Journal Of The Econometric Society

An International Society for the Advancement of Economic
Theory in its Relation to Statistics and Mathematics

Edited by: Guido W. Imbens • Print ISSN: 0012-9682 • Online ISSN: 1468-0262

Econometrica: May, 2019, Volume 87, Issue 3

Power in High-Dimensional Testing Problems
p. 1055-1069

Anders Bredahl Kock, David Preinerstorfer

Fan, Liao, and Yao (2015) recently introduced a remarkable method for increasing the asymptotic power of tests in high‐dimensional testing problems. If applicable to a given test, their power enhancement principle leads to an improved test that has the same asymptotic size, has uniformly non‐inferior asymptotic power, and is consistent against a strictly broader range of alternatives than the initially given test. We study under which conditions this method can be applied and show the following: In asymptotic regimes where the dimensionality of the parameter space is fixed as sample size increases, there often exist tests that cannot be further improved with the power enhancement principle. However, when the dimensionality of the parameter space increases sufficiently slowly with sample size and a marginal local asymptotic normality (LAN) condition is satisfied, every test with asymptotic size smaller than 1 can be improved with the power enhancement principle. While the marginal LAN condition alone does not allow one to extend the latter statement to all rates at which the dimensionality increases with sample size, we give sufficient conditions under which this is the case.

Log In To View Full Content

Supplemental Material

Supplement to "Power in High-Dimensional Testing Problems"

This supplement contains all appendices to the article “Power in High-Dimensional Testing Problems”. In particular, the supplement contains the proofs of all results in the paper.