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1 Introduction

“I am prepared for the worst but hope for the best,” Benjamin Disraeli, 1st Earl of

Beaconsfield, UK Prime Minister.

In the canonical Bayesian persuasion model, a Sender designs an information

structure to influence the behavior of a Receiver. The Sender is Bayesian, and has

beliefs over the Receiver’s prior information as well as the additional information the

Receiver might acquire after observing the realization of the Sender’s signal. As a

result, the Sender’s optimal signal typically depends on the details of her belief about

the Receiver’s learning environment.

In many applications, however, the Sender may be concerned that her belief—

which we call a conjecture—is wrong. In such cases, the Sender may prefer to choose

a policy that is not optimal under her conjecture but that protects her well in the

event her conjecture turns out to be false.

In this paper, we propose a solution concept for the persuasion problem that

accounts for the uncertainty that the Sender may face over the Receiver’s learning

environment and that incorporates the Sender’s concern for the validity of her conjec-

ture. Specifically, we assume that the Sender discards all policies that do not provide

her with the optimal payoff guarantee when her conjecture is wrong. The payoff guar-

antee is computed conservatively by considering all possible learning environments for

the Receiver, without assuming that the Sender is last to speak or that the Receiver

will break indifferences in the Sender’s favor. We characterize properties of “robust

solutions” which we define as policies that maximize the Sender’s payoff under her

conjecture among those that provide the optimal payoff guarantee.

The following example (inspired by the “judge example” from Kamenica and

Gentzkow (2011)) illustrates our main ideas.

Example 1. The Receiver is a judge, the Sender is a prosecutor, and there are

three relevant states of the world, ω ∈ {i, m, f}, corresponding to a defendant being

innocent, guilty of a misdemeanor, or guilty of a felony, respectively. The prior µ0 is

given by µ0(i) = 1/2 and µ0(m) = µ0(f) = 1/4. The judge, who initially only knows

the prior distribution, will convict if her posterior belief that the defendant is guilty

(that is, that ω ∈ {m, f}) is at least 2/3. In that case, she also chooses a sentence.

Let x ∈ [x, x̄], with x > 0, be the range of the number of years in prison that the
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judge can select from. The maximal sentence x̄ is chosen if the judge’s posterior belief

that a felony was committed conditional on the defendant being guilty is at least 1/2.

Otherwise, the sentence is linearly increasing in the probability of the state f . The

prosecutor tries to maximize the expected sentence (with acquitting modeled as a

sentence of x = 0). Formally, if µ is the induced posterior belief of the judge, with

µ(ω) denoting the probability of state ω, the Sender’s payoff is equal to

V̂ (µ) = 1{µ(m)+µ(f)≥ 2
3}min{x̄, x+

2µ(f)

µ(f) + µ(m)
(x̄− x)},

where 1{a} is a function taking value 1 when the statement {a} is true and 0 otherwise.

The Bayesian-persuasion solution (henceforth, Bayesian solution) is as follows:

The prosecutor induces the posterior belief (µ(i), µ(m), µ(f)) = (1, 0, 0) with prob-

ability 1/4 and the belief (1/3, 1/3, 1/3) with probability 3/4 (by saying “innocent”

with probability 1/2 conditional on the state being i, and “guilty” in all other cases).

The expected payoff is (3/4)x̄.

In the above situation, the prosecutor’s conjecture is that she is the sole provider

of information. However, this could turn out to be false. For example, after the

prosecutor presents her arguments, the judge could call a witness. The prosecutor

might not know the likelihood of this scenario, the amount of information that the

witness has about the state, or the witness’ motives.1

When confronted with such uncertainty, it is common to consider the worst case:

Suppose that the witness knows the true state and strategically reveals information

to minimize the sentence. Under this scenario, the prosecutor cannot do better than

fully revealing the state. Indeed, if the prosecutor chose a disclosure policy yielding

a strictly higher expected payoff, the adversarial witness could respond by fully re-

vealing the state, lowering the prosecutor’s expected payoff back to the full-disclosure

payoff of (1/4)x+ (1/4)x̄.

The key observation of our paper is that the prosecutor—even if she is primarily

concerned about the worst-case scenario—should not fully disclose the state. Consider

the following alternative partitional signal: reveal the state “innocent,” and pool

together the remaining two states. Suppose that the witness is adversarial. When

it is already revealed that the defendant is innocent, the witness has no information

left to reveal. In the opposite case, because conditional on the state being m or f the

1The prosecutor may have beliefs over these events, in which case such beliefs are part of what
we called “the conjecture.” Our results allow for arbitrary beliefs, not necessarily that the Receiver
is uninformed. What is important is that the Sender does not fully trust her beliefs.
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prosecutor’s payoff is concave, the adversarial witness will choose to disclose the state.

Thus, in the worst case, the prosecutor’s expected payoff under this policy is the same

as under full disclosure. At the same time, the policy is superior if the prosecutor’s

conjecture turns out to be true. Indeed, if the prosecutor really is the sole provider of

information, then the alternative policy yields (1/2)x̄, which is strictly greater than

the full-disclosure payoff.

It may be tempting to conclude from similar reasoning that the prosecutor might

as well stick to the Bayesian solution, even if she is concerned about the worst-case

scenario. After all, if the witness discloses the state in case she is adversarial, then it

is irrelevant what signal the prosecutor selects, so shouldn’t she focus on maximizing

her payoff under her conjecture? The problem with that argument is that the most

adversarial scenario is not always that the witness fully discloses the state. In the

Bayesian solution, when the prosecutor induces the posterior (1/3, 1/3, 1/3), the

witness may instead reveal the state f with some small probability ε > 0. With

remaining probability, the judge’s posterior belief that the defendant is guilty will

then shift just below the threshold of 2/3. As a result, the judge acquits the defendant

with probability arbitrarily close to one, not just when the latter is innocent but also

when they are guilty. Thus, the payoff guarantee for the prosecutor from selecting

the Bayesian solution is in fact 0, implying that the Bayesian solution need not be

robust to misspecifications in the conjecture.

As is typically the case with non-Bayesian uncertainty, any policy chosen by the

prosecutor results in a range of expected payoffs generated by the set of all possible

scenarios. Thus, there are many ways in which any two information policies can

be compared. Our solution concept is based on two pragmatic premises that are

captured by a lexicographic solution. First, and foremost, the Sender would like

to secure the best possible payoff guarantee. She does so by dismissing any policy

that is not optimal in the “worst-case scenario.” Second, when there are multiple

policies that are worst-case optimal, the Sender acts as in the standard Bayesian

persuasion model. That is, she selects the policy that, among those that are worst-

case optimal, maximizes her expected payoff under her conjecture. We refer to the

case described by the conjecture as the base-case scenario. The base-case scenario

may correspond to the specification that the Sender considers most plausible (for

example, after calibrating on some data), focal, or a good approximation (obtained,

for example, by ignoring unlikely events).
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The combination of these two properties defines a robust solution: a policy that is

base-case optimal among those that are worst-case optimal.2 The alternative policy

described above is in fact a robust solution for the prosecutor. �

Our baseline model studies a generalization of the above example to arbitrary

Sender-Receiver games with finite action and state spaces. To ease the exposition,

we initially assume that the base-case scenario is that the Receiver does not have

any exogenous information other than that contained in the common prior (the case

considered in most of the literature).3 We capture the Sender’s concern about the

validity of her conjecture by introducing a third player, Nature, that may send an

additional signal to the Receiver. We assume that Nature can condition on the

Sender’s signal realization, reflecting the Sender’s uncertainty over the order in which

signals are observed.

Worst-case optimal policies maximize the Sender’s expected payoff when Nature’s

objective is to minimize the Sender’s payoff. Robust solutions maximize the Sender’s

base-case payoff among all worst-case optimal policies.

Despite the fact that robust solutions involve worst-case optimality, they exist

under standard conditions, and can be characterized by applying techniques similar to

those used to identify Bayesian solutions (e.g., concavification of the value function).

However, the economic properties of robust solutions can be quite different from those

of Bayesian solutions. Our main result identifies states that cannot appear together in

the support of any of the posterior beliefs induced by a robust solution. Separation of

such states is both necessary and sufficient for worst-case optimality. Robust solutions

thus maximize the same objective function as Bayesian solutions but subject to the

additional constraint that the induced posteriors have admissible supports.

The separation theorem also permits us to qualify in what sense more information

is disclosed under robust solutions than under standard Bayesian solutions: For any

Bayesian solution, there exists a robust solution that is either Blackwell more infor-

mative or not comparable in the Blackwell order. A naive intuition for why robustness

calls for more information disclosure is that, because Nature can always reveal the

2In Section 6, we show that the lexicographic nature of our solution concept is not essential for its
properties: If the Sender instead maximizes a weighted sum of her payoffs in the worst-case and the
base-case scenarios, then, under permissive regularity conditions, the solutions coincide with robust
solutions as long as the weight on the worst-case scenario is sufficiently large.

3In the single-Receiver case, the scenario in which the Receiver is uninformed happens to be the
best possible case for the Sender, that is, the base-case scenario is also the best-case scenario. Later
in the analysis, though, we allow for arbitrary conjectures.
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state, the Sender may opt for revealing the state herself. This intuition, however,

is not correct, as we already indicated in the example above. While fully revealing

the state is always worst-case optimal, it need not be a robust solution. In fact, if

Nature’s most adversarial response to any selection by the Sender is to fully disclose

the state, then any signal chosen by the Sender yields the same payoff guarantee and

hence is worst-case optimal—the Sender then optimally selects the same signal as in

the standard Bayesian persuasion model. Instead, the reason why robustness calls

for more information disclosure than standard Bayesian persuasion is that, if certain

states are not separated, Nature could push the Sender’s payoff strictly below what

the Sender would obtain by fully disclosing these states herself. This is the reason why

the Sender always reveals the state “innocent” in the robust solution in Example 1,

whereas the Bayesian solution sometimes pools that state with the other two.

When the Sender faces non-Bayesian uncertainty, it is natural for her to want

to avoid dominated policies. A dominated policy performs weakly (and sometimes

strictly) worse than some alternative policy that the Sender could adopt, no matter

how Nature responds. We show that at least one robust solution is undominated, and

that, provided that the conjecture satisfies a certain condition, all robust solutions

are undominated. Thus, robust solutions are desirable even if the Sender attaches

no significance to any particular conjecture; they can be used to generate solutions

that are worst-case optimal and undominated. The judge example above shows that

focusing on worst-case optimal solutions is not enough for this purpose: Full disclosure

is worst-case optimal but dominated.

While we focus on a simple model to highlight the main ideas, we argue in Section 4

that our approach and results extend to more general persuasion problems, and can

accommodate various assumptions about the Sender’s conjecture and the worst case.

With a single Receiver, we can allow the Sender to conjecture that the Receiver

observes a particular exogenous signal that is informative about her type or the

state; the non-Bayesian uncertainty is created by the possibility that the actual signal

observed by the Receiver is different from the one conjectured by the Sender.

Our results also generalize to the case of multiple Receivers under the assumption

that the Sender uses a public signal. In the standard persuasion framework, it is

typical to assume that the Sender not only controls the information that the Receivers

observe but also coordinates their play on the strategy profile most favorable to

her, in case there are multiple profiles consistent with the assumed solution concept

5



and the induced information structure.4 In this case, a policy is worst-case optimal

if it maximizes the Sender’s payoff under the assumption that Nature responds to

the information provided by the Sender by revealing additional information to the

Receivers (possibly in a discriminatory fashion) and coordinating their play (in a way

consistent with the assumed solution concept) to minimize the Sender’s payoff. In

contrast, if the Sender’s conjecture turns out to be correct, the Receivers’ exogenous

information and the equilibrium selection are the ones consistent with the Sender’s

beliefs. As a result, robust solutions are a flexible tool that can accommodate various

assumptions about the environment. For example, a Sender may conjecture that play

will constitute a Bayes Nash equilibrium under the information structure induced by

her signal. However, she may first impose a “robustness test” to rule out policies that

deliver a suboptimal payoff in the worst Bayes correlated equilibrium. For any given

specification of the worst-case and base-case Sender’s payoffs, our separation theorem

characterizes the resulting robust solutions.

The rest of the paper is organized as follows. We review the related literature next.

In Section 2, we present the baseline model, and then in Section 3, we derive the main

properties of robust solutions. Section 4 extends the model and the results to general

persuasion problems, and Section 5 illustrates the results with applications. Finally,

in Section 6, we discuss how our solution concept relates to alternative notions of

robustness. Most proofs are collected in Appendix A. The Online Appendix contains

supplementary results, most notably a discussion of a version of our model in which

Nature chooses her signal simultaneously with the Sender, rather than conditioning

on the Sender’s signal realization.

Related literature. Our paper contributes to the fast-growing literature on

Bayesian persuasion and information design (see, among others, Bergemann and Mor-

ris, 2019, and Kamenica, 2019 for surveys). Several recent papers adopt a robust

approach to the design of the optimal information structure. Inostroza and Pavan

(2020), Morris et al. (2020), Ziegler (2020), and Li et al. (2021) focus on the adver-

sarial selection of the continuation strategy profile of the Receivers. Babichenko et al.

