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Abstract

We study the design of approval rules when costly experimentation must

be delegated to an agent with misaligned preferences. When the agent has

the option to end experimentation, we show that in contrast to standard

stopping problems, the optimal approval rule must be history-dependent.

We characterize the optimal rule and show the approval threshold moves

downward over the course of experimentation. We find that private informa-

tion may qualitatively change the optimal mechanism: an agent can choose a

fast-track option in the form of an initially depressed approval threshold. On

expiry of the fast track, the threshold jumps up, introducing more stringent

standards. Our results provide a theoretical foundation for both the loos-

ening of approval standards on longer experimentation paths and fast-track

mechanisms.

Keywords: Dynamic mechanism design, experimentation, approval rules.

1 Introduction

In many real-world economic situations, decision-makers rely on information gen-

erated by other parties. Often the party, or agent, generating such information
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will have misaligned incentives and private information. For example, when decid-

ing whether to approve a drug, the FDA bases its decision on data generated by

clinical trials run by drug companies. The drug company, which bears the cost of

experimentation and prefers earlier approval than the FDA, might also have pri-

vate information about the quality of the drug generated during the R&D process

before experimentation begins. The FDA can commit to an approval rule, which

describes what clinical trial results are necessary for approval. This approval rule

will impact both how long the company is willing to experiment and whether the

company will truthfully report its private information. A misalignment of incen-

tives will prevent straightforward elicitation: for example, the company, which

wants the drug to be approved more quickly, may have an incentive to exaggerate

their optimism about the drug’s quality.

In this paper, we revisit the canonical Wald hypothesis-testing problem with the

new feature that approval and experimentation are controlled by separate players.

We study how a regulator can design stopping and decision rules (without monetary

transfers) that incentivize an agent to perform experimentation and truthfully

reveal any private information they have about the state of nature that determines

the efficacy of a project. Experimentation generates evidence of efficacy, which is

captured by a one-dimensional variable X. The players have misaligned incentives:

the agent is biased toward approval and pays higher experimentation costs.

We define a novel class of approval rules and prove their optimality. These rules

are history-dependent but still quite simple. They give us new insights into how

the agency problem adds a rich set of dynamics and generates interesting impli-

cations (e.g., longer length of experimentation is associated with more erroneous

approvals). We also study the effects of private information and find it adds new

qualitative features and dynamics to the optimal approval rule. Agents who report

a higher initial belief that the project is good may be given a fast-track mechanism,

where they have a chance for quick approval but are punished upon expiration of

the fast track with a higher approval standard.

We start by studying the problem in which the agent has no private information

(symmetric information), and focus on how the regulator provides incentives for

the agent to experiment. A standard result in the optimal stopping literature with

a single decision-maker is the optimality of stationary threshold strategies, in which

the decision-maker stops whenever the state crosses a fixed, history-independent,
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threshold. However, when the regulator relies on the agent to generate information

through experimentation, such static threshold rules are no longer optimal: once

the agent is about to quit, the regulator may be better off changing the approval

rule to provide additional incentives for the agent to continue experimentation. The

regulator could change the approval rule in many ways to give the agent incentives

to experiment. Given the richness of the set of approval rules, solving for the

optimal rule can appear quite daunting. Nevertheless, we find a tractable way to

relax the problem and find the solution to be history-dependent and non-stationary

but still remarkably simple.

We show how the optimal mechanism can be written as a function of only of

the current level of evidence of efficacy Xt and the minimum over the realized

path of X up to the current time t. The regulator uses an approval threshold

that is initially stationary. When the evidence drifts low enough that the agent is

tempted to quit if the threshold were to remain fixed, the regulator begins to lower

the threshold just enough to incentivize the agent to continue experimentation.

When the evidence moves higher than the current minimum, the threshold stays

fixed, never increasing, and will only decrease when the evidence again reaches a

new low. This downward drift of the approval threshold is bounded; if the evidence

reaches a fixed lower threshold, the regulator allows the agent to quit. Unlike in

the case of a single decision-maker, the probability of Type I error is not constant

over time. We also find that the optimal approval threshold, when written in terms

of the regulator’s beliefs, is independent of her initial beliefs. This independence

would not arise if we were to restrict the regulator to consider only stationary

threshold rules.

Having explored the tension caused by the need to incentivize experimentation,

we introduce private information about the state, which we call the agent’s type,

and look at the new features private information adds to the problem. The regula-

tor faces a tradeoff: giving one type a lower approval threshold gives the other type

an incentive to misreport his type. We find that the optimal mechanism may take

the form of a fast track given to agents who report a high initial belief. In such

a fast track, the agent is initially given a low approval threshold, but also faces

a stationary “failure” threshold. If the failure threshold is reached, the project is

not rejected, but the approval threshold takes a discrete jump upward (the agent

is thrown out of the fast track). They are allowed to continue to experiment but
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face a more stringent standard. Introducing the threat of being thrown out of the

fast track allows the regulator to lower the initial approval threshold while still pre-

serving the incentive compatibility constraint for the agent to truthfully report his

initial belief. By throwing the agent out of the fast track, the regulator hurts both

his and the agent’s payoffs. However, an agent who has misreported his type will

view this distortion as more likely, allowing the regulator to separate types without

transfers and increase the probability of quicker approval for the high type. We

then discuss the application of our model to the drug approval process and how

the two most notable features of our optimal mechanisms— the changing approval

standard and fast-track—match features of the real-world drug approval process

that cannot be explained by standard single-decision-maker models.

The outline of the paper is as follows: We review the literature in Section 2

and then introduce our baseline model with symmetric information in Section 3.

We solve for the optimal mechanism under symmetric information in Section 4.

In Section 5 we introduce asymmetric information and study how it affects the

optimal mechanism, as well as look at some comparative statics before discussing

applications to the drug approval example in Section 6. We conclude in Section 7.

Proofs of the our main theorems can be found in the Appendix; all other proofs

are in the Supplementary Material.

2 Literature

The setting of our paper ties into a large literature on the problem of dynamic

hypothesis testing building on the seminal model of Wald (1947). Peskir and

Shiryaev (2006) provide a textbook summary and history of the problem.

A growing literature has studied the strategic forces in experimentation. Pa-

pers such as Bergemann and Hege (2005), Halac et al. (2016) and Halac et al.

(2017) have studied the design of mechanisms with transfers to incentivize exper-

imentation. Kruse and Strack (2015) study which rules are implementable in a

general optimal-stopping principal-agent problem with transfers. Georgiadis and

Szentes (2020) use a Brownian learning model to study optimal costly informa-

tion acquisition when monitoring an agent’s action. Guo (2016), one of the closest

papers to our own, looks at a bandit problem in a principal-agent model where

the agent possesses private information about the probability that the bandit is

4



“good.” Similar to our model, Guo (2016) solves for the optimal mechanism when

monetary transfers are infeasible and the agent has private information about a

payoff-relevant state of the world. We instead consider a model in which the agent

has the ability to quit experimenting, whereas in her model, the principal controls

experimentation throughout. Introducing interim constraints on the mechanism

adds the history dependence to our mechanism.

Another paper that is close to our own is Henry and Ottaviani (2019), who

study a model of regulatory approval when learning takes place through a publicly

observable Brownian motion. In their model, both the regulator and the agent

possess a common prior about the state. They study the equilibria of the approval

process for different configurations of approval and experimentation authority. Our

main focus is on the design of optimal mechanisms and the effects of private infor-

mation rather than the equilibrium outcomes.

Carpenter and Ting (2007) look at a theoretical model of drug approval in which

the drug companies are better informed about the state for their drug. They study

the resulting equilibria of a discrete time model. They find that the length of

experimentation determines the comparative static for the effect of firm size on the

number of Type I and Type II errors, which they find support for using data on

FDA approval times.

A notable feature of our optimal mechanism is the rigidity in the movement of

the approval threshold and the history dependence on only the minimum of past

beliefs. This rigidity is somewhat reminiscent of Harris and Holmstrom (1982),

who study equilibrium wage contracts in a competitive market. In their model, risk

aversion by the agent means wages will be constant until beliefs about the agent’s

type are high enough that market competition increases wages. Risk aversion

drives a similar rigidity in Thomas and Worrall (1988), who study the design of

wage contracts. Our model contains no risk aversion, and the rigidity is driven by

smoothing over the approval standards. The downward movement of the threshold,

towards the agent’s preferred level, is also reminiscent of the backloading dynamics

as seen in Ray (2002). As beliefs drop, the approval threshold moves towards the

agent’s preferred level. The dependence on only the minimum of the state variable

also arises in Gryglewicz and Kolb (2019), who study the equilibrium strategic

pricing game in which the prices of an incumbent firm signal its costs (which may

deter entry) and find prices set by firm depend on demand and the minimum over
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past demand.

The only other paper we know of in which agency forces drive a dynamically

changing threshold is Ely and Szydlowski (2020). They study how a principal

can use information disclosure to motivate an agent to work towards completing

a project. In contrast to our setting, they study a model in which the principal is

the provider of information and the agent controls the threshold for how long he

will work.

3 Model

Two players, a (female) regulator R and a (male) agent A, interact over an infinite

horizon in continuous time. A project that is up for approval may be of two types:

high (θ = H) or low (θ = L). Both players begin the game with a common-

prior π0 = P(θ = H). Experimentation by A generates information about θ

via a publicly-observed Brownian diffusion process X with state-dependent drift1

starting at X0; unless stated otherwise, we take X0 = 0. Xt evolves according to

dXt = µθdt+ σdWt,

where W is a standard one-dimensional Brownian motion on the state space

(Ω,F , P ) and F = {Ft}0≤t≤∞, where Ft = σ(Xs, Y0 : 0 ≤ s ≤ t) is the natural

filtration of X and, in order to allow for randomized mechanisms, an independent

randomization device Y0 realized at t = 0. A history ht is the realization of Y0

and the sample path ω of X from time 0 to t. Without loss of generality, we take

µL = −µ < 0 < µ = µH . Unless otherwise specified, we take X0 = 0.

Both players update their beliefs to πt according to Bayes’ rule. It is convenient

to instead use the log-likelihood of beliefs Zt = log( πt
1−πt ), which we often simply

1 Brownian learning has been widely used in the statistics literature on hypothesis testing

and the design of clinical trials. The use of continuous time in our model is done purely for

mathematical convenience and tractability. The intuition underlying our results is built on op-

timal stopping arguments that rely on the Brownian motion continuous time setup through the

continuity of the belief path and martingale property of beliefs.
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call beliefs. Zt can be written as2

Zt = Z0 +
2µ

σ2
(Xt −X0).

We let z0 := log( π0

1−π0
). This transformation of the belief process is useful because

both Xt and the initial Z0 enter linearly into the current Zt. We denote by Ex,z

the expectation over X, Y0 given X0 = x and the distribution over θ implied by

the beliefs Z0 = z. For notational convenience, we take E = E0,z0 and Ex = Ex,zx
where zx = z0 + 2µ

σ2x.

R and A share a common discount rate r ≥ 0 and pay respective flow costs cR
and cA as long as experimentation continues, with cA > cR ≥ 0. Both players have

the option to end the game at any time, giving both players a payoff of 0.

R can, at any time, decide to approve or reject the project, thereby ending the

game. We let dt = 1 if R approves at time t, and dt = 0 if R rejects at time t.

Both players receive 0 if the project is rejected. We normalize both players’ payoff

from approval when θ = H to 1 and let a and f be A and R’s respective payoffs

from approval when θ = L. To avoid trivial cases, we take f < 0. We assume

a ∈ [f, 1] so that A is weakly biased in favor of approval and receives a higher

utility from approval when θ = H than when θ = L. The expected utilities for

R and A from approval at Xt are ũ(Xt) = eZt+f
1+eZt

and ṽ(Xt) = eZt+a
1+eZt

, respectively,

where Zt = z0 + 2µ
σ2 (Xt −X0). Both ũ(Xt) and ṽ(Xt) are martingales in Xt.

3 We

call Xc := ũ−1(0) R’s myopic threshold: R prefers approval to rejection if and only

if Xt ≥ Xc.
4

We give R full commitment power over when to stop and approve or reject the

project. We call her rule for deciding when to stop and whether to approve or

reject the project a stopping mechanism.

Definition 1. A stopping mechanism is a pair (τ, dτ ) ∈ T×D, where T is the

set of stopping times with respect to F and D is the set of F∞-random variables

taking values in {0, 1} such that dτ is Fτ -measurable.

2A standard derivation (see Shiryaev (2007)) shows that the posterior after history ht is

πt = π0e
2µ

σ2
(Xt−X0)

1−π0+π0e
2µ

σ2
(Xt−X0)

. The formula for Zt then follows from taking log( πt
1−πt ).

