≥A, that d∗ is nondecreasing, and that d(Ŝ) < Ŝ by the
upper sustainability of Ŝ and part (a) of this lemma. So there is S ∈ [A� Ŝ)
with d∗(S) = S and d∗(S′) ≤ S′ for all S′ in an interval to the right of S.27 By
Lemma 23, S is sustainable.

Set S = S1 and Ŝ = S2. Recall that X(A′′) > A′′ for all A′′ ∈ [A� Ŝ), so the
inequality holds in particular on (S1� S2). Now all the conditions of Lemma 19
are satisfied. Together with Lemma 15, we see that the Conclusion must hold,
a contradiction. Q.E.D.

Part (i) of the proposition, along with some of the foregoing lemmas, gener-
ates the following construction, on the assumption that the Conclusion is false.
X(A) starts out below A near B (there is a poverty trap by part (i)). By non-
uniformity,X(A) >A for someA; letA∗ be the infimum value.X(A) >A on
an interval to the right of A∗; if not, sustainable stocks cannot all be isolated,
and the Conclusion would follow from Lemma 21.28 Moreover, by Lemma 15,
if the Conclusion is false, there is S∗ <∞, defined as the supremum of all asset
levels S greater than A∗ such that X(A) >A for all A ∈ (A∗� S). Note that S∗

is upper sustainable. (Also note that X(A∗) >A∗, otherwise the Conclusion is
implied by setting S1 =A∗ and S2 = S∗, and applying Lemma 19.)

Part (i) of the proposition also tells us that d∗(B)= B. Let S∗ be the largest
asset level in [B�S∗] for which d∗(S)= S.

27To make this entirely clear, let S ≡ sup{S′ ∈ [A� Ŝ) | d∗(S′) > S′}. Because d∗ is nondecreas-
ing, d∗(S)≥ S. Moreover, d∗(S) > S violates the definition of S (again, because d∗ is nondecreas-
ing).

28By definition of A∗, there is {A′
n} converging down to A∗ with X(A′

n) >A
′
n. If the assertion

in the text is false, there is {A′′
n} also converging down to A∗ along which X(A′′

n)≤A′′
n. But then,

using the fact thatX is nondecreasing, there must be a third sequence along which equality holds,
which proves that non-isolated sustainable assets must exist.
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FIGURE A.1.—The two sustainable assets S∗ and S∗. (A) S∗ >B. (B) S∗ = B.

LEMMA 25: S∗ is well-defined, with B≤ S∗ < S∗, and X(S∗)= S∗.

PROOF: By Lemmas 21 and 24, there is a finite set of points in [B�S∗], all
strictly smaller than S∗, for which d∗(S)= S. (B is one such point.) So S∗ is well-
defined and B ≤ S∗ < S∗. That X(S∗)= S∗ follows from part (b) of Lemma 24
and d∗(S∗)= S∗. Q.E.D.

Figure A.1 summarizes the construction as well as the properties in Lem-
ma 25. Panel A illustrates a case in which S∗ >B, and panel B, a case in which
S∗ = B. (Note: it is possible that X(A) =A to the right of S∗ and before S∗,
though by Lemma 21, this can only happen at isolated points if the Conclusion
is false.)

Define Y+(A) as the limit of Y(An) as An converges down to A. Given
Lemma 10, Y+(A) is well-defined and Y+(A)≥ Y(A).

LEMMA 26: If the Conclusion is false, Y+(S∗)≥ S∗.

PROOF: If S∗ = B, the result is trivially true, so assume that S∗ > B. Sup-
pose, on the contrary, that Y+(S∗) < S∗. We first establish a stronger version of
(a.50); namely, that

L+(S∗) < V s(S∗)�(a.57)

By part (b) of Lemma 24, d∗(A) ≤ A in a neighborhood to the right of S∗
(indeed, strict inequality holds). With this in mind, carry out exactly the same
argument as in the proof of Lemma 23, starting right after (a.50) and leading
to (a.56), with S∗ in place ofA. We need two modifications to ensure that strict
inequality in (a.50) holds. First, in case strict inequality holds in (a.51) along a
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subsequence, then Y(An)= B and continuation values equal L(B) along that
subsequence, just as in the proof of Lemma 23, with the additional observation
that (a.50) must indeed hold strictly, giving us (a.57). Otherwise, equality holds
in (a.51), and (a.56) follows as before, with the additional implication that the
second inequality in (a.56)—again, with S∗ in place of A—must hold strictly,
because S∗ > Y+(S∗) ≥ Y(S∗). We must therefore conclude that (a.57) holds,
and therefore that

u

(
α− 1
α

S∗

)
+βδV s(S∗)

> u

(
α− 1
α

S∗

)
+βδL+(S∗)=D(S∗)�

where the equality follows from d∗(S∗) = S∗ < α(1 − υ)S∗, so that L+(S∗) =
M(S∗� S∗) by Lemma 6. In other words, we have E(S∗) > 0. But then Lemma 20
assures us that the Conclusion must follow, which is a contradiction. Q.E.D.

Let μ≡ S∗/B, and ρ≡ S∗/B; then μ > ρ≥ 1. Let S∗∗ ≡ μS∗, and S∗∗ ≡ μS∗.
Note that S∗∗ = μS∗ = ρS∗, so S∗∗ is also a scaling of S∗ by the factor ρ. (By
Lemmas 11 and 25, S∗ is sustainable, so Lemma 8 applies with both the scal-
ings μ and ρ.) Here is an outline of the remainder of the proof. Refer to Fig-
ure A.2. By Lemma 8(a), equilibria at assets to the right of S∗ and to the left
of S∗ can be “scaled up” to assets beyond S∗∗, using the factor μ. Asset choices
for such equilibria are partly indicated by the upper line to the right of S∗∗ and
the lower line to the left of S∗∗. But S∗∗ is also a scaling of S∗ (using ρ), so other
equilibrium scalings are possible. In particular, Lemmas 8 and 22 tell us that
equilibria with even lower values (and lower continuation assets) are achiev-
able just above S∗∗; see the lower segment to the right of S∗∗. These values

FIGURE A.2.—Outline of the proof starting from Lemma 27.
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serve as punishments for deviations from even higher assets, and so support,
in turn, larger asset choices near S∗∗ relative to the earlier set of scaled equi-
libria; see the upper line around S∗∗. That creates a zone beyond S∗∗ in which
X(A) > A. If X(A) > A for all A> S∗∗, Lemma 15 applies and the proof is
complete. Otherwise, there is a first asset level beyond S∗∗ at which X(A)=A
yet again. Now Lemma 20 applies, and contradicts the starting point of this
entire construction: that the Conclusion is false.

Recall the definition of L+(x), and Lemma 6, which states that M(x�A)=
L+(x) when x < α(1 − υ)A. This property will play a more active role now.

LEMMA 27: Suppose that the Conclusion is false.
(a) For all x≥ B,

L(μx)≤ μ1−σL(x)�(a.58)

and in particular,

M(μx�μA)≤ μ1−σM(x�A)(a.59)

for all A≥ B and x ∈ [B�α(1 − υ)A].
(b) For every A> S∗ with Y(μA) < S∗∗ and for all A′ ∈ [S∗�A),

L+(μA′)<μ1−σL+(A′)�(a.60)

PROOF: It is easy to see that Lemma 8(a) implies (a.58). Equation (a.59)
follows for x ∈ [B�α(1 − υ)A) by taking right-hand limits of L, and for
x= α(1 − υ)A by applying (a.58) directly. To prove part (b), pick A> S∗ with
Y(μA) < S∗∗. Let Ã ∈ (S∗�A]. Because Y+(S∗)≥ S∗ (by Lemma 26), any equi-
librium from Ã that implements L(Ã) has continuation {Ã1� Ṽ1} with Ã1 ≥ S∗
(by Lemma 10). By Lemma 8(a), {μÃ1�μ

1−σṼ1} is an equilibrium continuation
at Ã′′ ≡ μÃ > S∗∗. So

u

(
Ã′′ − μÃ1

α

)
+βδμ1−σ Ṽ1 ≥D(

Ã′′)�(a.61)

and

μÃ1 ≥ μS∗ = S∗∗�(a.62)

Consider an equilibrium with the lowest continuation value—call this ¯V—
among those that implement Y(Ã′′) from Ã′′. Then

u

(
Ã′′ − Y

(
Ã′′)
α

)
+βδ¯V ≥D(

Ã′′)�(a.63)
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If (a.63) does not bind, then we know that Y(Ã′′) = B and ¯V = L(B) (see
footnote 16). Recalling that Ã′′ = μÃ, we must therefore have

L(μÃ) ≤ u
(
μÃ− B

α

)
+ δL(B)(a.64)

≤ u
(
μÃ− μÃ1

α

)
+ δμ1−σ Ṽ1

− 1 −β
αβ

u′
(
μÃ− B

α

)
(μÃ1 −B)

≤ u
(
μÃ− μÃ1

α

)
+ δμ1−σ Ṽ1

− 1 −β
αβ

u′
(
μA− B

α

)
(S∗∗ −B)

= μ1−σL(Ã)− 1 −β
αβ

u′
(
μA− B

α

)
(S∗∗ −B)�

where the first inequality uses the definition of L, the second inequality uses
Lemma 1, and the third inequality invokes (a.62) and Ã ≤ A. On the other
hand, if (a.63) does bind, then using (a.61) and noting that Ã′′ = μÃ,

u

(
μÃ− μÃ1

α

)
+βδμ1−σ Ṽ1 ≥ u

(
μÃ− Y(μÃ)

α

)
+βδ¯V �(a.65)

Let ζ ≡ S∗∗ −Y(μA). BecauseY is nondecreasing, we have Y(μÃ)≤ S∗∗ −ζ ≤
μÃ1 − ζ. Using this information in (a.65) and observing that μÃ ≤ μA, we
must conclude that there exists η1 > 0 with μ1−σṼ1 ≥ ¯V + η1, where η1 might
depend on A but can be chosen independently of Ã. Therefore, using (a.65)
again, there is η2 > 0 such that

u

(
μÃ− μÃ1

α

)
+ δμ1−σ Ṽ1 ≥ u

(
μÃ− Y(μÃ)

α

)
+ δ¯V +η2�

or equivalently, μ1−σL(Ã) ≥ L(μÃ) + η2. Combining this inequality with
(a.64) and defining η≡ min{η2� [(1−β)/αβ]u′(μA−B/α)(S∗∗ −B)}, we have