(2021) characterize regret-minimizing signals for a Sender who does not know the Re-

ceiver’s utility function. Most closely related are Hu and Weng (2021) and Kosterina

4Of course, this issue is already present in the single-Receiver case when the Receiver is indifferent
between multiple actions; however, with a single Receiver, this is typically a non-generic phenomenon
which can be avoided at an arbitrarily low cost for the Sender.
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(2021) who study signals that maximize the Sender’s payoff in the worst-case scenario,

when the Sender faces uncertainty over the Receivers’ exogenous private information.

Hu and Weng (2021) observe that full disclosure maximizes the Sender’s payoff in the

worst-case scenario, when the Sender faces full ambiguity over the Receivers’ exoge-

nous information (as in our solution concept). They also consider the opposite case of

a Sender that faces small local ambiguity over the Receivers’ exogenous information

and show robustness of Bayesian solutions in this case. Kosterina (2021) considers a

setting in which the Sender faces ambiguity over the Receiver’s prior. This is similar

to the version of our model (analyzed in the Online Appendix) in which the Sender

and Nature move simultaneously; however, an important difference is that Nature in

Kosterina’s model chooses the Receiver’s prior, while Nature in our model chooses a

distribution of posteriors induced from a fixed (and known) prior.5

Our results are different from those in any of the above papers, and reflect a

different approach to the design of the optimal signal. Once the Sender identifies all

signals that are worst-case optimal, she looks at their performance under the base-case

scenario (as in the canonical Bayesian persuasion model). In particular, our solution

concept reflects the idea that there is no reason for the Sender to fully disclose the state

if she can benefit by withholding some information under the conjectured scenario

while still guaranteeing the same worst-case payoff. Our lexicographic approach to

the assessment of different information structures is in the same spirit of the one

proposed by Börgers (2017) in the context of robust mechanism design.

The literature on Bayesian persuasion with multiple Senders is also related, in

that Nature is effectively a second Sender in the persuasion game that we study.

Gentzkow and Kamenica (2016, 2017) consider persuasion games in which multiple

Senders move simultaneously and identify conditions under which competition leads

to more information being disclosed in equilibrium. Board and Lu (2018) consider

a search model and provide conditions for the existence of a fully-revealing equi-

librium. Au and Kawai (2018) study multi-Sender simultaneous-move games where

each Sender discloses information about the quality of her product (with the qualities

drawn independently across Senders). They show that, as the number of Senders

5The above papers consider robustness for the Sender. Nikzad (2021) studies a model with a
non-Bayesian Receiver who takes an action that guarantees the highest possible payoff guarantee.
Beyond information design, other papers look at the consequences of the designer’s ambiguity over
the agents’ information sources; for example, Carroll (2019) and Du and Brooks (2020) consider
informationally-robust design of trading mechanisms.
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increases, each Sender discloses more information, with the information disclosed by

each Sender converging to full disclosure as the number of Senders goes to infinity.

Cui and Ravindran (2020) consider persuasion by competing Senders in zero-sum

games and identify conditions under which full disclosure is the unique outcome.6

Li and Norman (2021), and Wu (2018), instead, analyze games in which Senders

move sequentially and, among other things, identify conditions under which (a) full

information revelation can be supported in equilibrium and (b) silent equilibria (that

is, equilibria in which all Senders but one remain silent) sustain all equilibrium out-

comes. These papers focus on equilibrium outcomes under competition, and not on

robustness of the policy chosen by a single Sender. A key element in Li and Norman

(2021)’s equilibrium analysis is the optimality for each Sender of inducing “stable be-

liefs,” that is, beliefs that are not further split by downstream Senders. The current

paper shows that imposing a zero-sum payoff assumption generates a sharp implica-

tion on the structure of stable beliefs in terms of states that are separated under any

of the induced posteriors.

Kolotilin et al. (2017), Laclau and Renou (2017), and Guo and Shmaya (2019),

instead, consider persuasion of privately informed Receivers. In Kolotilin et al. (2017),

the Receiver’s private information is about a payoff component different from the one

partially revealed by the Sender’s signal. In Laclau and Renou (2017), the Receiver

has multiple priors and max-min preferences. In Guo and Shmaya (2019), the Receiver

is privately endowed with a signal satisfying the monotone likelihood ratio property,

and the optimal policy induces an interval structure. Contrary to the present paper,

in that literature, the distribution of the Receivers’ private information (for a given

prior) is known to the Sender.

2 Model

A payoff-relevant state ω is drawn from a finite set Ω according to a distribution

µ0 ∈ ∆Ω that is common knowledge between a Sender and a Receiver. The Receiver

has a continuous utility function u(a, ω) that depends on her action a, chosen from

a compact set A, and the state ω. Let A?(µ) := argmaxa∈A
∑

Ω u(a, ω)µ(ω) denote

6In the Stackelberg version of the zero-sum game between the competing designers, Cui and
Ravindran (2020) assume that the follower cannot condition its information on the realization of
the leader’s signal. This scenario corresponds to the version of our model analyzed in the Online
Appendix.
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the set of actions that maximize the Receiver’s expected payoff when her posterior

belief over the state is µ ∈ ∆Ω. The Sender has a continuous utility function v(a, ω).

She chooses an information structure q : Ω → ∆S that maps states into probability

distributions of signal realizations in some finite signal space S: We denote by q(s |ω)

the probability of signal realization s ∈ S in state ω. Hereafter, we abuse terminology

and refer to q as the Sender’s signal.

The Sender faces uncertainty about the exogenous sources of information the Re-

ceiver may have access to, when learning about the state. We capture this uncertainty

by allowing Nature to disclose additional information to the Receiver that can be cor-

related with both the state and the realization of the Sender’s signal. That is, in the

eyes of the Sender, Nature chooses an information structure π : Ω × S → ∆R that

maps (ω, s) ∈ Ω×S into a distribution over a set of signal realizations in some finite

signal space R. We denote by π(r |ω, s) the probability of signal realization r ∈ R
when the state is ω and the realization of the Sender’s signal is s. The possibility

for Nature to condition her signal on the realization of the Sender’s signal reflects

the Sender’s concern that the Receiver may be able to acquire additional information

after seeing the realization of her signal.

Hereafter, we treat the signal spaces S and R as exogenous and assume that they

are subsets of some sufficiently rich space. Because Ω is finite, it will become clear

that, under our solution concept, the assumption of finite S and R is without loss

of optimality for either the Sender or Nature. We denote by Q and Π the set of all

feasible signals for the Sender and Nature, respectively. Fixing some set of signals,

for any initial belief µ ∈ ∆Ω, we denote by µx ∈ ∆Ω the posterior belief induced by

the realization x of these signals, where x could be a vector. In particular, we denote

by µs,r0 ∈ ∆Ω the posterior belief over Ω that is obtained starting from the prior belief

µ0 and conditioning on the realization (s, r) of the signals q and π.

In the standard Bayesian persuasion model, the Sender has a belief about the

Receiver’s exogenous information and the way the Receiver plays in case of indif-

ference. We refer to this belief as the Sender’s conjecture. We denote by V̂ (µ) the

Sender’s expected payoff when her induced posterior belief µ is paired with Nature’s

disclosure and the Receiver adopts the conjectured tie-breaking rule. To simplify the

exposition, we assume in this section that the Sender’s conjecture is that the Receiver

has access to no information other than the one contained in the prior and, in case of

indifference, chooses the action most favorable to the Sender, as in the baseline model
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of Kamenica and Gentzkow (2011). (This assumption is relaxed in Section 4, where

we show that all our results extend to general conjectures.) Under this simplifying

assumption, we have that

V̂ (µ) := max
a∈A?(µ)

∑
ω∈Ω

v(a, ω)µ(ω).

The Bayesian persuasion problem is to maximize

v̂(q) :=
∑

ω∈Ω, s∈S

V̂ (µs0)q(s|ω)µ0(ω)

over all signals q ∈ Q. We refer to the function v̂(·) as the base-case payoff.

In contrast, if the Sender is concerned about the robustness of her information

policy, she may evaluate her expected payoff from choosing q as

v̂(q) := inf
π∈Π

{ ∑
ω∈Ω, s∈S

(∑
r∈R

V (µs,r0 )π(r|ω, s)

)
q(s|ω)µ0(ω)

}
,

where

V (µ) := min
a∈A?(µ)

∑
ω∈Ω

v(a, ω)µ(ω).

We refer to v̂(·) as the worst-case payoff. The “worst case” refers to the scenario in

which Nature responds to the Sender’s choice of signal q by selecting a signal that

minimizes the Sender’s payoff, as reflected by the infimum over all signals π ∈ Π.

Moreover, in case the Receiver is indifferent between several actions, Nature breaks

the ties against the Sender, as reflected by the definition of V .

3 Robust solutions

We now define robust solutions and derive their properties.

Definition 1. A signal q ∈ Q is worst-case optimal if it maximizes the worst-case

payoff v̂ over the set of all signals Q.

We let W ⊂ Q denote the set of worst-case optimal signals for the Sender (as we

show below, the set is non-empty).

Definition 2. A signal q ∈ Q is a robust solution if it maximizes the base-case payoff

v̂ over the set of all worst-case optimal signals W .

As foreshadowed in the Introduction, the definition of a robust solution reflects the

Sender’s lexicographic attitude towards the uncertainty she faces. First, the Sender
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seeks a signal that is worst-case optimal, i.e., that is not outperformed by any other

signal, in case Nature plays adversarially. Second, if there are multiple signals that

pass this test, the Sender seeks one among them that maximizes her payoff in case her

conjecture is correct. In short, a robust solution is a signal that is base-case optimal

among those that are worst-case optimal.

Because the Sender’s payoff depends only on the induced posterior belief, it is

natural to optimize directly over distributions of posterior beliefs (rather than signals).

For any µ ∈ ∆Ω, let

V̂ (µ) := inf
π: Ω→∆R

{ ∑
ω∈Ω, r∈R

V (µr)π(r|ω)µ(ω)

}
denote the expected payoff to the Sender conditional on inducing a posterior belief

µ under the worst-case scenario, that is, when Nature responds to the induced belief

µ by minimizing the Sender’s payoff with the choice of π (and the Receiver breaks

ties adversarially). Note that π no longer depends on the realization of the Sender’s

signal because the function V̂ (µ) is defined at the interim stage, conditional on the

Sender inducing some belief µ with her signal realization.

Next, for any ω ∈ Ω, let δω denote the Dirac distribution assigning measure one

to the state ω and, for any induced posterior µ ∈ ∆Ω, denote by

V full(µ) :=
∑
ω∈Ω

V (δω)µ(ω)

the Sender’s payoff when, starting from µ, the state is fully disclosed to the Receiver

(hereafter, the “full-disclosure” payoff).

Lemma 1. Let W ⊂ ∆∆Ω denote the set of all distributions ρ over posterior beliefs

that satisfy �
V̂ (µ)dρ(µ) = V full(µ0), (WC)

and Bayes plausibility �
µdρ(µ) = µ0. (BP)

A signal q ∈ Q is a robust solution if and only if the distribution over posterior beliefs

ρq ∈ ∆∆Ω that q induces maximizes
�
V̂ (µ)dρ(µ) over W.

Lemma 1 is intuitive. Since Nature can always disclose the state, the Sender’s pay-

off in the worst-case scenario is upper bounded by the full-disclosure payoff. Clearly,

this upper bound can be achieved by the Sender disclosing the state herself. Hence,
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a signal q is worst-case optimal (i.e., q ∈ W ) if and only if v̂(q) = V full(µ0). In

particular, full disclosure belongs to W . The lemma then expresses this observation

in terms of distributions of posterior beliefs, using the property that a distribution

can be induced by some signal if and only if it is Bayes-plausible, that is, it satisfies

(BP). Hereafter, we abuse terminology and call ρRS a robust solution if it maximizes�
V̂ (µ)dρ(µ) over all Bayes-plausible distributions ρ ∈ ∆∆Ω satisfying (WC), with

no further reference to the underlying signal q.

It is useful at this point to contrast a robust solution with a Bayesian-persuasion

solution (henceforth, Bayesian solution; see Kamenica and Gentzkow (2011)).

Definition 3. A signal qBP is a Bayesian solution if it maximizes the base-case

payoff v̂ over the set of all signals Q. This is the case if and only if the distribution

ρBP ∈ ∆∆Ω over posterior beliefs induced by qBP maximizes
�
V̂ (µ)dρ(µ) over all ρ

satisfying (BP).

By Lemma 1, the only difference between a Bayesian solution and a robust solution

is that a robust solution must additionally satisfy constraint (WC).

