COMMENT ON “SMITH (1995): PERFECT FINITE HORIZON FOLK THEOREM”

GHISLAIN-HERMAN DMEZE-JOUATS A a,2 AND ANDREA WILSON B,3

Smith (1995) proved a perfect folk theorem for finitely-repeated stage games with \textit{recursively distinct} Nash payoffs, without assuming a non-equivalent utilities (\textsc{neu}) condition. While his theorem is correct, the constructive proof contained a small gap, using strategies only guaranteed to form a \textsc{spne} under \textsc{neu}. Here, we illustrate the gap with a counterexample, and resolve it with a small adjustment to his strategies.

\textbf{Keywords:} repeated games, folk theorem, nonequivalent utilities.

1. \textsc{Introduction}

Benoit and Krishna (1985) proved a perfect finite-horizon folk theorem under a full dimensionality condition, assuming at least two distinct Nash equilibrium (\textsc{ne}) payoffs for each player. Smith (1995) extended their result by relaxing both assumptions: he showed that it is enough that the stage game have \textit{recursively distinct} \textsc{ne} payoffs, and allowed for players with affinely equivalent utilities.

His proof used a five-phase strategy profile, in which early deviations by player \textit{i} were punished using his \textit{effective minmax profile}: determine the highest minmax payoff among players equivalent to \textit{i}, and play the corresponding action profile. The construction only included punishments for non-equivalent players who deviated during \textit{i}’s minmax phase. Smith then referenced his earlier working paper Smith (1994) for proof that the proposed strategies constituted a subgame perfect Nash equilibrium (\textsc{spne}). But that paper ruled out equivalent players; in this case, \textit{i}’s effective minmax reduces to his standard minmax, so that the player being minmaxed gains nothing by deviating.

With affinely equivalent players, \textit{i}’s effective minmax profile may have the property that player \textit{i} himself is not playing a myopic best response, in which case punishments must be added to deter deviations by player \textit{i} (along with his affine twins) during his own minmax phase. We illustrate this issue with a counterexample, propose a small modification to the punishment phases, and show that the adjusted strategy profile constitutes a \textsc{spne}.

2. Smith’s Folk Theorem

Let $G = (A_i, \pi_i; i = 1, 2, \ldots, n)$ be a finite normal form \textit{n}-player game, where A_i is player \textit{i}’s set of mixed strategies over a finite action set, $A \equiv \times_{i=1}^n A_i$.

\footnotetext[1]{The first author found the error and suggested a fix; the second became a co-author during the review process after suggesting a simpler resolution.}

\footnotetext[2]{I am grateful to Christoph Kuzmics, Frank Riedel, Tim Hellmann, and Olivier Gossner for helpful comments.}

\footnotetext[3]{I acknowledge helpful input from my wonderful dog, Mavi.}

\footnotetext[4]{Center for Mathematical Economics, Bielefeld University; demeze_jouatsa@uni-bielefeld.de.}

\footnotetext[5]{Georgetown University, Economics Department; aw1020@georgetown.edu.}
and \(\pi_i : A \rightarrow \mathbb{R} \) is \(i \)'s utility function. We assume that players have access to a public randomization device. Let \(\mathcal{I} = \{1, 2, \ldots, n\} \) be the set of players, and for any player \(i \), let \(\mathcal{I}(i) \) be the set players affinely equivalent to \(i \); normalize payoffs so that \(\pi_i(\cdot) = \pi_j(\cdot) \) for all \(j \in \mathcal{I}(i) \). Player \(i \)'s effective minmax payoff is \(\min_{a_i \in A} \max_{j \in \mathcal{I}(i)} \max_{a_j \in A_j} u_i(a_i, a_{-j}) \), or equivalently, the highest minmax payoff among players \(j \in \mathcal{I}(i) \).\(^1\) Normalize every effective minmax payoff to zero. Let \(F^* \) be the feasible and (strictly) individually rational payoff set, i.e. the set of all feasible payoff vectors \(w \) with \(w_i > 0 \) \(\forall i \).