μ1−σL(Ã)≥L(μÃ)+η(a.66)

for all Ã ∈ (S∗�A]. Taking right-hand limits as Ã ↓A′ ∈ [S∗�A) in (a.66) then
implies that L+(μA′) < μ1−σL+(A′) for all A′ ∈ [S∗�A). Q.E.D.
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LEMMA 28: Suppose that the Conclusion is false, and that for some A≥ B,

L+(d∗(μA)
)
<μ1−σL+(d∗(μA)/μ

)
�(a.67)

Then

D(μA) < μ1−σD(A)�(a.68)

PROOF: By Lemma 24, d∗(A′) ≤ A′ for all A′ ≥ B, so by Lemma 6,
M(A′�A′)=L+(A′). Using this observation along with (a.67), we see that

D(μA)= u

(
μA− d∗(μA)

α

)
+βδM(

d∗(μA)�μA
)

= μ1−σu
(
A− d∗(μA)

μα

)
+βδM(

d∗(μA)�μA
)

= μ1−σu
(
A− d∗(μA)

μα

)
+βδL+(d∗(μA)

)

< μ1−σ
[
u

(
A− d∗(μA)

μα

)
+βδL+

(
d∗(μA)
μ

)]

≤ μ1−σ
[
u

(
A− d∗(A)

α

)
+βδL+(d∗(A)

)]

= μ1−σ
[
u

(
A− d∗(A)

α

)
+βδM(

d∗(A)�A
)]

= μ1−σD(A)�

where the second equality uses the constant-elasticity form of u, the strict in-
equality invokes (a.67), and the weak inequality follows from the definition of
d∗(A). Q.E.D.

LEMMA 29: If the Conclusion is false, L+(μA) < μ1−σL+(A) for all A ∈
[S∗� S∗].

PROOF: Because S∗ is upper sustainable, Lemma 22 applies, so there is
ε′ > 0 such that for every A′ ∈ (S∗� S∗ + ε′], Y(A′) < S∗. Because S∗∗ = ρS∗,
Lemma 8(a) implies that Y(ρA′) < S∗∗ for all such A′. In turn, this implies
that for every A′′ ∈ (S∗� S∗ + ε], where ε ≡ ρε′/μ, we have Y(μA′′) < S∗∗. By
part (b) of Lemma 27, L+(μA) < μ1−σL+(A) for all A ∈ [S∗� S∗ + ε).

Suppose, by way of contradiction, that L+(μA) = μ1−σL+(A) for some
A ∈ [S∗� S∗]. Let A∗ be the infimum over such A. Then A∗ ≥ S∗ + ε (by the
conclusion of the last paragraph), and by the right-continuity of L+,

L+(μA∗) = μ1−σL+(A∗)�(a.69)
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Define A′ ≡ μA∗. There are now two cases to consider. First, if d∗(A′)/μ >
d∗(A∗),

D
(
μA∗) =D

(
A′) = u

(
A′ − d∗(A′)

α

)
+βδM(

d∗(A′)�A′)(a.70)

= μ1−σu
(
A∗ − d∗(A′)

μα

)
+βδM(

d∗(A′)�A′)

≤ μ1−σ
[
u

(
A∗ − d∗(A′)

μα

)
+βδM

(
d∗(A′)
μ

�
A′

μ

)]

< μ1−σD
(
A∗)�

where the weak inequality invokes (a.59), and the strict inequality the fact
that d∗(A∗) is the largest maximizer of u(A∗ − x/α) + βδM(x�A∗), while
d∗(A′)/μ > d∗(A∗).

In the second case, d∗(A′)/μ ≤ d∗(A∗). Notice that (a.60) fails at A =A∗,
so using part (b) of Lemma 27, Y(μA)≥ S∗∗ for allA>A∗. At the same time,
d∗(μA)≥ Y(μA) for all A (by Lemma 4). Combining these two observations,
d∗(μA)≥ S∗∗ for all A>A∗.

By part (b) of Lemma 24, d∗(μA) ≤ μA for all A, so limA↓A∗ d∗(μA) ≤
μA∗ < α(1 − υ)μA∗. So Lemma 7(b) applies, and d∗ is right-continuous at
μA∗. Passing to the limit in the last inequality of the previous paragraph as
A ↓A∗, it follows that S∗∗ ≤ d∗(μA∗) = d∗(A′), or S∗ ≤ d∗(A′)/μ. So in this
second case,

S∗ ≤ d∗(A′)/μ≤ d∗(A∗)<A∗�(a.71)

the last inequality following part (b) of Lemma 24, along with the fact that
A∗ > S∗, the latter being the largest value of A ∈ [B�S∗] with d∗(A)=A.

In particular, (a.71) along with the definition of A∗ allows us to verify condi-
tion (a.67) of Lemma 28 with A set equal to A∗. It follows that (a.68) holds at
A∗. Recalling (a.70), we see then that in both cases

D
(
μA∗)<μ1−σD

(
A∗)�(a.72)

Let {A1� V1} be the equilibrium continuation that implements L(A∗). By
Lemma 8(a), {μA1�μ

1−σV1} is an equilibrium at μA∗, it has value equal to
μ1−σL(A∗), and moreover, by the incentive constraint for {A1� V1} coupled
with (a.72),

u

(
μA∗ − μA1

α

)
+βδμ1−σV1 ≥ μ1−σD

(
A∗)>D(

μA∗)�
This strict inequality, along with the fact that μA1 > B, proves that one can
lower equilibrium value at μA beyond the value created by scaling {A1� V1},
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which shows that

L
(
μA∗)<μ1−σL

(
A∗)�

This contradicts the definition of A∗, and so completes the proof. Q.E.D.

PROOF OF PROPOSITION 4, PART (ii): Assume the Conclusion is false. We
claim that

E
(
S∗∗) = Ps(S∗∗)−D(

S∗∗)> 0�(a.73)

There are three possibilities to consider. First, d∗(S∗∗)/μ≥ S∗. We verify condi-
tion (a.67) of Lemma 28 with S∗ in place of A. To do so, note that d∗(S∗∗)/μ=
d∗(μS∗)/μ≥ S∗, and also that d∗(μS∗)/μ≤ S∗ by part (b) of Lemma 24. So we
may apply Lemma 29 to A = d∗(μS∗)/μ, and conclude that (a.68) is true for
A= S∗. It follows that

D
(
S∗∗)<μ1−σD

(
S∗)�(a.74)

Because Ps(S∗∗)= μ1−σPs(S∗) and Ps(S∗)≥D(S∗), (a.74) immediately implies
(a.73).

The second possibility is that d∗(S∗∗)/μ < B, so that d∗(S∗∗) < μB= S∗. Now
apply part (b) of Lemma 8 by setting the path {μA∗

t } in that lemma to the
constant path with asset level S∗∗ = μS∗ at every date.29 It follows right away
that Ps(S∗∗) >D(S∗∗), which establishes (a.73).

So the only remaining possibility is that

S∗ > d∗(S∗∗)/μ≥ B�(a.75)

Let d be a generic continuation asset choice that solves (a.5) at S∗. By Lemma 7
and the fact that d∗(S∗) = S∗, it must be the case that d ≥ S∗. Because S∗ is
upper sustainable and so sustainable, and d ≥ S∗ > d∗(S∗∗)/μ≥ B, we see that
if we define A1 ≡ d∗(S∗∗)/μ, then

Ps
(
S∗) ≥D(

S∗)> u(S∗ − A1

α

)
+βδM(

A1� S
∗)�(a.76)

Keeping in mind that S∗∗ = μS∗ and d∗(S∗∗)= μA1, we must conclude that

Ps
(
S∗∗) = μ1−σPs

(
S∗)>μ1−σ

[
u

(
S∗ − A1

α

)
+βδM(

A1� S
∗)]

= u

(
S∗∗ − d∗(S∗∗)

α

)
+βδμ1−σM

(
A1� S

∗)

29This is our only use of part (b) of Lemma 8.



38 B. D. BERNHEIM, D. RAY, AND Ş. YELTEKIN

≥ u
(
S∗∗ − d∗(S∗∗)

α

)
+βδM(

d∗(S∗∗)� S∗∗)
=D

(
S∗∗)�

where the first inequality uses (a.76) and the second inequality uses (a.59).
That gives us (a.73) again.

By Lemma 20, this immediately precipitates a contradiction, because (a.73)
implies that the Conclusion follows, while we have been working with the pre-
sumption that the Conclusion is false. Q.E.D.

APPENDIX C: THE SIMPLIFIED EXAMPLE

PROOF OF PROPOSITION 5: Here we verify several technical claims which,
when paired with the arguments in the main text, constitute a complete proof.
Throughout, we remain on the grid (A0�A1�A2� � � �), where A0 ≡ B, and
Ak+1 = λAk for all k≥ 0. Q.E.D.

LEMMA 30: There exists λ̄1 > 1 such that, for all λ ∈ (1� λ̄1), the unique value-
maximizing asset trajectory for the simplified model is (Ak�Ak+1� � � �), and the
unique value-minimizing asset trajectory is (Ak�Ak−1� � � � �A1�A0�A0� � � �).