3This follows by noting that ũ and ṽ are linear in πt, which we know is a martingale.
4Although it is natural to use Zt as the state variable, it will be convenient when introducing

asymmetric information to write players’ utilities as a function of Xt. In the interest of keeping

notation consistent throughout, we will write everything in terms of Xt.
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Let u(Xτ , dτ ) := ũ(Xτ )dτ + cR
r

and v(Xτ , dτ ) := ṽ(Xτ )dτ + cA
r

. R and A’s

expected utility from (τ, dτ ) when X0 = x and Z0 = z are given by J and V

respectively:

J(τ, dτ , x, z) = Ex,z[e−rτ ũ(Xτ )dτ −
∫ τ

0

e−rtcRdt] = Ex,z[e−rτu(Xτ , dτ )]−
cR
r
,

V (τ, dτ , x, z) = Ex,z[e−rτ ṽ(Xτ )dτ −
∫ τ

0

e−rtcAdt] = Ex,z[e−rτv(Xτ , dτ )]−
cA
r
.

For notational convenience, we will occasionally drop dependence on x in J and V

when x = 0 and, although ũ and ṽ depend on Z0, keep this dependence implicit.5

Because R has commitment power, it is without loss to focus on mechanisms in

which A never takes his outside option.6 In order to avoid adding unnecessary

trivial caveats in the proofs, we will assume throughout the R’s optimal mechanism

does not stop immediately.

Throughout the paper, our main example is that of drug approval. This situa-

tion fits many of the key assumptions of the model: dynamic experimentation, no

transfers, delegation of experimentation and observability of experimental results.

The FDA cannot make transfers to the company and the length of experimentation

is determined by the company; that is, the FDA can not prevent the company from

ending experimentation early. The public observability of Xt holds, for example,

if R can force A to preregister his experiments and the experimental outcomes are

verifiable, as is the case in drug trials. We also view the commitment assumption

as reasonable here. Theoretically, this can be justified using a repeated-game logic

in which a deviation from the agreed upon mechanism is punished with movement

to a bad equilibrium when experimenting on future drugs. Given the large number

of drugs the FDA has to consider, maintaining commitment to an agreed upon

mechanism should be relatively easy to support.

5When taking an expectation Ex,z[e−rτ ṽ(Xτ )dτ ], we will assume that ṽ is defined relative to

Z0 = z and similarly for ũ.
6We can always replace A taking the outside option with R rejecting the project. We also

note here that R does not formally need the ability to reject the project. If R sets τ =∞, A will

immediately quit. The act of rejection can be taken as short-hand for inducing A to immediately

quit by setting τ =∞. We would like to thank an anonymous referee for pointing this out.
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4 Symmetric Information

We start by looking at a simple class of simple benchmark mechanisms, which we

call static-threshold mechanisms. These mechanisms approve if Xt rises above a

fixed threshold B and reject if Xt falls below a fixed threshold b. We call B the

static approval threshold and b the static rejection threshold.

Definition 2. (τ, dτ ) is a static-threshold mechanism for a pair (b, B) ∈ R2

with b < B if τ = inf{t : Xt 6∈ (b, B)} and dτ = 1(Xτ ≥ B).

Let τ+(B) := inf{t : Xt ≥ B} and τ(b) := inf{t : Xt ≤ b}. R and A’s expected

utility from a static threshold mechanism with (b, B) when (X0, Z0) = (x, z+ 2µ
σ2x)

are J̃ and Ṽ , respectively:7

J̃(B, b, x; z) := J(τ+(B) ∧ τ(b),1(Xτ ≥ B), x, z +
2µ

σ2
x),

Ṽ (B, b, x; z) := V (τ+(B) ∧ τ(b),1(Xτ ≥ B), x, z +
2µ

σ2
x).

We drop dependence on z in J̃ and Ṽ when z = z0.

It is straightforward to show that both R and A’s first-best mechanisms, in

which they alone control the length of experimentation and the decision to be made,

are static-threshold mechanisms. These mechanisms are stationary: continuation

play is independent of the previous history and depends only on the current Xt.

Stationarity also implies that, conditional on approval, the probability of Type I

error (i.e., approving when θ = L) is independent of the length of experimentation.

The optimality of static-threshold mechanisms turns out to be robust even to

mild forms of the agency problem. Consider R’s problem in which we limit A to

only be able to take his outside option at time zero. R will maximize J(τ, dτ , z0)

subject to a participation constraint V (τ, dτ , z0) ≥ 0. Proposition 8 in the Supple-

mentary Material shows the solution to this problem is a static-threshold mecha-

nism. Although R could satisfy A’s participation constraint in a myriad of ways,

she chooses to do so in a smooth way, by adjusting the approval and rejection

thresholds without violating stationarity.

7Unless otherwise stated, we will assume that b < B when discussing pairs of thresholds b, B.
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4.1 Optimal Mechanism

Including only a time-zero participation constraint is too weak for our problem. To

ensure thatA does not take his outside option early, R must ensureA’s continuation

value is weakly positive after all histories ht until R ends experimentation.

Definition 3. (τ, dτ ) satisfies the dynamic participation constraint if, after

every history ht, A’s continuation value is weakly positive.

Suppose A were to quit early at some stopping time τ ′ ∈ T. Using this strategy

gives A an ex-ante expected utility of E[e−r(τ∧τ
′)v(Xτ∧τ ′ , dτ1(τ < τ ′))] − cA

r
. We

define A’s value allowing for deviations to quit early as

V ∗(τ, dτ , x, z) := sup
τ ′∈T

Ex,z[e−r(τ∧τ ′)v(Xτ∧τ ′ , dτ1(τ < τ ′))]− cA
r
.

As with V and J , we drop dependence on x when x = 0. We define a (slightly)

relaxed version of R’s problem with symmetric information, which we call the SI

problem, by only imposing a condition we call DP (z0):

[SI] : sup
(τ,dτ )

J(τ, dτ , z0)

subject to DP (z0) : V ∗(τ, dτ , z0) ≤ V (τ, dτ , z0).

DP weakens the dynamic participation constraint.8 For example, DP allows for

A’s continuation value to be negative on probability-zero events. We can show that

every mechanism that satisfies the dynamic participation constraint will satisfy

DP .9 SI is therefore an upper bound on R’s utility. We later verify that our

solution satisfies the dynamic participation constraint.

Given our benchmark mechanisms, the conjecture that a static-threshold mech-

anism will be optimal seems natural. We illustrate why this conjecture fails with

a simple example below. Simply put, at the point at which R rejects in a static-

threshold mechanism, she may be better off lowering the threshold (“cutting A

some slack”) to incentivize A to continue experimenting. Rejecting the project

leaves gains from trade on the table: A would benefit from a lower approval

threshold, and, due to the option value of experimentation, R would benefit from

continued experimentation.

8We drop dependence of DP (z0) on z0 where doing so causes no confusion.
9See Lemma 23 in the Supplementary Materials.
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To simplify the example, we take cR = 0 and a ≥ 0. Suppose R uses a static

approval threshold of B1 > Xc.
10 Because R benefits from the option value of

experimentation, she will never reject the project before A decides quit. Let b1 =

arg maxb≤0 Ṽ (B1, b, 0) be the threshold at which A will choose to quit against the

approval threshold B1. To satisfy DP , R must reject when Xt = b1.

Let Mechanism One be a static-threshold mechanism (b1, B1) ∈ R2 with b1 <

B1. For b < B, define τ+(B; b) = inf{t < τ(b) : Xt ≥ B} to be the first time

X crosses B before reaching b, with τ+(B; b) = ∞ if τ(b) < τ+(B). Similarly,

we define τ(b;B) = inf{t < τ+(B) : Xt ≤ b} to be the first time X crosses b

before reaching B, with τ(b;B) = ∞ if τ(b) > τ+(B).11 R’s expected utility from

Mechanism One is

E[e−rτ+(B1;b1)ũ(B1)].

Now consider Mechanism Two, in which R uses the same approval threshold of

B1 > 0 until Xt 6∈ (b1, B1). If Xt reaches b1 first, then, instead of rejecting, R lowers

the approval threshold to B2 ∈ (Xc, B1). Because the discounted probability of

approval is now higher, A will be willing to continue experimenting until Xt reaches

b2 = arg maxb Ṽ (B2, b, b1) < b1, so R now rejects at b2. R’s expected payoff from

Mechanism Two is

E[e−rτ+(B1;b1)ũ(B1)]︸ ︷︷ ︸
R’s Util. when τ+(B1)<τ(b1)

+ E[e−rτ(b1;B1)]︸ ︷︷ ︸
Discounted prob. of

τ(b1)<τ+(B1)

Eb1 [e−rτ+(B2;b2)ũ(B2)]︸ ︷︷ ︸
R’s Cont. Value at

τ(b1) when τ(b1)<τ(B1)

.

R’s payoff when τ+(B1) < τ(b1) is the same as that in Mechanism One. However,

because R does not reject at τ(b1) and ũ(B2) > 0, she now has a strictly positive

continuation value at τ(b1), thereby improving on Mechanism One.

Moving out of the class of static-threshold mechanisms, conjecturing the form

the optimal policy will take is difficult. The key difficulty comes from the fact that

the DP constraint allows the agent to deviate by choosing a τ ′ ∈ T, where T is

infinite-dimensional. For an arbitrary stopping rule (τ, dτ ), finding A’s optimal τ ′

10If B1 < Xc, the static-threshold mechanism would only approve at beliefs which give R

negative utility, and, therefore, R would be better off rejecting immediately.
11We note that E[e−rτ+(B;b)] = E[e−rτ+(B)1(τ(b) > τ+(B))], E[e−rτ(b;B)] = E[e−rτ(b)1(τ(b) <

τ+(B))] and E[e−rτ+(B;b)] + E[e−rτ(b;B)] = E[e−r(τ(b)∧τ+(B))].
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is infeasible.12 The standard approach in the dynamic contracting literature (e.g.,

Sannikov (2008)), to use A’s continuation value as an additional state variable,

is also intractable. In addition to the continuation value, we must also carry the

belief about the state, making the corresponding HJB equation a partial differential

equation that is difficult to analyze.

We overcome these difficulties by studying a relaxed version of SI. Although

we allow for arbitrary complex and history-dependent mechanisms, the solution

depends on the history ht only through Xt and Mt := min
s≤t Xs, the current minimum

of the diffusion path. The optimal mechanism is, roughly speaking, a continuous

version of the strategy in our simple example: R decreases the approval threshold

whenever A is about to quit, but keeps it fixed as Xt moves back toward the

approval threshold.

We now develop some notation to write the optimal mechanism. Suppose R

fixes her approval threshold at B. When Z0 = z, it is optimal for A to continue

experimenting at Xt = x if his value function max
b

Ṽ (B, b, x; z) is strictly positive—

namely, A will choose to quit at Xt = x if and only if max
b

Ṽ (B, b, x; z) = 0. We

define the threshold at which A will choose to quit as

b∗(B; z) = inf{x : max
b

Ṽ (B, b, x; z) > 0}.

We note that b∗(B; z) is independent of x. It is straightforward to show that it is

optimal for A to quit when Xt = x if and only if x ≤ b∗(B; z). Abusing notation

slightly, we write b∗(B; z) = arg maxb Ṽ (B, b, x; z).13 We drop dependence on z in

b∗ when z = z0.

We use b∗ to find the maximal static approval threshold that would induce A

to optimally choose to quit at Xt = m. We define this function as B(m), which

we show is increasing in m in the Appendix.

B(m) := max{B : b∗(B) = m}.
12Even for simple mechanisms, such as a time-varying threshold, solving for A’s optimal τ ′ is

difficult and cannot be calculated in closed form.
13If max

b
Ṽ (B, b, x; z) = 0, then b∗(B; z) > x and arg maxb Ṽ (B, b, x; z) = [x,∞) as all such

b ∈ [x,∞) lead to A immediately quitting. In such a case, b∗(B; z) ∈ arg maxb Ṽ (B, b, x; z) and

so is an optimal quitting threshold.
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Let B(m;B1) be a “capped” version of B: B remains fixed at B1 until m is low

enough that B begins to follow B(m).

B(m;B1) =

{
B1 m > b∗(B1)

B(m) m ≤ b∗(B1).

Again, for notational convenience, we occasionally drop dependence on B1.