Given a subset of players \(\mathcal{J} = \{j_1, \ldots, j_m\} \) and a corresponding (possibly mixed) action profile \(a_{\mathcal{J}} = (a_{j_1}, a_{j_2}, \ldots, a_{j_m}) \), let \(G(a_{\mathcal{J}}) \) be the induced \((n - m) \)-player game for players \(\mathcal{I} \setminus \mathcal{J} \) obtained from \(G \) by fixing the actions of players in \(\mathcal{J} \) at \(a_{\mathcal{J}} \). Define a Nash decomposition of \(G \) as an increasing sequence of \(h \geq 1 \) nonempty subsets of players from \(\mathcal{I} \), namely \(\emptyset = \mathcal{J}_0 \subset \mathcal{J}_1 \subset \cdots \subset \mathcal{J}_h \subseteq \mathcal{I} \) so that for \(g = 1, 2, \ldots, h \), action profiles \(e_{\mathcal{J}_{g-1}}, f_{\mathcal{J}_{g-1}} \) exist with corresponding Nash payoff vectors \(y(e_{\mathcal{J}_{g-1}}) \) of \(G(e_{\mathcal{J}_{g-1}}) \) and \(y(f_{\mathcal{J}_{g-1}}) \) of \(G(f_{\mathcal{J}_{g-1}}) \) different exactly for players in \(\mathcal{J}_g \setminus \mathcal{J}_{g-1} \); and for any \(i \in \mathcal{J}_g \setminus \mathcal{J}_{g-1} \), let \(z^{g,i} \) be \(i \)'s least-preferred action profile among those yielding payoff vectors \(y(e_{\mathcal{J}_{g-1}}) \) and \(y(f_{\mathcal{J}_{g-1}}) \). The game has recursively distinct Nash payoffs if there is a Nash decomposition with \(\mathcal{J}_h = \mathcal{I} \).

Smith’s main result is as follows, with \(\{G(\delta, T) \mid T \text{-fold } \delta\text{-discounted repetition of } G\} \):

Theorem 1 (Smith): Suppose that the stage game \(G \) has recursively distinct Nash payoffs. Then for the finitely-repeated game \(G(\delta, T) \), \(\forall u \in F^* \) and \(\forall \varepsilon > 0 \), \(\exists T_0 < \infty \) and \(\delta_0 < 1 \) so that \(T \geq T_0 \) and \(\delta \in [\delta_0, 1] \Rightarrow \exists \) a SPNE payoff vector \(v \) with \(\|v - u\| < \varepsilon \).

Gap in Original Proof.

Smith’s proof was constructive (see full strategies below, along with the required adjustment). In it, early deviations by player \(i \) were punished via “Phase 3”:

Phase 3: Play \(i \)'s effective minmax profile. If \(j \notin \mathcal{I}(i) \) deviates early, start Phase 4.

This opens the door to a profitable one-shot deviation — hence the given strategies may not constitute a SPNE — as illustrated by a counterexample. Consider the following 3-player stage game \(G \), in which P1 chooses rows (\(T \) or \(B \)), P2 chooses columns (\(\ell \) or \(r \)), and P3 chooses matrices (\(L \) or \(R \)):

\[
\begin{array}{ccc|cc}
L & & & & R \\
\ell & | & r & & \ell & | & r \\
T & -1, -1, 0 & 1, 1, 0 & & T & 2, 2, 2 & 3, 3, 3 \\
B & -1, -1, 0 & 0, 0, 0 & & B & 2, 2, 1 & 2, 2, 2 \\
\end{array}
\]

Players 1 and 2 earn the same payoff at every profile, and thus are affinely equivalent. Player 1’s minmax payoff is \(-1\) (achieved if he best-responds to \((\ell, L) \)),

\(^1\)See footnote 5 in Smith (1994) for this equivalent formulation of Wen (1994)’s definition.
player 2's minmax payoff is 0 (achieved if he best-responds to \((B, L)\)), and so they share an effective minmax payoff of 0, via the effective minmax profile \(\tilde{w}^1 = \tilde{w}^2 \equiv (B, r, L)\).

In Smith’s construction, player 1’s punishment phase specifies playing \(\tilde{w}^1\) for some number of periods, during which deviations by players 1 and 2 are ignored. But observe that P1 himself is not myopically best-responding at \(\tilde{w}^1\), and so he has a profitable one-shot deviation: play \(T\) instead of \(B\). This raises his current-period payoff from 0 to 1, with no future consequences.

This issue is easily resolved with a two part adjustment to Smith’s Phase 3 (after an early deviation by player \(i\)): First, instead of playing \(i\)’s effective minmax profile, play the solution \(w^i\) to \(i\)’s effective minmax problem, namely, a profile \(w^i\) that minimizes \(\max_{j \in I(i)} \max_{a_j \in A_j} u_i(a_j, w^i_j)\). (In words, choose the profile \(w^i\) that minimizes the best that any affine twin of \(i\) gets by best-replying to \(w^i\); in the counterexample, \(w^1 = w^2 = (B, \ell, L)\)). Second, deter Phase 3 deviations by players in \(I(i)\) by threatening to restart Phase 3. This deterrent works because profile \(w^i\) has the property that the best any player in \(I(i)\) can earn by deviating is his effective minmax payoff 0.

