We propose an analytical method to analyze the propagation of an aggregate shock in a broad class of sticky-price models. The method is based on the eigenvalue-eigenfunction representation of the dynamics of the cross-sectional distribution of firms’ desired adjustments. A key novelty is that we can approximate the whole profile of the impulse response for any moment of interest in response to an aggregate shock (any displacement of the invariant distribution). We present several applications for an economy with low inflation and idiosyncratic shocks. We show that the shape of the impulse response of the canonical menu cost model is fully encoded by a single parameter, just like the Calvo model, although the shapes are very different. A model with a quadratic hazard function, arguably a good fit to the micro data on price setting, yields an impulse response that is close to the canonical menu cost model.

Keywords: Menu costs, impulse response, dominant eigenvalue, selection, volatility.

1. INTRODUCTION

Economists are often faced with models where the state is a high-dimensional object, such as cross-sectional distributions of incomes, assets, markups, and other economic variables. This is the case when studying impulse response functions, namely the time evolution of selected moments of some distribution of interest towards the steady state. We present a powerful method for such analyses that typically require solving the partial differential equation that characterizes the time evolution of the cross-sectional distribution. The method is the eigenvalue-eigenfunction decomposition that allows to solve the partial differential equation through a neat separation of the time-dimension from the state-dimension.

We consider economies where agents follow a generalized Ss rule, as pioneered by Caballero and Engel (1999) for a classic investment problem with random fixed costs. Such economies feature a steady state where agents have heterogeneous propensities to adjust their decisions. For this broad class of Ss problems, the method allows us to characterize the whole set of eigenvalues-eigenfunctions and thus to compute the whole profile of the

THE ANALYTIC THEORY OF A MONETARY SHOCK

FERNANDO ALVAREZ
The Kenneth C. Griffin Department of Economics, University of Chicago and NBER

FRANCESCO LIPPI
Department of Economics and Finance, LUISS University and EIEF

We propose an analytical method to analyze the propagation of an aggregate shock in a broad class of sticky-price models. The method is based on the eigenvalue-eigenfunction representation of the dynamics of the cross-sectional distribution of firms’ desired adjustments. A key novelty is that we can approximate the whole profile of the impulse response for any moment of interest in response to an aggregate shock (any displacement of the invariant distribution). We present several applications for an economy with low inflation and idiosyncratic shocks. We show that the shape of the impulse response of the canonical menu cost model is fully encoded by a single parameter, just like the Calvo model, although the shapes are very different. A model with a quadratic hazard function, arguably a good fit to the micro data on price setting, yields an impulse response that is close to the canonical menu cost model.

Keywords: Menu costs, impulse response, dominant eigenvalue, selection, volatility.

1. INTRODUCTION

Economists are often faced with models where the state is a high-dimensional object, such as cross-sectional distributions of incomes, assets, markups, and other economic variables. This is the case when studying impulse response functions, namely the time evolution of selected moments of some distribution of interest towards the steady state. We present a powerful method for such analyses that typically require solving the partial differential equation that characterizes the time evolution of the cross-sectional distribution. The method is the eigenvalue-eigenfunction decomposition that allows to solve the partial differential equation through a neat separation of the time-dimension from the state-dimension.

We consider economies where agents follow a generalized Ss rule, as pioneered by Caballero and Engel (1999) for a classic investment problem with random fixed costs. Such economies feature a steady state where agents have heterogeneous propensities to adjust their decisions. For this broad class of Ss problems, the method allows us to characterize the whole set of eigenvalues-eigenfunctions and thus to compute the whole profile of the

Fernando Alvarez: f-alvarez1@uchicago.edu
Francesco Lippi: flippi@luiss.it

The first draft of this paper is from March 2018, which is 250 years after the birthdate of Jean Baptiste Fourier, from whose terrific 1822 book we respectfully adapted our title. We are grateful to three anonymous referees for helping us to improve the paper. We benefited from conversations with Isaac Baley, Lars Hansen, and Demian Pouzo. We also thank our discussants Sebastian Di Tella and Ben Moll, and participants in “Recent Developments in Macroeconomics” conference (Rome, April 2018), the “Second Global Macroeconomic Workshop” (Marrakech), the 6th Workshop in Macro Banking and Finance in Alghero, and seminar participants at the FBR of Minneapolis and Philadelphia, the European Central Bank, LUISS University, UCL, EIEF, the University Di Tella, Northwestern University, the University of Chicago, the University of Oxford, CREI-UPF, the London School of Economics, Universitat Autonoma Barcelona, Bocconi University, and the 2019 EFG meeting in San Francisco.