PROOF: Consider first the alternative problem max
∑∞

t=0 δ
tu(ct) for any

given A0, subject to the constraints ct = At − (At+1/α) ≥ 0, At ≤ A0λ
t , and

At ≥ max{A0λ
−t �A0}, but do not restrict assets to lie on the grid. We will

show that, for λ ∈ (1� (αδ)1/σ), the unique solution is At =A0λ
t for all t ≥ 0,

with the associated consumption path ct = (1 − λ
α
)At . Consider any other asset

path A′
0�A

′
1� � � � and the associated consumption path c′

0� c
′
1� � � � ; we will show

that it does not maximize value. (Standard results assure us that a solution
exists, so the desired conclusion then follows.) Clearly, there must be a first pe-
riod, s, in which c′

s �= (1 − λ
α
)A0λ

s, and plainly we have c′
s > (1 − λ

α
)A0λ

s (else
A′
s+1 > A0λ

s+1, in violation of the constraint). Let r be the first period after
s in which c′

r < (1 − λ
α
)A0λ

r . (From the intertemporal budget constraint, we
know that such a period exists.) Plainly, A′

t < A0λ
t for t = s + 1� � � � � r. Con-

sider an alternative asset pathA′′
0�A

′′
1� � � � such thatA′′

t =A′
t for t ≤ s and t > r,

and A′′
t =A′

t + αt−sx for t = s+ 1� � � � � r. For the associated consumption path
c′′

0 � c
′′
1 � � � � , we have c′′

s = c′
s − x, c′′

r = c′
r + αr−sx, and c′′

t = c′
t otherwise. Note

that this path is feasible for small x. Let V (x) be the associated value. Then,
provided λ < (δα)1/σ ,

V ′(0)= δrαr−s
(
c′
r

)−σ − δs(c′
s

)−σ

> δrαr−s
((

1 − λ

α

)
A0λ

r

)−σ
− δs

((
1 − λ

α

)
A0λ

s

)−σ
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= δs
((

1 − λ

α

)
A0λ

s

)−σ[(
δα

λσ

)r−s
− 1

]

≥ δs
((

1 − λ

α

)
A0λ

s

)−σ[(
δα

(δα)(1/σ)σ

)r−s
− 1

]
= 0�

Because V ′(0) > 0, we knowA′
0�A

′
1� � � � is not value-maximizing, which is what

we set out to show.
For the simplified model, the set of feasible paths is a subset of the corre-

sponding set for the alternative problem, and it always contains the trajectory
with At =A0λ

t for all t. Consequently, that trajectory also maximizes value in
the simplified model, which is the first half of the lemma.

To prove the second half of the lemma, we will consider the alternative prob-
lem min

∑∞
t=0 δ

tu(ct) with an initial asset level of A0 =Ak for some k, subject
to the same constraints. We will show that there exists λ̄1 ∈ (1� (αδ)1/σ) such
that, for all λ ∈ (1� λ̄1), value is uniquely minimized with the asset trajectory
At = max{A0� A

k

λt
}, along with the consumption trajectory ct = (1 − 1

λα
)At for

t < k and ct = (1 − 1
α
)A0 for t ≥ k. Consider any other asset path A′

0�A
′
1� � � �

and the associated consumption path c′
0� c

′
1� � � � ; we will show that it does not

minimize value. (Standard results assure us that a solution exists, so the de-
sired conclusion then follows.) Clearly, there must be a first period, s, in which
c′
s �= cs, and plainly we have c′

s < cs (else A′
s+1 <max{A0� Ak

λs+1 }, in violation of
the constraint). Notice that

c′
s ≥

(
1 − λ

α

)
As

and

c′
s+1 ≤

(
1 − 1

λα

)
λAs

so that

c′
s+1

c′
s

≤
λ− 1

α

1 − λ

α

�

Define

λ̄1 ≡ (αδ)1/σ

(
α+ (αδ)−1/σ

α+ (αδ)1/σ

)
�
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Clearly, λ̄1 < (αδ)
1/σ . Using the last inequality, it is easy to check that λ ∈

(0� λ̄1) implies
c′s+1
c′s
< (αδ)1/σ .

Consider an alternative asset pathA′′
0�A

′′
1� � � � such thatA′′

t =A′
t for t �= s+1,

and A′′
s+1 =A′

t − αx. For the associated consumption path c′′
0 � c

′′
1� � � � , we have

c′′
s = c′

s+x, c′′
s+1 = c′

s+1 −αx, and c′′
t = c′

t otherwise. Note that this path is feasible
for small x. Let V (x) be the associated value. Then

V ′(0)= δs
(
c′
s

)−σ − δs+1α
(
c′
s+1

)−σ

< δs
(
c′
s

)−σ − δs+1α
(
(αδ)1/σc′

s

)−σ

= 0�

Because V ′(0) < 0, we know A′
0�A

′
1� � � � is not value-minimizing, which is what

we set out to show.
For the simplified model, the set of feasible paths is a subset of the cor-

responding set for the alternative problem, and it always contains the as-
set trajectory with At = max{A0� A

k

λt
} for all t. Consequently, that trajectory

also minimizes value in the simplified model, which is the second half of the
lemma. Q.E.D.

LEMMA 31: There exists βD > 0 such that a Markov-perfect equilibrium with
decumulation exists iff β≤ βD.

PROOF: In the equilibrium, the individual chooses decumulation regardless
of the asset level or history by which the asset level was reached. Let A0 =Ak.
Then the value of the decumulation path is

Dk ≡
k−1∑
t=0

δt

[(
1 − 1

λα

)(
1
λ

)t
Ak

]1−σ

1 − σ

+ δk

1 − δ

[(
1 − 1

α

)(
1
λ

)k
Ak

]1−σ

1 − σ

=
(
Ak

)1−σ

1 − σ

⎡
⎢⎢⎢⎣
(

1 − 1
λα

)1−σ

⎛
⎜⎜⎜⎝

1 −
(
δ

λ1−σ

)k

1 − δ

λ1−σ

⎞
⎟⎟⎟⎠

+ δk

1 − δ
[(

1 − 1
α

)(
1
λ

)k]1−σ

⎤
⎥⎥⎥⎦ �
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We will rewrite this as

Dk =
(
Ak

)1−σ

1 − σ

[(
1 − 1

λα

)1−σ( 1

1 − δ

λ1−σ

)
+ Γ (k)

]
�(a.77)

where

Γ (k)=
(
δ

λ1−σ

)k[
(

1 − 1
α

)1−σ

1 − δ −

(
λ− 1

α

)1−σ

λ1−σ − δ

]
�(a.78)

It will be important to know how Γ (k) varies with k. Because we have assumed
δ

λ1−σ < 1, the absolute value of Γ (k) declines with k. Whether it increases or
decreases depends on the sign of

(
1 − 1

α

)1−σ

1 − δ −

(
λ− 1

α

)1−σ

λ1−σ − δ ≡Φ(λ)�

Notice that Φ(1)= 0. Let us calculate Φ′(λ) for λ≥ 1:

Φ′(λ) = −
[(1 − σ)

(
λ− 1

α

)−σ(
λ1−σ − δ)− (1 − σ)λ−σ

(
λ− 1

α

)1−σ

(
λ1−σ − δ)2

]

= −(1 − σ)

(
λ− 1

α

)−σ

(
λ1−σ − δ)2

((
λ1−σ − δ)− λ−σ

(
λ− 1

α

))

= (1 − σ)

(
λ− 1

α

)−σ

(
λ1−σ − δ)2

(
δ− λ−σ 1

α

)
�

Clearly, λ− 1
α
> 0, and we have assumed δ

λ1−σ < 1, so λ1−σ − δ > 0. Further-
more, we have assumed λ < (δα)1/σ and λ > 1, so δ > λ−σ 1

α
. Thus, the deriva-

tive has the same sign as 1−σ . Accordingly, for λ > 1,Φ(λ) > 0 if σ < 1, which
means Γ (k) is positive and shrinks with k, andΦ(λ) < 0 if σ > 1, which means
Γ (k) is negative and increases with k.
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Now let us determine when decumulation is a Markov-perfect equilibrium,
beginning with states k ≥ 1. Assuming decumulation will always occur in the
future, the payoff from decumulation is

Dk
β =

(
Ak

(
1 − 1

λα

))1−σ

1 − σ +βδDk−1�

while the payoff from accumulation (which is followed by decumulation given
how future selves play) is

Ekβ =

(
Ak

(
1 − λ

α

))1−σ

1 − σ +βδDk+1�

Deviating to accumulation is not profitable iff Dk
β ≥Ekβ, or

βδ
(
Dk−1 −Dk+1

) ≥
(
Ak

)1−σ

1 − σ
[(

1 − λ

α

)1−σ
−

(
1 − 1

λα

)1−σ]
�

The right-hand side is negative. Clearly, Dk−1 < Dk+1, so the term multiply-
ing β on the left-hand side is also negative. Accordingly, we can rewrite the
condition as β≤ βDk, where

βDk = 1
1 − σ

[(
1 − 1

λα

)1−σ
−

(
1 − λ

α

)1−σ][δ(Dk+1 −Dk−1
)

(
Ak

)1−σ

]−1

�(a.79)

Notice that the right-hand side is now a strictly positive number.
Next we observe that

Dk+1 =

(
λAk

(
1 − 1

λα

))1−σ

1 − σ + δ

(
Ak

(
1 − 1

λα

))1−σ

1 − σ + δ2Dk−1�

so

Dk+1 −Dk−1(
Ak

)1−σ

=
λ1−σ

(
1 − 1

λα

)1−σ

1 − σ + δ

(
1 − 1

λα

)1−σ

1 − σ

− (
1 − δ2

) λσ−1

1 − σ
[(

1 − 1
λα

)1−σ( 1
1 − δλσ−1

)
+ Γ (k− 1)

]
�
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From the analysis above, we know that 1
1−σ Γ (k− 1) declines with k. There-

fore, βDk, which depends on k only through this term, also declines with k.
Because we need the inequality to hold for all k, it must hold in the limit as
k→ ∞. Using the fact that limk→∞ Γ (k− 1)= 0, we obtain

lim
k→∞

βDk ≡ βD∞

= 1
δ

[(
1 − 1

λα

)1−σ
−

(
1 − λ

α

)1−σ]

×
[(

1 − 1
λα

)1−σ(
λ1−σ − λσ−1

1 − δλσ−1

)]−1

�

which is strictly positive.
Now we turn to the case of k = 0. Deviating to accumulation only changes

consumption in periods 0 and 1, and is not profitable as long as

β ≤ βD0

= 1
δ

[(
1 − 1

α

)1−σ
−

(
1 − λ

α

)1−σ]

×
[
λ1−σ

(
1 − 1

λα

)1−σ
−

(
1 − 1

α

)1−σ]−1

�

which is also strictly positive. From the preceding analysis, the necessary and
sufficient condition for a Markov-perfect equilibrium with decumulation is β≤
βD ≡ min{βD0�βD∞}. Q.E.D.

LEMMA 32: For k ≥ 1, the inequality Skβ ≥ Dk
β is equivalent to the condition

β≥ βk, where βk is strictly positive and decreasing in k.

