Quantitative Economics

Journal Of The Econometric Society

Edited by: Stéphane Bonhomme • Print ISSN: 1759-7323 • Online ISSN: 1759-7331

Quantitative Economics: Mar, 2018, Volume 9, Issue 1

Learning in network games

Jaromír Kovářík, Friederike Mengel, José Gabriel Romero

We report the findings of experiments designed to study how people learn in network games. Network games offer new opportunities to identify learning rules, since on networks (compared to, e.g., random matching) more rules differ in terms of their information requirements. Our experimental design enables us to observe both which actions participants choose and which information they consult before making their choices. We use these data to estimate learning types using finite mixture models. Monitoring information requests turns out to be crucial, as estimates based on choices alone show substantial biases. We also find that learning depends on network position. Participants in more complex environments (with more network neighbors) tend to resort to simpler rules compared to those with only one network neighbor.

Experiments game theory heterogeneity learning finite mixture models networks C72 C90 C91 D85

Full Content: Print View

Supplemental Material

Supplement to "Learning in network games"

Supplement to "Learning in network games"

Journal News