SUPPLEMENT TO “TASK TRADE BETWEEN SIMILAR COUNTRIES”
(Econometrica, Vol. 80, No. 2, March 2012, 593–629)

BY GENE M. GROSSMAN AND ESTEBAN ROSSI-HANSBERG

IN THIS SUPPLEMENTAL MATERIAL, we prove Lemmas 1, 2, and 3.

Lemma 1: If \(w > w^* \), either (i) \(\tilde{\pi}(i) > 0 \) or \(\tilde{\pi}(i) < 0 \) for all \(i \) or (ii) \(J > 0 \) and \(\tilde{\pi}(i) > 0 \) for \(i < J \) while \(\tilde{\pi}(i) < 0 \) for \(i > J \).

Proof: Without loss of generality, assume \(w > 1 \) (given \(w^* = 1 \)). The aggregate cost of performing task \(i \) in East minus the aggregate cost of performing it in West is proportional to

\[
\Lambda(i; nx, n^* x^*, w) \equiv \tilde{\pi}(i; nx, n^* x^*, w) A(nx + n^* x^*)
= (wnx - n^* x^*) - \beta t(i)(nx - wn^* x^*) .
\]

First assume that \(n^* x^* \geq nx \). Then \(nx - wn^* x^* < 0 \), which implies \(\min_i \Lambda(i; nx, n^* x^*, w) = \Lambda(0; nx, n^* x^*, w) \) since \(t'(i) > 0 \) for all \(i \). Then, since \(\beta t(0) > 1 \),

\[
\Lambda(0; nx, n^* x^*, w) > wnx - n^* x^* - nx + wn^* x^*
= (w - 1)(nx + n^* x^*) > 0 .
\]

So all tasks have higher aggregate cost in East; that is, \(\tilde{\pi}(i) > 0 \) for all \(i \) and \(J = 1 \).

Now suppose instead that \(nx > n^* x^* \). Then \(wnx - n^* x^* > nx - wn^* x^* \). Suppose first that \(\beta t(0) > 1 \) is close enough to 1 that \(\Lambda(0; nx, n^* x^*, w) > 0 \). Then tasks in the neighborhood of task 0 yield lower costs in West. Since \(t'(i) > 0 \) for all \(i \), either there exists \(J > 0 \) such that \(\Lambda(J; nx, n^* x^*, w) = 0 \), in which case tasks with \(i > J \) have lower cost in East (\(\tilde{\pi}(i) < 0 \)) and tasks with \(i < J \) have lower cost in West (\(\tilde{\pi}(i) > 0 \)), or \(wnx - n^* x^* > \beta t(1)(nx - wn^* x^*) \), in which case \(\Lambda(i; nx, n^* x^*, w) > 0 \) for all \(i \) and all tasks have lower cost in West (\(\tilde{\pi}(i) > 0 \) and \(J = 1 \)). If \(\beta t(0) \) is such that \(\Lambda(0; nx, n^* x^*, w) < 0 \), then since \(t'(i) > 0 \) for all \(i \), all tasks have lower costs in East, namely, \(\tilde{\pi}(i) < 0 \) and \(J = 0 \).

Q.E.D.

Lemma 2: If \(w > w^* \), then \(J < I \) implies \(I > I^* \).

Proof: The proof of Lemma 1 guarantees that if \(w > 1 \), then \(n^* x^* > nx \) implies \(J = 1 \). So we can limit our attention to circumstances with \(nx > n^* x^* \). To establish a contradiction, we suppose that \(J < I \) and \(I^* > I \). Then (1) and (3) imply that \(w^2 > A(nx)/A(n^* x^*) \).

© 2012 The Econometric Society
DOI: 10.3982/ECTA8700
From the definition of J, we know that

\begin{equation}
\beta_t(J) - \beta_t(I) = \frac{wnx - n^*x^*}{nx - wn^*x^*} - \frac{A(nx + n^*x^*)}{wA(n^*x^*)}.
\end{equation}

Since the denominators are both positive for $J \in (0, 1)$, the left-hand side has the same sign as

\[\Delta(n^*x^*, nx, w) \equiv w^2 A(n^*x^*)nx - wA(n^*x^*)n^*x^* - A(nx + n^*x^*)nx + wA(nx + n^*x^*)n^*x^*. \]

But then $w^2 > A(nx)/A(n^*x^*)$ implies that

\[\Delta(n^*x^*, nx, w) = n^*x^* [A(nx + n^*x^*) - A(n^*x^*)] + nx [A(nx) - A(nx + n^*x^*)]. \]