PROOF: The value from the continual accumulation stream, starting with
assets Ak, is

Sk =
∞∑
t=0

δt

1 − σ
[(

1 − λ

α

)
λtAk

]1−σ
=

(
Ak

)1−σ

1 − σ

(
1 − λ

α

)1−σ

1 − δλ1−σ �(a.80)

The payoff from the same stream is

Skβ = 1
1 − σ

[(
1 − λ

α

)
Ak

]1−σ
+βδSk+1�
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Similarly, we can write

Dk
β = 1

1 − σ
[(

1 − 1
λα

)
Ak

]1−σ
+βδDk−1�

Thus we can rewrite the condition Skβ ≥Dk
β as

βδ
(
Sk+1 −Dk−1

) ≥
(
Ak

)1−σ

1 − σ
[(

1 − 1
λα

)1−σ
−

(
1 − λ

α

)1−σ]
�

The right-hand side is positive. Clearly, Dk−1 < Dk+1, and Lemma 30 tells us
that Sk+1 > Dk+1. Therefore, the term multiplying β on the left-hand side is
also positive. Accordingly, we can rewrite the condition as β≥ βk, where

βk ≡ 1
1 − σ

[(
1 − 1

λα

)1−σ
−

(
1 − λ

α

)1−σ][δ(Sk+1 −Dk−1
)

(
Ak

)1−σ

]−1

> 0�(a.81)

Next we demonstrate that βk is decreasing in k. Notice that

Sk+1(
Ak

)1−σ = λ1−σ

1 − σ

((
1 − λ

α

)1−σ

1 − δλ1−σ

)
�

which is independent of k. Moreover,

Dk−1(
Ak

)1−σ = λσ−1

1 − σ
[(

1 − 1
λα

)1−σ( 1
1 − δλσ−1

)
+ Γ (k− 1)

]
�

In the proof of Lemma 31, we showed that Γ (k−1)
1−σ decreases with k. It follows

that βk also declines with k, as claimed. Q.E.D.

LEMMA 33: There exists λ̄2 > 1 such that, for every λ ∈ (1� λ̄2), βD > β∞.

PROOF: The proof proceeds in two steps. The first is to show that there exists
λ̄

′
> 1 such that, for every λ ∈ (1� λ̄′

), βD0 > βD∞, so that βD = βD∞.30 In the
formula for βD∞, the numerator and denominator converge to 0 as λ → 1.
Applying L’Hôpital’s rule, we obtain

lim
λ→1

βD∞ =
2
α
(1 − σ)

(
1 − 1

α

)−σ

2(1 − σ)
(

1 − 1
α

)1−σ(
δ

1 − δ
) = 1 − δ

αδ− δ�

30In all of the numerical cases we have considered, λ̄ is no less than the Ramsey growth rate.
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In the formula for βD0, the numerator and denominator also converge to 0
as λ→ 1, so again we apply L’Hôspital’s rule:

lim
λ→1

βD0 =
1
α
(1 − σ)

(
1 − 1

α

)−σ

δ

[
(1 − σ)

(
1 − 1

α

)1−σ
+ 1
α
(1 − σ)

(
1 − 1

α

)−σ]

= 1
δα
�

Accordingly,

lim
λ→1
(βD0 −βD∞)= 1

δα
− 1 − δ
αδ− δ

= 1
δα

[
1 − αδ− δ(αδ)

αδ− δ
]

> 0�

where the final line uses our assumption that αδ > 1, which plainly implies
αδ−δ(αδ)
αδ−δ < 1.
The second step is to show that there exists λ̄

′′
> 1 such that, for every

λ ∈ (1� λ̄′′
), βD∞ >β∞. From a comparison of (a.79) and (a.81), we know that

βDk > βk for all k > 1, because Sk+1 >Dk+1 (Lemma 30). To show that the dif-
ference is preserved in the limit, so that βD∞ >β∞, we must demonstrate that
limk→∞ Sk+1/(Ak)1−σ > limk→∞Dk+1/(Ak)1−σ . From (a.77), (a.78), and (a.80),
we have

lim
k→∞

Sk+1(
Ak

)1−σ = λ1−σ

1 − σ

((
1 − λ

α

)1−σ

1 − δλ1−σ

)

and

lim
k→∞

Dk+1(
Ak

)1−σ = λ1−σ

1 − σ

((
1 − 1

λα

)1−σ

1 − δ/λ1−σ

)
�

Define

Q(x)= λ1−σ

1 − σ

((
1 − x

α

)1−σ

1 − δx1−σ

)
�
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Taking the derivative and simplifying, we obtain

Q′(x)= λ1−σ

(
1 − x

α

)−σ

(
1 − δx1−σ)2

[
δx−σ − 1

α

]
�

For x < (δα)1/σ , this expression is strictly positive. Thus, setting λ̄
′′ = (δα)1/σ ,

we have

lim
k→∞

Sk+1(
Ak

)1−σ =Q(λ) >Q
(

1
λ

)
= lim

k→∞
Dk+1(
Ak

)1−σ �

The desired conclusion follows for λ̄2 = min{λ̄′
� λ̄

′′}. Q.E.D.

LEMMA 34: There exists λ̄3 > 1 such that, if λ ∈ (1� λ̄3) and β < β1, there is
no equilibrium of the simplified model in which the consumer accumulates wealth
from A0.

REMARK: It follows from the previous claims that, when β<βk, there is no
equilibrium of the simplified model in which the consumer accumulates wealth
from A1� � � � �Ak. Lemma 32 does not, however, cover the case of k = 0, and
consequently we must deal with it separately.

PROOF OF LEMMA 34: With β < β1, the consumer necessarily decumu-
lates from A1. We claim that, for λ ∈ (1� λ̄1), Aa = (A0�A1�A0�A1� � � �) (i.e.,
where alternation between A0 and A1 continues forever) is the unique value-
maximizing asset trajectory starting from A0. Consider any asset trajectory
A′

0�A
′
1�A

′
2� � � � other than Aa. If that trajectory were value-maximizing, we

would have a contradiction: contrary to Lemma 30, Ac = (A0�A0�A0� � � �) (i.e.,
where assets are constant at A0 forever) would also be value-maximizing. To
see why, observe that there must be some s such that A′

s =A′
s+1 =A0. Define

the sequence A1 such thatA1t =A′
t+s. Plainly, A1 is also a value-maximizing tra-

jectory (otherwise, we could substitute a continuation path with greater contin-
uation value starting from period s of the original trajectory, thereby increas-
ing its value). If this new trajectory is Ac , then we are done, so assume it is not.
Then there is a first period r1 > 0 in which A1r1 =A0 and A1�r1+1 =A1. Con-
struct a new asset trajectory A2 such that A2t =A1t for t ≤ r1, and A2t =A1�t−r1
for t > r1. Plainly, A2 must also be a value-maximizing trajectory. Iterating this
step, we generate a series of value-maximizing trajectories, where the asset
level for the kth trajectory is A0 through period rk, and where limk→∞ rk = ∞.
Because the transversality condition holds, these trajectories must generate the
same value as Ac . Therefore, Ac must also be a value-maximizing trajectory, as
claimed.
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In light of what we have just shown, accumulation is sustainable from A0

if and only if the payoff associated with Aa (which provides the highest-value
continuation path for a candidate equilibrium with initial accumulation) is no
less than the payoff associated with Ac (which serves as the worst possible pun-
ishment path in light of Lemma 32).

The payoff associated with trajectory Aa is

Pa = (
A0

)1−σ
[
u

(
1 − λ

α

)
+

(
βδ

1 − δ
)(u(λ− 1

α

)
+ δu

(
1 − λ

α

)
1 + δ

)]
�

The payoff associated with trajectory Ac is

Pc = (
A0

)1−σ
[
u

(
1 − 1

α

)
+ βδ

1 − δu
(

1 − 1
α

)]
�

Accumulation is sustainable from A0 iff Pa ≥ Pc , or equivalently (after some
manipulation):

β≥ β′
0 =

(
1 − δ
δ

) u

(
1 − 1

α

)
− u

(
1 − λ

α

)

u

(
λ− 1

α

)
+ δu

(
1 − λ

α

)
1 + δ − u

(
1 − 1

α

) �

As λ approaches unity, both the numerator and the denominator converge
to zero. Applying L’Hôpital’s rule, we obtain

lim
λ→1

β′
0 =

(
1 − δ
δ

) 1
α
u′(1)

u′(1)− δ

α
u′(1)

1 + δ
=

(
1 − δ
δ

)
1 + δ
α− δ�

To establish the claim, we must show that limλ→1β
′
0 ≥ limλ→1β1. The formula

for the latter can be written as follows:

β1 =
(

1 − δ
δ

) u

(
1 − 1

αλ

)
− u

(
1 − λ

α

)
1 − δ

1 − δλ1−σ u
(
λ− λ2

α

)
− u

(
1
λ

− 1
αλ

) �
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Once again, as λ approaches unity, both the numerator and the denominator
converge to zero. Applying L’Hôpital’s rule and simplifying, we obtain

lim
λ→1

β1 =
(

1 − δ
δ

)(
2
α
u′
(

1 − 1
α

))
/((

1 − 2
α

)
u′
(

1 − 1
α

)

+
(

1 − 1
α

)
u′
(

1 − 1
α

)
+ δ(1 − σ) 1

1 − δu
(

1 − 1
α

))

=
(

1 − δ
δ

)
2(1 − δ)

2α+ 2δ− αδ− 3
�

We note in passing that 2α+ 2δ−αδ− 3 = 2(α− 1)(1 −δ)+ (αδ− 1) > 0.
Now observe that

lim
λ→1

β′
0 − lim

λ→1
β1 = 1 + δ

α− δ − 2(1 − δ)
2α+ 2δ− αδ− 3

= (3 − δ)(αδ− 1)
(α− δ)(2α+ 2δ− αδ− 3)

> 0�

Consequently, there is some λ̄3 ∈ (1� λ̄1) for which the lemma holds. Q.E.D.

REMARK: For the purpose of the proposition, λ̄= min{λ̄2� λ̄3}.

Numerical Examples

Although the claims in Lemmas 30–34 are proved for λ close to unity, a
wide range of numerical simulations support the claims for all λ ∈ (0� (αδ)1/σ).

FIGURE A.3.—Example: β values and ratios, α= 1�3, δ= 0�8.
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Figure A.3 shows the values of β′
0�βD�β1, and β∞ for 20 different σ ranging

between 0.25 and 4, and 50 different λ values with λ ∈ (0� (αδ)1/σ).31 The left
panel of Figure A.3 confirms that for the full range of λ ∈ (0� (αδ)1/σ), β1 >
β∞, β′

0 >β1 (Lemma 34). The right panel shows that βD0 >βD∞, and the two
panels combined together confirm that βD = βD∞ >β∞ (Lemma 33).

