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APPENDIX 1: REGULAR PRICE ALGORITHM

THIS SECTION closely follows the description in Kehoe and Midrigan (2008).
The algorithm is based on the idea that a price is a regular price if the store
charges it frequently in a window adjacent to that observation. For each period,
I compute the mode of prices p¥ in a window that includes the previous five
prices, the current price, and the next five periods.! Given the modal price
in this window, the regular price is constructed recursively as follows. Set the
initial period’s regular price equal to the modal price.? For each subsequent
period, if the store charges the modal price in that period, and at least one-third
of prices in the window are equal to the modal price, set the regular price equal
to the modal price. Otherwise, set the regular price equal to the last period’s
regular price. Finally, I would like to eliminate regular price changes that occur
in the absence of changes in the store’s actual price if the actual and regular
price coincide in the period before or after the regular price change. Thus,
if the steps above generate a path for regular prices such that a change in the
regular price occurs in the absence of a change in the actual price, I replace the
last period’s regular price with the current period’s actual price if the regular
and actual prices coincide in the current period. Similarly, I replace the current
period’s regular price with the last period’s actual price if the two coincided in
the previous period. These latter steps ensure that the regular price tracks the
posted price as closely as possible and that changes in the regular price do not
occur several weeks prior to/after a change in the posted price.

So far I have described our algorithm intuitively. Here I provide the precise
algorithm I used to compute the regular price. The algorithm is character-
ized by three parameters. I choose / =5 (the size of the window: number of
weeks before/after current period used to compute modal price, / = 2 months
when applied to the monthly BLS data), ¢ = 1/3 (the cutoff used to determine
whether a price is temporary), a = 0.5 (the number of periods in the window
with available price required so as to compute a modal price).

I apply the algorithm below for each good separately. Let p, be the price in
period ¢ and let T be the length of the price series.

1. For each time period t € (1+1, T — ).

If the number of periods with available datain (r —/,...,t+ 1) is >2al,

! perform this calculation only if at least one-half of prices in this window are available.
2If, in the window around this price, more than half of the data are missing, I set the initial
regular price equal to the actual price.
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let p” =mode(p, i, ..., Pis1)
let f, = fraction of periods (with available data) in this window such that
pi=p/.

Else, set f,, p¥ =0 (missing).
2. Define pX using the following recursive algorithm.
If p}t, #0, set pf,, = pt’, (initial value).
Else, set pf,, = pi.,
fort=2+1,...,T,
if (p)' #0& fi > c& pi = p}"), set pf = p}'
else, set pX = pR .
3. Repeat the following steps 5 times:
Let R = {t: pR # pR | & p® | #0& pX # 0} be the set of periods with regular
price change.
Let C = {t: pR = p, & p® # 0& p, # 0} be the set of periods in which the
store charges regular price.
Let P={t:pf, = p,_1&pR, #0& p,_; # 0} be the set of periods in which
the store’s last period price was the regular price.
Set pFRHC}—l = Pirne)- Set p?RﬂP} = P{rnp}-1-

APPENDIX 2: COMPUTATIONAL ALGORITHM

I discuss here the solution method used to compute optimal decision rules
given a guess for how aggregate variables evolve with the state. Recall that the
firm’s problem is characterized by

N
VEE, e g, A) = mgx(z e (uf = Dpf TP — "
Ki i=1
+ BEV (pn®, € ¢, A/)),

N
ViR, e g, A) = max(Z e}f“/(pd,» — 1);1{716“/*1 — K
Mi i=1
+ BEV(”’IE/la e/; g,5 A/)> s
N
VNl e g, A) = (Z e, T(uf — Dul P —k

