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We would like express our appreciation to the discussants for their engaging and
astute comments. We will begin by briefly addressing Kei Hirano’s queries about
links to classical decision theory, then touch on several extensions suggested in the
comment by Pat Kline, and conclude with a brief excursion into data analysis to
respond to the comments of Mogstad, Romano, Shaikh and Wilhelm.

1. What Is Bayesian about Empirical Bayes?

We are happy to concede that our analysis “falls somewhere between conventional
statistical inference and a full blown decision theoretic analysis of Wald or Savage.”
This is the inevitable fate of the empirical Bayesian. From its inception Robbins’s
intention, as expressed in (Robbins 1990), was to épater les bourgeois of statistical
orthodoxy. Empirical Bayes is neither Bayesian nor frequentist, and certainly not
Neyman-Pearsonian, but it shares features of all of these. Our exposition in Section
2 was perhaps more Bayesian than really necessary, so we would like to take this op-
portunity to redress this imbalance with a somewhat more frequentist interpretation.

The example from (Robbins 1951) that we sketch in our Section 2 can be made
to look very frequentist. We need not posit the existence of a prior distribution G
from which the θ = (θi, · · · , θn) are drawn iidly, instead we can take the θi’s as a
fixed, deterministic binary sequence from Θ = {−1, 1}n. More important is that
the Yi are assumed to have identical conditional densities, ϕ(y|θ), and that loss is
additively separable, L̄(θ, δ) = n−1

∑
|θi − δi|. Robbins restricts attention to simple

decision rules, δi = δ(Yi); this seems natural since the we are faced with n identical,
but independent problems. Compound risk can then be written as,

Rn(θ, δ) = n−1Eθ

n∑
i=1

L̄(θi, δ(Yi))

=
n∑
i=1

n−1EθiL(θi, δ(Yi))

=

∫ ∫
L(θ, δ(y))ϕ(y|θ)dydGn(θ),

where Gn(A) = n−1
∑

1{θi ∈ A} for any Borel set from Θ. Thus, compound risk
is equivalent to the Bayes risk of a single component of the compound problem with
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prior, Gn, the empirical distribution function of the θi’s. When the θi’s take only two
values Gn reduces to a scalar parameter and risk becomes,

Rn(θ, δ) = pn(θ)

∫
L(1, δ(y))ϕ(y|1)dy + qn(θ)

∫
L(−1, δ(y))ϕ(y| − 1)dy

where pn(θ) = n−1
∑

1{θi = 1} and qn(θ) = 1− pn(θ). Were pn = pn(θ) known, the
optimal decision rule would be,

δ∗pn(y) = sgn(y + 1
2

log(pn/(1− pn)))

Of course we probably don’t “know” pn, how could we? But many candidate es-
timators of pn present themselves, of which Robbins’s method of moments choice
p̂n = (ȳ + 1)/2 is simplest. But is it really a simple rule? We promised to use only

simple rules of the form, θ̂i = δ(Yi) and δ∗pn(y) is surely like that, but once we put a
hat on p̂n the rabbit is poised to make an appearance. Yet nothing is lost as (Hannan
and Robbins 1955) show that the risk of δ∗p̂n(y) uniformly approximates the risk of
δ∗pn(y).

How does this relate to Wald’s minimax proposal? Robbins proves that supθ R(δ,θ)

is minimized with the naive rule δ̃(y) = sgn(y), which is equivalent to δ∗1/2(y). How-

ever, it is easy to verify that for any pn 6= 1/2, R(δ∗1/2,θ) ≥ R(δ∗pn ,θ) and furthermore

that for any ε > 0 there exists n(ε) such that for n > n(ε), R(δ∗p̂n ,θ)−R(δ∗1/2,θ) < ε for
any θ. Thus, although not an admissible rule – the naive rule is always superior when
pn = 1/2 – the compound decision rule is only an asymptotically negligible bit worse
at pn = 1/2, and potentially much better elsewhere. See (Hannan and Robbins 1955)
and (Samuel 1955) for further formal details, and (Gu and Koenker 2016) for some
numerical comparisons.