APPENDIX D: MARKOV EQUILIBRIA

PROOF OF PROPOSITION 6, PART (i): We will show that there exists a lin-
ear Markov equilibrium policy function φ(A) = kA with k ≥ 1. To this end,
assume that all “future selves” employ the policy function φ(A) = kA with
k ∈ [1�α] for all A≥ B. That yields the value function

V (A)= Q

1 − σA
1−σ�

where

Q≡ (α− k)1−σ

α1−σ(1 − δk1−σ) �(a.82)

The individual’s current problem is therefore to solve

max
x∈[B�α(1−υ)A]

1
1 − σ

[(
A− x

α

)1−σ
+βδQx1−σ

]
�

The corresponding necessary and sufficient first-order condition is

1
α

(
A− x

α

)−σ
= βδQx−σ �

After some manipulation, we obtain

A

x
= 1
α

+
(

1
αβδQ

)1/σ

≡ 1
k∗ �(a.83)

Note that x= k∗A. Accordingly, the policy function is an equilibrium if k∗ = k.
Substituting (a.82) into (a.83) and rearranging yields

kσ = αβδ+ (1 −β)δk�(a.84)

31In these examples, δ and α are fixed at 0.8 and 1.3, respectively, as in the other numerical
examples in this appendix and the main text. Changes in α and δ do not alter the qualitative
nature of these pictures.
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Define Λ(k) ≡ kσ and Φ(k) = αβδ+ (1 − β)δk. Notice that Λ(1) ≤ Φ(1)
(given that βδ(α− 1)/(1 − δ)≥ 1), and Λ(α) >Φ(α) (given the transversality
condition δα1−σ < 1). By continuity, it follows that there exists a solution on
the interval [1�α), which establishes the proposition. Q.E.D.

PROOF OF PROPOSITION 6, PART (ii): The proof proceeds in two steps.
Step 1. Consider a modified game in which the individual makes the same

decisions subject to an additional (artificial) constraintA′ ≤A, whereA′ is the
continuation asset choice. For this modified game, there exists a nondecreasing
u.s.c. Markov policy function.

To establish this step, we construct a sequence of policy functions {φn} and
value functions {V n} as follows:
φ0(A)= B for all A≥ B and V 0(A)= u(A− B

α
)+ βδ

1−δu(B(1 − 1
α
)), and for

n > 0,

φn(A)= maxΦn(A)�(a.85)

where

Φn(A)= arg max
A′∈[B�A]

[
u

(
A− A′

α

)
+βδV n−1

(
A′)]�

and

V n(A)= u
(
A− φn(A)

α

)
+ δV n−1

(
φn(A)

)
�(a.86)

We claim that, for all n, φn and V n are well-defined and u.s.c., and φn is
nondecreasing. Clearly, φ0 and V 0 have these properties. Now suppose φn−1

and V n−1 have these properties; we will show that φn and V n also have them.
Because u is continuous and V n−1 u.s.c., we know that Φn(A) is a nonempty-
valued, compact-valued correspondence.32 Therefore φn(A) ≡ maxΦn(A) is
well-defined. The fact that φn is nondecreasing follows from a standard single-
crossing argument that relies on the strict concavity of u. It remains to prove
that φn and V n are u.s.c.

To this end, consider a sequence Ak →A with φk ≡ φn(Ak) converging to
some asset level φ. We claim that φn(A) ≥ φ. If not, then in particular, φ is
not optimal at A, and there exists another continuation asset x <φ with

u

(
A− x

α

)
+βδV n−1(x) > u

(
A− φ

α

)
+βδV n−1(φ)�

32It suffices to prove that Φn(A) is closed-valued, which is a standard exercise given that V n−1

is u.s.c.
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At the same time, because V n−1 is u.s.c.,

u

(
A− φ

α

)
+βδV n−1(φ)≥ lim sup

k

[
u

(
Ak − φk

α

)
+βδV n−1

(
φk

)]
�

but these two inequalities allow us to conclude that, for k large enough, x <Ak

and

u

(
Ak − x

α

)
+βδV n−1(x) > u

(
Ak − φk

α

)
+βδV n−1

(
φk

)
�

which contradicts the optimality of φk at Ak. So we have established that
φn(A) is u.s.c., and in particular, that φn(A)≥φ and

u

(
A− φn(A)

α

)
+βδV n−1

(
φn(A)

) ≥ u
(
A− φ

α

)
+βδV n−1(φ)�(a.87)

Because φn(A) ≥ φ, (a.87) implies that V n−1(φn(A)) ≥ V n−1(φ), so that
adding (1 − β)δV n−1(φn(A)) and (1 − β)δV n−1(φ), respectively, to the
left- and right-hand sides of (a.87), we have

u

(
A− φn(A)

α

)
+ δV n−1

(
φn(A)

) ≥ u
(
A− φ

α

)
+ δV n−1(φ)�(a.88)

Using (a.88) and the fact that V n−1 is u.s.c., we must conclude that

V n(A)= u

(
A− φn(A)

α

)
+ δV n−1

(
φn(A)

)

≥ u
(
A− φ

α

)
+ δV n−1(φ)

≥ lim
k→∞

[
u

(
Ak − φn

(
Ak

)
α

)
+ δV n−1

(
φn

(
Ak

))]

= limV n
(
Ak

)
�

as desired. This completes our inductive claim.
Next, for each n > 1, define

θn ≡ sup
{
A≥ B |φn(A′) =φn−1

(
A′) for all A′ <A

}
�

Because β < β∗, we have βδ

1−δ(α− 1) < 1, so that θ1 > B and V 1(A)= V 0(A)

for A ∈ [B�θ1). Now we argue that if θn > B and V n(A) = V n−1(A) for A ∈
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[B�θn), then θn+1 ≥ θn > B and V n+1(A) = V n(A) for A ∈ [B�θn+1). Recall
that

Φn+1(A)= arg max
A′∈[B�A]

[
u

(
A− A′

α

)
+βδV n

(
A′)]�

But for all A ∈ [B�θn) and A′ ∈ [B�A], we have

u

(
A− A′

α

)
+βδV n

(
A′) = u

(
A− A′

α

)
+βδV n−1

(
A′)�

which implies Φn+1(A) = Φn(A) for such A, and hence φn+1(A) = φn(A).
Thus, θn+1 ≥ θn > B. Moreover, for A ∈ [B�θn+1), we have

V n+1(A)= u

(
A− φn+1(A)

α

)
+βδV n−1

(
φn+1(A)

)

= u

(
A− φn(A)

α

)
+βδV n−1

(
φn(A)

)
= V n(A)�

as desired.
From the preceding argument, it follows that θn is a nondecreasing sequence.

There are two possibilities: (i) θn increases without bound, and (ii) θn con-
verges to a finite bound, θ∗.

In case (i), we take φR(A)= limn→∞φn(A) for all A. For any finite interval
[B�θ], there exists n′ such that θn > θ for n≥ n′, which impliesφR(A)=φn(A)
for such n and all A ∈ [B�θ]. It follows that φR is well-defined. Defining

V R(A)=
∞∑
k=0

δku

((
φR

)k
(A)−

(
φR

)k+1
(A)

α

)
�

we plainly have V R(A) = V n′
(A) for all A ∈ [B�θ]. We know that φn+1(A)

solves

max
A′∈[B�A]

[
u

(
A− A′

α

)
+βδV n

(
A′)];

in light of the fact that, for n ≥ n′ and A ∈ [B�θ], we have φn+1(A) = φR(A)
and V n+1(A)= V n(A)= V R(A), it follows that φR(A) solves

max
A′∈[B�A]

[
u

(
A− A′

α

)
+βδV R

(
A′)]

for A ∈ [B�θ]. Because the preceding statement holds for all θ, φR is an equi-
librium policy function.
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Now consider case (ii). Define μ = θ∗
B

. Consider a sequence of inter-
vals Ik = [μkB�μk+1B) for k = 0�1� � � � . For any A ∈ Ik, we take φR(A) =
μk limn→∞φn( Aμk ). Using precisely the same argument as in case (i), it follows
that, for A ∈ I0, φR(A) is a best choice at A when future decisions are gov-
erned by φR. In the next paragraph, we show that φR(θ∗)= μ limn→∞φn(θ

∗
μ
)=

θ∗ is likewise a best choice at θ∗ when future decisions are governed by φR.
Consider any sequence Ak ↓ θ∗. We claim that there cannot exist k and

n such that φn+1(Ak) < θn. Suppose on the contrary that the preceding in-
equality holds for some k and n. From the concavity of u, we would then have
φn+1(A) < θn for allA≤Ak. But that impliesφn+1(A)=φn(A) for allA≤Ak

(because V n(A) = V n−1(A) for A < θn), so θn+1 > θ∗, a contradiction, which
establishes the claim. It follows that (Ak�φk(Ak)) converges to (θ∗� θ∗). Be-
cause βδ

1−δ(α−1) < 1 and all asset trajectories induced byφk are nonincreasing,
we have

lim
k→∞

sup
[
u

(
Ak − φk

(
Ak

)
μ

)
+βδV k−1

(
φk

(
Ak

))]
(a.89)

≤ lim
k→∞

sup
[
u

(
Ak − φk

(
Ak

)
μ

)
+ βδ

1 − δu
(
φk

(
Ak

)(
1 − 1

α

))]

=
(

1 + βδ

1 − δ
)
u

(
θ∗
(

1 − 1
α

))
�

Now suppose some A+ < θ∗ is a strictly better choice than θ∗ from θ∗ when
future decisions are governed by φR. For some Δ> 0, we therefore have

u

(
θ∗ − A+

α

)
+βδV R

(
A+)> (

1 + βδ

1 − δ
)
u

(
θ∗
(

1 − 1
α

))
+Δ�

For k sufficiently large, it must therefore also be the case that

u

(
Ak − A+

α

)
+βδV R

(
A+)

> u

(
Ak − θ∗

μ

)
+ βδ

1 − δu
(
θ∗
(

1 − 1
α

))
+Δ�

Taking k large enough so that θk >A+ (which implies V R(A+)= V k(A+)), we
then have

u

(
Ak − A+

α

)
+βδV k−1

(
A+)

> u

(
Ak − θ∗

μ

)
+ βδ

1 − δu
(
θ∗
(

1 − 1
α

))
+Δ�
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Taking limits, we have

lim
k→∞

[
u

(
Ak − A+

α

)
+βδV k−1

(
A+)](a.90)

≥
(

1 + βδ

1 − δ
)
u

(
θ∗
(

1 − 1
α

))
+Δ�

Combining (a.89) and (a.90), we see that, for sufficiently large k, A+ is a bet-
ter choice than φk(Ak) starting from Ak when future decisions are governed
by φk−1, a contradiction. Thus, θ∗ is indeed a best choice at θ∗ when future
decisions are governed by φR.