© 2022 The Authors. Econometrica published by John Wiley & Sons Ltd on behalf of The Econometric Society. Fernando Alvarez is the corresponding author on this paper. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
impulse response function of any cross-sectional moments of interest to a once and for all aggregate shock. Although we will mainly consider shocks to the steady state (invariant distribution) in our applications, the setup is ready to analyze any shock, as summarized by any arbitrary initial cross-sectional distribution, which can be used to study how the propagation of shocks depends on the shape of the distribution, for example, along the business cycle. Moreover, the setup can also be used to analyze the economy’s response to several unexpected shocks occurring at multiple times.

An important assumption, maintained in most but not all the analysis, that delivers tractability is to restrict attention to an impulse response “without reinjection,” that is, keeping track of agents until their first adjustment after the aggregate shock. We show that this solution is accurate for a class of problem that displays symmetric features, an appropriate benchmark for monetary economies characterized by low inflation and idiosyncratic shocks. Our results also allow us to analyze lumpy adjustment problems featuring drift in the dynamics of the state and asymmetries in the return functions. Such problems are a natural area for future applications, as in the analysis of household durables by Eberly (1994), Attanasio (2000), Stokey (2009), of capital investment by Caballero and Engel (1999), Baley and Blanco (2021), of saving portfolios by Alvarez, Guiso, and Lippi (2012), Abel, Eberly, and Panageas (2013), and of monetary policy with portfolio frictions by Alvarez, Atkeson, and Edmond (2009), Silva (2012). In Section 6, we consider a class of asymmetric models where our main method stills works, and where we do not require the simplification of not reinjecting agents after the first adjustment.

For concreteness, the applications in this paper focus on a broad class of sticky-price models that include versions of Taylor (1980), Calvo (1983), Golosov and Lucas (2007), a version of the Calvo-plus model by Nakamura and Steinsson (2010), a generalization of the Calvo-plus model to arbitrary random menu costs as in Dotsey, King, and Wolman (1999) and Caballero and Engel (2007), multi-product models as in Midrigan (2011), Bhattacharai and Schoenle (2014), and Alvarez and Lippi (2014), and the model with “price-plans” as in Eichenbaum, Jaimovich, and Rebelo (2011) and Alvarez and Lippi (2020). In these models, firms are hit by idiosyncratic shocks and face a price setting problem featuring (possibly random) menu costs, as well as “price-plans” (i.e., the possibility of choosing two prices instead of a single one upon resetting). The applications deliver new insights on the propagation of nominal shocks and unveil the key forces and deep parameters behind the dynamics. Among the new results, we show in Section 4.1 that the impulse response function in the Golosov–Lucas model is fully encoded by a single parameter: once the frequency of price adjustment is fixed, there are no more choices to determine the shape of the impulse response function. We find this result surprising: the model behaves in a fundamentally different way from the one-parameter Calvo model, yet its aggregate behavior is also fully characterized by a single parameter. We show in Section 4.3 that in a low-inflation economy, the response of all even centered moments to a small monetary shock, such as the response of the variance of price gaps, is flat. This result is important because it suggests that monetary shocks do not significantly affect the steady-state welfare losses due to price dispersion. In Section 4.4, we characterize when the model of price-plans of Eichenbaum, Jaimovich, and Rebelo (2011)—a model used to analyze temporary price changes like sales—produces hump-shaped impulse response function. In Section 4.5, we use our method to compute the impulse response in sticky-price models with a generalized hazard function, a setup developed by Caballero and Engel (2007). In particular, we study a problem with a quadratic hazard function, a specification that has several appealing empirical features and has been used by Caballero and Engel (1993b), Berger and Vavra (2018). We show that the impulse response generated by the quadratic
hazard is much closer to the impulse response of the Golosov–Lucas model than to the widely used Calvo model. In Section 4.6, we discuss applications with multiple (once and for all) shocks and with multi-product firms.

