B Online Appendix

B.1 Schur-Convex Functions and Functionals

Consider X_F and X_G to be uniform, discrete random variables, each taking n values $x_F = (x_{F1}, ..., x_{Fn})$ and $x_G = (x_{G1}, ..., x_{Gn})$, respectively. Then

$$x_F \prec_{dm} x_G \iff F^{-1} \prec G^{-1} \iff G \prec F$$

where \prec_{dm} denotes the classical discrete majorization relation due to Hardy, Littlewood and Polya. Thus, discrete majorization is equivalent to the present majorization relation applied to quantile functions. A function $V : \mathbb{R}^n \to \mathbb{R}$ is Schur-convex (concave) if $V(x) \geq V(y)$ ($V(x) \leq V(y)$) whenever $x \succ_{dm} y$. If V is a symmetric function, and if all its partial derivatives exist, then the Schur-Ostrovski criterion says that V is Schur-convex (concave) if and only if

$$(x_i - x_j) \left(\frac{\partial V}{\partial x_i} - \frac{\partial V}{\partial x_j} \right) \geq (\leq) 0 \text{ for all } x.$$

It is useful to have a similar characterization for continuous majorization. Chan et al. (1987) showed that a law-invariant, Gâteaux-differentiable functional $V : L^1(0,1) \to \mathbb{R}$ respects the majorization relation on $L^1(0,1)$, if and only if its Gâteaux-derivatives in specially defined directions are non-positive. The considered directions are of the form

$$h = \lambda_1 \mathbf{1}_{(a,b)} + \lambda_2 \mathbf{1}_{(c,d)}$$

with $0 \leq a < b < c < d \leq 1$ and $\lambda_1 \geq 0 \geq \lambda_2$ such that $\lambda_1(b-a) + \lambda_2(d-c) = 0$. Note that the function h takes at most two values that are different from zero, and is decreasing on $[a, b] \cup [c, d]$. Moreover, $\int_0^1 h(t) \, dt = 0$.

This result also yields a simple intuition for the Fan Lorentz Theorem in the case where K is differentiable. Consider a monotonic f and note that, for any direction h, the Gâteaux-derivative of the functional $V(f) = \int_0^1 K(f(t), t) \, dt$ is given by

$$\delta V(f, h) = \frac{d}{d\varepsilon} \int_0^1 K(f(t) + \varepsilon h(t), t) \, dt \big|_{\varepsilon=0} = \int_0^1 K_f(f(t), t) h(t) \, dt,$$

where the last equality follows by interchanging the order of differentiation and integration.\footnote{This means that the functional is constant over the equivalence class of functions with the same non-decreasing re-arrangement. This replaces the symmetry in the discrete formulation.}

\footnote{This is allowed since K is convex in f.}
The Fan-Lorentz conditions imply together that

\[\frac{dK_f}{dt} = f_t \cdot K_{ff} + K_{ft} \geq 0. \]

For a direction \(h \) such that \(\int_0^1 h(t) \, dt = 0 \), and such that \(h \) is a decreasing two-step function as defined above, we obtain that

\[\delta V(f, h) = \int_0^1 K_f(f(t), t) h(t) \, dt \leq 0. \]

Hence the Fan-Lorentz functional \(V(f) = \int_0^1 K(f(t), t) \, dt \) is Schur-concave by the result of Chan et al. (1987)

B.2 Decision-Making Under Uncertainty

We briefly illustrate here how our insights can be applied in order to understand how agents with non-expected utility preferences choose among risky prospects.

B.2.1 Rank-Dependent Utility and Choquet Capacities

Quiggin (1982) and Yaari (1987) axiomatically derived utility functionals with rank-dependent assessments of probabilities of the form\(^3\)

\[U(F) = \int_0^1 v(t) \, d(g \circ F)(t) \]

where \(F \) is the distribution of a random variable on the interval \([0, 1]\), \(v : [0, 1] \to R \) is continuous, strictly increasing and bounded, and where \(g : [0, 1] \to [0, 1] \) is strictly increasing, continuous and onto. The function \(v \) represents a transformation of monetary payoffs, while the function \(g \) represents a transformation of probabilities\(^4\).

The case \(g(x) = x \) yields the classical von-Neumann and Morgenstern expected utility model where risk-aversion is equivalent to \(v \) being concave. The case \(v(x) = x \) yields Yaari’s (1987) dual utility theory, where risk aversion is equivalent to \(g \) being concave. Because of the possible interactions between \(v \) and \(g \), it is not clear what properties yield risk aversion

\(^3\)Their theory is a bit more general (for example it allows a more general domain for the functions \(v \) and \(F \)). We keep here a framework that is compatible with the rest of the paper.