While the result in Lemma 1 offers a useful perspective, to compute V̂ (µ), one

must solve a Bayesian persuasion problem with µ as a prior. This problem con-

sists in choosing a distribution over posterior beliefs averaging out to µ to mini-

mize the Sender’s expected payoff, with the latter given by V (η) for any posterior

η ∈ ∆Ω induced by Nature. Let lco(V ) denote the lower convex closure of V , that

is, lco(V ) = −co(−V ), where the concave closure co(·) of a function is defined as the

lowest concave upper bound, as in Kamenica and Gentzkow (2011). It follows that

V̂ (µ) = lco(V )(µ). Note that V̂ (µ) is a convex function that coincides with V (µ) at

Dirac deltas µ = δω. Computing lco(V )(µ) can be difficult, especially when the state

space is large. The next result shows an alternative characterization of W .

For any function V : ∆Ω → R, and Y ⊆ ∆Ω, let V |Y denote a function defined

on the domain Y that coincides with V on Y . Given any µ ∈ ∆Ω, let supp(µ) denote

the support of µ, that is, the smallest subset of Ω with measure one under µ.

Proposition 1. Let

F := {B ⊆ Ω : V |∆B ≥ V full|∆B}.

Then,

W = {ρ ∈ ∆∆Ω : ρ satisfies (BP) and, ∀µ ∈ supp(ρ), supp(µ) ∈ F}.
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Proposition 1 states that a Bayes-plausible distribution ρ ∈ ∆∆Ω is worst-case

optimal if and only if the support of any of the posteriors induced by ρ is “admissible.”

Moreover, the proposition describes exactly what the admissible sets are: The set

B ⊆ Ω is admissible if (and only if) any posterior supported on B gives the Sender

an expected payoff no smaller than the one the Sender could obtain, starting from

µ, by fully disclosing the state. Informally, B is admissible if the Sender prefers

obfuscation to transparency on that set of states. Importantly, this condition is

expressed effectively in terms of the primitives of the model (apart from solving

for the Receiver’s best-response correspondence), and checking it does not require

computing the lower convex closure of V .

To gain intuition, fix a posterior belief µ ∈ ∆Ω in the support of the belief

distribution chosen by the Sender. Then, for any belief η ∈ ∆Ω with supp(η) ⊆
supp(µ), starting from µ, Nature can induce the belief η with positive probability,

and disclose the state with remaining probability. Thus, if there exists an η such that

V (η) < V full(η), then by inducing µ, the Sender exposes herself to a payoff strictly

below what she would obtain by revealing the state. The only way for the Sender

to avoid that exposure is to separate some states in the support of µ so that Nature

can no longer induce η. Conversely, if no such η exists for which V (η) < V full(η),

then, conditional on µ, Nature minimizes the Sender’s payoff by fully disclosing the

states in the support of µ. Because the Sender’s payoff under the worst-case scenario

is upper bounded by the payoff she obtains under full disclosure (by Lemma 1), any

such µ can be part of a worst-case optimal distribution.

This logic is illustrated in Figure 3.1 where, for simplicity, we consider a binary

state space. The solid line depicts the payoff function V , while the dashed line

(connecting the payoffs from inducing degenerate beliefs) represents the full-disclosure

payoff V full. Because there exists a belief η at which V lies strictly below V full, worst-

case optimality rules out inducing any posterior belief whose support contains the

support of η (in the figure, this means any belief in the interior of the simplex). To

see this, suppose, for example, that the Sender induces the posterior µ (see Figure

3.1) that is part of the Bayesian solution. Then, conditional on µ realizing, Nature

can split µ into η and a set of Dirac deltas. Because V (η) < V full(η), and because V

and V full always coincide at degenerate beliefs, the resulting expected payoff for the

Sender is strictly below her full-disclosure payoff. Hence, µ cannot be induced under

any policy generating the optimal payoff guarantee. A similar argument applies to
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any other posterior belief whose support contains the support of η.

The example also illustrates the convenience of Proposition 1. To identify worst-

case optimal policies, one does not actually need to compute lco(V ), which can be

difficult with more than two states. The existence of a belief η for which V (η) <

V full(η) suffices to rule out all distributions ρ ∈ ∆∆Ω that generate beliefs whose

supports contain the support of η.

Figure 3.1: Illustration of Proposition 1

The following theorem, which is our main characterization result, then follows

directly from what we established above.

Theorem 1 (Separation Theorem). ρRS ∈ ∆∆Ω is a robust solution if and only if it

maximizes �
V̂ (µ)dρ(µ)

over all distributions ρ ∈ ∆∆Ω satisfying (BP) and such that

supp(ρ) ⊆ ∆FΩ := {µ ∈ ∆Ω : supp(µ) ∈ F}.

Theorem 1 implies that the only difference between a Bayesian solution and a

robust solution is that the latter must satisfy an additional constraint on the sup-

ports of the posterior beliefs it induces: A robust solution can only attach positive
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probability to posterior beliefs supported on “admissible” subsets of the state space,

as described by the collection F .

For illustration, consider Example 1 from the Introduction. First, note that a

robust solution cannot induce a posterior belief that mixes the state i with some other

state from {m, f}; indeed, by Theorem 1, such supports are not admissible because

any posterior belief that puts sufficiently high (but not full) probability on the state

i yields a zero payoff for the Sender, which is strictly worse than the full-disclosure

payoff. Second, states m and f need not be separated because, when restricted to

beliefs supported on {m, f}, the Sender’s payoff V is concave, and hence lies above

the linear function V full with which it coincides at the end points (degenerate beliefs).

Thus, we have that F = {{i}, {m}, {f}, {m, f}}. Theorem 1 then predicts that a

robust solution must reveal the state i, and that it maximizes the Sender’s expected

payoff V̂ conditional on states {m, f}. Because V̂ is concave on ∆{m, f}, it is

optimal not to reveal any information conditional on these states. This confirms our

assertion that revealing i and pooling m and f is a robust solution for Example 1.

Theorem 1 yields a number of direct corollaries that we describe next.

Corollary 1 (Existence). A robust solution exists.

Indeed, the set W of worst-case optimal distributions is closed, and thus compact

(this follows because the collection F is closed with respect to taking subsets, i.e., if

B ∈ F , then all subsets of B also belong to F). It is non-empty because it contains

a distribution corresponding to full disclosure of the state. Finally, the function V̂ is

upper semi-continuous, so existence follows from Weierstrass Theorem.

It is well-known that requiring exact worst-case optimality often precludes exis-

tence of solutions in related models. Indeed, we show in the Online Appendix that

existence may fail when Nature selects a signal simultaneously with the Sender. How-

ever, when Nature can condition on the realization of the Sender’s signal, existence

is guaranteed by the fact that Nature’s optimal response to each signal realization

convexifies the Sender’s value function, hence making it continuous.

Hereafter, we will say that states ω and ω′ are separated by a distribution ρ ∈ ∆∆Ω

if there is no posterior µ ∈ supp(ρ) such that {ω, ω′} ⊆ supp(µ). Intuitively, given

any posterior belief µ induced by ρ, the Receiver never faces any uncertainty between

ω and ω′.
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Corollary 2 (State separation). Suppose that there exists λ ∈ (0, 1) and ω, ω′ ∈ Ω

such that V (λδω + (1 − λ)δω′) < λV (δω) + (1 − λ)V (δω′). Then any robust solution

must separate the states ω and ω′.

Under the assumptions of Corollary 2, F does not contain the set {ω, ω′}. Thus,

by Theorem 1, a worst-case optimal distribution cannot induce posterior beliefs that

have both of these states in their support. Note that the assumption is that there

exists some belief supported on {ω, ω′} under which full disclosure is strictly better

for the Sender, while the conclusion says that a robust solution cannot induce any

posterior belief that puts strictly positive mass on both ω and ω′.

In the special case when there are two states, Corollary 2 exhausts all possibilities.

Corollary 3 (Characterization for binary-state case). Suppose that Ω = {ωL, ωH},
and V (p) is the Sender’s payoff when the posterior probability of state ωH is p. Then,

� if for some p, V (p) < (1 − p)V (0) + pV (1), then full disclosure is the unique

robust solution;

� otherwise, the set of robust solutions coincides with the set of Bayesian solutions.

For a quick application of Corollary 3, consider the original judge example of

Kamenica and Gentzkow (2011): For low posterior probabilities p > 0 of the de-

fendant being guilty, the prosecutor’s payoff is zero, while the prosecutor’s expected

payoff would be strictly positive under full disclosure at p. Thus, full disclosure is the

unique robust solution for the prosecutor in the original judge example of Kamenica

and Gentzkow (2011).

Beyond the binary-state case, by Corollary 2, full disclosure is the unique robust

solution in any problem for which the separation condition holds for any pair of states.

Similarly, we can extend the conditions under which robust solutions coincide with

Bayesian solutions.

Corollary 4 (Robust and Bayesian solutions coincide). All Bayes-plausible distribu-

tions are worst-case optimal if, and only if, Ω ∈ F ; then, the set of robust solutions

coincides with the set of Bayesian solutions.

For an illustration of Corollary 4, consider the baseline model of Bergemann et

al. (2015): A monopolistic seller quotes a price to a buyer who is privately informed

about her value ω for the seller’s good. A Sender reveals information to the seller
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(who acts as a Receiver) about ω. When the Sender maximizes the buyer’s surplus,

Corollary 4 applies. Because the buyer’s surplus is 0 at all degenerate beliefs, we

have that V full(µ) = 0 and V (µ) ≥ 0 for all µ. Thus, Ω ∈ F , and the optimal signal

identified by Bergemann et al. (2015)—although quite complicated—is in fact robust.

If the Sender instead maximizes the seller’s profit, then Corollary 2 applies to any

pair of states: If ω and ω′ are not separated by the Sender, Nature can ensure that the

seller does not extract all the surplus. Thus, in this case, F only contains singletons,

and full disclosure is the unique robust solution.

In all the examples discussed thus far, a robust solution discloses weakly more

information than a Bayesian solution. To see whether this property holds generally,

we use Blackwell dominance to formalize the idea that one distribution of posteriors

is more informative than another one.7 We start with a useful observation.

Corollary 5 (Worst-case optimality preserved under more information disclosure).

W is closed under Blackwell dominance: If ρ′ ∈ W, and ρ Blackwell dominates ρ′,

then ρ ∈ W.

The conclusion follows directly from Theorem 1 by noting that if B ∈ F , then

any subset of B must also be in F . An increase in the Blackwell order on ∆∆Ω can

only make the supports of posterior beliefs smaller, so such an increase cannot take

a distribution out of the set W .

Suppose that there exists a Bayesian solution that Blackwell dominates a robust

solution. Then, by Corollary 5, that Bayesian solution must be worst-case optimal,

and hence it is also a robust solution. Therefore, we obtain the following conclusion:

Corollary 6 (Comparison of informativeness). Take any Bayesian solution ρBP .

Then, there exists a robust solution ρRS such that either ρRS and ρBP are not com-

parable in the Blackwell order, or ρRS Blackwell dominates ρBP .

Corollary 6 provides a formal sense in which (maximally informative) robust solu-

tions provide (weakly) more information than Bayesian solutions.8 This is a relatively

weak notion—it is certainly possible that the two solutions are not comparable in the

7Formally, we say that ρ ∈ ∆∆Ω Blackwell dominates ρ′ ∈ ∆∆Ω if, for all convex functions
V : ∆Ω→ R,

�
V (µ)dρ(µ) ≥

�
V (µ)dρ′(µ). Equivalently, ρ is a mean-preserving spread of ρ′.

8By a “maximally informative” solution we mean a solution that is not Blackwell dominated by
any other robust solution. Note that without that qualifier the statement is obviously false. For
example, when both V and V̂ are affine, all distributions are both robust and Bayesian solutions
and hence there exist Bayesian solutions that strictly Blackwell dominate some robust solutions.
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Blackwell order. However, it can never happen that a Bayesian solution strictly Black-

well dominates a maximally informative robust solution. Whenever a roust solution

ρRS is strictly more informative than the Bayesian solution ρBP , Theorem 1 implies

that ρRS separates states that are not separated under ρBP .

While the result in Corollary 6 is intuitive, we emphasize that it is not trivial.

Because Nature can only provide additional information, one may expect more infor-

mation to be disclosed overall under robust solutions than under Bayesian solutions.

However, Corollary 6 says that the Sender herself will provide more (or at least not

less) information than she would in the Bayesian-persuasion model. Second, we show

in the Online Appendix that the conclusion of Corollary 6 actually fails in the version

of the model in which Nature chooses a signal simultaneously with the Sender.

Corollary 6 bears some resemblance to the comparative statics in Li and Norman

(2021) of adding another sender. They show that, in general, adding a new sender

who speaks after the existing senders need not increase the information that is passed

on to the Receiver; our result shows that adding a new sender (Nature) to the end of

the line never induces the Sender to reduce the informativeness of her signal as long

as the preferences of such a new sender are opposite to hers.

Finally, we show that robust solutions can be found using the concavification

technique (see Aumann and Maschler, 1995, and Kamenica and Gentzkow, 2011).