3. CORRECTED PROOF

We now provide Smith (1995)’s full strategies — with Phase 3 modified as above — and prove that the adjusted strategies constitute a SPNE. Following Smith, choose a target payoff vector \(u^* \in F^*\). Fix a Nash decomposition into player subsets \(J_g\) (\(g = 1, 2, \ldots, h\)), along with the corresponding action profiles \(e_{J_g-1}\) and \(f_{J_g-1}\), and corresponding distinct (for players \(i \in J_g\backslash J_g-1\)) Nash payoff vectors \(y(e_{J_g-1})\) of \(G(e_{J_g-1})\) and \(y(f_{J_g-1})\) of \(G(f_{J_g-1})\). Define \(c_g \equiv \min_{i \in J_g\backslash J_g-1} \|y(e_{J_g-1})_i - y(f_{J_g-1})_i\|\). Let \(y^g\) denote alternating between the action profile yielding \(y(e_{J_g-1})\) (in even periods) and \(y(f_{J_g-1})\) (in odd periods).

We now construct a 5-phase strategy profile. The phase length variables — namely \(q\) (Phase 3), \(r\) (Phase 4), and \(t_g(q + r)\) (\(g = 1, 2, \ldots, h\), Phases 2 and 5) will be chosen at the end of the construction, along with the reward vectors \(x_j\) (\(\forall j \in I\)) used in Phase 4. Early\(^3\) (late) deviations are those occurring up to (after) period \(T - t_h(q + r) - (q + r)\).

Strategy Profiles.

1. (Main Path) Play (possibly via public randomization) a profile \(a\) yielding the target payoff vector, \(u^*\), until period \(T - t_h(q + r)\). After an early

\(^2\)The first author’s original paper (Demeze-Jouatsa (2018)) noted further that in this game, Smith’s strategies may not even yield a NE: If the target payoff vector holds P1’s payoff close to his effective minmax, 0, then P1 will actually have an incentive to trigger his minmax phase — where he’s able to earn 1 — as often as possible.

\(^3\)So a deviation is “early” if there is still time to run Phases 3 and 4 before period \(T - t_h(q + r) + 1\), when Phase 2 begins.
deviation by i, go to Phase 3; after a late deviation by $i \in J_{g'}$, go to Phase 5.

2. (Good Recursive Nash) For $g = h, \ldots , 1$: Play y^g in periods $T - t_g(q + r) + 1, \ldots , T - t_{g-1}(q + r)$. After a deviation by $i \in J_{g'}$ with $g' < g$, start Phase 5. (On-path, this phase runs during the final $t_h(q + r)$ periods).

3. (Adjusted Minmax Phase for i): Play w^i for q periods, where w^i solves i’s effective minmax problem (rather than playing i’s effective minmax profile, as in Smith).

- If any $j \not\in I(i)$ deviates early, start Phase 4; if any $j \in J_{g'}$ deviates late, start Phase 5 with $i \leftarrow j$.

- [Addition to Smith’s construction] If any $j \in I(i)$ deviates early, set $i \leftarrow j$ and restart Phase 3.

Then set $j \leftarrow i$ and start Phase 4.

4. (Reward Phase) Play x^j for r periods. If any i deviates early, restart Phase 3; if any $i \in J_{g'}$ deviates late, start Phase 5. Then return to Phase 1.

5. (Bad Recursive Nash) Play $z_{g',i}$ until period $T - t_{g'-1}(q + r)$. (If $j \in J_{g''}$ deviates, where $g'' < g'$, set $g' \leftarrow g''$ and $i \leftarrow j$ and restart Phase 5.) Then go to Phase 2.

So along the equilibrium path, the sequence of action profiles is

\[
\underbrace{a, \ldots , a}_{T - t_h(q+r) \text{ periods}} ; \underbrace{y^h, \ldots , y^h}_{s_h(q+r) \text{ periods}} ; \overbrace{y^{h-1}, \ldots , y^{h-1}}^{s_{h-1}(q+r) \text{ periods}} ; \underbrace{y^1, \ldots , y^1}_{s_1(q+r) \text{ periods}}
\]

Since we next choose phase lengths such that $t_h(q + r)$ doesn’t depend on T, payoffs converge to u^* for T sufficiently large.