Our first main result shows that there exists a B1 such that the optimal mech-

anism uses B(Mt;B
1) as its approval threshold. The approval threshold remains

at B1 until Xt decreases low enough that A would find it optimal to quit if the

approval threshold were to remain fixed. After reaching this point, which oc-

curs when Xt = Mt = b∗(B1), R gradually and permanently lowers the approval

threshold each time Mt decreases, never raising it again. This adjustment down-

wards is just enough to keep A indifferent between continuing and quitting when

Xt = Mt ≤ b∗(B1); as Xt decreases, A becomes more pessimistic about the state

and so, even though he expects the approval threshold to fall when Mt decreases, he

is still indifferent between continuing and quitting when Xt = Mt as his increased

belief that θ = L offsets his benefit from the decrease in the approval threshold.

The adjustment process for the approval threshold continues until either R ap-

proves the project or Xt reaches a fixed lower rejection threshold b, at which point

R rejects the project. This rejection threshold is the point at which continuing to

lower the threshold is too costly and R is better off rejecting.

Theorem 1. There exists (b, B1) such that optimal mechanism is

τ ∗ = inf{t : Xt 6∈
(
b, B(Mt;B

1)
)
}, d∗τ = 1

(
Xτ∗ ≥ B(Mτ∗ ;B

1)
)
.

Our initial observation that both R and A’s first-best mechanisms are static-

threshold mechanisms shows the dynamics of our mechanism are driven by the

agency problem. This type of history dependence in the approval rule is, to our

knowledge, new and shows how strategic interactions can lead to a rich set of

dynamics in the design of approval rules.

While the dependence on Xt is natural, the dependence on Mt is perhaps more

unusual as it is not payoff relevant. With only a mild form of the agency problem

in which R has to only satisfy an ex-ante participation constraint for A, static

threshold mechanisms are optimal: R increases A’s expected utility in a “smooth”
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Figure 1: The left graph shows a realized sample path of Xt. In the right graph,

the lines extending up from the 45-degree line illustrate another sample path.

manner by lowering the approval threshold but still keeping it fixed. This suggests

a smoothing intuition, that R would like to keep the approval threshold fixed as

long as possible. However, after a large enough drop in Xt, A will find it optimal to

quit unless R modifies the approval threshold in order to increase A’s continuation

value. There are many ways R could do so, such as lowering the threshold a large

amount today before raising it in the future. However, the smoothing intuition

suggests that R would prefer to keep the threshold stationary as long as possible.

Thus, R will lower the threshold and keep it fixed until Xt again falls low enough

that R must increase A’s continuation value again; this point occurs when A is

most pessimistic about his chances of approval (namely, when Xt = Mt). Mt

operates as a sufficient statistic for how much R has needed to lower the approval

threshold to prevent A from quitting.

Sketch of the Proof

To identify a relaxed version of the SI-problem that is more amenable for our

analysis, we make some conjectures regarding the class of τ ′ that are likely to be

binding. As long as R is using a stationary threshold, A’s best-response quitting

14



rule will be a stationary threshold as well. We conjecture a particular class of τ ′

deviations will be binding, which we call threshold quitting rules :

Definition 4. A uses a threshold quitting rule at x if he quits at time τ(x).

A’s payoff from (τ, dτ ) when using the quitting rule τ(x) is V (τ∧τ(x), dτ (x), x),

where dτ (x) := dτ1(τ < τ(x)).

We define a relaxed version of SI in which we restrict attention to a finite

grid of such quitting rules. The restriction to a finite grid is used for technical

reasons, and we look at the limit as this grid becomes arbitrarily fine. Let bFBA =

arg maxb[maxB Ṽ (B, b, x)] be the rejection threshold in A’s first best mechanism;

we show in the Appendix that if a ≥ 0, A prefers immediate approval at all values

of Xt, in which case we take bFBA = −∞. It is clear that R can never convince A

to experiment below bFBA .

For some X < 0, let TN = {Xn}Nn=1 with X1 = 0 and Xn = Xn−1 − δN ,

where δN := |X|
N

is the step size of our grid. If bFBA > −∞, take X = bFBA and if

bFBA = −∞, take X going to −∞ as N → ∞ slowly enough that δN → 0. Our

relaxed problem replaces the DP constraint with a set of relaxed versions of DP ,

which we call RDP constraints, one for each Xn ∈ TN :

RDP (Xn) : V (τ ∧ τ(Xn), dτ (Xn), z0) ≤ V (τ, dτ , z0).

Because we have relaxed the constraint set, the solution to this relaxed problem

will provide an upper bound on the value of SI.14

To solve the relaxed problem, we employ Lagrangian techniques. We construct

a Lagrangian with multipliers Λ = (λ1, ..., λN) ∈ RN
− :

L = sup
(τ,dτ )

E[e−rτu(Xτ , dτ ) +
N∑
n=1

λn
{
e−r(τ∧τ(Xn))v(Xτ∧τ(Xn), dτ (Xn))− e−rτv(Xτ , dτ )

}
].

For an appropriate choice of Λ, the solution to L will solve our relaxed problem and

satisfy complementary slackness conditions. Although selection of the multiplier Λ

14It is not obvious that dropping non-threshold constraints is without loss. For many stopping

policies that R could use, A’s best response will take a more complex form than a threshold

quitting rule. For example, if R were to wait until date T and approve if and only if XT > B,

then A′s optimal quitting rule would take the form inf{t : Xt = f(t)} for some increasing f .
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can be difficult, the qualitative properties we derive from analyzing the Lagrangian

for an arbitrary Λ allows us to pin down the form of the optimal solution.

Let X1 be the largest Xn ∈ TN for which RDP (Xn) binds in the solution to this

relaxed problem. We decompose the problem into before τ(X1) and after τ(X1).

Optimal stopping arguments allow us to establish the optimality of a “local” static-

threshold rule: R uses an approval threshold that is constant until τ(X1).

We call the stopping time and decision rule (normalized by t) which is induced

by (τ, dτ ) after ht the continuation mechanism.15 We show that the continuation

mechanism is the same at τ(X1) for every history up to τ(X1). Doing so allows

us to prove that, at τ(X1), A is indifferent between quitting and continuing to

experiment, regardless of the history up to τ(X1). The stationarity of the optimal

stopping rule prior to τ(X1) is key for proving the indifference of A at τ(X1).16

The mathematical structure of the continuation problem at τ(X1) is similar

to our problem at t = 0, allowing us to apply similar arguments to show that

the optimal mechanism at τ(X1) is a stationary threshold until the next binding

constraint threshold is reached. Repeated application of these arguments allows us

to show the optimal mechanism has a sequence of approval thresholds that depend

only on the last binding quitting threshold that has been reached, for which Mt

is a sufficient statistic. Complementary slackness and optimal stopping arguments

allow us to pin down the approval thresholds. Taking the limit of our mechanisms

as the grid TN becomes arbitrarily fine, we show that a limit mechanism exists and

satisfies the dynamic participation constraint.

4.1.1 Features of the Optimal Mechanism

The mechanism has observable implications for the relationship between experi-

mentation length and the probability of error. The decrease in the approval thresh-

old increases the probability of Type I error (i.e., approving a bad project), in con-

trast to static threshold mechanisms in which the probability of error conditional

on approval is constant. Our model predicts a higher probability of Type I error

for projects that have taken a long time to be approved relative to projects that

15A formal definition of a continuation mechanism is provided in the Appendix.
16This property is not true for general (τ, dτ ). If R used a deterministic stopping rule that

stopped at some T with probability one, A’s RDP (X1) constraint may bind in expectation at

t = 0, but, A will in general have a non-zero continuation value at τ(X1).
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were approved quickly.17

Given that beliefs are the payoff-relevant state variable, it is natural to write

the mechanism in terms of Z rather than X. Let MZ
t := min

s≤t Zs. By Theorem 1 and

the fact that Zt is an affine transformation of Xt, there exists an approval threshold

function BZ(·) and rejection threshold bZ such that the optimal mechanism, when

written as a function of Z, is (τZ , dZτ ) with τZ = inf{t : Zt 6∈ (bZ , BZ(MZ
t ))} and

dZτ = 1(ZτZ ≥ BZ(MZ
τZ )). Proposition 1 below shows that the optimal approval

and rejection thresholds are independent of z0. This independence from z0 is

standard in single-decision maker problems, but is absent in an agency model if

we restrict attention to a choice over static-threshold mechanisms (see Henry and

Ottaviani (2019)). Providing flexibility in the design of the approval rule restores

independence.

Proposition 1. The optimal approval and rejection thresholds BZ(·) and bZ are

the same for all z0.

The structure of the optimal mechanism is the same under a more general class

of players’ preferences. We show in the Supplementary Material that our results

hold under more general utility functions ũ and ṽ for R and A. Doing so allows

us to extend our results to examples in which the players’ utilities from approval

at a belief πτ are not linear in πτ . In the drug approval example, whether doctors

and patients use a particular drug may depend on their belief πτ about its efficacy.

Thus, the belief πτ will affect how widely the drug is adopted after approval. If R

and A care about both the effectiveness of the drug and how widely it is used after

approval, then players’ payoffs may be non-linear in πτ .

The mechanism might seem to rely heavily on the commitment assumption. If

R could not commit, would she raise the threshold when Xt rises, thereby under-

mining her past promises to A that incentivized him to keep experimenting? In the

Supplementary Material, we look at a version of the model without commitment

and show that an equilibrium exists with the same on-path outcome as our optimal

mechanism.

17Fudenberg et al. (2018) observe a similar relationship between experimentation time and

probability of error in a single-decision-maker model when the state space is continuous but not

when binary as is the case in our model.
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5 Asymmetric Information

We now introduce our other agency friction of private information. That A may

possess private information prior to the start of experimentation in our drug-

approval example is natural. For example, the company may have acquired in-

formation about the drug during the R&D phase or during animal clinical trials,

which are not preregistered and are not directly observable by the FDA.

The road map for this section is as follows. After introducing asymmetric

information into the model, we describe our main result before providing some

additional intuition for its structure. While R was previously concerned only with

providing incentives for A to continue experimentation, she must now consider

how to distort the mechanism to decrease A’s utility if he chooses to misreport

his private information. Despite this conceptual difference, the structure of the

problem is mathematically similar to that in Section 4, allowing us to use many

of the same arguments to pin down the structure of the optimal mechanism. We

conclude this section with some comparative statics.

We introduce asymmetric information by giving A a private binary signal at

t = 0 that leads him to update his log-likelihood belief based on the realization

of his signal to zi ∈ {z`, zh}, where z` < zh. We say A is type h if he updates to

zh and is type ` if he updates to z`. The ex-ante probability of zi is P(zi).
18 We

restrict attention to a ∈ [0, 1], so that A wants approval in either state; to rule

out a trivial case of the model, we assume a > 0 if z` = −∞. For expositional

simplicity, we also focus on the case when cR = 0 and zh is sufficiently high; the

case for lower values of zh is studied in the Supplementary Materials, where we

show that our main result in Theorem 2 on the structure of h’s optimal mechanism

holds for all zh.
19

We redefine the stopping mechanism in order to elicit A’s private information.

Applying the Revelation Principle, R offers a menu of stopping mechanisms from

which A chooses by reporting his type.

18The distributions and accuracy of the binary signal conditional on each θ, along with the

prior π0, will pin down the values of zh and z` as well as P(zh).
19The assumption cR = 0 is reasonable in our drug approval example where the costs of running

clinical trials are paid by the company. Although omitted here, a previous version of the paper

showed that all results go through when cR > 0 and provided sufficient conditions under which

our results on `’s optimal mechanism hold for all zh.
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Definition 5. A stopping mechanism menu is a pair of mechanisms {(τ i, diτ )}i=h,`
such that (τ i, diτ ) ∈ T×D and R implements (τ i, diτ ) when A reports being type i.

When A misreports his type, his beliefs will differ from those of R’s, leading to

different expectations over the mechanism’s outcome. The log-likelihood beliefs of

R and a misreporting A will always differ by a constant ∆z := zh − z`.
The mechanism must provide incentives for A to truthfully report his type.

However, A’s report is not the only deviation he can carry out. He could, after

misreporting his type, choose to quit prior to R approving or rejecting the project.

Type i’s value of misreporting his type to be j will depend on when he chooses

to quit in j’s mechanism. We define a dynamic version of incentive compatibility,

which we call DIC, in a similar manner to DP . V ∗ captures the value of these

double deviations.

Definition 6. A stopping mechanism satisfies DIC(i) if for j 6= i

V ∗(τ j, djτ , zi) ≤ V (τ i, diτ , zi).

Let Γi be the set of (τ, dτ ) that satisfy i’s dynamic participation constraint. R’s

mechanism design problem with asymmetric information is given by

sup
{(τ i,diτ )}i=`,h

∑
i=`,h

J(τ i, diτ , zi) · P(zi), (1)

subject to (τ i, diτ ) ∈ Γi, DIC(i), ∀i ∈ {`, h}.