Indeed, because the state-separation condition applies posterior by posterior, we can

incorporate the constraints into the objective function V̂ by modifying its value on

∆c
FΩ := ∆Ω \ ∆FΩ (that is, on the set of posteriors not supported in F) to be a

sufficiently low number. Formally, let vlow := minω∈Ω V̂ (δω)− 1, and define9

V̂F(µ) :=

V̂ (µ) if µ ∈ ∆FΩ and V̂ (µ) ≥ vlow,

vlow otherwise.
(3.1)

Observe that posteriors µ with V̂ (µ) ≤ vlow are never induced in either a robust or

a Bayesian solution because a strictly higher expected value for the Sender could be

obtained by decomposing such µ into Dirac deltas, by the definition of vlow. There-

fore, Bayesian solutions under the objective function V̂F correspond exactly to ro-

bust solution with the original objective, by Theorem 1. Moreover, we have defined

9Note that, in general, V̂ (µ) ≥ vlow is not implied by µ ∈ ∆FΩ. The latter condition guarantees
that V̂ (µ) = V full(µ). However, it is possible that V full(µ) < vlow. This is because the Receiver

breaks ties adversarially under V full(µ) but favorably under V̂ (µ).
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the modification V̂F of V̂ so that it remains upper-semi-continuous because the set

{µ ∈ ∆Ω : supp(µ) ∈ F and V̂ (µ) ≥ vlow} is closed.

Corollary 7 (Concavification). A Bayes-plausible distribution ρ ∈ ∆∆Ω is a robust

solution if and only if
�
V̂F(µ)dρ(µ) = co(V̂F)(µ0).

Corollary 7 implies that the problem of finding a robust solution can be reduced

to finding a Bayesian solution with a modified objective function. As a result, robust

solutions inherit many of the properties of Bayesian solutions. For example, Kamenica

and Gentzkow (2011) show that there always exists a Bayesian solution that uses at

most as many signal realizations as there are states, implying in particular that the

restriction to finite signal spaces is without loss of optimality for the Sender.

Corollary 8 (Support). There always exists a robust solution ρ with |supp(ρ)| ≤ |Ω|.

4 Extensions

By direct inspection of the proofs, all the results of the previous section rely only on

the following properties of the reduced-form payoffs:

� V : ∆Ω→ R is lower semi-continuous;

� V̂ : ∆Ω→ R is the lower convex closure of V .10

� V̂ : ∆Ω→ R is upper semi-continuous.

By Lemma 1, robust solutions can be defined in terms of these reduced-form payoff

functions. Because the specific micro-foundation for these payoffs plays no role, the

conclusions established in the previous section extend to any primitive environment

that generates reduced-form payoffs satisfying the above properties.

4.1 General conjectures in the single-Receiver model

In the baseline model, the Sender conjectures that the Receiver does not have any

information other than that contained in the common prior. Moreover, she conjec-

tures that, in case of indifference, the Receiver will resolve the indifference in her

10Because V̂ is the lower convex closure of a lower semi-continuous function, it is also continuous;
this follows from the so-called GKR Theorem (see Gale et al., 1968), which states that any convex
function on a closed convex bounded polytope is upper semi-continuous.
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favor. Suppose, instead, that the Sender conjectures that Nature will respond to her

disclosure with some signal π0 : Ω ×∆Ω → ∆R. That is, when the Sender’s signal

realization induces a posterior belief µ, the Sender conjectures that the Receiver will

observe an additional signal realization r drawn from R with probability π0(r|ω, µ).

The dependence of π0(·|ω, µ) on µ captures the possibility that the additional in-

formation collected by the Receiver may depend on the Sender’s signal realization.11

Moreover, the Sender conjectures that the Receiver will use a (potentially) stochastic

and belief-dependent tie-breaking rule ξ0 : ∆Ω→ ∆A, where ξ0(·|µ′) is a probability

distribution over the Receiver’s actions when the final posterior belief is µ′, with the

property that ξ0(A?(µ′)|µ′) = 1, for any µ′ ∈ ∆Ω. The Sender’s expected payoff from

inducing the posterior µ under her conjecture is then equal to

V̂ (µ) =
∑

ω∈Ω, r∈R

(�
A

v(a, ω)dξ0(a|µr)
)
π0(r|ω, µ)µ(ω). (4.1)

Provided that V̂ is upper semi-continuous, all the results from Section 3 continue

to hold. A special case is when the Sender conjectures that the Receiver will play

favorably to her when indifferent, and that the additional information the Receiver

has access to is invariant to the realization of the Sender’s signal. This is true,

for example, when the Receiver observes the realization of such an additional signal

before observing the realization of the Sender’s signal. Such conjectures are captured

by π0(r|ω, µ) that do not depend on µ. In Section 5, we characterize robust solutions

in an example from Guo and Shmaya (2019) featuring a privately-informed Receiver

where the Sender’s conjecture has these precise properties.

4.2 Multiple Receivers

In the baseline model, the Sender faces a single Receiver. Our approach extends to the

case of multiple Receivers under the assumption that the Sender is restricted to public

signals. Under such an assumption, many persuasion problems can be characterized

in terms of reduced-form payoffs satisfying the properties discussed above.

With multiple Receivers, however, robustness to strategy selection (corresponding

to tie-breaking in the single-Receiver case) can be just as important as robustness

to additional information. In the Bayesian-persuasion literature, it is customary to

11The above formulation implicitly assumes that such additional information does not depend on
the specific signal q used by the Sender to generate the posterior µ. This assumption permits us to
formulate the Sender’s problem as choosing a distribution of posterior beliefs rather than a signal.
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assume that the Sender is able to coordinate the Receivers on the strategy profile most

favorable to her, among those consistent with the assumed solution concept.12 Under

robust design, instead, the Sender may not trust that the Receivers will play favorably

to her. Instead, she may seek a signal that yields the maximal payoff guarantee when

Nature provides additional information to the Receivers and coordinates them on the

strategy profile most adversarial to her (among those consistent with the assumed

solution concept).

The case of public disclosures by Nature. Consider first the case in

which Nature is expected to disclose the same information to all the Receivers. The

Receivers are assumed to share a common prior µ0. Given the common posterior

µs0 induced by the Sender’s signal realization s, Nature reveals an additional public

signal r to the Receivers drawn from a distribution π(·|ω, µs0) ∈ ∆R. Given the

final (common) posterior µs,r0 induced by the combination of the realizations of the

Sender’s and Nature’s signals, the Receivers play some Bayesian game. For any

common posterior µ ∈ ∆Ω, denote by EQ?(µ) the set of strategy profiles that are

consistent with the assumed solution concept and the common posterior µ. Finally,

let ξ(·|µ) ∈ ∆EQ?(µ) denote a (possibly stochastic) rule describing the selection of a

strategy profile fromEQ?(µ).

In this setting, V (µ) represents the Sender’s expected payoff when, given the

common posterior µ, Nature induces the Receivers to play according to the selection

ξ(·|µ) ∈ ∆EQ?(µ) that is least favorable to the Sender. Under regularity conditions,

the function V is lower semi-continuous. The function V̂ is then the Sender’s expected

payoff when, in addition to coordinating the Receivers to play adversarially, Nature

also discloses additional (public) information to the Receivers so as to minimize the

Sender’s expected payoff. As in the baseline model, we then have V̂ = lco(V ).

The Sender’s conjecture is that the Receivers observe exogenous public signals

with distribution π0(·|ω, µ), and that, for any final common posterior µ′, they play

according to a selection rule ξ0(·|µ′) ∈ ∆EQ?(µ′). The combination of π0 and ξ0

defines the Sender’s conjecture. Given such a conjecture, the Sender’s expected payoff

from inducing the common posterior µ is equal to V̂ (µ). Provided that this function

is upper semi-continuous, all the results from the previous section continue to hold.

12Notable exceptions include Inostroza and Pavan (2020), Mathevet et al. (2020), Morris et al.
(2020), Ziegler (2020), and Li et al. (2021)
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The case of private disclosures by Nature. Our approach can also

accommodate discriminatory disclosures by Nature, whereby Nature sends different

signals to different Receivers. This case can be relevant for settings in which the

Sender is restricted to public disclosures (e.g., because of regulatory constraints) but

is nevertheless concerned about the possibility that the Receivers may be endowed

with private signals and/or be able to acquire additional information in a decentralized

fashion after hearing the Sender’s public announcement.

With private signals, the distinction between strategy selection and additional in-

formation provided by Nature becomes blurred. This is best illustrated by the solution

concept of Bayes Correlated Equilibrium (BCE) in which private recommendations

that are potentially informative about the state are part of the solution concept (see

Bergemann and Morris, 2016). If the worst-case scenario originates in Nature coordi-

nating the Receivers on the BCE that minimizes the Sender’s expected payoff among

all BCE consistent with the common posterior that she induces, then specifying the

information provided by Nature becomes redundant. Thus, it is no longer helpful to

derive the worst-case payoff for the Sender in two steps, by first looking at strategy

profiles for given information, and then at different disclosures by Nature.

In such cases, we can bypass the function V by assuming that V ≡ V̂ . The

function V̂ (µ) is then interpreted as the Sender’s payoff from inducing the common

posterior belief µ when Nature responds by disclosing (possibly private) signals to the

Receivers and coordinating them on a strategy profile that minimizes the Sender’s

expected payoff given the assumed solution concept. This definition will guarantee

that V̂ (µ) is convex (if it were not, Nature could disclose additional public information

to further decrease the Sender’s payoff, contradicting the definition of V̂ ); moreover,

it will typically be lower semi-continuous. Hence, V̂ is trivially the lower convex

closure of V . The Sender’s payoff under the assumed conjecture, V̂ , is then defined as

above, with the exception that the Sender’s conjecture can now specify discriminatory

disclosures by Nature. Provided that V̂ is upper semi-continuous, all our results apply.

Bypassing V might be seen as conceptually compelling: It means that equilibrium

selection and information provision by Nature are put on an equal footing. However,

under this symmetric approach, some of the assumptions of our results become more

difficult to verify. For example, to identify the set F in Theorem 1, one would

in principle need to compute V̂ , which can be challenging in some applications.

For example, when the assumed solution concept is BCE, computing V̂ requires

22



characterizing the Sender’s payoff in the worst BCE consistent with any given common

posterior µ ∈ ∆Ω. In certain cases, the set F can be identified without computing

the entire set of BCE: To show that states in the support of some belief µ must be

separated, it suffices to construct a single BCE consistent with µ that yields a payoff

to the Sender below the full-disclosure level—see Subsection 5.4 for an illustration.

An alternative approach to incorporating private disclosures into our analysis is

by applying the results of Mathevet et al. (2020) who propose a formal decomposition

of any signal into a public and a (purely) private component. Relying on their charac-

terization, we can define V (µ) as the expected payoff of the Sender in the worst-case

equilibrium when Nature complements µ with purely private signals. Then, relative

to V , V̂ captures the effects of additional public disclosure by Nature, implying that

V̂ is the lower convex closure of V . This approach is more tractable than the one

discussed previously if computing such V is easier than computing V̂ directly.

5 Applications

In this section, we present four applications, illustrating the four cases we have consid-

ered: the baseline model, the single-Receiver case under a general conjecture, and two

models with multiple Receivers and public or private disclosure by Nature, respec-

tively. The results follow as straightforward consequences of our general theory—we

include the proofs for completeness in the Online Appendix.

5.1 Lemons problem

The Sender is a seller, and the Receiver is a buyer. The seller values an indivisible

good at ω while the buyer values it at ω + D, where D > 0 is a known constant.

The value ω is observed by the seller but not by the buyer. To avoid confusion,

we use a “tilde” (ω̃) whenever we refer to ω as a random variable. The seller can

commit to an information disclosure policy about the object quality, ω. We consider

a simple trading protocol in which, after the information structure is determined, a

random exogenous price p is drawn from a uniform distribution over [0, 1] and trade

happens if and only if both the buyer and the seller agree to trade at that price

(the exogenous price can be interpreted as a benchmark price in the market, or can

be seen as coming from an exogenous third party, e.g., a platform). That is, if the

state is ω and the buyer’s belief about the state is µ, then trade happens if and only
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if p ≥ ω and Eµ[ω̃|ω̃ ≤ p] + D > p.13 To avoid trivial cases, we assume that the

support of the price distribution contains Ω, that is, Ω ⊆ [0, 1]. The seller chooses

the signal before observing ω (hence the choice of the signal by the seller reveals

no additional information to the buyer). We are interested in finding the robustly

optimal policy for the seller, under the conjecture that the buyer does not have any

exogenous information other than the one contained in the prior.

The payoff to the seller under the conjecture is given by14

V̂ (µ) =
∑
ω∈Ω

(� 1

ω

(p− ω)1{Eµ[ω̃|ω̃≤p]+D>p}dp

)
µ(ω).

In this example, V = V̂ because the buyer’s tie-breaking rule does not influence

the Sender’s payoff in expectation. The following lemma identifies a key property of

robust solutions.