We have established that, forA ∈ I0 ∪{θ∗},φR(A) is a best choice atA when
future decisions are governed by φR. Now suppose that, for A ∈ (⋃k

n=0 I
n) ∪

{μn+1B}, φR(A) is a best choice at A when future decisions are governed by
φR. We claim that the same statement holds for A ∈ Ik+1 ∪ {μk+2B}. Take any
such A. For a deviation to any A′ ∈ Ik+1, we have by construction

u

(
A− A′

α

)
+βδVφR

(
A′)

= (
μk+1

)1−σ
[
u

(
A

μk+1 − A′

μk+1α

)
+βδVφR

(
A′

μk+1

)]

≤ (
μk+1

)1−σ
PφR

(
A

μk+1

)

= PφR(A)�
which implies that φR(A) is at least as good a choice as A′. Now consider any
A′ ∈ [B�μk+1B). Recalling that φR(μk+1B)= μk+1B, we have by hypothesis

u

(
μk+1B− A′

α

)
+βδVφR

(
A′)

≤ u
(
μk+1B− μk+1B

α

)
+βδVφR

(
μk+1B

)
�

But then, by the concavity of u (and using μk+1B ∈ Ik+1), for A ∈ Ik+1 ∪
{μk+2B}, we have

u

(
A− A′

α

)
+βδVφR

(
A′) ≤ u

(
A− μk+1B

α

)
+βδVφR

(
μk+1B

)

≤ u
(
A− φR(A)

α

)
+βδVφR

(
φR(A)

)
�
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which again implies that φR(A) is at least as good a choice as A′. Applying
induction, we see that φR is an equilibrium policy function.

Step 2. Now we construct a Markov equilibrium policy function φ for the
original game. There are two possibilities to consider: (i) φR(A) < A for all
A>B, and (ii) φR(A)=A for some A>B.

For case (i), we simply take φ=φR. For any asset level A, we claim φR(A)

solves the maximization problem maxA′∈[B�α(1−ν)A] u(A − A′
α
) + βδVφR(A

′).
Because φR is u.s.c. and we are in case (i), there exists ε > 0 such that
φR(A′) < A′ − ε for all A′ ∈ [A�α(1 − ν)A]. Divide [A�α(1 − ν)A] into
N > 1

ε
A(α(1 − ν) − 1) consecutive intervals, I1� � � � � IN , of the same length

�≡ A(α(1−ν)−1)
N

< ε, with In = (A+ (n− 1)��A+ n�]. Also define I0 = [B�A].
We claim that, for anyA′ ∈ In with n > 0, there existsA′′ ∈ Im form< n such

that u(A− A′
α
)+βδVφR(A′) < u(A− A′′

α
)+βδVφR(A′′). To see why, simply take

A′′ =φR(A′), observe that u(A′ − A′
α
)+βδVφR(A′)≤ u(A′ − A′′

α
)+βδVφR(A′′),

and use the concavity of u.
From the claim, it follows that, for any A′ ∈ (A�α(1 − υ)A], there

exists A′′ ∈ I0 such that u(A − A′
α
) + βδVφR(A

′) < u(A − A′′
α
) + βδVφR(A

′′).
Because φR(A) solves the problem maxA′∈[B�A] u(A − A′

α
) + βδVφR(A

′) by
construction, it therefore also solves the problem maxA′∈[B�α(1−ν)A] u(A− A′

α
)+

βδVφR(A
′).

For case (ii), we define PM(A) = (1 + βδ

1−δ)u(A(1 − 1
α
)); this represents

the payoff from maintaining asset level A forever. From Lemma 1 it fol-
lows that PφR(A) ≥ u(A − B

α
) + βδ

1−δu(B(1 − 1
α
)). Given that βδ

1−δ(α − 1) < 1,
there is some A0 such that PM(A) < PφR(A) for A ∈ (B�A0]. Moreover,
for any A with φR(A) = A, we obviously have PM(A) = PφR(A). Let A1 =
min{A> B | φR(A)=A}; because φR is u.s.c., we know A1 exists, and more-
over we plainly have A1 > A0. Hence we can define A∗ ≡ sup{A | PM(A′) <
PφR(A

′) for all A′ <A}; clearly, A∗ ∈ (A0�A1].
We now claim that PM(A∗) = PφR(A

∗). This is obvious in the case where
A∗ = A1. Suppose A∗ < A1. Then there exists a sequence Ak → A∗ with
Ak ≥A∗ such that PM(Ak)= PφR(A

k), and limk→∞φR(Ak) < A∗ (otherwise,
because φR is u.s.c., we would have φR(A∗)=A∗ <A1, a contradiction). Be-
cause φR(A∗) is a feasible choice from Ak ≥A∗, we have, for all k,

u

(
Ak − φR

(
A∗)
α

)
+βδVφR

(
φR

(
A∗))

≤ PφR
(
Ak

) = PM
(
Ak

)
�

Noting that u and PM are both continuous and taking limits, we have
PφR(A

∗) ≤ PM(A
∗). Also, because φR(Ak) is a feasible choice from A∗ for
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sufficiently large k, we have

PφR
(
A∗) ≥ u

(
A∗ − φR

(
Ak

)
α

)
+βδVφR

(
φR

(
Ak

))

=
[
u

(
A∗ − φR

(
Ak

)
α

)
− u

(
Ak − φR

(
Ak

)
α

)]
+ PφR

(
Ak

)

=
[
u

(
A∗ − φR

(
Ak

)
α

)
− u

(
Ak − φR

(
Ak

)
α

)]
+ PM

(
Ak

)
�

Noting that u and PM are both continuous and taking limits, we have
PφR(A

∗) ≥ PM(A
∗). Combining the last two arguments, we have PφR(A∗) =

PM(A
∗), as claimed.

Defineμ≡ A∗
B

, divide [B�∞) into intervals of the form In = [μnB�μn+1B) for
n = 0�1�2� � � � , and construct the policy function φ as follows: for A ∈ In, let
φ(A)= μnφR( A

μn
). It is easy to check that, for any A ∈ In, the path generated

by φ starting from A remains entirely within In, and indeed is the same as the
path generated by φ starting from A

μn
, scaled up by the factor μn.

Before establishing that φ is an equilibrium, we prove two claims.

CLAIM 1: For every A ∈ In, we have

Pφ(A) > u

(
A− μn+1B

α

)
+βδVφ

(
μn+1B

)
�

We will show this for n = 0 (in which case μn+1B =A∗); the argument for
n > 0 is essentially identical (only the scaling changes). We know that

[
u

(
A∗ − φR

(
A∗)
α

)
+βδVφR

(
φR

(
A∗))]

−
[
u

(
A∗ − A∗

α

)
+βδVφR

(
A∗)]

= PφR
(
A∗)− PM

(
A∗) = 0�

Because u is concave and φR(A∗)≤A∗, we therefore have, for A ∈ I0,

[
u

(
A− φR

(
A∗)
α

)
+βδVφR

(
φR

(
A∗))]

−
[
u

(
A− A∗

α

)
+βδVφR

(
A∗)]> 0�
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But then

Pφ(A)= PφR(A)

≥ u
(
A− φR

(
A∗)
α

)
+βδVφR

(
φR

(
A∗))

> u

(
A− A∗

α

)
+βδVφR

(
A∗)�

as desired.

CLAIM 2: For A ∈ In, we have

Pφ
(
μn+1B

)
> u

(
μn+1B− A

α

)
+βδVφ(A)�

For the case of n = 0 (for which μB = A∗), the claim follows because, for
A ∈ [B�A∗)= I0, we have

u

(
A∗ − A

α

)
+βδVφ(A)= u

(
A∗ − A

α

)
+βδVφR(A) < PφR

(
A∗)�

and in addition PφR(A∗) = PM(A
∗) = Pφ(A

∗). The argument for n > 0 is es-
sentially identical; only the scaling changes.

Now we show that φ is a Markov equilibrium policy function. Consider any
A ≥ B, and suppose A lies in In. Observe that, by construction of φ and by
Claim 1, for all other A′ ∈ In ∪ {μn+1B}, we have

u

(
A− φ(A)

α

)
+βδVφ

(
φ(A)

) ≥ u
(
A− A′

α

)
+βδVφ

(
A′)�(a.91)

Suppose that, starting at A, (a.91) holds for all A′ ∈ Im ∪ {μm+1B}, for some
m≥ n. We will show it also holds for all A′ ∈ Im+1 ∪ {μm+2B}. By construction,
Claim 1, and the fact thatφ(μm+1B)= μm+1B, we know that, for allA′ ∈ Im+1 ∪
{μm+2B},

Pφ
(
μm+1B

) = u

(
μm+1B− μm+1B

α

)
+βδVφ

(
μm+1B

)

≥ u
(
μm+1B− A′

α

)
+βδVφ

(
A′)�

Because u is concave and A < μm+1B, it follows that, for all A′ ∈ Im+1 ∪
{μm+2B}, we have

u

(
A− μm+1B

α

)
+βδVφ

(
μm+1B

)
> u

(
A− A′

α

)
+βδVφ

(
A′)�
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Combining this inequality with the premise that (a.91) holds for all A′ ∈ Im ∪
{μm+1B}—and specifically for A′ = μm+1B—implies that (a.91) holds for all
A′ ∈ Im+1 ∪ {μm+2B} as well. Applying induction on m, we see that, starting at
A, there is no A′ >A that yields a higher payoff than φ(A).

Having already shown that, starting at A ∈ In, (a.91) holds for all other A′ ∈
In, we will now show that if it holds for allA′ ∈ Im withm≤ n, then it also holds
for all A′ ∈ Im−1. By Claim 2 and the fact that φ(μmB)= μmB, we know that,
for all A′ ∈ Im−1,

Pφ
(
μmB

) = u

(
μmB− μmB

α

)
+βδVφ

(
μmB

)

≥ u
(
μmB− A′

α

)
+βδVφ

(
A′)�

Because u is concave and A>μmB, it follows that, for all A′ ∈ Im−1, we have

u

(
A− μmB

α

)
+βδVφ

(
μmB

)
> u

(
A− A′

α

)
+βδVφ

(
A′)�

Combining this inequality with the premise that (a.91) holds for all A′ ∈ Im—
and specifically for A′ = μmB—implies that (a.91) holds for all A′ ∈ Im−1 as
well. Applying induction on m, we see that, starting at A, there is no A′ <A
that yields a higher payoff than φ(A).