\(^4\)For the sake of brevity we assume below that both \(g \) an \(v \) are twice differentiable. Since the Fan-Lorentz result does not require differentiability, the observations below generalize.
in the general rank-dependent model. Using integration by parts, we can also write:

\[U(F) = \int_0^1 v(t) d(g \circ F)(t) = v(1) - \int_0^1 v'(t)(g \circ F)(t) \, dt \]

\[= v(1) + \int_0^1 K(F(t), t) \, dt \]

where

\[K(F, t) = -v'(t)(g \circ F) \]

and where we used \(g(0) = 0 \) and \(g(1) = 1 \). Then

\[\frac{\partial^2 K(F, t)}{\partial F \partial t} = -g'(F(t))v''(t) \geq 0 \]

for all \(t \) if and only if \(v \) is concave. Similarly

\[\frac{\partial^2 K(F, t)}{\partial^2 F} = -g''(F(t))v'(t) \geq 0 \]

for all \(t \) if and only if \(g \) is concave.

Hence, the Fan-Lorentz conditions are satisfied if and only if \(v'' \leq 0 \) and \(g'' \leq 0 \). As a consequence, the utility functional \(U = \int_0^1 v(t) d(g \circ F)(t) \) is Schur-concave, and the agent whose preferences are represented by \(U \) is risk averse, exactly as under standard expected utility\[^5\].

Another important strand of the literature on non-expected utility considers ambiguity aversion. The main tool is the Choquet integral with respect to a (convex) capacity (this is unrelated to the Choquet representation used above!) Analogously to the derivations above, it can be shown that the Choquet integral yields a Schur-concave functional if and only if it is computed with respect to a convex capacity.

B.2.2 A Portfolio Choice Problem

Dybvig (1988) studies a simplified version of the following problem:

\[\min_X \mathbb{E}[XY] \]

\[\text{s.t. } X \geq_{cv} Z \]

\[^5\text{The equivalence between the concavity of the functions } v \text{ and } g, \text{ and risk-aversion has been pointed out by Hong et al (1987), who build on Machina (1982).} \]
where Y and Z are given random variables. Y represents here the distribution of a pricing function over the states of the world, and the goal is to choose, given Y, the cheapest contingent claim X that is less risky than a given claim Z. To make the problem well-defined, Y needs to be essentially bounded and X, Z must be integrable. Recalling that

$$ X \gtrless_{cv} Z \iff F_X > F_Z \iff F_X^{-1} < F_Z^{-1} $$

we obtain that:

$$ \mathbb{E}[XY] \geq \int_0^1 F_Y^{-1}(1-t)F_X^{-1}(t)\,dt \geq \int_0^1 F_Y^{-1}(1-t)F_Z^{-1}(t)\,dt $$

where the first inequality follows by the rearrangement inequality of Hardy, Littlewood and Polya (1929) (the anti-assortative part!), and where the second inequality follows by the Fan-Lorentz Theorem.

By choosing a random variable X that has the same distribution as Z and that is anti-comonotonic with Y,\(^6\) the lower bound $\int_0^1 F_Y^{-1}(1-t)F_Z^{-1}(t)\,dt$ is attained, and hence such a choice solves the portfolio choice problem.\(^7\)

If $Y' \leq_{cv} Y$, we obtain by the Fan-Lorentz inequality (now applied to the functional with argument F_Y^{-1}) that

$$ \sup_{X \gtrless_{cv} Z} \mathbb{E}[XY] = \int_0^1 F_Y^{-1}(1-t)F_Z^{-1}(t)\,dt \geq \int_0^1 F_{Y'}^{-1}(1-t)F_Z^{-1}(t)\,dt = \sup_{X \gtrless_{cv} Z} \mathbb{E}[XY'] $$

In other words, a decision maker that becomes more informed (in the Blackwell sense) will bear a lower cost.

References

\(^6\)This can always be done if the underlying probability space is non-atomic. A random vector (X, Y) is anti-comonotonic if there exists a random variable W and non-decreasing functions h_1, h_2 such that $(X, Y) \overset{\text{dist}}{=} (h_1(W), -h_2(W))$.

\(^7\)For more details on this problem see Dana (2005) and the literature cited there. It does not use the Fan-Lorentz inequality.