Lemma 2. Any two states ω and ω′ such that |ω− ω′| > D must be separated under

any robust solution.

For intuition, suppose that only types ω′ and ω are present in the market, and

ω > ω′. If the buyer’s posterior belief µ puts sufficient mass on the low state ω′,

namely, Eµ[ω̃] + D < ω, then the high type ω does not trade. Indeed, any price

below ω is rejected by the ω-type seller, and any price above ω is rejected by the

buyer. In contrast, the high type ω would trade with positive probability if her type

were disclosed to the buyer. At the same time, type ω′ does not benefit from the

presence of the higher type ω because of adverse selection: Eµ[ω̃|ω̃ ≥ p] = ω′ for all

prices p ∈ [ω′ + D,Eµ[ω̃] + D] that could be accepted by the buyer if she did not

condition on the fact that ω̃ ≤ p. In short, if ω and ω′ are not separated, Nature can

induce posterior beliefs that reduce the high type’s probability of trade (relative to

full disclosure) without improving the terms of trade for the low type. It follows that

Nature can push the seller’s expected payoff below what she could obtain by fully

disclosing the state.

The preceding argument does not apply to types that are less thanD apart because

the adverse selection problem is mute for such types, as the next lemma shows.

13Because p is drawn from a continuous distribution, the way the buyer’s indifference is resolved
plays no role in this example.

14Note that the seller’s payoff is computed before the price p is realized and before the seller learns
her value ω for the good.
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Lemma 3. Suppose that supp(µ) ⊆ [ωµ, ωµ+D], where ωµ is the minimum of supp(µ).

Then, 1{Eµ[ω̃|ω̃≤p]+D>p} = 1{Eµ[ω̃]+D>p} for any p ≥ ωµ.

Intuitively, Lemma 3 states that when µ puts mass on types that are less than

D apart, adverse selection has no bite – the buyer trades under the same prices as if

the seller did not possess private information (that is, she does not need to condition

on p ≥ ω̃). We can now use this observation to prove a result that helps characterize

robust solutions. For any B ⊆ Ω, we let diam(B) := max(B)−min(B).

Lemma 4. Fix any B ⊆ Ω such that diam(B) ≤ D. Then, V |∆B(µ) is concave on

∆B (and non-affine if |B| ≥ 2).

Lemma 4 states that the seller does not benefit from splitting posterior beliefs

with sufficiently small supports. The reason is that, once the possible detrimental

effects of adverse selection are eliminated (which is the case when diam(B) ≤ D),

further informing the buyer of her value for the good only reduces the seller’s ability

to extract surplus from the buyer. The next result is then a simple corollary.

Lemma 5. F = {B ⊂ Ω : diam(B) ≤ D}.

Indeed, we know that diam(B) ≤ D is necessary for B ∈ F by Lemma 2. Lemma

4 tells us that this condition is sufficient as well: Because V |∆B(µ) is concave when

diam(B) ≤ D, it lies everywhere above the full-disclosure payoff on that subspace.

Lemma 5 states that any worst-case optimal distribution must disclose enough

information to make the adverse selection problem mute. Furthermore, there is no

need to disclose any additional information. Because disclosing additional information

is detrimental to the Sender, as implied by Lemma 4 combined with the fact that

V = V̂ , any robust solution discloses just enough information to eliminate the adverse

selection problem.

Proposition 2. Under any robust solution ρRS, for any µ, µ′ ∈ supp(ρRS), diam(supp(µ)) ≤
D; diam(supp(µ′)) ≤ D; but diam(supp(µ) ∪ supp(µ′)) > D.

The result says that robust solutions are minimally informative among those that

remove the adverse selection problem. Indeed, since V̂ |∆B(µ) is concave but not affine

on ∆B whenever diam(B) ≤ D, if diam(supp(µ) ∪ supp(µ′)) ≤ D, the Sender could

merge µ and µ′ into a single posterior, improve her expected payoff, while maintaining
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worst-case optimality. In particular, full disclosure is not a robust solution as long as

there exist ω and ω′ in Ω that are less than D apart.

A closed-form characterization of the optimal policy seems difficult (for the same

reasons that make it difficult to solve for a Bayesian solution). However, one of the

benefits of the proposed solution concept is that it permits one to identify important

properties that all robust solutions must satisfy. Here, that property is that robust

solutions must disclose just enough information to neutralize the adverse selection

problem. Note that such property need not extend to Bayesian solutions. We can

verify that by looking at the tractable binary-state case: When the two states are

more than D apart, the unique Bayesian solution pools these states with positive

probability, whereas a robust solution separates them, by Lemma 2.

5.2 Informed Receiver: Guo and Shmaya (2019)

We now analyze another simple model of buyer-seller interactions along the lines of

Guo and Shmaya (2019): The seller owns an indivisible good of quality ω and gets

a payoff of 1 if and only if the buyer accepts to trade at an exogenously specified

price p. The seller’s conjecture is that the buyer has private information about the

product’s quality ω summarized by the realization r of a signal drawn from a finite

set R ⊂ R, according to the distribution π0(r|ω). The seller also conjectures that,

in case of indifference, the buyer will play favorably to the seller, which amounts to

accepting to trade. The seller can provide any information about ω to the buyer.

Guo and Shmaya (2019) show that, when π0(r|ω) satisfies MLRP (formally, when

π0(r|ω) is log-supermodular), a Bayesian solution for the above conjecture has an

interval structure: Each buyer’s type r is induced to trade on an interval of states,

and less optimistic types trade on an interval that is a subset of the interval over

which more optimistic types trade. Here, we characterize the robust solution for the

seller. To avoid uninteresting cases, we assume that π0 is not fully revealing.15

Given any final posterior µs,r0 ∈ ∆Ω for the buyer, the seller’s payoff under the

least-favorable tie-breaking rule is

V (µs,r0 ) = 1{∑ω∈Ω ωµ
s,r
0 (ω)>p}.

The seller’s payoff from inducing a posterior µs0 under her conjecture (where the

posterior is obtained by conditioning only on the realization of the seller’s signal s)

15That is, conditional on any state ω, there is positive conditional probability that the signal
realization r from π0 does not reveal that the state is ω.

26



is equal to

V̂ (µs0) =
∑
ω∈Ω

∑
r∈R

1{∑
ω′∈Ω ω′π0(r|ω′)µs0(ω′)∑
ω′∈Ω π0(r|ω′)µs0(ω′) ≥ p

}π0(r|ω)µs0(ω).

The following result is then a simple implication of Corollary 2.

Proposition 3. Any robust solution separates any state ω ≤ p from any state ω′ > p.

A robust solution thus eliminates buyer’s uncertainty over whether or not to pur-

chase the product. In other words, when the seller faces uncertainty about the buyer’s

exogenous information, she cannot benefit from disclosing information strategically.

Intuitively, if a posterior belief pulls together states that are both below and above

p, Nature could send a signal that induces a sufficiently pessimistic belief about the

quality of the good to induce the buyer not to trade, even when the good is of high

quality. By fully disclosing the state, the seller guards herself against such a possibility

and ensures that all high-quality goods (ω > p) are bought with certainty.

5.3 Regime change

Next, we study an application featuring multiple Receivers in which Nature is re-

stricted to disclosing information publicly and where the functions V and V̂ repre-

sent the Sender’s payoff under the lowest and the highest rationalizable profiles in the

continuation game among the Receivers, respectively.16

Consider the following stylized game of regime change. A continuum of agents

of measure 1, uniformly distributed over [0, 1], must choose between two actions,

“attack” or “not attack.” Let ai = 1 (respectively, ai = 0) denote the decision by

agent i to attack (respectively, not attack), and A the aggregate size of the attack.

Regime change happens if and only if A ≥ ω, where ω ∈ Ω ⊂ R parametrizes the

strength of the regime (the underlying fundamentals) and is commonly believed to be

drawn from a distribution µ0 whose support intersects each of the following three sets:

(−∞, 0), [0, 1], and (1, ∞). Each agent’s payoff from not attacking is normalized

to zero, whereas his payoff from attacking is equal to g in case of regime change

and b otherwise, with b < 0 < g. Hence, under complete information, for ω ≤ 0

(alternatively, ω > 1), it is dominant for each agent to attack (alternatively, not to

attack), whereas for ω ∈ (0, 1] both attacking and not attacking are rationalizable

16The results, however, do not hinge on public disclosures by Nature. The same conclusions obtain
when the Sender conjectures that the Receivers are commonly informed but does not rule out the
possibility that Nature discloses information privately to the agents.
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actions (see, among others, Inostroza and Pavan, 2020 and Morris et al., 2020 for

similar games of regime change). The Sender’s payoff is equal to 1− A (that is, she

seeks to minimize the size of the aggregate attack). The Sender is constrained to

disclose the same information to all agents, as in the case of stress testing. Contrary

to what is typically assumed in the literature, the Sender is uncertain about the

exogenous information the agents are endowed with.

The Sender’s conjecture is that the agents do not have access to any information

other than that contained in the common prior µ0 and that, in case of multiple

rationalizable profiles, the agents play the profile most favorable to the Sender. The

Bayesian solution for the above conjecture is similar to the one in the judge example

of Kamenica and Gentzkow (2011). To see this, note that for the Receivers to abstain

from attacking, it must be that their common posterior assigns probability at least

α := g/(g+ |b|) to the event that ω > 0.17 Let µ+
0 := µ0(ω > 0) denote the probability

assigned by the prior µ0 to the event that ω > 0 and (to make the problem interesting)

assume that µ+
0 < α, so that, in the absence of any disclosure, all agents attack under

the unique rationalizable profile. Under the assumed conjecture, the Sender then

maximizes her payoff through a policy that, when ω > 0, sends the “null” signal

s = ∅ with certainty, whereas, when ω ≤ 0, fully discloses the state with probability

φBP ∈ (0, 1) and sends the signal s = ∅ with the complementary probability, where

φBP is defined by µ+
0 /[µ

+
0 + (1− µ+

0 )(1− φBP )] = α.

The above Bayesian solution, however, is not robust. First, when the agents assign

sufficiently high probability to the event ω ∈ (0, 1], while it is rationalizable for each of

them to abstain from attacking, it is also rationalizable for them to attack. Hence, if

the Sender does not trust that the agents will coordinate on the rationalizable profile

most favorable to her, it is not enough to persuade them that ω > 0; the Sender must

persuade them that ω > 1. Furthermore, if the agents may have access to information

other than the one contained in the prior, then worst-case optimality requires that

all states ω > 1 be separated from all states ω ≤ 1. (For any induced posterior whose

support contains both states ω > 1 and states ω ≤ 1, Nature can construct another

posterior under which it is rationalizable for all agents to attack also when ω > 1,

thus bringing the Sender’s payoff below her full-disclosure payoff.) One may then

conjecture that full disclosure of the state is a robust solution under the conjecture

described above. This is not the case. The reason is that, in case Nature (and the

17When, instead, P(ω > 0) < α, the unique rationalizable profile is for each agent to attack.
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agents) play according to the Sender’s conjecture, fully disclosing the state triggers

an aggregate attack of size A = 1 for all ω ≤ 0. The Sender can do better by pooling

states below 0 with states in [0, 1] and then hope that Nature (and the agents) play

as conjectured. The next proposition summarizes the above results.

Proposition 4. The following policy is a Bayesian solution. If ω ≤ 0, the state is

fully revealed with probability φBP ∈ (0, 1) whereas, with the complementary probabil-

ity, the Sender sends the “null” signal s = ∅. If, instead, ω > 0, the signal s = ∅
is sent with certainty. Such a policy, however, is not robust. The following policy,

instead, is a robust solution. If ω ≤ 0, the state is fully revealed with probability

φRS ∈ (0, 1), with φRS > φBP , whereas, with the complementary probability, the sig-

nal s = ∅ is sent. If ω ∈ (0, 1], the signal s = ∅ is sent with certainty. Finally, if

ω > 1, the state is fully revealed with certainty.

While neither the Bayesian nor the robust solutions in the above proposition are

unique, any robust solution must fully separate states ω > 1 from states ω ≤ 1,

whereas any Bayesian solution pools states ω > 1 with states ω ≤ 1. The robust

solution displayed in the proposition Blackwell dominates the Bayesian solution, con-

sistently with Corollary 6.