Optimal Mechanism

To define the optimal mechanism, we first develop analogous functions to b∗ and

B(m). We must now keep track of what the starting beliefs of A are. Let b∗i (B) =

b∗(B; zi) be the lower threshold at which type i would quit against an approval

threshold of B and Bi(m) = max{B : b∗i (B) = m} be the static approval threshold

that would induce type i to quit when Xt = m.20

20As we show in the Appendix, when a ≥ 0, A’s utility strictly decreases if the approval

threshold increases so there is only a single threshold that induces A to optimally quit at m.

Thus, Bi(m) = b∗−1i (m).
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We define the mechanism for ` using two parameters η` = (b`, B
1
` ) and for h

using four parameters ηh = (bh, b
1
h, B

2
h, B

1
h). Given ηi, the approval threshold for

type i is Bi(M ; ηi):

B`(m; η`) =

{
B1
` if m > b∗`(B

1
` ),

B`(m) if m ≤ b∗`(B
1
` ),

Bh(m; ηh) =


B1
h if m > b1

h,

B`(m) if m ∈ (b∗`(B
2
h), b

1
h],

B2
h if m ∈ (b∗h(B

2
h), b

∗
`(B

2
h)],

Bh(m) if m ≤ b∗h(B
2
h).

Similar to Section 4, we sometimes drop dependence on ηi.

We now present our main result for this section. Although `’s mechanism is

essentially the same as his symmetric-information mechanism (SI-mechanism) in

Theorem 1, h’s mechanism can be qualitatively different. When A reports to be

type h, the optimal mechanism can give him a fast-track to approval. A fast-track

mechanism uses a low initial approval threshold B1
h that remains fixed as long as

A remains in the fast-track. A is thrown out of the fast track if the outcomes of

the experimentation go poorly; more specifically, if Xt goes below the fixed lower

“failure” threshold b1
h. After being removed from the fast-track, R still allows A to

experiment but imposes a more stringent standard as the approval threshold jumps

up to B`(b
1
h) > B1

h, something that never happens in the SI-mechanism. After this

jump up, the approval threshold begins to decrease when Mt decreases. Eventually,

the approval threshold reaches a level B2
h at which the mechanism operates as h’s

SI-mechanism would—namely, the approval threshold remains fixed at B2
h until

Xt reaches the point at which h’s participation constraints begin to bind and R

again begins to lower the approval threshold.

Theorem 2. For sufficiently high zh, there exist ηh, η` such that the optimal menu

{(τ i, diτ )}i=`,h is given by τ i = inf{t : Xt 6∈ (bi, B
i(Mt; ηi))} and diτ = 1

(
Xτ i ≥

Bi(Mτ i ; ηi)
)
.

To explain the intuition for the jump in a fast-track mechanism, note that R

would like to give h a lower approval threshold than `. Lowering h’s approval

threshold creates incentives for ` to misreport his type. To give h a lower approval
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Figure 2: The left graph shows a fast-track mechanism along a realized evidence

path over time. The approval threshold for h starts off low but jumps up at τ(b1
h).

The right graph compares the approval thresholds for h, `.

threshold but still satisfy DIC(`), R will need to introduce some distortions into

the mechanism.

R could add distortions in many ways. Our results from Section 4 suggest

that R optimally provides continuation value to A in a smooth manner, keeping

the approval threshold stationary until A is indifferent between continuing and

quitting. A similar intuition holds here: R smooths the approval threshold until

we reach a history at which, in the continuation mechanism, ` is indifferent be-

tween continuing and quitting. This first occurs at τ(b1
h), the expiry of the fast

track. By increasing the approval threshold at τ(b1
h), R reduces a misreporting `’s

continuation value at the cost of a threshold that is above R’s preferred level.

The optimal mechanism backloads distortions by increasing the approval thresh-

old only when b1
h is first reached. R evaluates the mechanism with initial belief zh,

and a misreporting ` evaluates it using z`, so ` will find a decrease in Xt to b1
h more

likely than R. By backloading the distortions, R is able to use the information

generated by Xt to separate types and place distortions after histories that ` views

as more likely than h does, thereby minimizing R’s ex-ante cost of distortions while
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still maintaining appropriate incentives for `.21

The ability of ` to quit early (i.e., a double deviation) limits the amount of

punishment R can give; that is, `’s continuation value can never be negative.

Nevertheless, R could still punish ` in many ways. For example, R could reject

at b1
h. However, such a strong punishment is not needed. R could instead raise

the approval threshold to B`(b
1
h), which would induce ` to quit immediately. The

approval threshold of B`(b
1
h) achieves the same level of punishment for ` while still

allowing h to continue experimenting.

R need not keep the threshold so high forever. When Xt reaches a new low,

` would strictly prefer to quit against the current threshold. The new low by Xt

allows R to gradually decrease the approval threshold, leaving ` indifferent between

quitting and continuing, thereby decreasing the distortions without weakening the

punishment from `’s perspective. Eventually, when Mt is low enough, R would no

longer want to decrease the approval threshold. At this point, which occurs when

the approval threshold is at B2
h, R can cease decreasing the approval threshold

until she needs to incentivize h to continue experimentation, at which point she

starts decreasing it again.

Our solution verifies the smoothing intuition discussed earlier, albeit with a key

difference when compared to the SI-mechanism. With symmetric information, R

keeps the threshold fixed until A is about to quit against the current threshold.

With asymmetric information, R needs to decrease `’s utility of misreporting, which

she can do via two ways: raise the approval threshold B1
h or induce ` to quit before

he would optimally choose to quit against B1
h, by setting b1

h > b∗`(B
1
h). By raising

the failure threshold b1
h, R is able to lower the approval threshold B1

h while still

preserving DIC.

5.0.1 Sketch of Proof

In the proof, we derive each (τ i, diτ ) separately. Let Vi be the utility type i gets

from truthfully declaring his type in the solution to R’s problem. Then (τ i, diτ )

must maximize R’s utility from type i among all mechanisms which give type i

at least Vi utility and type j 6= i less than Vj utility. The problem for type i’s

21I would like to thank an anonymous referee for pointing out the benefits of back-loading for

generating additional information to separate types.

22



mechanism is similar to SI, only now we add a modified version of DIC and a

promise-keeping constraint PKi(V
′
i ) to ensure the mechanism delivers an expected

utility of at least V ′i = V ∗(τ j, djτ , zi) to i. These V ′i and Vj are chosen by R when

designing the optimal mechanism, but for now we can treat them as fixed.22 R’s

asymmetric information mechanism for type i solves the problem AMi given by

[AMi] : sup
(τ i,diτ )

J(τ i, diτ , zi)

subject to (τ i, diτ ) ∈ Γi, PKi(V
′
i ) : V (τ i, diτ , zi) ≥ V ′i ,

DIC(j, Vj) : V ∗(τ i, diτ , zj) ≤ Vj.

In the Appendix, we show that DIC(h) in 1 is slack when zh sufficiently high

and that, whenever DIC(h) is slack, the solution to R’s problem takes the same

form as in Theorem 2.23 When DIC(h) is slack, we can safely drop PKh(V
′
h) from

AMh as h’s utility from R’s choice of (τh, dhτ ) will yield strictly higher utility than

V ∗(τ `, d`τ , zh).

To simplify the derivation of (τh, dhτ ), we show that R will never reject above the

rejection threshold in h’s SI-mechanism. Rejection above this point is dominated

by instead using a continuation mechanism with an approval threshold Bh(Mt)

which will provide the same continuation value for h and ` as rejection and will

increase R’s continuation value.

After any history, using h’s SI-mechanism as the continuation mechanism gives

an upper bound on R’s expected utility from the continuation mechanism of any

solution to AMh. We then take m to be the highest level of m at which ` would

choose to quit immediately at τ(m) in h’s SI-mechanism.24 Because h is more op-

22The exact values of V ′i and Vj chosen by R will depend on the parameters of the problem

such as zh, z`,P(zh).
23This is the only point at which we use the assumption that either zh = ∞ or zh ≈ ∞.

Although it is intuitive for DIC(h) to be slack as R and h’s incentives are more aligned, there do

exist values of zh, z` such that DIC(h) is binding. To see why, we note that there are two forces

that determine the effect of a change in zi on R’s optimal approval threshold in the symmetric-

information case. The first force is that when zi increases, R requires less evidence before she

would like to approve the project. This first force pushes toward giving h a lower approval

threshold than `. The second force is that when zi is lower, R may have to lower the approval

threshold to ensure ` is willing to experiment. This second force pushes toward giving ` a lower

approval threshold. This second force can be large enough that DIC(h) binds.
24If zh =∞, so that R always wants to approve h immediately, m = −∞.
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timistic about his chances of approval, it is reasonable to conjecture that h will be

willing to experiment as long as ` is. We then propose a relaxed version of AMh in

which we drop h’s dynamic participation constraint but fix the continuation mech-

anism of any choice of (τ, dτ ) at τ(m) to be h’s SI-mechanism. Furthermore, we

relax DIC(`, V`) by only considering threshold quitting rules τ(Xn), with Xn ∈ TN .

For each Xn, we call the corresponding relaxed version of DIC(`, V`) a RDIC(Xn)

constraint:25

RDIC(Xn) : V (τh ∧ τ(Xn), dhτ (Xn), z`) ≤ V`.

The mathematical structure of this relaxed problem is very similar to the relaxed

problem in Section 4, with two notable differences: the RDIC(Xn) constraint

contains an expectation with respect to z` rather than zh, and RDIC(Xn) requires

providing sufficient disincentives rather than sufficient incentives as in RDP (Xn).

We deal with the first difference by a change of expectation that replaces `’s utility

function with a modified version of v, allowing us to apply the arguments from

Section 4 to find the structure of the optimal stopping rule. The second difference

requires some additional arguments to derive the structure of the optimal stopping

rule but still possesses enough similarity to relaxed problem in Section 4 that we

can use similar arguments to pin down the optimal stopping rule.

In the limit as our grid of RDIC constraints becomes fine, we show that `’s

continuation value is weakly positive whenever t < τ(m). Because h has a higher

belief that θ = H than ` does, h’s continuation value is strictly positive prior to

τ(m). When paired with the fact that h’s continuation value is always weakly

positive after τ(m) by Theorem 1, we find that dropping h’s dynamic participation

constraint in our relaxed problem was without loss.

Solving AM` turns out to be much simpler. Dropping DIC(h) is equivalent

to dropping DIC(h, Vh). Once DIC(h, Vh) is dropped, the only change in AM`

relative to the problem in Section 4 is the inclusion of a promise-keeping constraint

for `, which does not qualitatively change the structure of the optimal mechanism.

The only important difference is that the addition of the PK` constraint may lead

R to use an approval threshold below Xc, thereby approving at beliefs that give

her negative utility. Unlike the model in Section 4, the assumption of commitment

by R will be necessary for implementing the solution to R’s problem.

25We omit dependence on V` for notational convenience.
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It is natural to guess that h’s initial threshold B1
h will always be weakly lower

than `’s initial threshold B1
` . When B1

h < B1
` , it is not hard to see that h’s approval

threshold will jump up at b1
h; that is, h’s mechanism is a fast-track one. Although

it will often be the case that h’s initial threshold is lower, for some parameter

values, h’s approval threshold will be everywhere higher than `’s. To find sufficient

conditions for when h’s initial threshold will be at least as low as `’s, we need to

make stronger assumptions on the z`. In the Supplementary Material, we show

that if z` > log(−f), then h’s initial approval threshold is weakly lower than `’s.

Comparative Statics

In the absence of private information, increasing the cost cA unambiguously hurts

R, because doing so makes incentivizing experimentation more difficult for her.

However, with asymmetric information, this comparative static does not always

hold. In the absence of monetary transfers, costly experimentation provides a

screening tool. This result can speak to the debate on who should fund drug trials

(drug companies or government agencies), providing a reason for requiring the

companies to run experiments. A higher cost forces A to have some “skin in the

game” and makes eliciting any private information easier. When cA becomes large,

it is possible to screening types at a minimal cost for R.

Proposition 2. R’s value of the optimal mechanism is strictly decreasing in cA
under symmetric information. Under asymmetric information, R’s value may in-

crease in cA.

We might also wonder whether A having private information about θ is bene-

ficial for R. On one hand, more information is useful for R. On the other hand,

private information introduces information rents and can add distortions to the

optimal mechanism. Which effect is greater is not obvious ex-ante. Proposition 3

shows that R prefers to have an informed A.