i=1

+BEV (pf, ¢’ ¢, A/))-



MENU COSTS, MULTIPRODUCT FIRMS, AND FLUCTUATIONS 3

I use a projection-based approximation method.® Specifically, I approximate
the value functions (associated with each different option: VX, V7, V), as
well as the expected continuation value EV (the latter is not necessary, but
greatly speeds up execution since it reduces the number of times I compute the
integral on the right hand side of the Bellman equation), using splines (a com-
bination of linear and cubic). This approximation reduces the problem to that
of finding a set of coefficients on the basis function (I compute multivariate
basis functions from univariate ones using tensor products) that solves the sys-
tem of functional equations at a finite grid of nodes in the state space. I have
increased the number of nodes (and thus basis functions) along each dimen-
sion to the point at which further increases produce no significant effect on
optimal price rules and also render the distance between the two sides of each
functional equation at points other than the collocation nodes (at which this
distance is zero by construction) insignificant (the maximum relative errors are
on the order of 10~*; average relative errors are on the order of 10~). Depend-
ing on the problem, I use up to 15-20 basis functions in the price space and a
small (3-5) number of nodes in the aggregate state space. I approximate inte-
grals using Gaussian quadrature, again using more nodes in the idiosyncratic
(productivity shocks) space (9-11 quadrature points). Finally, I solve the op-
timization problem on u® in the V'® equation (the one associated with a tem-
porary price change is a static problem) using a derivative-free method. The
assumption that e is common across goods (as well as the unit root in a;) re-
duces the problem to one dimensional and I use the very robust golden search
method to bracket the optimum (derivative-based methods are somewhat less
stable given the kinks and the need for a robust solution method across dif-
ferent sets of parameter values used in calibration). The calibration exercise is
conducted using a simplex-based (Nelder-Mead) method.

APPENDIX 3: ECONOMY WITH ¢ > 0

I describe the problem of a single-product retailer for simplicity. Relative to
the economy discussed in text, there are several additional options the retailer
can undertake, and I discuss each of these below. Moreover, the state of the
retailer now includes both its old regular price (markup) and its old posted
price (markup).

A. Recursive Formulation

Let VAR denote the value of changing the regular price. Given discounting,
it never pays off to pay the cost of changing the regular price without actually
using it (as a posted price). Hence, in the period in which the regular price

3See Miranda and Fackler (2002) for a detailed description of these methods as well as a toolkit
that facilitates their implementation.
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changes, p, = pX. Hence, if such a firm changes its regular price, it also changes
the posted price and thus the cost of exercising this option is ¢ + ¢=.*

Let 147 denote the value of a firm to (a) deviate from its old regular price
and (b) change its posted price. This option reflects the retailer either initiating
a sale or continuing a sale but changing the sale price. The cost of exercising
this option is ¢ + k.

Let VX denote the value (to a firm that posted a price other than the regular
price in the previous period) of charging a price equal to the regular price.
Such a return entails a physical change in the posted price and hence costs a
fixed cost ¢.

Let V' denote the value (to a firm that posted a price other than the regular
price in the previous period) of continuing to charge its old posted price. This
option involves a deviation from the regular price and hence costs «.

Finally, let ;¥ denote the value (to a firm that last posted its regular price)
of continuing to post its old regular price. This option costs 0.

Let VR = max(VR, VAP, VVR) denote the envelope of the options the firm
can exercise if its posted price coincided with its regular price in the previous
period. Let VI = max(V2R, VAP R VT be the envelope of the options the
firm can exercise if its posted price deviated from the regular price in the previ-
ous period. The five Bellman equations that characterize the retailer’s problem
are

VAR (Rl e, ) = maxe! ™ (uf = Du® " — ¢ — ¢F
w
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“Unless p,_; = pX. The assumptions I make on the process for the retailer’s idiosyncratic states
ensure that this is a zero probability event (otherwise the retailer would have found it optimal to
change its regular price in the previous period).
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Notice here that VF and V,® only differ because a retailer that has had a
temporary price in the previous period must pay a fixed cost ¢ to return to
the old regular price. I keep track of them separately only so as to deal in the
discontinuity at u_; = u®,: at all other points, the two values are identical. This
iswhat VI and VX capture: both allow the option of charging the old regular
price, but doing so entails a fixed cost ¢ at V[ and nothing at VX . Thus,
when the retailer undertakes a temporary price change, it recognizes that it
has to pay ¢ again to be able to change its posted price to a regular price.