5.4 Multiple Receivers and private disclosures by Nature

Our last application is a variant of the prosecutor-judge example of Section 1 in

which the prosecutor faces two judges. Each judge has the same preferences as in the

original example, but with the sentence of each judge now interpreted as the judge’s

recommendation.18 The defendant is convicted only if both judges vote to convict

him. In this case, the sentence specifies a number of years equal to the minimum of

the numbers asked by the two judges. Let xj ∈ [x, x̄], with x > 0, denote the number

of years asked by judge j = 1, 2. As in the original game, each judge feels morally

obliged to convict if her posterior belief that the defendant is guilty exceeds 2/3 and

to acquit otherwise. When she recommends to convict, the number of years that the

judge asks is linearly increasing in the probability she assigns to state f , exactly as

in the original example of Section 1. Denote by Aj = {0} ∪ [x, x̄] the judge’s action

set, with aj = 0 denoting the recommendation to acquit, and by µj(ω) the judge’s

18That is, each judge’s utility depends only on the recommendation she makes, not on the actual
sentence—the judges are Kantianists rather than Consequentialists.
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posterior belief that the state is ω. Then,

aj(µj) = 1{µj(m)+µj(f)> 2
3}min{x̄, x+

2µj(f)

µj(f) + µj(m)
(x̄− x)},

whereas the actual sentence is given by x(µ1, µ2) = min {a1(µ1), a2(µ2)}.
As before, the prosecutor maximizes the expected number of years determined

by the actual sentence. Her conjecture is that each judge’s only information is that

associated with the common prior µ0, given by µ0(i) = 1/2, and µ0(m) = µ0(f) = 1/4.

It is easy to see that the Bayesian solution is the same as in the original version

with a single judge. It is also easy to see that, when Nature is expected to disclose

the same information to both judges, the unique robust solution is the same as in the

single-judge case: separate the state ω = i and pool the other two states. Indeed, in

this case, we have that V (µ) = x(µ, µ) = a1(µ), and thus the objective function of

the prosecutor is the same as in the single-judge case.

Suppose, instead, that the prosecutor does not exclude the possibility that Na-

ture discloses different information to the two judges, perhaps because they can call

different witnesses and question them independently. As explained in Section 4, in

case of private disclosure by Nature, it is not helpful to define V and V̂ separately.

Instead, we set V = V̂ with V̂ (µ) defined as the Sender-worst BCE payoff con-

sistent with the common posterior belief µ. Even though the game between the

judges is simple, computing V̂ is difficult. Instead, we make use of Corollary 2:

States ω, ω′ must be separated by a robust solution whenever, for some λ ∈ (0, 1),

V̂ (λδω + (1 − λ)δω′) < λ V̂ (δω) + (1 − λ) V̂ (δω′). The right-hand side of the this

condition does not depend on what the Sender expects Nature to do: when the state

is disclosed, there is a unique BCE. Furthermore, because the left-hand side is never

larger than the payoff that the Sender expects when Nature is restricted to public dis-

closures, we have that any worst-case optimal policy (and hence any robust solution)

must separate the state ω = i from ω′ ∈ {m, f}, just like when Nature is restricted

to public disclosures. Suppose the states ω = m and ω′ = f are not separated. Then,

starting from any posterior with support {m, f} induced by the Sender, Nature can

first generate the common posterior (1/2)δm + (1/2)δf using a public signal, and

then engineer an additional discriminatory disclosure that fully reveals the state to

judge 1, and discloses a binary signal r2 ∈ {m, f} to judge 2 that matches the true

state with conditional probability 2/3 in each state. Under such a policy, when the

state is m, the actual sentence is equal to x because this is the sentence asked by
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the fully-informed judge 1. When, instead, the state is f , the fully-informed judge 1

recommends x̄, whereas the less-informed judge 2 recommends x̄ with probability 2/3

(after observing r2 = f) and (1/3)x + (2/3)x̄ with probability 1/3 (after observing

r2 = m). We thus have that

V̂

(
1

2
δm +

1

2
δf

)
<

1

2
x+

1

2
x̄ =

1

2
V̂ (δm) +

1

2
V̂ (δf ).

By Corollary 2, states m and f must also be separated by any robust solution. Full

disclosure is therefore the unique robust solution. This application of Corollary 2

illustrates the force of Theorem 1: We are able to characterize the unique robust

solution by constructing one BCE at a particular posterior belief (as opposed to

computing all BCE at all possible beliefs).

Suppose that the two judges are obliged to share all their information before

making the decision, and the Sender knows that. By Aumann’s theorem, this case

is equivalent to assuming that Nature can only send public signals. An interesting

conclusion obtains: If the Sender is sure that the judges share their information, she

should reveal less information than if she thought that it is possible that the judges

are asymmetrically informed.

6 Alternative approaches to robustness

6.1 Weighted objective function

Our solution concept assumes that the Sender follows a lexicographic approach: She

first maximizes her objective in the worst-case scenario, and only in case of indiffer-

ence chooses between policies based on her conjecture. In this section, we examine an

alternative objective function under which the designer attaches a weight λ ∈ [0, 1]

to the worst-case scenario, and a weight 1 − λ to the base-case scenario.19 A pos-

sible interpretation is that the designer is Bayesian, and the weights reflect the as-

sessed probabilities of Nature being adversarial and behaving as conjectured by the

Sender. We show that, under mild regularity conditions, robust solutions correspond

exactly to solutions for the weighted objective function provided that the weight λ

on the worst-case scenario is sufficiently large. The result uses the special structure

19When the Sender’s conjecture is that Nature behaves favorably to her (as in the analysis in
Section 3), this approach shares some similarities with the literature on alpha-max-min preferences
(Hurwicz, 1951, Gul and Pesendorfer, 2015, Grant et al., 2020).
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of the persuasion model, and provides a Bayesian foundation for the lexicographic

approach.20 Throughout, we work with reduced-form payoff functions with the prop-

erties listed in Section 4.

Formally, for some λ ∈ [0, 1], the designer’s problem is

sup
ρ∈∆∆Ω

{
λ

�
V̂ (µ)dρ(µ) + (1− λ)

�
∆Ω

V̂ (µ)dρ(µ)

}
(6.1)

subject to (BP). Recall that V̂ is assumed upper semi-continuous, and V̂ is convex

and continuous (see footnote 10). Therefore, the problem for a fixed λ is equivalent

to a standard Bayesian persuasion problem with an upper semi-continuous objective

function V̂λ(µ) := λ V̂ (µ) + (1− λ)V̂ (µ), and a Bayes-plausible ρ is a solution if and

only if it concavifies V̂λ at the prior µ0.

Our goal is to relate the solutions to the problem defined by (6.1) (which we

denote by S(λ) and refer to as λ-solutions) to robust solutions. Note that 0-solutions

coincide with Bayesian solutions while 1-solutions are worst-case optimal solutions.

Let d denote the Chebyshev metric on ∆Ω: d(µ, η) = maxω∈Ω |µ(ω)− η(ω)|.

Definition 4. The function V̂ is regular if there exist positive constants K and L such

that for every non-degenerate µ ∈ ∆Ω and every ω ∈ supp(µ), there exists η ∈ ∆Ω

with supp(η) ⊆ supp(µ)\{ω} such that d(µ, η) ≤ Kµ(ω) and V̂ (µ)−V̂ (η) ≤ Ld(µ, η).

Regularity requires that, for any µ and any ω ∈ supp(µ), there exists a nearby

belief supported on supp(µ)\{ω} that is “not much worse” for the designer under the

base-case payoff V̂ . This only has bite for beliefs µ for which µ(ω) is small for some

ω; else the condition follows from boundedness of the function V̂ . Lipschitz contin-

uous functions are regular. However, the condition is weaker because the Lipschitz

condition is required to hold (i) only for beliefs µ that attach vanishing probability

to some state ω, (ii) only for some belief η in the neighborhood of a given µ, and (iii)

only in one direction (the condition rules out functions V̂ that decrease at an infinite

rate along a sequence of posterior beliefs assigning a vanishing probability weight

to some state ω). And, indeed, regularity allows for highly discontinuous objective

functions (we maintain though that V̂ is upper semi-continuous). For example, in

the mean-measurable case, we have that, for any µ ∈ ∆Ω, V̂ (µ) = v(Eµ[ω]), where v

is an upper semi-continuous real-valued function. Regularity of V̂ then only requires

that v has bounded steepness (as defined by Gale, 1967) at the (finitely many) points

20We thank Emir Kamenica and Ron Siegel for suggesting we investigate the validity of this result.
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ω ∈ Ω. Indeed, if |supp(µ)| > 2, when µ(ω) is small, one can always find a belief η

supported on supp(µ) \ {ω} with the same mean as µ. And if |supp(µ)| = 2, then η

must be a Dirac delta at some ω ∈ Ω, and the conclusion follows from the assumption

of bounded steepness at ω.

Theorem 2. Suppose that V̂ is regular. There exists λ < 1 such that, for all λ ∈
(λ, 1), S(λ) coincides with the set of robust solutions.

In the Online Appendix, we show that, even without the regularity condition,

a slightly weaker version of one direction of the equivalence holds: Any limit of λ-

solutions as λ↗ 1 is a robust solution (and therefore some robust solution is a limit

of λ-solutions). However, we also show, by means of an example, that there exist

robust solutions that cannot be obtained as the limit of λ-solutions.

In the remainder of this section, we describe the key lemmas leading to Theorem 2.

First, we observe that if the designer decides to induce a belief µ ∈ ∆c
FΩ := ∆Ω\∆FΩ,

then we can bound from below the loss that is incurred in the worst-case scenario

relative to a worst-case optimal policy.

Lemma 6. There exists a constant δ > 0 such that, for any µ ∈ ∆c
FΩ,

V full(µ)− V̂ (µ) ≥ δ · max
B⊆supp(µ), B /∈F

min
ω∈B
{µ(ω)}.

For regular functions, we can correspondingly bound from above the gains from

inducing a belief µ ∈ ∆c
FΩ in the base-case scenario. The Sender can always achieve

co(V̂F)(µ) without sacrificing worst-case optimality, by Corollary 7. For µ ∈ ∆c
FΩ, it

is possible that V̂ (µ) > co(V̂F)(µ) but the difference can be upper bounded.

Lemma 7. For a regular function V̂ , there exists ∆ > 0 such that for any µ ∈ ∆c
FΩ,

V̂ (µ)− co(V̂F)(µ) ≤ ∆ max
B⊆supp(µ), B /∈F

min
ω∈B
{µ(ω)}.

Together, the above two lemmas imply the following result:

Lemma 8. Suppose that V̂ is regular. There exists λ < 1 such that, for all λ ∈ (λ, 1],

if ρ solves problem (6.1), then ρ cannot assign positive probability to ∆c
FΩ.

Theorem 2 follows from Lemma 8. Indeed, because, for high λ, any λ-solution

assigns probability one to beliefs in ∆FΩ, any λ-solution delivers the same expected

payoff to the Sender in the worst-case scenario (namely, the full-disclosure payoff).
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As long as the weight 1− λ on the base-case scenario is strictly positive, a λ-solution

must then maximize the Sender’s payoff in the base-case scenario, conditional on

being worst-case optimal, that is, it must be a robust solution.21

It may seem puzzling that the equivalence between λ-solutions and robust solu-

tions is achieved exactly at sufficiently high λ, rather than only in the limit as λ↗ 1.

This is a consequence of Proposition 1 which shows that worst-case optimality imposes

restrictions only on the supports of the induced posteriors, and not on the weights

assigned to any admissible posterior. Combined with regularity of V̂ this property

implies that, for high λ, the gain from inducing any non-admissible posterior under

the base-case scenario is always dominated by the loss under the worst-case scenario.

6.2 Dominance

In this section, we examine the relationship between robustness and the notion of

undominated policies. When the Sender faces non-Bayesian uncertainty over the

Receivers’ information and strategy selection, it is natural for her to avoid signals

that are dominated. Informally, we say that a signal dominates another if it performs

weakly better for any choice of Nature, and strictly better for some. Our next result

shows that—under certain conditions—any robust solution is undominated.

To define dominance formally, we again bypass the distinction between informa-

tion disclosure and strategy selection. We introduce a function V interpreted as the

Sender’s payoff from inducing a common posterior µ, when Nature selects a signal and

a strategy profile (consistent with the assumed solution concept) that maximize the

Sender’s payoff. Note that V must be concave under this interpretation (as otherwise

Nature could further increase the Sender’s payoff by concavifying V with an addi-

tional public signal). Formally, let V be any concave continuous function such that

V ≥ V̂ ≥ V̂ . If Nature is allowed to respond to any common posterior µ induced by

the Sender with an arbitrary signal and strategy profile (consistent with the assumed

solution concept), then it can generate any payoff function V that lies between V̂

and V . This motivates the following definition of dominance.

Definition 5. A Bayes-plausible distribution ρ ∈ ∆∆Ω dominates a Bayes-plausible

distribution ρ′ ∈ ∆∆Ω if, for any measurable V : ∆Ω → R such that V (µ) ∈
21Formally, for λ ∈ (λ, 1), ρ concavifies λ V̂ + (1− λ)V̂ at µ0 if and only if it concavifies V̂ at µ0

on ∆FΩ. This, however, is equivalent to concavifying V̂F at µ0. By virtue of Corollary 7, ρ is thus
a robust solution.
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[ V̂ (µ), V (µ)] for any µ ∈ ∆Ω, we have that
�
V (µ)dρ(µ) ≥

�
V (µ)dρ′(µ), with the

inequality strict for at least one such function V . A Bayes-plausible distribution ρ is

undominated if there exists no Bayes-plausible distribution ρ′ that dominates it.