Proposition 3. The value to R of the optimal mechanism under asymmetric in-

formation in which A learns θ perfectly is higher than the value to R of the optimal

mechanism under symmetric information with same prior on θ.

The proof is quite simple. When A is informed, consider the sub-optimal mech-

anism in which R simply offers the SI-mechanism for both types and lets them
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quit whenever they desire. Because ` is more pessimistic about the chances of

approval, he will quit earlier than an uninformed A. This earlier quitting time by

` improves R’s utility when compared to the SI-mechanism.

6 Application of the Model: Drug Approval

We now discuss how our model provides insights into the features of the real-world

drug approval process. In particular, we focus on two notable features of our

results, the decreasing approval threshold and the fast track. These two features

distinguish our mechanisms from the optimal mechanism of a single decision-maker,

who would choose a static-threshold mechanism.

The insight provided by our decreasing threshold is that lowering the approval

threshold can provide incentives for companies to continue experimentation when

they might otherwise quit. A single-decision-maker model would use a single trial

with a constant approval threshold and no subsequent experimentation after the

trial is declared a failure. Yet, we often see drug companies run additional clinical

trials after a failed one and receive approval if these later trials are successful. Our

results show the benefits of allowing the additional trials in providing incentives

for companies to perform additional experimentation.

How such a decreasing threshold can be implemented can be illustrated using

the example in Section 4 comparing Mechanism One and Two. Suppose A needs

one successful clinical trial for approval. Mechanism One consists of a single trial

that lasts until B1 or b1 is reached. We call the amount of positive evidence A

needs to generate from the beginning of the trial for the trial to be declared a

success the trial standard. For this first trial, the trial standard is B1; Xt starts at

X0 = 0 and needs to go up, in total, by B1−X0 = B1. Upon reaching b1, the trial

is declared a failure and development of the drug is abandoned.

Mechanism Two (which can be viewed as a rough version of the optimal mech-

anism) uses the same first trial as Mechanism One, but, instead of rejecting after

the first trial fails, allows A to begin a second trial. When the first trial ends at

failure for date t, Xt = b1, and needs to reach B2 for approval, so the standard

for the second trial is B2 − b1. Note that if B1 = B2 − b1, lowering the threshold

to B2 when Xt is at b1 is equivalent to giving A the same trial standard for both

trials. Keeping the trial standard fixed effectively decreases the approval threshold
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upon reaching the end of the first trial at b1. This discussion shows how allowing

multiple trials while keeping the same trial standards leads to a lowering of the

approval threshold.

In a recent change to the evidentiary standards for Alzheimer’s drugs, the

FDA has shown that they understand the need to adjust the bar for approval

after failed clinical trials. The failure of numerous clinical trials for drugs to treat

Alzheimer’s has discouraged investment in their development, as companies have

become pessimistic about the chances of successful clinical trials (Cummings and

Zhong (2015)). After these repeated failures, the FDA lowered the approval bar

by removing one of the criteria for clinical trial success. “U.S. regulators have

proposed lowering the bar for clinical trial success... Medicines tested to treat

Alzheimer’s have had a dismal track record, and the Food and Drug Administration

has recognized that goals for clinical trials need to evolve...”26; the standards have

been subsequently updated since this writing of this article.27 This change in the

bar for approval was viewed as encouraging companies to run clinical trials: the

change gave “the field more confidence in being bold about the trials that [the

field] design and then carry out” (Reuters) and “signaled [the FDA] is ready to

accelerate the development of new drugs for Alzheimer’s” (STAT). Although this

example concerns the failure of clinical trials for multiple drugs, as opposed to

the single drug considered in our model, the economic forces at play are the same

as in our model, as approval standards must be adjusted to provide additional

incentives for experimentation.28 Our results explain why such a lowering of the

approval standards is optimal and why it happens only after failed clinical trials.

Our fast-track mechanism matches the features of real-world fast-track and

expedited-approval programs. Beginning in 1988, the FDA introduced a Fast Track

26Reuters (“U.S. FDA looks to pave way for earlier-stage Alzheimer’s drugs.” February 15,

2018). I would like to thank Jorge Lemus for sending me this article.
27STAT (“FDA’s updated standards remove unnecessary barrier to testing Alzheimer’s Drugs.”

March 5, 2018).
28A previous version of our paper illustrated this point with an extension to the model in which

R interacts sequentially with two agents, each with their own realization of θ. When the θs of

the agents are positively correlated and the probability of θ = H is low enough (as is likely in

the Alzheimer’s case), after rejecting the first agent, R will give the second one a lower approval

threshold than the first agent. The second agent is more pessimistic about his θ than the first

agent, and R will need to decrease the approval threshold to provide more incentives for him to

experiment.
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designation for certain drugs with the purpose of getting promising new drugs that

address a serious unmet medical need to the patient earlier. In 1992, the FDA also

began offering an Accelerated Approval program with similar features. Companies

apply for these programs prior to the start of clinical trials. These programs give

drugs lower evidentiary standards for approval and have been succesful in reducing

the length of the clincial trial process (Kesselheim and Darrow (2015)). This

lower evidentiary standard matches the lower threshold of our model. However,

admittance to these expedited approval programs is not permenant. The Fast-

Track designation may be removed if, after seeing the result of some clinical trials,

the drug is found to “no longer demonstrates a potential to address an unmet

medical need” (FDA (2014)). Similarly, the Accelerated Approval program allows

drugs to be removed from the program if a “trial required to verify the predicted

clinical benefit of the product fails to verify such benefit” (FDA (2014)). In our

model, a decrease in Xt to the failure threshold b1
h corresponds to the loss of

“potential to address an unmet medical need” and failure to “verify predicted

clinical benefit.” These attributes—the lower approval standards and the removal

from the expedited approval program upon poor trial outcomes—fit the qualitative

features of our optimal mechanism. Our model explains why lower standards must

be paired with the possibility of being thrown out of the program, after which a

higher non-fast track standard would be applied.29

The goal of these programs is to expedite the approval for drugs that have

the potential to address serious or life-threatening medical conditions. Our results

suggest that similar programs can be expanded beyond drugs to treat serious condi-

tions. By offering these different tracks, the FDA can shorten clinical trial lengths,

thereby benefiting both patients and drug companies by reducing the length of

experimentation.

29By solving the problems AMh and AM` for arbitrary values of Vi, V
′
j , we can immediately

extend our results to include additional costs of misreporting one’s type into the model. For

example, we can include lying costs (e.g., the employees of a drug company may dislike mis-

representing their beliefs about the efficacy of the drug) and the organizational and time costs

of submitting an application for a fast-track. Including such costs will reduce the extent the

approval standard will need to jump up after the failed fast-track in order to maintain incentive

compatibility.
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7 Conclusion

In this paper, we present a model of a hypothesis-testing problem with agency

concerns. The optimal mechanism features a history-dependent approval threshold,

that can still be solved for in a tractable way and be written as a function of

the minimum of the belief process. We find the optimal mechanism when the

agent possesses no private information takes the form of a monotonically decreasing

approval threshold.

We also apply the model to the case in which the agent has private information,

which adds new and distinct features to the optimal mechanism. The optimal

solution may take the form of a fast-track mechanism: high types are offered a

low starting approval threshold, but if the evidence becomes too unfavorable, the

approval threshold jumps up, entering a punishment phase in which it drifts back

down slowly. These results show how agency problems may lead to an evolving

and history-dependent approval rule.
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Appendices

We now present a formal definition of a continuation mechanism. Without loss,

we take Ω = C[0,∞), where C[0,∞) is the space of continuous functions on [0,∞)

and Xt(ω) = ωt. Let χt be the shift operator defined by χtω = ω′, where ω′s = ωs+t.

Definition 7. The continuation mechanism of (τ, dτ ) at ht is (τ [ht], dτ [ht])

where, for each ω with history ht, τ [ht](χtω) = τ(ω)− t and dτ [ht](χtω) = dτ (ω).

A mechanism is stationary in (X,M) when, for each (x,m), its continuation

mechanism at each history ht with (Xt,Mt) = (x,m) is the same.30 For a mecha-

nism (τ, dτ ) that is stationary in (X,M), when discussing its continuation mech-

anism at some history hτ(m), we will simply call it the continuation mechanism of

(τ, dτ ) at τ(m).

It will be notationally useful to allow for M0 < X0, so we treat M0 as a parame-

ter and redefine Mt = min{min
s∈[0,t]

Xt, M0}. We then let Ex,m denote the expectation

over X, Y0 when X0 = x, M0 = m and Z0 = z0 + 2µ
σ2x (i.e., the belief updated from

x and z0); if not specified, we take M0 = X0. Thus, Ex = Ex,x. Define Ex[·|θ] to

be the expectation of X, Y0 given X0 = x in state θ.

Suppose (τ, dτ ) is stationary in (X,M). For each (x,m) and history ht such

that (Xt,Mt) = (x,m), its continuation mechanism at ht leads to the same distri-

bution over outcomes as when using (τ, dτ ) from t = 0 when (X0,M0) = (x,m).

For any history ht with (Xt,Mt) = (m,m), we have Em[e−rτ [ht]v(Xτ [ht], dτ [ht])] =

Em[e−rτv(Xτ , dτ )].

We start by looking at Ṽ and J̃ . It is straightforward to show that both func-

tions are continuous in all arguments. Our next three lemmas give some properties

of Ṽ and J̃ .

Lemma 1. Ṽ (B, b, x) and J̃(B, b, x) are single peaked in B on [x,∞) when b < x

and in b on (−∞, x] when x < B.

30Whenever discussing a pair (x,m), we assume x ≥ m.
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Lemma 1 shows how Ṽ and J̃ change in B and b—for example, Ṽ (B, b, x) is

decreasing in B for B > arg maxB′ Ṽ (B′, b, x) and is increasing in B for B <

arg maxB′ Ṽ (B′, b, x).

Lemma 2. For any b < x, arg maxB≥x Ṽ (B, b, x) < arg maxB≥x J̃(B, b, x).

Lemma 3. If z′ > z, Ṽ (B, b, x; z) ≥ 0 and x ∈ (b, B), then Ṽ (B, b, x; z′) >

Ṽ (B, b, x; z).

For U ≥ 0, we define a modified version of J̃ , call it J̌ , that replaces the utility

of 0 at b with U :

J̌(B, b, x, U) = Ex[e−rτ+(B;b)u(B, 1) + e−rτ(b;B)(U +
cR
r

)]− cR
r
.

Similar to Ṽ and J̃ , we restrict attention to b < B.

Lemma 4. J̌(B, b, x, U) is single peaked in B on [x,∞) when b < x and in b on

(−∞, x] when x < B. arg maxB≥x J̌(B, b, x, U) is increasing in U .

A General Stopping Problem

We now introduce a general optimal stopping problem that will be useful in deriving

common properties of the solution to R’s problems in Sections 4 and 5. Take some

(ξ1, X1, ξ2, ..., ξP , XP ) ∈ R2P
− such that Xk+1 < Xk; throughout the Appendix and

Supplementary Materials, when discussing a set {Xk}Pk=1, we adopt the convention

Xk+1 < Xk for all k, XP+1 = −∞ and X0 = 0. For each d ∈ {0, 1} and 0 ≤ k ≤
P , let g(x, k, d) be a bounded continuous function of x such that g(Xt, k, d) is

a martingale in Xt. Define dxk = arg maxd g(x, k, d) and, for m ≤ 0, κ(m) to

be the k such that m ∈ (Xk+1, Xk]. We assume that g(Xk+1, k + 1, dX
k+1

k ) −
g(Xk+1, k, dX

k+1

k ) ≥ −ξk+1 for all k.31 Consider the following stopping problem:

sup
(τ,dτ )

E[e−rτg(Xτ , κ(Mτ ), dτ ) +
P∑
k=1

e−rτ(Xk)ξk1(τ ≥ τ(Xk))]. (2)

31When translating R’s problems in Sections 4 and 5 into the form of this general stopping

problem, we will directly verify that the corresponding conditions of g, ξ hold.
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Proposition 4. There exists a (τ ∗, d∗τ ) that solves 2 with τ ∗ = inf{t : Xt 6∈
(b, B(Mt))} for some threshold b and function B(m) that is constant on (Xk+1, Xk]

for all k. d∗τ is a function of only Xτ∗ and Mτ∗.

Proof. It is clear that d∗τ = arg maxd g(Xτ , κ(Mτ ), d), and therefore only depends

on (Xτ ,Mτ ). We focus on deriving τ ∗. The continuation value in 2 at τ(Xk) is32

K(Xk) = sup
(τ,dτ )

EXk

[e−rτg(Xτ , κ(Mτ ), dτ ) +
P∑

j=k+1

e−rτ(Xj)ξj1(τ ≥ τ(Xj))] + ξk.

