SUPPLEMENT TO “COPULAS AND TEMPORAL DEPENDENCE”: APPENDIX

BY BRENDAN K. BEARE

(Econometrica, Vol. 78, No. 1, January 2010, 395–410)

This supplementary appendix contains proofs of the theorems given in the main paper.

Proof of Theorem 3.1: Since \(\{Z_t\} \) is a stationary Markov chain, it is known (see Theorems 7.3(b) and 3.29(II) in Bradley (2007)) that its \(\beta \)-mixing coefficients satisfy

\[
\beta_k = \frac{1}{2} \| F_{0,k}(x, y) - F(x)F(y) \|_{TV},
\]

where \(F_{0,k} \) is the joint distribution function of \(Z_0 \) and \(Z_k \), and \(\| \cdot \|_{TV} \) is total variation (in the Vitali sense).

From Sklar’s theorem, we thus have

\[
\beta_k = \frac{1}{2} \| C_k(F(x), F(y)) - F(x)F(y) \|_{TV} \leq \frac{1}{2} \| C_k(x, y) - xy \|_{TV}.\]

Equation (2.1) implies that \(C_k \) inherits the property of absolute continuity from \(C \). Letting \(c_k \) denote the density of \(C_k \), we now have that \(\beta_k \leq \frac{1}{2} \| c_k - 1 \|_1 \) and hence \(\beta_k \leq \frac{1}{2} \| c_k - 1 \|_2 \).

As a symmetric square-integrable joint density function with uniform marginals, \(c \) admits the mean square convergent expansion

\[
(A.1) \quad c(x, y) = 1 + \sum_{i=1}^{\infty} \lambda_i \phi_i(x)\phi_i(y),
\]

where the eigenvalues \(\{ \lambda_i \} \) form a nonincreasing square-summable sequence of nonnegative real numbers and the eigenfunctions \(\{ \phi_i \} \) form a complete orthonormal sequence in \(L^2[0,1] \). Expansions of this form were studied by Lancaster (1958), Rényi (1959), and Sarmanov (1958a, 1958b, 1961). Using (2.1), we deduce that the densities \(c_k \) satisfy

\[
c_k(x, y) = 1 + \sum_{i=1}^{\infty} \lambda_i^k \phi_i(x)\phi_i(y),
\]
which is simply a restatement of a result due to Sarmanov (1961) in terms of copula functions. We now have

\[\|c_k - 1\|_2 = \left\| \sum_{i=1}^{\infty} \lambda_i^k \phi_i(x) \phi_i(y) \right\|_2, \]

and so with two applications of Parseval’s equality, we obtain

\[\|c_k - 1\|_2 = \left(\sum_{i=1}^{\infty} \lambda_i^{2k} \right)^{1/2} \leq \lambda_1^{k-1} \left(\sum_{i=1}^{\infty} \lambda_i^2 \right)^{1/2} = \lambda_1^{k-1}\|c - 1\|_2. \]

As observed by Lancaster (1958), Rényi (1959), and Sarmanov (1958a, 1958b, 1961), \(\lambda_1 \) is equal to the maximal correlation of \(C \). Since this quantity is assumed to be less than 1, the proof is complete. \(Q.E.D. \)

PROOF OF THEOREM 3.2: Suppose first that \(\rho_C = 1 \). As observed by Lancaster (1958), Rényi (1959), and Sarmanov (1958a, 1958b), the supremum in (3.1) is achieved by a specific pair of functions \(f, g \) when \(c \) is square integrable. Consequently, for such \(f, g \), we have \(\iint f(x)g(y)c(x,y) \, dx \, dy = 1 \). Further, since \(\int f^2 = \int g^2 = 1 \) and the density \(c \) has uniform marginals, we have \(\iint f(x)^2c(x,y) \, dx \, dy = \iint g(y)^2c(x,y) \, dx \, dy = 1 \). It follows that

\[
\int_0^1 \int_0^1 f(x)g(y)c(x,y) \, dx \, dy = \left(\int_0^1 \int_0^1 f(x)^2c(x,y) \, dx \, dy \right)^{1/2} \left(\int_0^1 \int_0^1 g(y)^2c(x,y) \, dx \, dy \right)^{1/2},
\]