Theorem 3. (a) At least one robust solution is undominated. (b) If coV̂ = V , then

all robust solutions are undominated.

The result in part (a) follows from the fact that a robust solution can be dominated

only by another robust solution (by the definition of robustness). In turn, this implies

that one can always find at least one robust solution that is undominated. The result

in part (b) is more convoluted. Heuristically, it follows from the fact that, given

any pair of robust solutions ρ and ρ?, if, for some feasible response V by Nature, ρ

performs strictly better than ρ?, then one can construct another feasible response V ′

under which ρ? performs strictly better than ρ. The construction of V ′ hinges on the

fact that the two solutions perform equally well both under the worst-case scenario

and under the Sender’s conjecture, along with the fact that the Sender’s payoff under

the conjecture is linked to the maximal feasible payoff over all possible responses by

Nature (by the condition coV̂ = V ). Without the last property, the fact that the

policies are both robust solutions does not impose enough structure on the way they

may perform under alternative responses by Nature, and one may dominate the other.

As an illustration, in the judge-prosecutor example of Section 1, when the Sender’s

conjecture is that Nature always fully reveals the state, then full disclosure is robust.

However, such a policy is dominated by the one that separates {i} from {f,m}.
One may wonder whether Bayesian solutions are also undominated. The answer

is no, even when coV̂ = V . We provide an example in the Online Appendix.

6.3 Alternative extensive forms

It is common in the mechanism-design literature to model robustness as worst-case

optimality of a designer’s policy in a game against adversarial Nature. Under this

modeling convention, the properties of worst-case optimal policies generally depend on

the assumptions about the extensive form. It is also known that randomization may

sometimes improve the designer’s payoff guarantee when Nature does not observe the

designer’s policy choice.22 In this subsection, we discuss alternative extensive forms

and randomization in the context of our model. We start by restricting attention to

22For a discussion of this point, see for example Ke and Zhang (2020).

35



non-stochastic choices of a policy by the Sender, and consider three cases:

1. Baseline model: Nature chooses its signal after observing both the Sender’s

signal q and its realization s;

2. Conditionally independent signals: Nature chooses its signal after observing the

Sender’s signal q (but not its realization s);

3. Simultaneous-move game: The Sender and Nature choose their respective sig-

nals simultaneously, without observing each other’s choices.

Our baseline definition of worst-case optimality (case 1) is motivated by the Sender’s

uncertainty about the order in which various sources of information are consulted

by the Receiver. This assumption is appropriate whenever the Sender does not feel

confident that she is the last one to speak. In particular, this case captures the

possibility that the Receiver may acquire additional information after learning the

Sender’s signal realization.

Case 2 of conditionally independent signals arises when the exogenous sources

of information depend on the Sender’s choice of a signal but not on the Sender’s

signal realization. This corresponds to a situation in which the Sender must publicly

commit to her signal ex-ante, and she is concerned that the Receiver might receive

some information before observing the Sender’s signal realization. Formally, having

observed q, Nature selects a signal π(r|ω) that is independent of q(s|ω) conditional

on the state ω.

Case 3 of a simultaneous-move game arises when the Sender believes that the

exogenous sources of information, captured by Nature’s signal π(r| ω), have been

already determined but are unknown to her. In this case, the Sender assumes that

she is the last one to speak, and Nature’s choice is a way of capturing the Sender’s

ambiguity about the fixed environment she is facing.

Cases 2 and 3 are equivalent in our model, in the sense that they lead to the

same set of worst-case optimal policies for the Sender. We show this formally in

the Online Appendix. Intuitively, a version of the minimax theorem holds in our

setting, and the full-disclosure payoff is the value of the zero-sum game between the

Sender and Nature. Given the equivalence, we refer to these two cases jointly as

simultaneous-move (SM) robustness, and examine properties of SM-robust solutions

in the Online Appendix. As we discuss there, some of the results are in common to

36



those in the paper but there are also important differences (for example, existence of a

SM-robust solution is not guaranteed and Bayesian solutions can be more informative

than SM-robust solutions).

When Nature observes the Sender’s choice of a signal q (in cases 1 and 2), it clearly

does not benefit the Sender to randomize over her choice of a policy. Perhaps more

surprisingly, randomization also does not help in case 3. Formally, the Sender cannot

expand the set of worst-case optimal distributions of posterior beliefs by randomizing

over signals. Indeed, in the Bayesian persuasion model, any randomization over

signals is itself a signal; thus, if the Sender can induce some distribution of posteriors

via a random choice of a signal, then she can also generate the same distribution

by deterministically choosing a composite signal (note that Nature’s problem is the

same in both cases, so the optimal response by Nature is also unaffected). Thus, our

restriction to deterministic choices of policies is without loss of generality.

We briefly comment on two additional models of robustness. First, one may

consider a situation where the Sender is uncertain about the Receiver’s prior (see

Kosterina (2021)). If the prior is generated by providing an additional experiment to

the Receiver, then this corresponds to the case considered in our Online Appendix.

If, instead, such a requirement is not imposed, as in Kosterina (2021), then Nature’s

problem is no longer a Bayesian persuasion problem, and our techniques do not apply.

Second, one may contemplate extensive forms in which Nature is able to obfuscate

the information provided by the Sender (e.g., through signal jamming). This would

correspond to a robust approach to the case of an inattentive Receiver (considered by

Matysková (2019), Ye (2019), Lipnowski et al. (2020), and Bloedel and Segal (2021)),

and is worth investigating in future research.

7 Conclusions

We introduce and analyze a novel solution concept for information design in settings

in which the Sender faces uncertainty about the Receivers’ sources of information

and strategy selection. The Sender first identifies all information structures that are

“worst-case optimal”, i.e., that yield the highest payoff when Nature provides infor-

mation and coordinates the Receivers’ play in an adversarial fashion. The Sender

then picks an information structure that maximizes her expected payoff under her

conjecture—much like in the standard Bayesian persuasion model—but among infor-

37



mation structures that are worst-case optimal. Our main technical result identifies

sets of states that can be present together in one of the induced posteriors and states

that must be separated. We show that robust solutions exist and can be character-

ized using canonical tools; we qualify in what sense they call for more information

disclosure than Bayesian solutions; we argue that, under reasonable conditions, ro-

bustness guarantees that the solution is undominated; and we illustrate the results in

the context of existing and novel applications.

Throughout the analysis, we restrict attention to the case of public persuasion

in which the Sender discloses the same information to all the Receivers. In future

work, it would be interesting to extend the analysis to private persuasion, whereby

the Sender discloses different signals to different Receivers. Our analysis also relies on

the assumption that Nature can engineer any signal. One can ask how the properties

of robust solutions change as one imposes natural constraints on the set of signals

that Nature can choose. Finally, it would be interesting to see how existing results in

the persuasion literature change once robustness is accounted for, and whether robust

solutions can provide insights about problems that are inherently intractable in the

Bayesian framework.
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A Appendix

A.1 Proof of Lemma 1

Fix the Sender’s signal q. For any realized s ∈ supp(q), Nature’s problem of mini-

mizing the Sender’s payoff is

− sup
π: Ω×{s}→∆R

∑
ω∈Ω, r∈R

−V (µs, r0 ) π(r|ω, s)µs0(ω). (A.1)

The optimization problem (A.1) is a Bayesian-persuasion problem with a finite state

space and an upper semi-continuous objective function (because V is lower semi-

continuous). By Kamenica and Gentzkow (2011), it is without loss of generality to
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restrict attention to π with |supp(π)| = |Ω|, the supremum is attained, and the value

of the problem is given by the negative of the concave closure of −V , evaluated at µs0.

It is immediate (see also Hu and Weng, 2021) that worst-case optimality of q is

equivalent to generating the full-disclosure payoff V full(µ0) in the worst-case scenario.

Indeed, V full(µ0) is an upper bound because Nature can always disclose the state; but

this upper bound can be achieved by the Sender if she fully discloses the state herself.

Using this observation and the definition of V̂ , we have that a signal q is worst-case

optimal if and only if ∑
ω∈Ω, s∈S

V̂ (µs0)q(s|ω)µ0(ω) = V full(µ0), (A.2)

and, moreover, V̂ = −co(−V ). A distribution ρ of posterior beliefs can be induced

by some signal q : Ω→ ∆S if and only if ρ satisfies (BP). We conclude that a signal

q satisfies (A.2) if and only if the distribution of posterior beliefs ρq that it induces

satisfies (WC) and (BP).

A.2 Proof of Proposition 1

Let X = {ρ ∈ ∆∆Ω : ρ satisfies (BP) and supp(ρ) ⊆ ∆F(Ω)}, where ∆FΩ := {µ ∈
∆Ω : supp(µ) ∈ F}. It is enough to prove that W = X .23

Proof of W ⊆ X : Let ρ ∈ W . By definition ofW , ρ satisfies (BP). We will show

that supp(ρ) ⊆ ∆F(Ω). Suppose not. Then, there exists A ⊆ supp(ρ), with ρ(A) > 0,

such that for any µ ∈ A, supp(µ) /∈ F . That is, given µ, there exists η ∈ ∆Ω with

supp(η) ⊆ supp(µ) such that V (η) < V full(η). Recall that lco(V ) denotes the lower

convex closure of V , and that V̂ = lco(V ). Because lco(V ) ≤ V , we have that

V̂ (η) < V full(η). Because supp(η) ⊆ supp(µ), there exists a small enough λ > 0 such

that µ = λη + (1− λ)η′, for some η′ ∈ ∆Ω. We have

V̂ (µ) = V̂ (λη + (1− λ)η′) ≤ λ V̂ (η) + (1− λ) V̂ (η′)

< λV full(η) + (1− λ)V full(η
′) = V full(µ), (A.3)

where the first inequality follows from the convexity of V̂ , the second (strict) inequal-

ity from the fact that V̂ (η) < V full(η) and V̂ ≤ V full, and the final equality from the

fact that V full is affine.

We are ready to obtain a contradiction. Recall from Lemma 1 that since ρ is a

23The proof below works for arbitrary distributions, even though it would suffice for our purposes
to prove the equivalence for finite-support distributions, given the assumption of finite signal spaces.
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worst-case optimal distribution, it must satisfy
�
V̂ (µ)dρ(µ) = V full(µ0) which, by

(BP) and the fact that V full is affine, can also be written as�
[ V̂ (µ)− V full(µ)] dρ(µ) = 0. (A.4)

Because V̂ ≤ V full, we must have V̂ (µ) = V full(µ) for ρ-almost all µ, contradict-

ing (A.3) which holds for a ρ-positive-measure set A of posteriors µ.

Proof of W ⊇ X : Suppose that ρ ∈ X . It suffices to show that ρ satisfies

(WC). Because supp(ρ) ⊆ ∆F(Ω), we have that, for any µ ∈ supp(ρ), V |∆supp(µ) ≥
V full|∆supp(µ). Because V dominates an affine function V full on ∆supp(µ), so does

its lower convex closure V̂ . We conclude that V̂ (µ) ≥ V full(µ) for all µ ∈ supp(ρ).

Because disclosing the state is always possible for Nature, V̂ (µ) = V full(µ) for all µ ∈
supp(ρ). Together with the fact that V full is affine, this implies that ρ satisfies (WC).

A.3 Proof of Theorem 1

The proof follows directly from the definition of robust solutions and Proposition 1.

A.4 Proof of Lemma 6

For any B ⊆ Ω, with B /∈ F , fix an arbitrary µB ∈ ∆Ω with supp(µB) ⊆ B such

that V (µB) < V full(µB), and hence V̂ (µB) = lco(V )(µB) < V full(µB). Then let

δB := V full(µB)− V̂ (µB) and δ := minB/∈F δB > 0.

Consider any µ ∈ ∆c
FΩ. Let B ⊆ supp(µ) be such that B /∈ F . We can write

µ = κµB+(1−κ)µ′ for some µ′ and κ, as long as µ(ω) ≥ κµB(ω) for all ω ∈ supp(µ)—

this equality can be written in particular for κ = minω∈B{µ(ω)}. Because V full − V̂

is a non-negative and concave function (concavity follows from the fact that it is the

difference between an affine function and a convex function), we have that

(V full − V̂ ) (µ) = (V full − V̂ ) (κµB + (1− κ)µ′) ≥

κ (V full − V̂ ) (µB) + (1− κ) (V full − V̂ ) (µ′) ≥ min
ω∈B
{µ(ω)}δB ≥ min

ω∈B
{µ(ω)}δ.

Since B was arbitrary, we also have that

(V full − V̂ ) (µ) ≥ δ · max
B⊆supp(µ), B /∈F

min
ω∈B
{µ(ω)}.

A.5 Proof of Lemma 7

Before proving Lemma 7, we first prove that regularity implies a seemingly stronger

property that will be more convenient to work with.
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Property 1. If the function V̂ is regular, then there exist positive constants K and

L such that for every non-degenerate µ ∈ ∆Ω and every set A ( supp(µ), there

exists η ∈ ∆Ω with supp(η) ⊆ A such that d(µ, η) ≤ K maxω∈supp(µ)\A{µ(ω)} and

V̂ (µ)− V̂ (η) ≤ Ld(µ, η).