It follows that φ is in fact a Markov equilibrium policy function. Q.E.D.

PROOF OF PROPOSITION 7: By Proposition 6, part (i), when β ≥ β∗ there
exists a linear Markov equilibrium with non-decumulation at all asset levels
(and strict accumulation when β > β∗). Hence, if the proposition is false, it
must be that β < β∗, which we will assume throughout the remainder of this
proof, as we work toward a contradiction.33

Step 1. If φ is a Markov equilibrium strategy, then φ is nondecreasing.
Suppose on the contrary that for some A1 >A2, we have φ(A1) < φ(A2).

Let Vi be the value of the continuation consumption stream starting from asset
level φ(Ai). Then

βδ(V2 − V1) ≥ u
(
A2 − φ(A1)

α

)
− u

(
A2 − φ(A2)

α

)

> u

(
A1 − φ(A1)

α

)
− u

(
A1 − φ(A2)

α

)
≥ βδ(V2 − V1)�

33For σ ≥ 1, we have shown that with β≤ β∗, there exists no Markov equilibrium with φ(A) >
A for any asset level A. We conjecture that the same is true for σ ∈ (0�1), and have numerical
support for this conjecture, but have not proven it.
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where the first inequality follows from the fact that φ(A2) is (weakly) cho-
sen over φ(A1) at asset level A2, the second inequality follows from the strict
concavity of u combined with A1 >A2 and φ(A1) < φ(A2), and the third in-
equality follows from the fact that φ(A1) is weakly chosen over φ(A2) at asset
level A1. But this sequence of inequalities plainly involves a contradiction.

In what follows, φ(A′) >A′ for some A′ ≥ B, as given in the proposition.
Step 2. Suppose there exists A′′ >A′ such that φ(A′′)≤A′′. Then there ex-

ists A∗ ∈ (A′�A′′] such that φ(A∗)=A∗ and φ(A) >A for all A ∈ (A′�A∗).
Let A∗ ≡ inf{A ∈ [A′�A′′] | φ(A) ≤ A}. Because φ is nondecreasing, we

have φ(A) > A for A ∈ [A′�φ(A′)), from which it follows that A∗ > A′. By
construction, φ(A) > A for all A ∈ (A′�A∗). If φ(A∗) > A∗, we would have
φ(A) > A for some interval above A∗, and if φ(A∗) < A∗, we would have
φ(A) <A for some interval below A∗ (in each case because φ is nondecreas-
ing); in either case, A∗ would not equal inf{A ∈ [A′�A′′] | φ(A) ≤A}, a con-
tradiction. Therefore, φ(A∗)=A∗.

Step 3. For β<β∗, there exists γ1 < 1 such that, for any γ ∈ (γ1�1), we have(
1 + βδ

1 − δ
)
u

(
1 − 1

α

)

< u

(
1 − γ

α

)
+

(
βδ

1 − δ
)
u

(
γ

(
1 − 1

α

))
≡ψ1(γ)�

Observe that

ψ′
1(1)= u′

(
1 − 1

α

)
1
α

[
(α− 1)

(
βδ

1 − δ
)

− 1
]
< 0

(given β<β∗), from which the desired conclusion follows.
Step 4. There exists γ2 > 1 such that, for any γ ∈ (1�γ2), we have(

1
1 − δ

)
u

(
1 − 1

α

)

< u

(
1 − γ

α

)
+

(
δ

1 − δ
)
u

(
γ

(
1 − 1

α

))
≡ψ2(γ)�

Observe that

ψ′
2(1)= u′

(
1 − 1

α

)
1
α

(
αδ− 1
1 − δ

)
> 0

(given αδ > 1), from which the desired conclusion follows.
Step 5. φ(A) >A for all A≥A′.
Suppose not. Then, by Step 2, there exists A∗ > A′ such that φ(A∗) =A∗

and φ(A) >A for all A ∈ (A′�A∗). Starting from A∗, the equilibrium gener-
ates a constant asset trajectory.
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Now consider A′′ ∈ (A′�A∗) with A′′ > max{γ1�1/γ2}A∗. Then, starting
from A′′, φ generates a nondecreasing asset trajectory A∗ (strictly increasing
as long as it remains below A∗), for which the asset growth rate is always less
than γ2.

By Step 3,

(
1 + βδ

1 − δ
)
u

(
A∗

(
1 − 1

α

))
(a.92)

< u

(
A∗ − A′′

α

)
+

(
βδ

1 − δ
)
u

(
A′′

(
1 − 1

α

))
�

By Step 4, for k≥ 0, we have

(
1

1 − δ
)
u

(
φk

(
A′′)(1 − 1

α

))

≤ u
(
φk

(
A′′)− φk+1

(
A′′)
α

)
+

(
δ

1 − δ
)
u

(
φk+1

(
A′′)(1 − 1

α

))

(with strict inequality when φk(A′′) < A∗, so that φk+1(A′′) > φk(A′′)). By
recursively substituting this inequality into (a.92), we obtain

(
1 + βδ

1 − δ
)
u

(
A∗

(
1 − 1

α

))

< u

(
A∗ − A′′

α

)
+βδ

∞∑
k=0

δku

(
φk

(
A′′)− φk+1

(
A′′)
α

)
�

from which it follows that the individual would deviate from φ(A∗) to A′′,
contradicting the supposition that φ is a Markov equilibrium.

Step 6. For A ≥ B, let φ̂(A) = φ(μA)/μ, where μ = A′/B. Then (a)
φ̂(A) >A for all A≥ B, and (b) φ̂ is a Markov equilibrium.

Part (a) follows immediately from Step 3: for A ≥ B, we have μA ≥A′, so
φ̂(A) = φ(μA)/μ > μA/μ = A. Part (b) follows from the homotheticity of
utility, combined with the fact that, if a continuation asset choice A1 gener-
ates the consumption trajectory (c′

0� c
′
1� � � �) starting from A under φ̂, then the

choice μA1 generates the consumption trajectory (μc′
0�μc

′
1� � � �) starting from

μA under φ. Thus, if a continuation asset choice A1 yielded a strictly higher
payoff than φ̂(A) starting fromA under φ̂, then the choice μA1 would yield a
strictly higher payoff than φ(μA1) under φ, a contradiction. Q.E.D.
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APPENDIX E: ALGORITHM

This section describes the iterative computational algorithm for obtaining
an approximation to the equilibrium value correspondence V(A) through the
sequence of correspondences {Vk} (see Section 3). Our initial correspondence
is

V0(A)=
[
u

(
A− B

α

)
+ δ

1 − δu
(
α− 1
α

B

)
�R(A)

]

in light of Observation 1.
The computational algorithm proceeds in four steps.34 First, we consider a

finite grid on the action and utility spaces. Second, given that continuation pay-
offs are governed by some correspondence Vk, we determine the best-deviation
payoffs at each asset level A (assuming the worst feasible punishments in the
continuation set, which are well-defined given the discrete grid).

Third, we maximize and minimize value at each A subject to the no-
deviation constraint and constraints on continuation utilities (that they be suit-
ably drawn from Vk). For this optimization step, we think of the individual as
choosing the continuation level of assets rather than current consumption. This
is convenient from a computational perspective.35

Finally, we use public randomization to construct Vk+1 from the maximum
and minimum values in Step 3, and test to see if convergence has occurred.
The convergence criterion measures the largest difference (in the L∞ norm) in
utility bounds for each asset level between successive approximations. We end
our iterations when this difference is “small,” or more precisely, when

max
A∈A

{
max

{∣∣Lk(A)−Lk+1(A)
∣∣� ∣∣Hk(A)−Hk+1(A)

∣∣}}< ε
for some given precision parameter ε > 0, where A is the discretized, finite
action set from Step 1.

More formally, for a given set of parametric assumptions, our computa-
tional algorithm repeatedly applies the following four steps until convergence
is achieved:

Step 1. Initialization.
1.1. Let A be a finite set of assets, chosen suitably fine and with a large upper

bound.
1.2. Determine initial utility bounds [L0(A)�H0(A)] for each A ∈A.

34This iterative numerical algorithm is a variation of the method of computing equilibria of
supergames developed by Judd, Yeltekin, and Conklin (2003).

35If consumption remains the choice variable, then we would need to discretize the consump-
tion set. Additionally, the technology would have to be modified to ensure that, for each current
asset level and consumption choice, next period’s assets are in the discretized asset set.
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Step 2. Best Deviations.
2.1. Let A(Aj) = {Ai ∈ A|Aj ≥ c(Ai�Aj) ≥ νAj} where c(Ai�Aj) = Aj −

Ai/α.
2.2. For each Ai ∈A(Aj) compute

D̃(Ai�Aj)= u(c(Ai�Aj)
)+βδLk(Ai)�

2.3. For each Aj ∈A compute D(Aj)= maxAi∈A(Aj) D̃(Ai�Aj).
Step 3. Highest and Lowest Values.
3.1. Compute

Hk+1(Aj)= max
Ai∈A(Aj)

{
u
(
c(Ai�Aj)

)+ δVi
}

subject to the no-deviation constraint:

u
(
c(Ai�Aj)

)+βδVi ≥D(Aj)�(a.93)

and the feasibility condition on continuation value:

Vi ∈ Vk(Ai)�(a.94)

3.2. Compute

Lk+1(Aj)= min
Ai∈A(Aj)

{
u
(
c(Ai�Aj)

)+ δVi
}

subject to exactly the same constraints (a.93) and (a.94).
Step 4. Public Randomization and Convergence.
4.1. Set Vk+1(A)= [Lk+1(A)�Hk+1(A)] (public randomization). Stop if con-

vergence is reached; else return to Step 2.
Note that, in the maximization problem of Step 3.1, we must always set

Vi = Hk(Ai) as the continuation utility. After all, if any continuation value
satisfies the no-deviation constraint (a.93), then so does the highest feasible
continuation value, and that raises the overall value of the maximand as well.
In contrast, in the minimization problem of Step 3.2, we do not generally use
Lk(Ai) as the continuation utility, because the lowest feasible continuation
value does not necessarily satisfy the no-deviation condition (a.93).36

For the results reported in Figure 1, we set σ = 0�5, so that

u(c)= 1
2
c1/2�

36However, Proposition 2 in the main text can be adapted to show that a carrot-and-stick struc-
ture obtains, so that often the highest continuation value (or some minor variant thereof) is also
chosen in this problem.
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Assets take on 8001 values between [B�Ā]. We set Ā = 200 and B = 0�5.37

For the exercise depicted in Figure 1, we set the rate of return equal to 30%,
the discount factor equal to 0.8, the hyperbolic parameter (β) equal to 0.4.
Figure 1, panel A plots the highest equilibrium asset choice,X(A), and lowest
equilibrium asset choice, Y(A). Panel B plots the equilibrium value correspon-
dence. For this particular exercise, a poverty trap exists below an asset level of
3�47. For initial asset levels above 3�47, however, there is indefinite accumula-
tion.