Our representation of the whole profile of the impulse response function enriches previous analytic results on the impact effect of shocks, such as Caballero and Engel (2007), or analytic results on the cumulated impulse response to shocks, such as Alvarez, Le Bihan, and Lippi (2016) and the extension developed by Baley and Blanco (2021) and Alexandrov (2020) for problems with drift and asymmetries. Our analysis differs from previous ones that used a similar method to study the dynamics of some interesting slow-moving frequencies encoded in the “dominant eigenvalue,” such as Hansen, Peter, and Scheinkman’s (2009) analysis of long-run risk in asset pricing, and Gabaix, Lasry, Lions, and Moll’s (2016) analysis of the dynamics of the distribution of incomes. In Section 4.2, we prove that in our setup, the dominant eigenvalue is irrelevant for the impulse response of output, since its associated eigenfunction is orthogonal to the function of interest. Even more revealing, we show that using the dominant eigenvalue as a test of the model dynamics might be misleading: we show in Section 4.5 that the ranking between the half-life implied by the dominant eigenvalue is not necessarily matched by the ranking of the monetary non-neutrality.

The paper is organized as follows. Section 2 defines the setup of the analysis. Section 3 presents our main result, namely the analytic representation of the impulse response function. Several applications to sticky-price economies are explored in Section 4 for economies with zero inflation where firms are subject to idiosyncratic shocks. Section 5 analyzes the consequences of introducing moderate degrees of drift or asymmetry. Section 6 discusses an alternative setup where our methods could be fruitfully applied, exploring labor market dynamics in a setting where workers’ mobility is subject to a fixed cost. Future work, particularly the analysis of models with strategic complementarities, is discussed in Section 7.

2. SETUP

This section introduces the main objects of the analysis. First, we introduce a benchmark sticky-price model that is used as the baseline setup. Second, we set up a standard mathematical definition of the impulse response and establish an equivalence result for symmetric problems.

2.1. The Firm’s Price-Setting Problem

This section lays out the price-setting problem solved by a firm in the “Generalized Calvo-plus” model. In this model, the firm is allowed to change prices either by paying a fixed menu cost or upon receiving a random free adjustment opportunity (a menu cost equal to zero). We allow the firm to pay a flow cost \(c \) to affect the rate at which these free adjustment opportunities arrive. The setup has elements of the Calvo-plus model, first developed by Nakamura and Steinsson (2010), which nests several models of interest,

1 Besides the focus on a different research question, the main methodological difference compared to these papers is that we characterize all the eigenvalues and eigenfunctions of the dynamical system, while previous papers only characterized the dominant eigenvalue, namely the one that dies at the slowest rate.

2 From a technical standpoint, the reason we obtain more information—that is, all the eigenvalues and eigenfunctions—is that the set of eigenvalues is discrete in our case, while in Gabaix et al. (2016) there is a continuum of eigenvalues; this, in turn, is due to the compactness of our operator.
from the canonical menu cost problem to the pure Calvo model. It has also elements of the model developed by Woodford (2009) and Costain and Nakov (2011), where firms can affect the probability of a price change. In Section 4.5, we sketch a model, first proposed by Caballero and Engel (1999) and fully analyzed in Alvarez, Lippi, and Oskolkov (2022), which is equivalent to the model presented below but where menu costs are fully random, instead of just having a two-point distribution as in the Calvo-plus model.

The Firm’s Problem in the Generalized Calvo-Plus Model. We describe the price-setting problem for a firm in steady state. The firm’s cost follows a Brownian motion with variance σ^2 and drift μ, where the latter is due to inflation. The price gap x is defined as the price currently charged by the firm relative to the price that will maximize current profits, which is proportional to the firm cost (measured as the log of the ratio between these prices). The firm can change its price at any time by paying a fixed cost $\psi > 0$. Additionally, in each time period of length dt, if the firm pays a flow cost $c(z) dt$, then it obtains a free adjustment opportunity with probability $z dt$. The firm policy is summarized by the two barriers \bar{x}, \tilde{x}, the optimal return point x^*, and the optimal adjustment rate $z \equiv \xi (x)$ as a function of $x \in (x, \tilde{x})$. The function $\xi (\cdot)$ is what Caballero and Engel (1993a, 1999, 2007) called a generalized hazard function.