Proof of Property 1. The proof is by induction. If the set A is equal to supp(µ) \{ω}
for some ω ∈ supp(µ), then the conclusion follows directly from the definition of

regularity. This means that we have proven the property for the case |supp(µ)\A| = 1.

Induction step: Suppose that we have proven the property for all sets A such that

|supp(µ) \ A| = k. Next, we prove it for sets A with |supp(µ) \ A| = k + 1.

Concretely, suppose that we have a set A ( supp(µ) with |supp(µ) \ A| = k + 1.

To simplify notation, let δA := maxω∈supp(µ)\A{µ(ω)}. Define A′ = A∪ {ω?} for some

ω? ∈ supp(µ) \A. By the inductive hypothesis, there exists η′ ∈ ∆Ω with supp(η′) ⊆
A′ such that d(µ, η′) ≤ K maxω∈supp(µ)\A′{µ(ω)} and V̂ (µ)− V̂ (η′) ≤ Ld(µ, η′).

Next, we apply the definition of regularity to the measure η′ and the state ω?:

There exists η with supp(η) ⊆ supp(η′) \ {ω?} ⊆ A such that d(η′, η) ≤ Kη′(ω?) and

V̂ (η′)− V̂ (η) ≤ Ld(η′, η).

Because d(µ, η′) ≤ KδA and µ(ω?) ≤ δA (the second inequality follows from the

fact that ω? ∈ supp(µ) \ A), we have

η′(ω?) = µ(ω?)− [µ(ω?)− η′(ω?)] ≤ µ(ω?) + d(µ, η′) ≤ (1 +K)δA.

Thus, we have

d(µ, η) ≤ d(µ, η′) + d(η′, η) ≤ KδA +K(K + 1)δA ≤ K(K + 2)δA,

and

V̂ (µ)− V̂ (η) = V̂ (µ)− V̂ (η′) + V̂ (η′)− V̂ (η) ≤ L(d(µ, η′) + d(η′, η))

≤ LK(K + 2)δA ≤ LK(K + 2)d(µ, η),

where the last inequality follows from the fact that supp(µ)\supp(η) contains some ω

that has probability δA under µ (and 0 under η). Therefore, we obtain the inductive

hypothesis with constants K ′ = K(K + 2) and L′ = LK(K + 2).

Now we prove Lemma 7. We have to show that there exists a constant ∆ > 0

such that for any µ ∈ ∆c
FΩ,

co(V̂F)(µ) + ∆ max
B⊆supp(µ), B /∈F

min
ω∈B
{µ(ω)} ≥ V̂ (µ). (A.5)
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Let δ̄ := maxB⊆supp(µ), B /∈F minω∈B{µ(ω)}. By definition of δ̄, there must exist a

set A ( supp(µ), with A ∈ F , such that for all ω ∈ supp(µ) \ A, µ(ω) ≤ δ̄. To see

that, let C := {ω ∈ supp(µ) : µ(ω) > δ̄}. Clearly, if C = ∅, then it suffices to let A

coincide with any element of supp(µ). If, instead, C 6= ∅, then let A = C. We claim

that A defined this way belongs to F . If that was not the case, from the definition

of δ̄, we would have that δ̄ ≥ minω∈A{µ(ω)} > δ̄, a contradiction.

By Property 1 applied to µ and A (which we can apply since V̂ is regular), there

must exist η with supp(η) ⊆ A, d(µ, η) ≤ K maxω∈supp(µ)\A{µ(ω)} ≤ Kδ̄, such that

V̂ (µ)− V̂ (η) ≤ Ld(µ, η) ≤ LKδ̄. (A.6)

Importantly, co(V̂F)(η) ≥ V̂ (η) because supp(η) ⊆ A ∈ F . Therefore,

co(V̂F)(µ) + ∆ δ̄ ≥ co(V̂F)(µ)− co(V̂F)(η) + V̂ (η) + ∆ δ̄.

On the line segment connecting µ and η, co(V̂F) is affine. Indeed, we have that

V̂F(κµ + (1 − κ)η) = vlow for any κ > 0, because any such belief κµ + (1 − κ)η /∈
∆FΩ. But this implies that V̂F lies strictly below its concave closure (except possibly

at η), and hence that co(V̂F) is affine. This means in particular that co(V̂F) is

Lipschitz continuous on that segment, that is, for some constant N > 0, co(V̂F)(µ)−
co(V̂F)(η) ≥ −Nd(µ, η). Therefore, using (A.6), d(µ, η) ≤ Kδ̄, and the fact that V̂

is regular, we have that

co(V̂F)(µ) + ∆ δ̄ ≥ −Nd(µ, η) + V̂ (η) + ∆ δ̄ ≥ V̂ (µ) + (∆−NK − LK)δ̄.

Thus, to prove the desired inequality (A.5), it is enough to set ∆ = NK + LK.

A.6 Proof of Lemma 8

It is enough to prove that, for high enough λ, if supp(ρ) * ∆FΩ, then the Sender’s ob-

jective
� [

λ V̂ (µ) + (1− λ)V̂ (µ)
]
dρ(µ) increases strictly by splitting any µ ∈ supp(ρ)

such that µ ∈ ∆c
FΩ into beliefs that yield co(V̂F)(µ)—such a split is always available

to the Sender and, by definition of co(V̂F), yields the payoff V full(µ) in the worst-case

scenario. By Lemma 6 and 7, we have that, for some ∆ > 0 and δ > 0,[
λV full(µ) + (1− λ)co(V̂F)(µ)

]
−
[
λ V̂ (µ) + (1− λ)V̂ (µ)

]
= λ [V full (µ)− V̂ (µ)] + (1− λ)

[
co(V̂F)(µ)− V̂ (µ)

]
≥ (λδ − (1− λ)∆) max

B⊆supp(µ), B /∈F
min
ω∈B
{µ(ω)} > 0
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if λ > λ where λ = ∆
∆+δ

< 1.

A.7 Proof of Theorem 3

Part (a). Let S? be the set of robust solutions, represented as distributions of pos-

terior beliefs. This set is non-empty and closed (by Berge’s theorem), hence compact

in the weak? topology. Note that if an element ρ? of S? is dominated, it must be

dominated by another element of S?. Indeed, a policy that is not a robust solution

cannot dominate ρ? because, by definition, it either yields a strictly lower payoff when

Nature responds to each µ with V̂ (µ), or, it yields a strictly lower payoff when Nature

responds to each µ with V̂ (µ) (by assumption, V = V̂ and V = V̂ are both feasible

choices by Nature).

Let P be the set of all feasible functions V that are additionally upper semi-

continuous. By Zermelo’s theorem, every set can be well-ordered. We thus introduce

a well-order @ on P . For any V ∈ P , let B?(V ) ⊂ S∗ be the subset of S∗ constructed

inductively as follows. Let V0 be the lowest element of P according to the order @.

Then, let

B?(V0) := argmax
ρ∈S?

{�
V0(µ)dρ(µ)

}
,

that is, the subset of robust solutions that are optimal for the Sender against V0.

The set B?(V0) is non-empty and closed (and hence compact in the weak? topology)

because V0 is upper semi-continuous and S? is non-empty and compact. For any

V ∈ P , then let

B(V ) :=
⋂
V ′@V

B?(V ′),

B?(V ) := argmax
ρ∈B(V )

{�
V (µ)dρ(µ)

}
.

The sets B?(V ) are nested, in the sense that B?(V ′) ⊆ B?(V ) if V @ V ′. There

are also non-empty and compact (again by Berge’s theorem). By an application

of the Finite Intersection Axiom, we can conclude that
⋂
V ∈P B

?(V ) 6= ∅ and any

ρ? ∈
⋂
V ∈P B

?(V ) is an undominated robust solution when we restrict attention to

functions V that are upper semi-continuous.

To finish the proof, suppose that such a ρ? is dominated. Then, it must yield the

Sender a payoff strictly lower than the one achieved by another robust solution ρ′

when Nature responds with a feasible V that is not upper semi-continuous. However,
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any measurable V can be approximated point-wise by a sequence Vn of upper semi-

continuous functions. By Lebesgue’s dominated convergence theorem, the Sender’s

expected payoff differential between ρ? and ρ′ under Vn must converge to her expected

payoff differential under the limit function V . If the expected payoff differential under

the limit function V is strictly negative, the expected payoff differential must also be

negative under Vn, for large n, contradicting the fact that ρ? is undominated when

Nature responds with upper semi-continuous functions, as shown above.

Part (b). We now establish that, when coV̂ = V , any robust solution is undom-

inated. Pick any robust solution ρ?. Again, it suffices to show that ρ? is not domi-

nated by any other robust solution ρ. By Corollary 7, any robust solution achieves

co(V̂F)(µ0) under the conjecture, which corresponds to Nature selecting V = V̂ . Sup-

pose first that there exists µ ∈ ∆Ω such that co(V̂F)(µ) > V̂ (µ) and ρ?(µ) 6= ρ(µ).

There are two subcases: Either (a) ρ?(µ) > ρ(µ) or (b) ρ?(µ) < ρ(µ).

In case (a), consider the feasible response by Nature V that responds to µ accord-

ing to the Sender’s conjecture, and that responds adversarially to any other posterior:

V (µ) = V̂ (µ), and V (µ′) = V̂ (µ′) for all µ′ 6= µ. Because µ is induced under some

robust solution (that is, µ ∈ supp(ρ?) ∪ supp(ρ)), by Corollary 7, it must be that

V̂ (µ) = co(V̂F)(µ). Thus, under the specified response by Nature, the Sender’s ex-

pected payoff under a robust solution ρ′ ∈ {ρ?, ρ} is given by

ρ′(µ)co(V̂F)(µ) +

(�
V̂ (µ′)dρ′(µ′)− V̂ (µ)ρ′(µ)

)
.

Under a robust solution, by Lemma 1, we have that
�
V̂ (µ′)dρ′(µ′) = V full(µ0), and

thus the difference in expected payoffs between ρ? and ρ when Nature responds with

V is given by

[ρ?(µ)− ρ(µ)]
[
co(V̂F)(µ)− V̂ (µ)

]
> 0,

where the inequality follows from the fact that ρ?(µ) > ρ(µ). Thus, ρ does not domi-

nate ρ?.

In case (b), consider the following response by Nature: V (µ) = V̂ (µ) and V (µ′) =

V̂ (µ′) for all µ′ 6= µ. Under this response by Nature, the expected payoff under a

robust solution ρ′ ∈ {ρ?, ρ} is equal to

co(V̂F)(µ0)− ρ′(µ)[co(V̂F)(µ)− V̂ (µ)].

To see this, recall that when Nature responds to any induced posterior with V̂ , then

ρ′ generates an expected payoff equal to co(V̂F)(µ0)—this follows directly from the
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fact that ρ′ is a robust solution.24 Conditional on inducing µ (which has probability

ρ′(µ)), instead of V̂ (µ) = co(V̂F)(µ), the Sender gets V̂ (µ).

Thus, the difference in expected payoffs between ρ? and ρ is given by

[ρ(µ)− ρ?(µ)]
[
co(V̂F)(µ)− V̂ (µ)

]
> 0,

because ρ(µ) > ρ?(µ). Hence, ρ does not dominate ρ? also in this case.

The final case to consider is when there exists no µ ∈ ∆Ω such that co(V̂F)(µ) >

V̂ (µ) and ρ?(µ) 6= ρ(µ). Put differently, for any µ such that ρ?(µ) 6= ρ(µ) (such

a µ must exist because otherwise the two solutions would coincide), we must have

co(V̂F)(µ) = V̂ (µ) (since co(V̂F) ≥ V̂ ). Note, however, that co(V̂F) is a concave

function while V̂ is a convex function, and thus they can be equal at µ if and only if

they are both affine functions on ∆(supp(µ)): In fact, we must have V̂ = V̂ = V full

on ∆(supp(µ)). Moreover, because V̂ is affine on ∆(supp(µ)), we have that coV̂ (µ) =

V̂ (µ) for any such µ. Finally, using the assumption of Theorem 3 that coV̂ = V , we

conclude that V = V̂ on ∆(supp(µ)). But this means that any V that Nature can

select is affine on ∆(supp(µ)). This implies that Nature’s response conditional on any

such µ is payoff-equivalent for the Sender: The Sender’s payoff is the same irrespective

of the signal and the strategy profile (compatible with the assumed solution concept)

selected by Nature in response to any such µ. Because this is true for any µ at which

ρ? and ρ differ, and because both distributions are robust solutions, it follows that

these two signals are payoff-equivalent, and hence ρ does not dominate ρ?.

24In fact, from Corollary 7,
�
V̂F (µ)dρ′(µ) = co(V̂F )(µ0). The property then follows from the fact

that, for any µ′ ∈ supp(ρ′), V̂ (µ′) = V̂F (µ′).
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