APPENDIX F: UNIFORMITY AND NON-UNIFORMITY:
PARAMETRIC EXAMPLES

Figures A.4, A.5, and A.6 display the continuation asset choices associated
with the best SPE values. With the exception of β, each policy function has
been generated by the same parameterization of the intrapersonal game: σ =
0�5�B = 0�5�α= 1�3, and δ= 0�8. The hyperbolic discount factor β takes val-
ues from the set {0�1�0�2�0�3�0�35�0�4�0�45�0�5�0�55�0�6�0�7�0�8�0�9�1�0}.
At high β values, indefinite accumulation can be achieved from any initial A.
At low β values, accumulation is not possible from any initialA. These are the
uniform cases. For intermediate values of β, however, a poverty trap is present,

FIGURE A.4.—High β: Indefinite accumulation.

37The analytical results allow for unbounded asset accumulation. An unbounded state space is
not feasible computationally, but to ensure that the asset bound does not impact the policy and
value functions reported in any significant way, we proceed in the following way. We choose an
initial asset bound and note the asset level below this bound where the value and policy functions
converge to the Ramsey solution (β= 0 case). We use the analytical Ramsey solution to approx-
imate the value and policy functions beyond this intermediate asset value. We repeat this for a
variety of intermediate asset values and initial asset bounds to check the robustness of the results
for asset values below the intermediate asset level.
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FIGURE A.5.—Intermediate β: Poverty trap.

with the threshold level of A dependent on the value of β. The higher the β
(in the range of nonuniform cases), the lower the threshold A that allows an
individual to escape poverty.38

APPENDIX G: MARKOV PUNISHMENTS

Figure A.7 shows the highest equilibrium asset choices possible with rever-
sion to strictly decumulating Markov equilibria (also plotted). It shows that a
poverty trap is possible when such Markov equilibria are used as punishments.

FIGURE A.6.—Low β: Decumulation.

38Although we only report cases from a specific {α�δ�B} combination, as long as αδ > 1 (i.e.,
the Ramsey problem leads to accumulation), we find regions of uniformity (low and high β) and
a region of non-uniformity (intermediate values of β) for other parameterizations of the model.
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FIGURE A.7.—Markov punishments.

APPENDIX H: POLICY REGIMES

In this section, we describe in more detail the extended model with taste
shocks used in Section 7.3, as well as the policy regimes displayed in Figures 6
and 7. These regimes have a lockbox feature: assets are kept in an account
with a rule specifying when and how much of the funds can be accessed. Each
regime considers a different rule.

When αδ > 1, complete reliance on a lockbox always dominates internal
rules provided that all consumption expenditures are perfectly foreseen; see
discussion in the main text. For these examples to have nontrivial solutions,
we extend the original model to include an i.i.d. taste shock η (with prob-
ability distribution p(η)) that takes values in some finite set N and affects
the flow utility in a multiplicative way. In every period, individuals make
their saving/consumption decision after the realization of the current taste
shock.

We first describe the baseline solution of this model without any lockboxes; it
is a straightforward extension of the solution with no taste shocks. Specifically,
we can think of an expected value correspondence V∗(A;B) at the start of any
date that defines the set of expected equilibrium values, the expectation taken
over the taste shock which is about to be realized at that date, for every asset
level. (For reasons that will become clear below, we explicitly carry the lower
bound B, to be thought of as unchanging for all dates.) Because η is i.i.d., V∗

is the same at all dates. Thinking of these as continuation values from, say,
date t + 1, we can now define V∗(A�η;B) as the set of generated values at
date t for any individual with asset level A ≥ B, who has just experienced the
taste shock η. The fixed-point logic of equilibrium generation then tells us
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that

V∗(A;B)=
∑
η∈N

p(η)V∗(A�η;B)

for every A≥ B, where we define the above convex combination of sets as the
collection of all elements that are themselves the same convex combinations
of elements drawn from the individual sets.39

This value correspondence can be generated by a variation of the same iter-
ated procedure described in Appendix E.

Now we consider regimes with lockboxes and thresholds. All the regimes we
consider have the following lockbox properties: interest can always be with-
drawn from the lockbox, which pays the same rate α − 1 as a conventional
savings account. No conventional savings is allowed until a threshold (AT) is
reached.40 At that point, some or all of the lockbox principal is unlocked and
made available. Let B̂ denote the amount that still remains locked.

Recall that by convention, A includes non-financial labor income assets and
an amount B is always “locked up” by the imperfect credit market. Therefore,
we must constrain all our regimes by the property thatAT ≥ B̂ ≥ B.41 In partic-
ular, we recover the standard problem by setting AT = B̂ = B. Note that once
past the threshold, the remainder of the problem facing the individual is ex-
actly as in the standard case, without a lockbox feature, provided we replace
the lower bound on assets by B̂. So we can conceive of the overall problem as
follows: at any date t, an individual is either “free” or “locked,” depending on
whether she has ever crossed the asset thresholdAT before date t. If she is free,
then her (expected) value correspondence from that date onwards is governed
by V∗(A� B̂). We can use this fact to anchor the construction of her value cor-
respondence in the locked state. Denote this latter correspondence by V̂ . It is
to be noted that V̂ depends on the three parameters (B�AT� B̂), but we do not
need to carry this dependence explicitly in the notation and so suppress it.

We can now determine best deviation payoffs (for every realization of the
taste shock), as well as highest and lowest values, in the locked state. For every
η and A in the locked state, consider the problem of finding

D̂(A�η)≡ sup
A′∈[A�α(1−υ)A]

ηu

(
A− A′

α

)
+βδL(A′)�(a.95)

39Under public randomization, each set is an interval and so all we need to do is convexify the
best elements, and likewise the worst elements, and then draw the interval between these two
numbers.

40The exercises we conduct are meant to be illustrative, and so we do not allow for contem-
poraneous savings while the lockbox is “active.” These more realistic modifications can be easily
studied, at least numerically.

41So, really, the financial assets in the lockbox are given byA−B, and all thresholds and locked
amounts must be reinterpreted accordingly.
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subject to

L
(
A′) =

{
infV∗(A′� B̂

)
� if A′ ≥AT ,

inf V̂
(
A′)� if A′ <AT .

(a.96)

Notice how the constraint in (a.95) requiresA′ ≥A: assets cannot be run down
in the locked state. The second constraint describes where worst punishments
following the deviation come from: if the choice of A′ “frees” the individual,
then it is drawn from the equilibrium value correspondence V∗(A′� B̂) corre-
sponding to the subsequent free state, and if the individual is still locked, it
must come from the lowest value in V̂(A′). As a matter of fact, both infima
in (a.96) can be shown to be attained, while in the discretized, finite compu-
tational problem under consideration, the “sup” in (a.95) can be replaced by
“max.”

With D̂ in hand, we can turn to the problem of generating values at each A
and η in the locked state. It is possible to generate any value V such that

V = ηu
(
A− A′

α

)
+ δV ′

for some A′ with A′ ≥A, and V ′ satisfying

V ′ ∈
{
V∗(A′� B̂

)
� if A′ ≥AT ,

V̂
(
A′)� if A′ <AT ,

as long as the no-deviation constraint is also met:

ηu

(
A− A′

α

)
βδV ′ ≥ D̂(A�η)�

Let Ĥ(A�η) and L̂(A�η) be the largest and smallest such values,42 and recall-
ing public randomization, define

V̂(A�η)≡ [
L̂(A�η)� Ĥ(A�η)

]
�

These are the “η-specific” value correspondences, and now we impose the
fixed-point consideration that

V̂(A)=
∑
η∈N

p(η)V̂(A�η)

for every A ∈ [B�AT ].
42Once again, we disregard questions of attaining the maximum and minimum, which are trivial

in the current finite context, but which can be affirmatively settled anyway.
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From a computational perspective, we discretize the space of assets and pro-
ceed exactly as in Appendix E to calculate V̂ . That is, a two-stage procedure
is employed, the first to determine the standard value correspondence V∗ (for
the lower bounds B and B̂), followed by a similar process to obtain V̂ . We omit
the details here.

The text considers four regimes, (a)–(d), all drawn from the class above. In
regime (a), there is no lockbox. This represents our standard case and corre-
sponds to setting AT = B. In regime (b), the principal in the locked account is
fully accessible after a specified AT > B is reached; so B̂= B.

In regime (c), the threshold is eliminated. This corresponds to setting AT

equal to infinity in the above problem (the value of B̂ is irrelevant). The indi-
vidual can always withdraw current interest, but can never access the principal.

In regime (d), contributions to the lock-up account stop once the threshold
is reached, a conventional account becomes accessible, but the principal in the
lock-up account remains out of reach forever. That is, AT = B̂ > B. In this
case, a switch to the standard problem occurs once the threshold is passed, but
to a different standard problem, one characterized by the lower bound AT on
assets.

For the results displayed in Figures 6 and 7, the taste shock η takes
two values, {0�8�1�1}, with the associated probabilities p(η = 0�8) = 0�3 and
p(η = 1�1)= 0�7. All other parameters are the same as in the earlier numer-
ical results: the hyperbolic discount factor (β) is 0.4, the geometric discount
factor (δ) is 0.8, the constant elasticity parameter (σ) is 0.5, and B and Ā are
set to 0.5 and 200, respectively. The standard problem with no lockbox fea-
tures a poverty trap at low asset values. For η= 0�8, there is a poverty trap for
A< 4�42 and for the high shock η= 1�1, a poverty trap exists when A< 5�35.
For the lock-up regimes (b) and (d),AT is set to 5�5, slightly above the poverty
threshold for the high taste shock state.
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