Let Gk(x) = 1(x ≤ Xk+1)K(Xk+1) + 1(x > Xk+1)g(x, k, dxk). The continuation

value Fk(x) in 2 at (Xt,Mt) = (x,m) for k = κ(m) when t 6= τ(Xk) is

Fk(x) = sup
τ

Ex[e−r(τ∧τ(Xk+1))Gk(Xτ∧τ(Xk+1))]. (3)

At t = τ(Xk), the instantaneous cost ξk is a sunk cost and plays no role in the

future decision of when to stop, so K(Xk) = Fk(X
k) + ξk. It is optimal stop when

(Xt,Mt) = (x,m) in 2 if and only if it is optimal to stop when (Xt,Mt) = (x,m)

in 3.

We now show that Gk(x) is upper semicontinuous. Continuity at x 6= Xk+1

is easy to see. Note that K(Xk+1) ≥ g(Xk+1, k + 1, d) + ξk+1 for all d. Then
lim

x↓Xk+1 (Gk(X
k+1) − Gk(x)) = K(Xk+1) − g(x, k, dxk) ≥ g(Xk+1, k + 1, dX

k+1

k ) −
g(Xk+1, k, dX

k+1

k ) + ξk+1 ≥ 0 and lim
x↑Xk+1 (Gk(X

k+1) − Gk(x)) = 0. We conclude

that Gk is upper semicontinuous.

It easy to see that Fk(x) is continuous. Corollary 2.9 and Remark 2.10 from

Peskir and Shiryaev (2006) show that continuity of Fk and upper semicontinuity of

Gk imply that an optimal stopping rule for 3 exists33 and that it is optimal to stop

at t ∈ [τ(Xk), τ(Xk+1)) if and only if Xt ∈ Dk := {x > Xk+1 : Fk(x) = Gk(x)}.
Because t ∈ [τ(Xk), τ(Xk+1)) if and only if κ(Mt) = k, τ ∗ = inf{t : Xt ∈ Dκ(Mt)}
is an optimal stopping rule.

32We adopt the conventions that a sum is zero when it has a lower bound that is higher than

its upper bound, so
∑P
j=P+1 e

−rτ(Xj)ξj1(τ > τ(Xj)) = 0, and ξ0 = 0.
33Formally, because we allow for τ =∞, we consider, in the terminology of Peskir and Shiryaev

(2006), the existence of an optimal Markov time. They also require boundedness of |Gk|, which

easily follows from the boundedness of g(x, k, d).
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Let bk = sup{x ≤ Xk : x ∈ Dk} and Bk = inf{x ≥ Xk : x ∈ Dk}.34 By

continuity of X, the first entrance time into Dk, if it ever occurs, happens when

X crosses either bk or Bk.
35 If bk > −∞, then P(τ ∗ > τ(Xk+1)) = 0. Letting

B(m) = Bκ(m) and b = maxk bk (with b = −∞ if bk = −∞ for all k), we have

τ ∗ = inf{t : Xt 6∈ (b, B(Mt))}.

In the Supplementary Material we provide sufficient conditions under which τ ∗

will be unique,36 which will be useful for proving the existence of a solution to the

relaxed problems we consider in Sections 4 and 5.

B Symmetric Information

We solve a slightly more general version of our relaxed problem in Section 4 in

which we add a promise-keeping constraint PK(V ) : V (τ, dτ , z0) ≥ V to ensure

A’s expected utility is at least V < sup
τ,dτ

V (τ, dτ , z0):37

HN(V ) = sup
(τ,dτ )

J(τ, dτ , z0)

subject to PK(V ), RDP (Xn) ∀Xn ∈ TN .

By Theorem 1 of Balzer and Janßen (2002), HN(V ) = inf
Λ∈RN+1

−

sup
(τ,dτ )

L(τ, dτ ,Λ),

where, for Λ = (λ1, ..., λN , γ),

L(τ, dτ ,Λ) = E[e−rτ (u(Xτ , dτ )− (γ +
N∑
n=1

λn)v(Xτ , dτ )) (4)

+
N∑
n=1

e−r(τ∧τ(Xn))λnv(Xτ , dτ (Xn))]− γ(V +
cA
r

).

34We note that bk = −∞ if it is never optimal to stop at Xt ∈ (Xk+1, Xk] for t ∈
[τ(Xk), τ(Xk+1)) and Bk = ∞ if it is never optimal to stop at Xt ≥ Xk for such t. If bk = Bk,

then it is optimal to stop immediately at τ(Xk).
35In order for X to reach any x > Bk from Xt = Xk, it must travel through Bk. Similarly for

X to reach x < bk from Xt = Xk, it must travel through bk.
36Whenever discussing uniqueness of an optimal stopping rule, we ignore differences on prob-

ability zero events; the stopping rule used on these events does not impact ex-ante payoffs and,

thus, can be set to coincide with the stopping rule elsewhere without loss.
37The solution when V = sup

τ,dτ
V (τ, dτ , z0) is the solution to a single-decision maker problem

with A’s preferences, which is a static-threshold mechanism.
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Moreover, the inf is achieved at some Λ̂ = (λ̂1, ..., γ̂). We say that (τ, dτ ) and

Λ̂ satisfy the complementary slackness conditions for RDP (Xn) if (τ, dτ ) satisfies

RDP (Xn) and λ̂n < 0 only if RDP (Xn) binds under (τ, dτ ), with an analogous def-

inition for PK(V ). Let L∗(Λ) = sup
(τ,dτ )

L(τ, dτ ,Λ). Take Λ̂ ∈ arg minΛ∈RN+1
−
L∗(Λ)

and (τ, dτ ) ∈ arg max(τ ′,d′τ ) L(τ ′, d′τ , Λ̂). If (τ, dτ ) and Λ̂ satisfy complementary

slackness conditions for all constraints, then (τ, dτ ) solves HN(V ) by Theorem 1

of Balzer and Janßen (2002).38 We use this result to establish the existence of a

solution to HN(V ) and show that it is stationary in (X,M).

Proposition 5. There exists a (τ ∗N , d
∗
N,τ ) that solves HN(V ). Let BN = {Xn :

RDP (Xn) binds under (τ ∗N , d
∗
N,τ )} = {X1, ..., XP}. There exist a threshold bN and

function BN(m) that is constant on (Xk+1, Xk] for each 0 ≤ k ≤ P such that

τ ∗N = inf{t : Xt 6∈ (bN , BN(Mt))} and d∗N,τ = 1(Xτ∗N
≥ BN(Mτ∗N

)). If BN(0) > 0,

then BN(m) > m for all m < 0.

The fact that (τ ∗N , d
∗
N,τ ) is stationary in (X,M) allows us to write A’s continu-

ation value39 at τ(Xn) as ρ(Xn) := EXn [e−rτ
∗
Nv(Xτ∗N

, d∗N,τ )]− cA
r

.

Lemma 5. ρ(Xn) ≥ 0, with equality if and only if RDP (Xn) binds.

Proof. RDP (Xn) implies

E[e−rτ
∗
N1(τ ∗N < τ(Xn))v(Xτ∗N

, d∗N,τ ) + e−rτ(Xn)1(τ ∗N ≥ τ(Xn))
cA
r

] (5)

= E[e−r(τ
∗
N∧τ(Xn))v(Xτ∗N∧τ(Xn), d

∗
N,τ (Xn))]

≤ E[e−rτ
∗
Nv(Xτ∗N

, d∗N,τ )]

= E
[
e−rτ

∗
N1(τ ∗N < τ(Xn))v(Xτ∗N

, d∗N,τ ) + e−rτ(Xn)1(τ ∗N ≥ τ(Xn))EXn [e−rτ
∗
Nv(Xτ∗N

, d∗N,τ )]
]

= E[e−rτ
∗
N1(τ ∗N < τ(Xn))v(Xτ∗N

, d∗N,τ ) + e−rτ(Xn)1(τ ∗N ≥ τ(Xn))(ρ(Xn) +
cA
r

)].

with equality if and only if RDP (Xn) binds. Using the first and last lines, we have

ρ(Xn) ≥ 0, with equality if and only if RDP (Xn) binds.

38This theorem requires a Slater condition that there exist a mecahnism in which all constraints

are slack. In the Supplementary Material we show that this holds in our problem and discuss

two other technical conditions Balzer and Janßen (2002) require.
39Where no confusion is caused, we will leave implicit the mechanism under which we are

evaluating A’s continuation value, here (τ∗N , d
∗
N,τ ).
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Next, we provide a characterization of BN .

Lemma 6. BN = {Xn ∈ TN : Xn ≤ X1}.

Proof. RDP (Xn) binds whenever P(τ(Xn) ≥ τ ∗N) = 1. Thus, it binds for all

Xn < bN and, if BN(0) = 0, for all Xn (so that X1 = 0). For the sake of

contradiction, suppose BN(0) > 0, bN ≤ Xk − δN and Xk+1 < Xk − δN . First

consider the case in which Xk+1 ≥ bN . By the stationarity of (τ ∗N , d
∗
N,τ ) in (X,M)

and the fact that BN(m) > Xk is constant on (Xk+1, Xk], for allm ∈ (Xk+1, Xk] we

have EXk,m[e−rτ
∗
Nv(Xτ∗N

, d∗N,τ )] = EXk
[e−rτ

∗
Nv(Xτ∗N

, d∗N,τ )]. By Lemma 5, ρ(Xk) =

ρ(Xk+1) = 0 < ρ(Xk − δN), so Ex[e−rτ∗Nv(Xτ∗N
, d∗N,τ )] = cA

r
for x ∈ {Xk, Xk+1}.

If taking the expectation over X when (X0,M0) = (Xk − δN , Xk − δN), whenever

τ+(Xk) < τ(Xk+1) we have Mτ+(Xk) ∈ (Xk+1, Xk). Thus,

ρ(Xk − δN) = EXk−δN
[
e−rτ+(Xk;Xk+1)EXk,M

τ+(Xk)
[e−rτ

∗
Nv(Xτ∗N

, d∗N,τ )]

+ e−rτ(Xk+1;Xk)EXk+1

[e−rτ
∗
Nv(Xτ∗N

, d∗N,τ )]
]
− cA

r

= EXk−δN
[
e−r(τ+(Xk)∧τ(Xk+1)) cA

r

]
− cA

r
< 0,

contradicting ρ(Xk − δN) > 0. If Xk+1 < bN , we can replace Xk+1 with bN and

the argument is identical.

Take BN(m) := max{B : Ṽ (B,m− δN ,m) = 0}. We next state properties of

BN before using it to characterize BN(m).

Lemma 7. BN(m) is continuous and increasing in m on [bFBA + δN ,∞), with
lim
N→∞BN(m) = B(m) for m ≥ bFBA . B(m) is continuous.

Lemma 8. For each 1 ≤ k ≤ P and m ∈ (Xk+1, Xk] such that Xk+1 ≥ bN ,

BN(m) = BN(Xk). If X1 < 0, then BN(0) < BN(X1 + δN).

Proof. Suppose Xk+1 ≥ bN . By ρ(Xk+1) = 0, EXk+1
[e−rτ

∗
Nv(Xτ∗N

, d∗τ∗N )] = cA
r

, so

ρ(Xk) = EXk[
e−rτ+(BN (Xk);Xk+1)v(BN(Xk), 1) + e−rτ(Xk+1;BN (Xk))EXk+1

[e−rτ
∗
Nv(Xτ∗N

, d∗τ∗N )]
]

= EXk[
e−rτ+(BN (Xk);Xk+1)v(BN(Xk), 1) + e−rτ(Xk+1;BN (Xk)) cA

r

]
− cA

r

= Ṽ (BN(Xk), Xk+1, Xk). (6)
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Because RDP (Xk) binds, we have 0 = ρ(Xk) = Ṽ (BN(Xk), Xk+1, Xk). By the

single-peakedness of Ṽ in B, at most two possible values of B, say B1 < B2,

satisfy Ṽ (B,Xk+1, Xk) = 0. If only one solution exists, we are done. If two exist,

single-peakedness implies B1 < arg maxB Ṽ (B,Xk+1, Xk) < B2. By Lemma 6,

Xk+1 = Xk − δN , so B2 = BN(Xk).

Let U ≥ 0 be R’s continuation value at τ(Xk+1).40 Holding BN(m) fixed for

m ≤ Xk+1, R’s preferred approval threshold at τ(Xk) is arg maxB J̌(B,Xk+1, Xk, U).