The optimal policy is to change the price when the gap x reaches either of two barriers, $\bar{x} < \tilde{x}$, or when the free adjustment opportunity occurs. In either case, at the time of a price change, the firm sets a new price, thus resetting the price gap to x^*. For this reason, we refer to x^* as the reinjection point. Price changes are given by $x^* - x(\tau)$, where τ is the stopping time at which either one of the barriers is hit, or a free adjustment opportunity arrives.

The flow cost of the firm is given by $R(x) + c(\xi(x))$, where $R(x)$ is the difference between the static maximum profits and $c(\cdot)$ as defined above. We assume that: (a) R and c are convex and non-negative, with $R(0) = 0$ and $c(0) = 0$, and (a2) c is weakly increasing. The firm minimizes the expected discounted cost, with a discount rate $r > 0$. The value function v satisfies

$$rv(x) = R(x) + \mu v'(x) + \frac{\sigma^2}{2} v''(x) + \min_{z \geq 0} c(z) + z[v(x^*) - v(x)]$$

for $x \in [x, \tilde{x}]$ (1)

as well as value matching, smooth pasting, optimality of the return point given by $v(\bar{x}) = v(x) = v(x^*) + \psi$, $v'(\bar{x}) = v'(\tilde{x}) = v'(x^*) = 0$, and the first-order condition for z which yields the optimal policy function $\xi(x)$ that solves $c'(\xi(x)) = v(x) - v(x^*)$ for all $x \in (x, \tilde{x})$.

The setup nests the Calvo-plus model of Nakamura and Steinsson (2010). If $c(z) = 0$ for $0 \leq z \leq \xi$ and $c(z) = \bar{c} > 0$ for $z \geq \xi$, and if \bar{c} is large enough, then the optimal policy is $\xi(x) = \xi$, which gives rise to the Calvo-plus model, namely one where a constant Poisson arrival rate of free adjustment opportunities coexists with the possibility of deliberate price adjustments at a cost ψ.

Our results will also apply to the case where the state space is unbounded. Notice that if $\psi = +\infty$, then we have $\bar{x} = -\infty$, that is, an unbounded state space. However, for this case, we will require an extra condition, namely that (a3) if $\psi = +\infty$, then $\lim_{x \to -\infty} c'(z) = +\infty$ and that $\lim_{x \to -\infty} R(x) = +\infty$. An immediate implication of these assumptions is that $\lim_{x \to -\infty} \xi(x) = +\infty$, a condition that will be necessary for Theorem 1 to hold. Intuitively, the fact that the hazard function ξ diverges for large x implies that the probability of adjustment converges to 1, mimicking what happens when there is a barrier. Notice that
such a condition is violated by a model where the hazard function is constant, such as the Calvo model, while it is satisfied by models where the hazard is quadratic.\footnote{The impulse response for the Calvo model is straightforward to obtain given its well-known exponential shape. It can also be obtained as the limiting case of the Calvo-plus model, with a constant hazard $\xi > 0$ as the fixed cost ψ diverges.}

Invariant distribution. The density of the invariant distribution for price gaps generated by the policy $\{x, x^*, \bar{x}, \xi(\cdot)\}$ solves the Kolmogorov forward equation:

\[
\xi(x) \bar{p}(x) = -\mu \bar{p}'(x) + \frac{\sigma^2}{2} \bar{p}''(x) \quad \text{for } x \in [x, \bar{x}], x \neq x^*,
\]

with boundary conditions at the exit points, unit mass, that is, $\bar{p}(x) = \bar{p}(\bar{x}) = 0$,\(\int_{x}^{\bar{x}} \bar{p}(x) \, dx = 1\), and \bar{p} continuous at all x. We will use $\bar{P}(x)$ to denote the CDF of this density.