B. Decision Rules

The decision rules are similar to those discussed in text. The additional fea-
ture of this model is that sometimes prices will be unchanged during a sale,
when the gains from a posted price change do not exceed the fixed cost of
changing posted prices, ¢.

C. A Calibration

I now illustrate my claim that to match the data, the model indeed requires
a very small cost of changing posted prices. The moments I target are similar
to those in the economy studied in text. I add one additional moment so as to
pin down ¢: the frequency of times a price changes during a sale. Recall that
this number is equal to 0.67 in the data. Intuitively, this statistic pins down ¢
since this parameter primarily determines the flexibility of posted prices.

Table A.I reports the moments I use, both in the model and in the data.
Notice that this model predicts that 67% of the sales prices change during
periods of sale, and thus as frequently in the data. As for the other moments,
these are very similar to those in the data and in the model studied in text with
¢=0.

The reason an economy with ¢ > 0 produces a similar fit to the economy
I studied in text can be seen in Table A.Il in which I report the parameter
values that offer the best fit to the data. As earlier, the low cost shocks arrive
fairly infrequently (« = 0.15), and the menu cost of changing the regular price
is relative large, ¢® = 0.0639, relative to the cost of deviating from the regu-
lar price, k = 0.0286. Importantly, I estimate a menu cost of changing posted
prices that is quite low (0.16 x 10~?)—much smaller than the cost of changing
regular prices. The only role this second menu cost plays is in generating price
stickiness during episodes of sale. But as shown above, periods with sales are,
in fact, periods with fairly flexible prices: the menu cost must be therefore very
small to account for this feature of the data.
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TABLE A.I

EcoNOMY WITH ¢ > 0, SINGLE-PRODUCT RETAILER

Moments Data Model
Used in calibration
1. Frequency of price changes 0.34 0.34
2. Fraction of price changes that are temporary 0.97 0.94
3. Frequency regular price changes 0.029 0.029
4. Probability a temporary price spell ends 0.47 0.47
5. Probability temp. price returns to old regular 0.86 0.91
6. Fraction of periods with temporary prices 0.25 0.24
7. Fraction of periods with price below regular (sale) 0.22 0.24
8. Fraction of goods sold when price below regular 0.37 0.41
9. Mean size of price changes 0.20 0.20
10. Mean size of regular price changes 0.11 0.13
11. Fraction of price changes during a sale 0.67 0.67
Additional moments
1. Fraction of prices at annual mode 0.58 0.53
2. Fraction of prices below annual mode 0.31 0.35
3. Frequency with which annual mode changes 0.61 0.79
4. Fraction of prices at quarterly mode 0.70 0.70
5. Fraction of prices below quarterly mode 0.22 0.26
6. Frequency with which quarterly mode changes 0.32 0.34
7. Fraction of times sales price changes 0.82 1
8. Std. dev. size of price changes 0.18 0.12
9. Kurtosis price changes 3.15 1.60
10. Fraction changes < 1/2 mean 0.36 0.25
11. Fraction changes < 1/4 mean 0.19 0.23
12. Std. dev. size of regular price changes 0.08 0.02
13. Kurtosis regular price changes 4.02 1.26
14. Fraction regular price changes < 1/2 mean 0.25 0
15. Fraction regular changes < 1/4 mean 0.08 0
TABLE A.IT
PARAMETER VALUES, ECONOMY WITH ¢ > 0
Calibrated parameters
o 0.0227
a 0.1543
p 0.5232
e 0.7350
R, relative to SS revenue 0.0639
¢, relative to SS revenue 0.1634 x 1073
K, relative to SS revenue 0.0286
Assigned parameters
y 3
B (annual) 0.96
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