The foregoing example may seem overly simplified, after all our prior only required
estimation of a single parameter, however similar structure arises in many other set-
tings such as our ranking and selection problems where the prior can be much more
complex. The crucial feature of such compound decision problems is the permutation
invariance of both the probabilistic structure of the problem and the loss function
being considered. And as we have argued elsewhere, estimation of the mixing distri-
bution whether it is viewed as Gn or G is often a relatively benign convex optimization
problem.

Regarding our loss function, there is more than a whiff of Neyman-Pearson about
our α and γ. No doubt that it would be better to have loss defined on a more explicit
action space, but like priors loss functions are difficult to elicit. By accentuating the
connection to multiple testing, we have tried to highlight the balance that must be
struck between the intended size of the selected population and the accuracy of the
selection. This trade-off seems inherent in any ranking and selection problem. At a
more fundamental level one may object to the nature of compound loss itself; why
should component losses be aggregated in such a symmetric fashion? To this, our
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only answer is: why not? If the model is permutation invariant shouldn’t the loss be
as well?

The Le Cam limit experiment perspective has proven to be a powerful device in
many decision theoretic settings and could do so in ranking applications provided we
adhere to the (Le Cam 1990) “Principle 7: If you need to use asymptotic arguments,
don’t forget to let your number of observations tend to infinity,” while maintaining
the heterogeneity of the latent structure of the problem. Whether it can be deployed
effectively in the compound decision framework to justify forms of shrinkage like those
we have considered is, indeed, a very intriguing open question.

2. Challenges and Opportunities

Pat Kline has raised many important issues that deserve an extended response; we
are only able to offer some superficial hints that might help guide future exploration.

• The form ofG is a critical determinant of the difficulty of the ranking and selec-
tion problem. The atomic form of the Kiefer-Wolfowitz NPMLE is especially
well suited to discrete G, but even more critical is its tail behavior. Heavier
tails, like those of the lognormal or Student with low degrees of freedom make
selection easier, lighter tails like the uniform or Gaussian make it more diffi-
cult. How variance stabilizing transformations influence this is delicate since
such transformations affect both location and scale of the observations.
• Independence of latent location and scale parameters is a critical assumption.

In prior work on income dynamics (Gu and Koenker 2017) we have relaxed
this assumption and modeled location and scale of the log income process
jointly and finding a negative association. This entails bivariate gridding to
compute the NPMLE of the joint mixing distribution, but imposes no new
difficulties in principle. In many applications this approach will seem quite
natural, in others where scale is determined by variation in exogenous sample
size, it may be unnecessary.
• Multinomial selection as in dialysis center grading again raises the questions,

how is selection to be used and how should the loss function be structured?
• Posterior means and posterior tail probabilities are only two of many possible

criteria. An advantage of the empirical Bayes formulation we have proposed
is that ultimately the decision maker is confronted with the entire posterior
distribution for each individual or firm being evaluated and more sophisticated
forms of risk aversion can be contemplated.
• Ranking is inherently relative so the legal systems quest for absolute stan-

dards will seem quixotic in many circumstances. Raising awareness of the
uncertainties associated with rankings is a more feasible objective. We hope
that empirical Bayes methods can help achieve this.
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Figure 1. The estimate Ĝ and E[θ|yi, si] from the county level esti-
mates with the movers’ design. The solid line is the 45 degree line.

3. Some Comparative Data Analysis

Mogstad, Romano, Shaikh and Wilhelm, hereafter MRSW, have provided a very
valuable comparison of the ranking methods they have proposed in their 2020 paper
with our empirical Bayes procedures. We will try to draw out a few more implications
from these comparisons. We have already noted that the distinction between fixed
and random θi’s is perhaps not quite as essential as it might seem. More salient is
the way ranks are constructed and their precision evaluated by the two approaches.
Our empirical Bayes relies on an estimate, Ĝ, of the distribution of the latent θi’s to
construct posterior distributions of each θi, and thereby posterior means and posterior
tail probabilities. So the burden of the ranking exercise is borne by the way that the
observed Yi’s and their associated σi’s get baked into the “prior” Ĝ pie. In contrast,
MRSW employ resampling and multiple testing methods to control family-wise error
for the

(
n
2

)
pairs, resulting in a much more stringent selection criterion.