2.2. The Impulse Response

The mathematical setup for the impulse response analysis is made of the following objects: the law of motion of the Markov process $\{x(t)\}$ for each individual firm, the function of interest $f(x)$, the cross-sectional initial distribution of x, denoted by $P(x; 0)$. For instance, to analyze the output impulse response, the function of interest is $f(x) = -x$, since each firm’s output is inversely proportional to its price gap. Other examples of f include the quadratic $f(x) = x^2$ which is used in Section 4.3 to discuss the response of the dispersion of price gaps following a marginal shock, and the function $f(x) = 1$ which we use to study the survival function in Corollary 3. The second key ingredient of the impulse response is the initial condition, $P(x, 0)$, describing the distribution of x right after the shock. In several applications, we will consider a small uniform shift of the invariant distribution computed in equation (2), for instance, $P(x; 0) = \bar{P}(x + \delta)$, what Borovicka, Hansen, and Scheinkman (2014) labeled the “marginal response function” which we formalize below. We stress, however, that our setup can be used to analyze any initial cross-sectional distribution, that is, to go beyond the small marginal displacement of the invariant distribution. For instance, in Section 4.1 we explore the effects of a large shock, and in Appendix C of the Supplemental Material (Alvarez and Lippi (2022)) we consider the consequences of a higher-order shock.

At this general level, the setup and definition of an impulse response are closely related to the one in Borovicka, Hansen, and Scheinkman (2014). The law of motion for the process $f(x)$, with $x \in X \equiv [x, \bar{x}]$, is also Markov and is described using

\[
\mathcal{H}(f)(x, t) = \mathbb{E}[f(x(t)) | x(0) = x],
\]

where the operator \mathcal{H} computes the t period ahead expected value of the function $f : X \to \mathbb{R}$ conditional on the state $x = x(0)$. Next, we describe the initial distribution of x, which we denote by $P(\cdot ; 0) : X \to \mathbb{R}$. This represents the measure of firms that start with value smaller than or equal to x at time $t = 0$, each of them following the stochastic process described in $\mathcal{H}(f)$, with independent realizations. We allow the initial distribution $P(x; 0)$ to have countably many mass points. In particular, P has a piecewise continuous derivative (density) which we extend to the entire domain, so that $p(\cdot , 0) : X \to \mathbb{R}$, where P can have K jump discontinuities (mass points), denoting the difference between the
right and left limits by $p_m(\cdot; 0): \{x_k\}_{k=1}^K \to \mathbb{R}$, so that x_k is the location of the mass points.\(^4\)

Given the diffusion nature of x, such mass points will immediately vanish (i.e., turn into a density) one instant after the shock.

We are interested in the standard impulse response function H defined for each $t > 0$ as

$$H(t; f, P - \bar{P}) = \int_{\mathbb{R}} \mathcal{H}(f)(x, t)[dP(x; 0) - d\bar{P}(x)],$$

where \bar{P} is the invariant distribution of x. The impulse response H at time t is the expected value of f computed on the distribution $P(\cdot, t)$ in deviation from its steady-state value, where each $x(t)$ has followed the Markov process associated with $\mathcal{H}(\cdot)$ and whose cross-sectional distribution at time zero is given by $P(\cdot; 0)$.\(^5\)

In other words, for ergodic processes, we are forcing the impulse response to go to zero as t diverges. Since we evaluate H only for the difference between two measures, that is, only for signed measures, we introduce the convenient notation $\hat{P} \equiv P - \bar{P}$ and likewise for the densities $\hat{p} = p - \bar{p}$.

Thus,

$$\hat{P}(x) \equiv P(x, 0) - \bar{P}(x) \quad \text{for all } x \in [\underline{x}, \bar{x}], \quad (5)$$

so that \hat{P} defines the “initial condition” for the impulse response.

We define another impulse response function that uses a stopping time τ, and a modified expectation operator \mathcal{G}, defined as

$$\mathcal{G}(f)(x, t) = \mathbb{E}[1\{t \leq \tau\} f(x(t)) | x(0) = x].$$

The indicator function $1\{t \leq \tau\}$ becomes zero when the first adjustment following the shock occurs at the stopping time τ. The operator \mathcal{G} computes the t period ahead expected value of the function $f: \mathbb{R} \to \mathbb{R}$ starting from the value of the state $x = x(0)$, conditional on x surviving.