Define the the right-hand side as $\Omega(n^*x^*, nx)$ and note that $\Omega(\cdot)$ is continuously differentiable in both arguments and $\Omega(nx, nx) = 0$. Calculate the partial derivative of $\Omega(n^*x^*, nx)$ with respect to the second argument. Then $\Omega_2(0, nx) = 0$ and $\Omega_2(nx, nx) = A(nx) + nx A'(nx) - A(2nx) \geq 0$, where the inequality follows from the concavity of $A(\cdot)$. Note also that $\Omega_2(n^*x^*, nx) = -(nx - n^*x^*)A''(n^*x^* + nx) \geq 0$ by the concavity of $A(\cdot)$. Then, since $\Omega_2(\cdot)$ is continuous, $\Omega_2(n^*x^*, nx) \geq 0$ for all $n^*x^* \geq 0$ and $nx \geq n^*x^*$. Since $\Omega(nx, nx) = 0$ and $\Omega_2(n^*x^*, nx) \geq 0$ for all $nx \geq n^*x^*$, it follows by continuity that $\Omega(n^*x^*, nx) \geq 0$ for all $nx \geq n^*x^*$. Hence, if $w > 1$, $I^* > I$, and $nx > n^*x^*$, we obtain that $\Delta(n^*x^*, nx, w) > 0$, which implies by (15) that $J > I$. This establishes our contradiction.

Q.E.D.

LEMMA 3: $w > 1$ if and only if $nx > n^*x^*$.

PROOF: We consider three mutually exhaustive cases: (i) $I \geq I^*$, (ii) $I < I^*$ and $L > L^*$, and (iii) $I < I^*$ and $L \leq L^*$.

(i) From the definitions of I and I^* in (1) and (3), $I \geq I^*$ implies

\[\frac{A(nx + n^*x^*)}{wA(n^*x^*)} \geq \beta_t(I) \geq \beta_t(I^*) \geq \frac{wA(nx + n^*x^*)}{A(nx)}, \]

which implies that $A(nx)/A(n^*x^*) \geq w^2 > 1$. So $nx > n^*x^*$.

(ii) To establish a contradiction, suppose that $nx \leq n^*x^*$. From Figure 3(d) and (e), $I < I^*$ implies $E = \emptyset$. Then

\[L = \frac{M(D)nx}{A(nx)} > L^* > \frac{M(D)n^*x^*}{A(n^*x^*)}, \]
which implies \(A(nx)/(nx) < A(n^*x^*)/(n^*x^*) \). But \(A(\cdot) \) concave, \(A(0) \geq 0 \),
and \(nx \leq n^*x^* \) imply that \(A(nx)/(nx) \geq A(n^*x^*)/(n^*x^*) \). This contradicts the supposition that \(nx < n^*x^* \).

(iii) To establish a contradiction, suppose that \(nx \leq n^*x^* \). Labor-market clearing implies \(L = (1 - I^*)(nx)/A(nx) \) and

\[
L^* > (1 - I^*) \frac{n^*x^*}{A(n^*x^*)} + I^* \frac{nx + n^*x^*}{A(nx + n^*x^*)},
\]

since \(T(I^*) > I^* \) for all \(I^* \). From manager-market clearing, and \(H = L \) and \(H^* = L^* \), this implies that

\[
\frac{x}{x^*} > \frac{1 - I^*}{A(n^*x^*)} + \frac{I^*}{A(nx + n^*x^*)} \frac{1}{1 - I^* A(nx)}.
\]

Note that \(nx \leq n^*x^* \) and \(w > 1 \) imply that

\[
\frac{c}{c^*} = \frac{w(1 - I^*) + \beta T(I^*)}{A(nx) + A(nx + n^*x^*)} \geq 1.
\]

Equation (7) implies, since \(\sigma > 1 \), that \(x^*/x \geq c/c^* \). Given that \(T(I^*) > I^* \) and \(w > 1 \), then

\[
\frac{x}{x^*} < \frac{1 - I^*}{A(n^*x^*)} + \frac{I^*}{A(nx + n^*x^*)} \frac{1}{1 - I^* A(nx)}.
\]

Therefore, for an equilibrium to exhibit \(nx < n^*x^* \), it has to be the case that

\[
\frac{1 - I^*}{A(n^*x^*)} + \frac{I^*}{A(nx + n^*x^*)} \frac{1}{1 - I^* A(nx)} > \frac{x}{x^*} > \frac{1 - I^*}{A(n^*x^*)} + \frac{I^*}{A(nx + n^*x^*)} \frac{1}{1 - I^* A(nx)}.
\]
But note that $I^*/A(nx + n^*x^*) > 0$ and $(nx + n^*x^*)/n^*x^* > 1$, so

$$
\frac{1 - I^*}{A(n^*x^*)} + \frac{I^*}{A(nx + n^*x^*)} > 0 \quad \text{and} \quad \frac{1 - I^*}{A(nx)} + \frac{I^*}{A(nx + n^*x^*)} > \frac{1}{A(nx)}
$$

which contradicts the previous string of inequalities. \textit{Q.E.D.}

\textit{Dept. of Economics, Princeton University, Princeton, NJ 08544-1021, U.S.A.; grossman@princeton.edu} \quad \text{and} \quad \textit{Dept. of Economics, Princeton University, Princeton, NJ 08544-1021, U.S.A.; erossi@princeton.edu.}

\textit{Manuscript received July, 2009; final revision received September, 2011.}