and so the Cauchy–Schwarz inequality holds with equality. This can be true only if the set \(D = \{(x, y) : f(x) \neq g(y)\} \) satisfies \(\iint_D c = 0 \). Let \(A = \{x : f(x) \geq 0\} \) and \(B = \{y : g(y) < 0\} \). The conditions \(\int f = \int g = 0 \) and \(\int f^2 = \int g^2 = 1 \) ensure that \(A \) and \(B \) have measure strictly between zero and one. Since \((A \times B) \cup (A^c \times B^c) \subseteq D \), we have \(\iint_{(A \times B)\cup(A^c \times B^c)} c = 0 \), and hence \(c = 0 \) almost everywhere on \((A \times B) \cup (A^c \times B^c) \).

Suppose next that \(c = 0 \) almost everywhere on \((A \times B) \cup (A^c \times B^c) \), where \(A, B \) have measure strictly between zero and one. Let \(f(x) = 1 \ (x \in A) \) and \(g(y) = 1 \ (y \notin B) \). It is easily verified that \(f(x) = g(y) \) on a subset of \([0, 1]^2\) over which \(c \) integrates to 1. Since neither \(f \) nor \(g \) is constant almost everywhere, it follows that \(\rho_C = 1 \). \(Q.E.D. \)

PROOF OF THEOREM 3.3: We will show that \(C \) cannot exhibit lower tail dependence when \(c \) is square integrable and \(\mu_L \) exists. The corresponding result
for upper tail dependence can be shown in essentially the same way. For any \(n \in \mathbb{N} \) and any \(x \in (0, 1] \), we may write

\[
\frac{C(x, x)}{x} = x + \sum_{i=1}^{n} \lambda_i x^{-1} \left(\int_{0}^{x} \phi_i(z) \, dz \right)^2 + \xi_n(x),
\]

where \(\xi_n \) is defined by this equation. The Cauchy–Schwarz inequality implies that

\[
x^{-1} \left(\int_{0}^{x} \phi_i(z) \, dz \right)^2 \leq x^{-1} \left(\int_{0}^{x} \phi_i(z)^2 \, dz \right) = \left(\int_{0}^{x} \phi_i(z)^2 \, dz \right).
\]

Square integrability of \(\phi_i \) therefore implies that \(\lim_{x \to 0^+} \frac{x^{-1/2} \int_{0}^{x} \phi_i(z) \, dz}{x} = 0 \). We thus obtain

\[
\lim_{x \to 0^+} \frac{C(x, x)}{x} = \lim_{x \to 0^+} \xi_n(x) \leq \|\xi_n\|_{\infty}
\]

for each \(n \in \mathbb{N} \). It thus suffices to show that \(\|\xi_n\|_{\infty} \to 0 \) as \(n \to \infty \). Using Cauchy–Schwarz, we have

\[
\|\xi_n\|_{\infty} = \left\| x^{-1} \int_{0}^{x} \int_{0}^{x} \left(c(u, v) - 1 - \sum_{i=1}^{n} \lambda_i \phi_i(u) \phi_i(v) \right) \, du \, dv \right\|_{\infty}
\]

\[
\leq \left\| \left(\int_{0}^{x} \int_{0}^{x} \left(c(u, v) - 1 - \sum_{i=1}^{n} \lambda_i \phi_i(u) \phi_i(v) \right)^2 \, du \, dv \right)^{1/2} \right\|_{\infty}
\]

\[
= \left(\int_{0}^{1} \int_{0}^{1} \left(c(u, v) - 1 - \sum_{i=1}^{n} \lambda_i \phi_i(u) \phi_i(v) \right)^2 \, du \, dv \right)^{1/2}.
\]

Convergence of this last term to zero as \(n \to \infty \) is the content of our series expansion (A.1).

Q.E.D.