In the context of the price-setting models with S_s rules, we refer to the operator \mathcal{H} as the one for the problem with “reinjection,” that is, one in which the operator follows a firm forever, that is, does not stop keeping track of the firm after the first adjustment occurs (at time τ). In contrast, we refer to the operator \mathcal{G} as one for the problem without “reinjection,” that is, tracking the firm until the first adjustment. For example, in the sticky-price models discussed above, the stopping time τ is given by the occurrence of a price adjustment.

We define the impulse response function G for each $t > 0$ as

$$G(t; f, \hat{P}) = \int_{\mathbb{R}} \mathcal{G}(f)(x, t)[dP(x; 0) - d\bar{P}(x)].$$

\(^4\)Given our assumption on P, we can write the expectations of any function $\nu(x)$ at time zero as

$$\int_{\mathbb{R}} \nu(x) dP(x; 0) = \int_{\mathbb{R}} \nu(x) p(x; 0) dx + \sum_{k=1}^{K} \nu(x_k) p_m(x_k; 0).$$

\(^5\)The ergodicity of $\{x\}$ implies that we can write $H(t; f, P - \bar{P}) = \int_{\mathbb{R}} \mathcal{H}(f)(x, t) dP(x; 0) - \int_{\mathbb{R}} f(x) d\bar{P}(x)$.

The interpretation of $G(t)$ is the expected value of the cross-sectional distribution of f, conditional on surviving, where each $x(t)$ follows the Markov process, and as before, the cross-sectional distribution at time zero is given by $P(\cdot; 0)$ so that the initial condition is $\hat{P} \equiv P(\cdot; 0) - \overline{P}$.

While H is the impulse response as commonly defined, it turns out that G is simpler to characterize. In Proposition 1, we will establish conditions under which the impulse response $G(t; f, \hat{P})$ coincides with $H(t; f, \hat{P})$ for all t.

An equivalent, and perhaps simpler, representation of the impulse response function $G(t)$ is obtained by using the transition function $Q_t(y|x) = \Pr\{x(t) < y, t < \tau| x(0) = x\}$, with density function $q_t(y|x) = \partial_y Q_t(y|x)$. The impulse response function is

$$\hat{G}(t; f, \hat{P}) = \int_{\Delta} \int_{\Delta} f(y)q_t(y|x) dy d\hat{P}(x).$$

Our analytical characterization of $G(t)$, which will be given in Theorem 1, can be easily understood by using a finite-dimensional version of equation (8), as we will discuss after Corollary 1. In general, our interest is to compute $H(t; f, \hat{P})$ by using the simpler operator $G(t; f, \hat{P})$, which takes as an argument the signed measure \hat{P}.

The Initial Condition. Our setup encodes the impulse in the initial condition, $\hat{P}(x) \equiv P(x, 0) - \overline{P}(x)$, which denotes the distribution of the state variable $x \in (x, \bar{x})$ at time zero in deviation from the invariant distribution. In particular, $P(\cdot; 0)$ describes the cross-sectional distribution of the state immediately after the shock. As time elapses, the initial distribution will converge to the invariant distribution $\overline{P}(x)$, tracing out the impulse response for the function of interest $f(x)$. We mentioned above that our method allows the initial distribution to have mass points. This can be useful, for instance, if the initial shock is large enough to displace a non-negligible mass of agents onto the return point x^*, to compute the survival function of price changes, or to compute the conditional density of the state q_t.

Marginal Impulse Response Function. Starting from the invariant density $\overline{p}(x)$ and considering a small uniform displacement $\delta > 0$ so that

$$\hat{p}(x) = \overline{p}(x + \delta) - \overline{p}(x) = \overline{p}'(x)\delta + o(\delta),$$

we have the following definition.