By Lemmas 2 and 4, we have

arg max
B

J̌(B,Xk+1, Xk, U) ≥ arg max
B

J̌(B,Xk+1, Xk, 0) (7)

= arg max
B

J̃(B,Xk+1, Xk) ≥ arg max
B

Ṽ (B,Xk+1, Xk).

By the single-peakedness of Ṽ and J̌ , B1 is Pareto dominated by arg maxB Ṽ (B,Xk+1, Xk)

and so cannot be optimal. Thus, BN(Xk) = B2 = BN(Xk).

By the same arguments as in 6, ρ(X1 + δN) = Ṽ (BN(0), X1, X1 + δN). Then

Ṽ (B,X1, X1 + δN) < 0 for all B > BN(X1 + δN) since Ṽ (B,X1, X1 + δN) is equal

to 0 at B = BN(X1 + δN) and is decreasing in B for B > BN(X1 + δN). Because

ρ(X1 + δN) > 0, it must be that BN(0) < BN(X1 + δN).

We now use Lemma 7 to pin down the limit approval threshold.

Lemma 9. lim
N→∞BN(Mt) = B(Mt;B

1) for B1 := lim
N→∞ BN(0).

Proof. Given Lemmas 7 and 8, it suffices to show BN(X1) ≤ BN(0). Suppose

BN(X1) > BN(0) ≥ 0. Returning to the Lagrangian in 4 and fixing the continua-

tion value K(X1) at τ(X1), the fact that BN(0) is the optimal threshold implies

BN(0) = arg max
B

E[e−rτ+(B;X1)(u(B, 1)− γ̂v(B, 1)) + e−rτ(X1;B)K(X1)].

Now we consider the choice of BN(X1) in our Lagrangian. By standard dy-

namic programming arguments, the choice at t ∈ [τ(Xk), τ(Xk+1)) of the optimal

threshold to use between τ(X1) and τ(X2) is the same for all values of Xt. Tak-

ing (Xt,Mt) = (X1, 0) and fixing the continuation value F1(X1) at s such that

40If U < 0, then R would be strictly better off rejecting at τ(Xk+1); because A’s continuation

value at τ(Xk+1) is zero, rejecting at τ(Xk+1) would provide the same continuation value to A.
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(Xs,Ms) = (X1,m), we have

BN(X1) = arg max
B

E0,m[e−rτ+(B;X1)(u(B, 1)− (γ̂ + λ̂1)v(B, 1)) + e−rτ(X1;B)F1(X1)].

Using K(X1) = F1(X1) + λ̂1 cA
r

, optimality of BN(0) and BN(X1) implies

E[e−rτ+(BN (0);X1)](u(BN(0), 1)− γ̂v(BN(0), 1)) + E[e−rτ(X1;BN (0))](F1(X1) + λ̂1 cA
r

)

≥ E[e−rτ+(BN (X1);X1)](u(BN(X1), 1)− γ̂v(BN(X1), 1)) + E[e−rτ(X1;BN (X1))](F1(X1) + λ̂1 cA
r

),

E0,m[e−rτ+(BN (X1);X1)](u(BN(X1), 1)− (γ̂ + λ̂1)v(BN(X1), 1)) + E0,m[e−rτ(X1;BN (X1))]F1(X1)

≥ E0,m[e−rτ+(BN (0);X1)](u(BN(0), 1)− (γ̂ + λ̂1)v(BN(0), 1)) + E0,m[e−rτ(X1;BN (0))]F1(X1)

Note that E0,m[e−rτ+(B;X1)] = E[e−rτ+(B;X1)] for all B and similarly for τ(X1;B).

Adding the above inequalities together and simplifying, we get

E[e−rτ+(BN (X1);X1)]v(BN(X1), 1) + E[e−rτ(X1;BN (X1))]
cA
r

≥ E[e−rτ+(BN (0);X1)]v(BN(0), 1) + E[e−rτ(X1;BN (0))]
cA
r
,

which implies that Ṽ (BN(X1), X1, 0) ≥ Ṽ (BN(0), X1, 0).

Let U ≥ 0 be R’s continuation value under (τ ∗N , d
∗
N,τ ) at τ(X1). R’s ex-ante

expected utility is J̌(BN(0), X1, 0, U). Suppose BN(0) < arg maxB Ṽ (B,X1, 0).

By the same arguments as in 7, arg maxB J̌(B,X1, 0, U) ≥ arg maxB Ṽ (B,X1, 0),

so R could increase BN(0) and make both players better off, a contradiction. Thus,

BN(0) ≥ arg maxB Ṽ (B,X1, 0). By single-peakedness of Ṽ , BN(0) < BN(X1)

implies that Ṽ (BN(X1), X1, 0) < Ṽ (BN(0), X1, 0), a contradiction. Therefore,

BN(X1) ≤ BN(0).

The next Lemma shows A’s continuation value is strictly positive at every

history ht with Xt above the last RDP (Xn) constraint to be reached.

Lemma 10. For m ∈ (max{Xk+1, bN}, Xk] and x ∈ (Xk, BN(Xk)], A’s continua-

tion value after any history ht with (Xt,Mt) = (x,m) is strictly positive.

Proof. Take any history ht with (Xt,Mt) = (x,m) for any x ∈ (Xk, BN(Xk)] and

m ∈ (max{Xk+1, bN}, Xk]. Suppose Xk+1 ≥ bN . A’s continuation value at ht is
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Ex,m[e−rτ
∗
Nv(Xτ∗N

, d∗N,τ )] − cA
r

, which is the same for all m ∈ (Xk+1, Xk]. Because

ρ(Xk) = ρ(Xk+1) = 0, we have

0 = ρ(Xk) = EXk[
e−rτ

∗
Nv(Xτ∗N

, d∗N,τ )]−
cA
r

= EXk

[e−rτ+(x;Xk)Ex,Mτ+(x)
[e−rτ

∗
Nv(Xτ∗N

, d∗N,τ )] + e−rτ(Xk+1;x)EXk+1

[e−rτ
∗
Nv(Xτ∗N

, d∗N,τ )]
]
− cA

r

= EXk[
e−rτ+(x;Xk+1)Ex,Xk [e−rτ

∗
Nv(Xτ∗N

, d∗N,τ )] + e−rτ(Xk+1;x) cA
r

]
− cA

r
,

which implies Ex,Xk [e−rτ
∗
Nv(Xτ∗N

, d∗N,τ )]− cA
r
> 0. Because Ex,m[e−rτ

∗
Nv(Xτ∗N

, d∗N,τ )] =

Ex,Xk [e−rτ
∗
Nv(Xτ∗N

, d∗N,τ )], we conclude that A’s continuation value at ht is positive.

The proof when bN > Xk+1 is analogous.

We can now formally prove Theorem 1 .

Proof of Theorem 1. Let b := lim
N→∞ bN and define τ ∗ = inf{t : Xt 6∈ (b, B(Mt;B

1))}
and d∗τ = 1(Xτ∗ ≥ B(Mτ∗ ;B

1)), which is the limit of (τ ∗N , d
∗
N,τ ). Because each

(τ ∗N , d
∗
N,τ ) yields an upper-bound on our full problem, so does (τ ∗, d∗τ ).

41 We only

need to verify that (τ ∗, d∗τ ) satisfies the dynamic participation constraint. By

Lemma 10, in the limit as N → ∞, we see that A’s continuation value is weakly

positive after every history ht with Xt ≥ lim
N→∞XN = bFBA . If b ≥ bFBA , then (τ ∗, d∗τ )

satisfies the dynamic participation constraint and solves our full problem.

We now show b ≥ bFBA . If not, then bFBA > −∞. We have bFBA + δN = XN ∈ BN
and so, when bN < bFBA , Ṽ (BN(bFBA + δN), bN , b

FB
A + δN) = 0. By definition of

bFBA , it is optimal for A to quit at τ(bFBA ) for any approval threshold; so, for any B

and x ∈ (bFBA , B), Ṽ (B, b, x) is strictly decreasing in b for b < bFBA . Because bN is

bounded away from bFBA , for large N we have Ṽ (B, bN , b
FB
A + δN) < 0 for all B, a

contradiction. Therefore, we must have b ≥ bFBA .

We now show that B(b;B1) ≥ Xc when V = 0. If B1 < Xc, then ũ(B(m;B1)) <

0 for all m < 0, so R would be better off rejecting immediately. The approval

threshold will never decrease below Xc, as R would be better off rejecting at

τ(b∗(Xc)). Because A’s continuation value is equal to 0 at τ(m) for all m ≤
b∗(B1), rejecting at τ(b∗(Xc)) delivers the same expected utility for A. Therefore,

b ≥ b∗(Xc), which implies that B(m;B1) ≥ Xc for all m ≥ b.

41Continuity of players’ payoffs with respect to this sequence of mechanisms is shown in the

Supplementary Materials.
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C Asymmetric Information

We start with several auxiliary lemmas. Let Ṽi(B, b, x) = Ṽ (B, b, x; zi). Define

BN,i(m) := {B : Ṽi(B,m− δN ,m) = 0}, which is unique by Lemma 11 below. By

Lemma 7, lim
N→∞ BN,i = Bi(m).

Lemma 11. For any a ≥ 0, b < x and i ∈ {h, `}, Ṽi(B, b, x) is strictly decreasing

in B on [x,∞).

Lemma 12. B`(m) < Bh(m).

Lemma 13. For some b < 0 and increasing function B(m) > max{B`(m), b}, let

τ ′ = inf{t : Xt 6∈ (b, B(Mt))} and d′τ = 1(Xτ ′ ≥ B(Mτ ′)). Then V ∗(τ ′, d′τ , z`) = 0.

Lemma 14. Take R’s problem in 1 and drop DIC(h). If zh is sufficiently high,

the this relaxed problem satisfies DIC(h).

For the rest of the proof of Theorem 2, we will drop DIC(h) and solve AM` and

AMh for an arbitrary value of zh. Dropping DIC(h) means we can drop PKh(V
′
h)

from AMh and DIC(h, Vh) from AM`.

Optimal Mechanism for `

When DIC(h, Vh) is dropped, AM` corresponds to the SI-problem when z0 = z`
with a PK constraint. The structure of (τ `, d`τ ) follows from Theorem 1.

Optimal Mechanism for h

Unless otherwise specified, expectations below are taken with respect to Z0 = zh.

We let zi(x) = zi + 2µ
σ2x, ṽi(x) = ezi(x)+a

1+ezi(x) , vi(x, d) = ṽi(x)d+ cA
r

and bS and BS(m)

be the rejection and approval thresholds, respectively, in the SI-problem when

z0 = zh and V = 0. If zh =∞, we take bS = −∞ and BS(m) = −∞ for all m.

Lemma 15. It is never optimal in AMh to reject at any history ht with Xt > bS.

Proof. As argued in the proof of Theorem 1, BS(bS) ≥ Xc (with Xc defined relative

to z0 = zh). Take any (τ, dτ ) that satisfies all constraints in AMh and rejects at

Xτ > bS with positive probability. Let τ ′ = inf{t : Xt 6∈ (bS, Bh(Mt))} and

40



d′τ = 1(Xτ ′ ≥ Bh(Mτ ′)). Suppose R used (τ ′, d′τ ) as the continuation mechanism

of (τ, dτ ) rather than rejecting at Xτ > bS. Because Bh(m) is increasing in m

and Bh(Mτ ′) ≥ Bh(b
S) ≥ Xc, R’s continuation value at hs from the continuation

mechanism (τ ′, d′τ ) is strictly positive, as she is approving with positive probability

in the future at Xτ ′ > Xc and never approves at Xτ ′ < Xc. It is easily verified that

h’s continuation value under (τ ′, d′τ ) is 0, the same as rejection, and (τ ′, d′τ ) satisfies

h’s dynamic participation constraint. Because B`(m) < Bh(m), by Lemma 13 `

will optimally choose to quit immediately under (τ ′, d′τ ). If (τ, dτ ) rejects at hs with

Xs > bS, both types of A receive the same continuation value at hs from (τ ′, d′τ )

as under rejection, and, hence, using (τ ′, d′τ ) as the continuation mechanism at hs
does not change either type’s continuation value prior to s. Thus, using (τ ′, d′τ )

represents an improvement over rejecting.

Let τ̄ = inf{t : Xt 6∈ (bS, BS(Mt))} and d̄τ = 1(Xτ̄ ≥ BS(Mτ̄ )); then, (τ̄ , d̄τ )

solves our SI-problem when z0 = zh. Define m as the m ≤ 0 such that BS(m) =

B`(m); if BS(m) > B`(m) ∀m ≤ 0, take m = 0 and if zh = ∞, take m = −∞.