Phase Lengths and SPNE Verification

Let ρ be the largest gap between best and worst payoffs across all players in G. For Phase 4, let x^1, x^2, \ldots , x^n be feasible payoff vectors such that $x^i \gg 0$ $\forall i \in I$, $x^i < x_j^i \forall j \notin I(i)$, $x^i = x^j \forall j \in I(i)$, and $x^i < u^*_i \forall i \in I$. (Such vectors exist following Abreu et al (1994)).

Phase lengths are as follows:

- choose q (length of Phase 3) to deter one-shot deviations, namely so that for all players i,

\[
(3.1) \quad \rho < q \cdot x^i_j
\]

- choose r (length of Phase 4) to deter deviations by players $j \notin I(i)$ during Phase 3: namely such that for all i and $j \notin I(i)$,

\[
(3.2) \quad \rho + \max \{ 0, (q - 1) \cdot (u^*_j - \pi_j(w^i)) \} < r(x^i_j - x^j_j)
\]
• for the final recursive NE phase, the lengths are determined as follows:
 For any number k, let $\psi_{g}(k)$ be the least even number above $2k\rho/c_{g}$, so
 that that a player $i \in J_{g}$ is willing to play k periods of any action followed
 by $\psi_{g}(k)$ periods of y^{g}, if deviations switch each y^{g} to $z^{g,i}$. Recursively
 define

 \[
 s_{h}(m) = \psi_{h}(m) \text{ and } (\forall g = 1, 2, \ldots, h-1) \ s_{g}(m) = \psi_{g}(m+s_{g+1}(m)+\cdots+s_{h}(m))
 \]

 Then set $t_{0}(m) = 0$ and $t_{g}(m) = s_{1}(m) + \cdots + s_{g}(m)$, for $g = 1, 2, \ldots, h$.

 To prove that the strategies form a SPNE, it suffices to prove that there are no
 profitable one-shot deviations. We show that deviations are strictly unprofitable
 at $\delta = 1$, and thus remain unprofitable for δ sufficiently large.

 • Late deviations. A one-shot deviation by player $i \in J_{g'}$ takes him immediately
 to Phase 5, where they play $z^{g',i}$ until period $T - t_{g'-1}(q + r)$, then
 resume following Phase 2. So he gains at most ρ in each period between
 the deviation and time $T - t_{g'}(q + r)$ (for a late deviation, there are at most
 $q + r + s_{h}(q + r) + s_{h-1}(q + r) + \cdots + s_{g'+1}(q + r)$ such periods), but then
 loses at least $c_{g}/2$ in each of the $s_{g'}(q + r)$ periods between $T - t_{g'}(q + r) + 1$
 and $T - t_{g'-1}(q + r)$ (during which they switch from $y^{g'}$ to $z^{g',i}$). By (3.3),
 the loss strictly exceeds the gain. (This analysis applies to late deviations
 by any player in Phases 1, 3, 4; to late Phase 2 deviations by players in $J_{g'}$
 from $y^{g'}$ (with $g > g'$); and to late Phase 5 deviations by players in $J_{g''}$
 from $z^{g',i}$ (with $g' > g''$). Remaining late deviations, by those already (by
 construction) playing a myopic best response, are ignored).

 • Early deviations in Phases 1 and 4. If i deviates, he gains at most ρ this
 period, then play moves immediately to Phase 3 (followed by Phase 4 with
 x^{i}). Since x^{i} is weakly worse for player i than any other Phase 4 vector
 x^{i}, and strictly worse than the Phase 1 vector u^{*}, the cost is at least $q \cdot x^{i}
 (i$ loses at least x^{i} during each of the q minmax periods). By (3.1),
 the deviation is unprofitable.

 • Early deviations by non twins during Phase 3 (minmaxing i). Player $j \in I(i)$
 gains at most ρ in the current period, and then moves immediately to
 Phase 4, where he gets x^{j} rather than the x^{j} he would have gotten
 without the deviation. Then returns to Phase 1, so can replace at most
 $(q - 1)$ periods of minmaxing i with payoff u^{j}_{j}. By (3.2), the deviation
 is unprofitable.

 • Early deviations by twins during Phase 3 (minmaxing i). A one-shot devi-
 ation by $j \in I(i)$ raises his payoff in the current period from $\pi_{j}(w^{i})$ to
 at best his effective minmax, zero. But this restarts Phase 3, adding at least
 one extra minmax period (at the expense of a future Phase 1 period), for
 a cost of at least $u^{j}_{j} - \pi_{j}(w^{i})$. Since $u^{j}_{j} > 0$, the deviation is unprofitable.
REFERENCES