Proof of Theorem 4.1: Since \(\{Z_t\} \) is a Markov chain, Theorem 7.5(I)(a) of Bradley (2007) implies that \(\rho_k \) decays geometrically fast if \(\rho_1 < 1 \). We thus need only show that \(\rho_1 \leq \rho_C \). Given \(\sigma \)-fields \(\mathcal{A}, \mathcal{B} \subseteq \mathcal{F} \), let \(\rho(\mathcal{A}, \mathcal{B}) = \sup_{f, g} |\text{Corr}(f, g)| \), where the supremum is taken over all random variables \(f \) and \(g \) measurable with respect to \(\mathcal{A} \) and \(\mathcal{B} \), respectively, with positive and finite variance. Since \(\{Z_t\} \) is a stationary Markov chain, Theorem 7.3(c) in Bradley (2007) implies that \(\rho_1 = \rho(\sigma(Z_0), \sigma(Z_1)) \). Let \(U, V \) be random variables with joint distribution function \(C \), and let \(F^{-1} \) denote the quasi-inverse
distribution function given by $F^{-1}(z) = \inf_x \{ F(x) \geq z \}$. Then $Z_0^* = F^{-1}(U)$ and $Z_1^* = F^{-1}(V)$ have the same joint distribution as Z_0 and Z_1, and so Proposition 3.6(I)(c) of Bradley (2007) implies that $\rho_1 = \rho(\sigma(Z_0^*), \sigma(Z_1^*))$. Since $\sigma(Z_0^*) \subseteq \sigma(U)$ and $\sigma(Z_1^*) \subseteq \sigma(V)$, it follows that $\rho_1 \leq \rho(\sigma(U), \sigma(V))$. We conclude by noting that $\rho(\sigma(U), \sigma(V)) = \rho_C$.

PROOF OF THEOREM 4.2: Let $\varepsilon > 0$ be such that $c(x, y) \geq \varepsilon$ almost everywhere on $[0, 1]^2$. Consider $f, g \in L_2[0, 1]$ with $\int f = \int g = 0$ and $\int f^2 = \int g^2 = 1$. Begin by writing

$$
\int \int f(x)g(y)C(dx, dy) = \frac{1}{2} \int \int (f(x)^2 + g(y)^2)C(dx, dy) - \frac{1}{2} \int \int (f(x) - g(y))^2C(dx, dy).
$$

Since $(f(x) - g(y))^2 \geq 0$ and $c(x, y) \geq \varepsilon$ almost everywhere, we have

$$
\int \int (f(x) - g(y))^2C(dx, dy) \geq \int \int (f(x) - g(y))^2c(x, y)dx dy \geq \varepsilon \int \int (f(x) - g(y))^2 dx dy = 2\varepsilon.
$$

Since it is also the case that $\int \int (f(x)^2 + g(y)^2)C(dx, dy) = 2$, we obtain $\int \int f(x)g(y)C(dx, dy) \leq 1 - \varepsilon$, implying that the maximal correlation of C cannot exceed $1 - \varepsilon$.

PROOF OF THEOREM 4.3: Let S_n denote the class of real-valued functions f on $[0, 1]$ that can be written in the form

$$
f(x) = \sum_{i=1}^{n} f_i 1_{((i-1)/n, i/n]}(x),
$$

where f_1, \ldots, f_n are real numbers. If $f, g \in S_n$, then

$$
(A.2) \quad \int_0^1 \int_0^1 f(x)g(y)C(dx, dy) = - \left(\int_0^1 f(x) dx \right) \left(\int_0^1 g(y) dy \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} f_i g_j K_n(i, j).
$$

Consequently, n_0 is the maximum of the left-hand side of $(A.2)$ over $f, g \in S_n$ such that $\int f^2 = \int g^2 = 1$. It follows that n_0 is the maximum of
\[\int \int f(x)g(y)C(dx, dy) \] over \(f, g \in S \), such that \(\int f = \int g = 0 \) and \(\int f^2 = \int g^2 = 1 \). Our desired result now follows from the definition of \(\rho_C \) and the fact that \(\bigcup_{n \in \mathbb{N}} S_n \) is a dense subset of \(L_2[0,1] \). Q.E.D.

REFERENCES

Dept. of Economics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0508, U.S.A.; bbeare@ucsd.edu.

Manuscript received September, 2008; final revision received June, 2009.