Because B`(m) < Bh(m), BS(m′) > B`(m
′) for all m′ < m. By Lemma 13, for

any mechanism (τ, dτ ) that uses (τ̄ , d̄τ ) as its continuation mechanism at τ(m), if

` has not already quit by τ(m), then ` will choose to quit immediately at τ(m).

In any solution (τ ′, d′τ ) to AMh, the continuation mechanism of (τ ′, d′τ ) at hτ(m)

will deliver to each type i some continuation value Wi(hτ(m)). The continuation

mechanism will solve the problem of maximizing R’s continuation value at hτ(m)

subject h’s dynamic participation constraint and constraints ensuring that h re-

ceives a continuation value of at least Wh(hτ(m)) and ` receives a continuation

value of at most W`(hτ(m)). Lowering Wh(hτ(m)) to 0 and raising W`(hτ(m)) to ∞
increases R’s value of this problem and this new problem is equivalent to maxi-

mizing R’s value subject to h’s dynamic participation constraint, which is equal

to our SI-problem when (X0, Z0) = (m, zh(m)). By Proposition 1, the solution to

the SI-problem is (τ̄ , d̄τ ).
42 Therefore, (τ̄ , d̄τ ) generates an upper-bound on R’s

continuation value at τ(m) under any solution to AMh.

In the SI-problem when z0 = zh and V = 0, by the same arguments as in our

example in Section 4, R will never reject while the approval threshold is above

42We discuss this point in more detail after the proof of Proposition 1 in the Supplementary

Materials, in which we argue that taking (X0, Z0) = (x, z0 + 2µ
σ2 x), the optimal thresholds (as a

function of (X,M)) are independent of x.
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Xc. She will also never set an initial approval threshold below Xc, so the approval

threshold must decrease for low enough m; for such m, BS(m) = Bh(m). Thus,

m > bS if bS > −∞. By Lemma 15, we can set dτ = 1 for all τ < τ(m) without

loss.

Let U = J(τ̄ , d̄τ ,m, zh(m)), which is an upper-bound on R’s continuation value

in any solution to AMh at τ(m). We can find an upper-bound on R’s ex-ante value

of AMh by solving a relaxed program in which we drop h’s dynamic participation

constraint while fixing, for any choice of mechanism (τ, dτ ), the continuation mech-

anism of (τ, dτ ) at τ(m) to be (τ̄ , d̄τ ), set dτ = 1 for τ < τ(m) and replace DIC

with a finite number of RDIC constraints:

Hh = sup
τ

E[e−r(τ∧τ(m))
(
u(Xτ , 1)1(τ < τ(m)) + U1(τ ≥ τ(m))

)
] (8)

subject to ∀Xn ∈ TN : Xn > m,

RDIC(Xn) : E0,z` [e−r(τ∧τ(Xn))v`(Xτ∧τ(Xn),1(τ < τ(Xn)))] ≤ V` +
cA
r
.

If m = 0, we are done. Let us therefore assume m < 0. We now change the

expectation in the RDIC constraints from being taken with respect to z` to zh.

Using z` = zh −∆z, we have

E0,z` [e−r(τ∧τ(Xn))v(Xτ∧τ(Xn), dτ (Xn))] (9)

=
ez`

1 + ez`
E[e−r(τ∧τ(Xn))(dτ (Xn) +

cA
r

)|H] +
1

1 + ez`
E[e−r(τ∧τ(Xn))(adτ (Xn) +

cA
r

)|L]

=
1 + ezh

1 + ez`

(
ezh

1 + ezh
E[e−r(τ∧τ(Xn))e−∆z(dτ (Xn) +

cA
r

)|H]

+
1

1 + ezh
E[e−r(τ∧τ(Xn))(adτ (Xn) +

cA
r

)|L]

)
= E0,zh [e−r(τ∧τ(Xn))v̂`(Xτ∧τ(Xn), dτ (Xn))],

where v̂`(x, d) := 1+ezh
1+ez`

· e
zh(x)−∆z (d+

cA
r

)+ad+
cA
r

1+ezh(x) .

Let N ′ = |{Xn ∈ TN : Xn > m}| and, for Λ = (λ1, ...., λN ′), define L(τ,Λ) as

L(τ,Λ) = E[e−r(τ∧τ(m))
(
u(Xτ , 1)1(τ < τ(m)) + U1(τ ≥ τ(m))

)
(10)

+
N ′∑
n=1

λne
−r(τ∧τ(Xn))v̂`(Xτ ,1(τ < τ(Xn)))]−

N ′∑
n=1

λn(V` +
cA
r

)
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We now redefine L∗(Λ) = sup
τ
L(τ,Λ). By Theorem 1 of Balzer and Janßen (2002),

Hh = L∗(Λ̂) for some Λ̂ ∈ arg minΛ∈RN′−
L∗(Λ). Our next result uses this La-

grangian approach to show the existence of a solution to Hh.

Proposition 6. There exists a τ ∗N that solves Hh. Let BN = {X1, ..., XP} be the set

of Xn such that RDIC(Xn) binds under τ ∗N . There exists a function BN(m) that is

constant on (Xk+1, Xk] for each 0 ≤ k ≤ P such that τ ∗N = inf{t : Xt ≥ BN(Mt)}.

Let d∗N,τ (Xn) = 1(τ ∗N < τ(Xn)). We can use the stationarity of τ ∗N to pin down

`’s continuation value at τ(Xn) under (τ ∗N , 1) when ` plans to quit at τ(Xn − δN);

this continuation value is given by ρ`(Xn) with

ρ`(Xn) = EXn,z`(Xn)[e−rτ+(BN (Xn);Xn−δN )v`(BN(Xn), 1)+e−rτ(Xn−δN ;BN (Xn)) cA
r

]− cA
r
.

Lemma 16. ρ`(X
k) ≤ 0, with equality if and only if RDIC(Xk − δN) binds.

ρ`(X
k + δN) ≥ 0, with equality if and only if RDIC(Xk + δN) binds.

Proof. RDIC(Xk − δN) implies

V` +
cA
r
≥ E0,z` [e−r(τ

∗
N∧τ(Xk−δN ))v`(Xτ∗N∧τ(Xk−δN ), d

∗
N,τ (X

k − δN))]

= E0,z` [e−rτ
∗
N1(τ ∗N < τ(Xk))v`(Xτ∗N

, 1) +
(
e−rτ(Xk)1(τ ∗N ≥ τ(Xk))

· EXk,z`(X
k)[e−rτ+(BN (Xk);Xk−δN )v`(BN(Xk), 1) + e−rτ(Xk−δN ;BN (Xk)) cA

r
]
)
]

= E0,z` [e−rτ
∗
N1(τ ∗N < τ(Xk))v`(Xτ∗N

, 1) + e−rτ(Xk)1(τ ∗N ≥ τ(Xk))(ρ`(X
k) +

cA
r

)],

with equality if and only if RDIC(Xk − δN) binds. Similarly, RDIC(Xk) implies

V` +
cA
r

= E0,z` [e−rτ
∗
N1(τ ∗N < τ(Xk))v`(Xτ∗N

, 1) + e−rτ(Xk)1(τ ∗N ≥ τ(Xk))
cA
r

].

Putting these equations together and simplifying, we get ρ`(X
k) ≤ 0, with equality

if and only if RDIC(Xk − δN) binds.

RDIC(Xk + δN) implies

V` +
cA
r
≥ E0,z` [e−rτ

∗
N1(τ ∗N < τ(Xk + δN))v`(Xτ∗N

, 1) + e−rτ(Xk+δN )1(τ ∗N ≥ τ(Xk + δN))
cA
r

],
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with equality if and only if RDIC(Xk + δN) binds. RDIC(Xk) implies

V` +
cA
r

=E0,z` [e−rτ
∗
N1(τ ∗N < τ(Xk + δN))v`(Xτ∗N

, 1)

+ e−rτ(Xk+δN )1(τ ∗N ≥ τ(Xk + δN))(ρ`(X
k + δN) +

cA
r

)].

Putting these last two equations together and simplifying, we get ρ(Xk + δN) ≥ 0

with equality if and only if RDIC(Xk + δN) binds.

Let X
N

` = max{Xn ∈ BN} and XN
` = min{Xn ∈ BN}. By the choice of Xn

in our constraint set, XN
` > m. Our next lemmas characterize the set of binding

constraints and give properties of the approval threshold. The proof is similar to

the characterization of BN in the proof of Theorem 1.

Lemma 17. BN = {Xn ∈ TN : XN
` ≤ Xn ≤ X

N

` }.

Lemma 18. BN(Xk) = BN,`(X
k) for all Xk > XN

` .

Proof. The Lemma follows immediately from ρ(Xk) = Ṽ`(BN(Xk), Xk−δN , Xk) =

0 by Lemmas 16 and 17.

Lemma 19. BN(XN
` ) = BS(m) and lim

N→∞ XN
` = m.

Proof. We first look at BS(0) in the SI-problem. BS(m) = B`(m) < Bh(m), so

m ≥ b∗h(B
S(0)), the first point at which h is indifferent between continuing and

quitting. Thus, BS(m) must be constant for all m > m, which implies BS(0) =

BS(m). Remember that, in the SI-problem, R’s continuation value under (τ̄ , d̄τ )

at τ(m) is U . R’s continuation value under (τ , dτ ) at τ(XN
` ) is J̌(BS(0),m,XN

` , U).

Because h’s continuation value is strictly positive at all t < τ(m), R could change

the approval threshold in the SI-problem slightly for t < τ(m) (and revert back

to BS(Mt) at t ≥ τ(m)) without violating the dynamic participation constraint.

Because such a modification is not optimal, BS(0) = arg maxB J̌(B,m,XN
` , U).

We now return to the problem Hh. At τ(XN
` ), all v̂` terms have dropped out of

our Lagrangian in 10 and the continuation value at τ(XN
` ) is J̌(BN(XN

` ),m,X
N

` , U).

Optimality of BN implies BN(XN
` ) = arg maxB J̌(B,m,XN

` , U) = BS(m).

Let x` = lim
N→∞X

N
` and suppose x` > m. For large N , XN

` − δN > m and

ρ`(X
N
` ) = Ṽ`(BN(XN

` ), XN
` − δN , XN

` ) < 0. Thus, BN(XN
` ) > BN,`(X

N
` ) and

BS(m) = BN(XN
` ) > BN,`(X

N
` ) > B`(m),
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where the last inequality follows from lim
N→∞BN,`(X

N
` ) = B`(x`) > B`(m), a contra-

diction of the BS(m) = B`(m). Therefore, lim
N→∞X

N
` = m.

Let b1
h := lim

N→∞X
N

` and define a function Bh as Bh(m) = lim
N→∞BN(m) for m >

m and Bh(m) = BS(m) for m ≤ m. Because the approval threshold BN(m)

is constant above X
N

` , Bh(m) is constant for all m > b1
h. Because B`(m) =

lim
N→∞ BN,`(m) and BN(Xk) = BN,`(X

k), Bh(m) = B`(m) for all m ∈ (m, b1
h].

Taking bh = bS, B1
h = Bh(0), and B2

h = BS(m), the limit of the solutions to our

relaxed problems as N → ∞ takes the form τh = inf{t : Xt 6∈ (bh, B
h(Mt; ηh))}

and dhτ = 1(Xτh ≥ Bh(Mτh ; ηh)) with ηh = (bh, b
1
h, B

2
h, B

1
h). We now show that

(τh, dhτ ) solves AMh.

Proof. Because the solution to the relaxed problem for each N delivers an upper-

bound on R’s expected utility in AMh and satisfies all RDIC constraints, it is

easy see that (τh, dhτ ) delivers an upper-bound as well and `’s expected utility from

(τh, dhτ ) when quitting at τ(m) is weakly less than V`.
43 We only need to show

that (τh, dhτ ) satisfies the constraints in AMh. The same arguments as in Lemma

10 imply `’s continuation value when planning to quit at τ(m) is weakly positive

at t < τ(m). Therefore, ` cannot strictly increase his expected utility by quitting

before τ(m). By Lemma 13, ` would prefer to immediately quit at τ(m). Therefore,

(τh, dhτ ) satisfies DIC. It is easy to see that h’s continuation value is positive at

t < τ(m). Because the continuation mechanism at τ(m) is the SI-mechanism with

X0 = m and Z0 = zh + 2µ
σ2m, Theorem 1 implies h’s continuation value is always

weakly positive at t ≥ τ(m) as well and so the dynamic participation constraint

for h holds.

43Continuity of players’ payoffs with respect to this sequence of mechanisms follows from the

same arguments in the Supplementary Materials used for Theorem 1.
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