As an initial comparison, consider the “correlational” estimates of intergenerational
mobility and their standard errors from (Chetty, Friedman, Hendren, Jones, and
Porter 2018). Restricting to the top 100 commuting zones, as in (Mogstad, Romano,
Shaikh, and Wilhelm 2020), we see that these effect sizes are very precisely estimated:
point estimates are all in the interval, [0.325, 0.457], while standard errors are all the

interval [0.00035, 0.0025]. The consequence of this is that the NPMLE, Ĝ assigns
positive mass to almost all of the initial estimates, and posterior mean and posterior
tail probability rankings are essentially the same as just ranking the initial estimates.
FDR control is non-binding and selection under our EB approach would confidently
just take the top α commuting zones as revealed by the raw estimates.
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If we now consider the stricter “mover” design of (Chetty and Hendren 2018)
intended to identify causal effects of mobility we see that the point estimates are much
less precisely estimated since they are based on much smaller sample sizes. Focusing
on the most populous 100 commuting zones and counties, the NPMLE, illustrated in
Panel (a) of Figure 1 has only three distinct mass points. Unlike in the “correlational”
design where the Bayes rule did essentially no shrinkage, now there is considerable
shrinkage as shown in panel (b) of the figure that plots the raw Yi estimates against
their posterior means. With these considerably more noisy estimates, FDR control
becomes again relevant. For the commuting zone data, setting capacity constraint
at α = 0.10, and the FDR control parameter γ = 0.30 our posterior tail probability
criterion selects no commuting zones for “top 10” status. Similarly, the MRSW
procedure with α = 0.10 places all 100 CZs into an uninformative category covering
all possible ranks from 1 to 100. The situation changes somewhat when we consider
counties rather than CZs. Maintaining the capacity constraint at α = 0.10, Table 1
reports the counties selected into the top 10 at several different FDR control levels.
When γ is set at 0.30, our posterior tail probability rule selects four counties for the
top 10; tightening γ to 0.05 reduces the number selected to two. The more stringent
procedure of MRSW still produces intervals that cover the entire support of the ranks
from 1 to 100 for all the counties.

County y s γ = 0.05 γ = 0.1 γ = 0.2 γ = 0.3
Dupage 0.540 0.123 × × × ×
Bucks 0.348 0.176
Macomb 0.347 0.109 × × × ×
Hartford 0.325 0.182
Contra Costa 0.306 0.129 × ×
Ventura 0.306 0.181
Bergen 0.302 0.186
Pinellas 0.276 0.127 ×
Snohomish 0.251 0.154
Providence 0.239 0.153

Table 1. Selection of the top 10 counties based on the causal estimates
for the 100 most populous counties with a mover’s design in Chetty and
Hendren (2018). The order of the 10 counties appearing here is based
on their raw point estimates y.

In this more uncertain setting, we can also see how variances play a role in our
EB procedure. If we compare Bucks with Macomb, the two counties have almost
identical point estimates, however Macomb is more precisely estimated. Given our
Ĝ, or preferable a smoothed version, G̃ we can easily compute the whole posterior
distribution of θ updated for any observed pair of (y, s). For Macomb the updated
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Figure 2. The posterior distributions of θ for Macomb (left) and
Bucks (right) counties based on the kernel smoothed G̃ with biweight
kernel and bandwidth 0.10.

posterior puts most of its weight on the rightmost mode near 0.4. For Bucks, because
its point estimate is less precise most of its weight is attracted to the mass point near
0. This reduces the likelihood that Bucks will have a posterior tail probability for its
θ to be in the upper 90% quantile, and helps to explain why it is never selected in
Table 1 even though it is ranked second by observed yi’s. The posteriors for these
two counties are illustrated in Figure 2.

The foregoing comparisons illustrate why it is difficult to construct reliable rankings
and make credible selection decisions. The information congealed in the NPMLE, Ĝ,
can aid this process but it cannot help when the underlying data is too noisy, and it is
superfluous when the underlying data is too precise. In between these extremes there
is room for improvement in current ranking and selection practices. In some settings,
like the county level mobility example we have described, balancing FDR control
with reasonable capacity constraint using our empirical Bayes procedures may prove
useful. In high stakes situations like teacher evaluation even more stringent criterion
like that of MRSW may be preferred, at an inevitable cost of reduced power.
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