DEFINITION 1: Let the marginal impulse response function to a monetary shock be

$$Y(t; f) \equiv \frac{\partial}{\partial \delta} H(t; f, \hat{p}(x + \delta) - \overline{p}(x)) \bigg|_{\delta=0} \text{ for all } t \geq 0. \quad (10)$$

The marginal impulse response function is the first-order expansion of $H(t; f, \hat{p}(x + \delta) - \overline{p}(x))$ with respect to δ. For future reference, notice that, using equation (9), we will often write $H(t; f, \hat{p}'(x)\delta)$ instead of $H(t; f, \hat{p}(x))$. Since $H(t; f, \mathbf{0}) = 0$, where $\mathbf{0}$ denotes the zero function, the first-order expansion gives $H(t; f, \hat{p}(x + \delta) - \overline{p}(x)) = Y(t; f)\delta + o(\delta)$, where the marginal impulse response $Y(t; f)$ is measured per unit of the monetary shock.
2.3. Equivalence of IRF’s H and G for Symmetric S_s Problems

Next, we present a proposition for symmetric problems establishing conditions for the standard IRF $H(t)$, the one for the problem with reinjections, to coincide with $G(t)$, the IRF for the problem without reinjections. We start by defining the notion of a symmetric S_s problem. Informally, this amounts to assuming that the firm problem has zero drift and that the firm’s return function is symmetric. We then show that for symmetric S_s problems, $H(t) = G(t)$ for all horizons $t \geq 0$. Let us begin by defining a symmetric problem.

DEFINITION 2: We define a problem to be symmetric if: (s$_1$) the unregulated state has zero drift, that is, $\mu = 0$, (s$_2$) the optimal return point x^* is equidistant from the barriers, that is, $(\bar{x} + x^*)/2 = x^*$, and (s$_3$) $\xi(x)$ is symmetric in x around x^*.

Let $\{x(t)\}$ be the regulated state, $u(x; t, x^*)$ be the density of distribution of $x(t) = x$, conditional on $x(0) = x^*$. If the decision rules are symmetric, then the density satisfies $u(z + x^*; t, x^*) = u(-z + x^*; t, x^*)$ for all $z \geq 0$. The symmetry of $u(\cdot; t, x^*)$ follows from the combination of the symmetry of the distribution of a BM without drift, the symmetry of the boundaries relative to x^*, and the symmetry of $\xi(\cdot)$.

Moreover, if R is symmetric in x relative to x^* and if $\mu = 0$, then the optimal decision rule for the firm’s problem is symmetric, as in Definition 2. This follows from using a guess and verify strategy in equation (1) and the boundary conditions, assuming that the value function v is symmetric in x around x^*.

PROPOSITION 1: Assume the firm’s problem is symmetric as in Definition 2. Then if either (i) the function of interest $f : [\bar{x}, \bar{x}] \rightarrow \mathbb{R}$ is anti-symmetric (and $\hat{P}(\cdot)$ is arbitrary) or (ii) the initial condition $\hat{P} : [\bar{x}, \bar{x}] \rightarrow \mathbb{R}$, including its mass points, is anti-symmetric (and $f(\cdot)$ is arbitrary), we have that $G(t; f, \hat{P}) = H(t; f, \hat{P})$ for all t.

See Appendix A of the Supplemental Material for the proof. The proposition’s requirement that either the function of interest f, or the initial condition \hat{P}, is anti-symmetric is not that restrictive for our applications. The main function of interest in the paper, used to compute the IRF for output, is given by $f(x) = -x$ in a large class of models. Also, our benchmark case in this class of models is that the signed measure \hat{P} is anti-symmetric when we consider a small monetary shock.

3. ANALYTIC IMPULSE RESPONSE FUNCTIONS

This section characterizes the impulse response without reinjections given in equation (7), using an analytic solution for the operator $G(f)(x, t)$ defined in equation (6). The solution allows us to consider models with drift and with asymmetric return point and fully characterize the response to a once and for all shock. As made clear by Proposition 1 the focus on the case without reinjections is without loss of generality for a symmetric model.

The main analytical tool is the use of eigenvalues and eigenfunctions, for which it is useful to define the inner product:

$$\langle f, g \rangle = \int_{\bar{x}}^{\bar{x}} f(x)g(x)w(x) \, dx \quad \text{where} \quad w(x) = e^{\frac{2u}{\sigma^2}x}, \quad (11)$$
which we use to define the set of square integrable functions, L^2, for which $||f||^2 \equiv \langle f, f \rangle < \infty$. Note that the “weight” function $w(x)$ is constant in the case of zero drift, that is, $w(x) = 1$ if $\mu = 0$. Now we introduce the sequence of eigenvalues and eigenfunctions $\{\lambda_j, \varphi_j\}_{j=1}^\infty$ corresponding to the dynamics of the price gaps characterized by $\{\bar{x}, \bar{x}, \xi(\cdot), \mu, \sigma^2\}$. The eigenfunctions of the problem with drift are obtained by using the functions $\gamma_j \in L^2$, twice differentiable in x which solves:

$$
\lambda_j \gamma_j(x) = \gamma_j''(x) \frac{\sigma^2}{2} - \xi(x) \frac{\mu}{2} \gamma_j(x) \quad \text{for all } x \in [\bar{x}, \bar{x}],
$$

s.t. boundary conditions $\gamma_j(\bar{x}) = \gamma_j(\bar{x}) = 0$,

and where $\varphi_j(x) \equiv \gamma_j(x) e^{-\frac{\mu}{\sigma^2} x}$.

(12)

Notice that given $\{\bar{x}, \bar{x}, \xi(\cdot), \mu, \sigma^2\}$, finding the eigenvalues and eigenvectors amounts to solving a linear second-order differential equation with known boundary conditions.\(^6\)

Here, we give an informal explanation of how the eigenfunctions-eigenvalues are used to solve for $G(f)(x, t)$. First, since $G(f)(x, t)$ is an expected value valid for all $t > 0$, as defined in equation (6), it must satisfy the following partial differential equation (p.d.e.):

$$
\frac{\partial G(f)(x, t)}{\partial t} = \mu \frac{\partial G(f)(x, t)}{\partial x} + \frac{\sigma^2}{2} \frac{\partial^2 G(f)(x, t)}{\partial x^2} - \xi(x) G(f)(x, t) \quad \text{for all } x \in [\bar{x}, \bar{x}] \text{ and } t > 0,
$$

with two types of boundary conditions, $G(f)(\bar{x}, t) = G(f)(\bar{x}, t) = 0$ for all $t > 0$ and $G(f)(x, 0) = f(x)$ for all $x \in [\bar{x}, \bar{x}]$. The boundary conditions for $t > 0$ are an implication of \bar{x} and \bar{x} being exit points; that is, close to them, the survival rate tends to zero. The boundary condition at $t = 0$ follows directly from the definition of $G(f)$ in equation (6). Now we turn to how to find the solution of the p.d.e. and boundary conditions. First, we look for a family of functions of x, given by $\{\varphi_j\}$ and numbers $\{\lambda_j\}$ so that $G(\varphi_j)(x, t) = \varphi_j(x) e^{\lambda_j t} \equiv \gamma_j(x) e^{-\frac{\mu}{\sigma^2} x} e^{\lambda_j t}$ solves the p.d.e and boundary conditions. Direct computation of the derivatives of G shows these functions are a solution provided that γ_j and λ_j solve the o.d.e. and boundary conditions in equation (12). This is the standard separation of variables method. Second, since the p.d.e. that we are interested in solving is linear, any linear combination of solutions is a solution, that is, $G(\sum b_j \varphi_j)(x, t) = \sum b_j G(\varphi_j)(x, t)$ for any set of coefficients $\{b_j\}$. Hence we look for linear combination of the φ_j, such that $f(x) = \sum b_j \varphi_j(x)$. The results below show that under the stated conditions, there is always a countable family of functions φ_j and numbers λ_j satisfying equation (12), and that linear combinations of these functions span the set of square integrable functions, as stated below.

We summarize known results for the eigenvalues and eigenfunctions corresponding to the process of the price gap until the next price change defined by $\{\bar{x}, x^*, \xi(\cdot), \mu, \sigma^2\}$, which can be found in Berezinn and Shubin (1991) and Zettl (2010). We assume: $[A_1]$ positive volatility, that is, $\sigma^2 > 0$; $[A_2]$ non-negative, continuous, generalized hazard function $\xi(\cdot)$; and $[A_3]$ either finite domain, that is, $-\infty < \bar{x} < \bar{x} < \infty$, or infinite domain $\bar{x} = -\bar{x} = \infty$ with diverging generalized hazard function, that is, $\xi(x) \to \infty$ as $x \to \pm \infty$.

Proposition 2: Assume that $\{\bar{x}, \bar{x}, \xi(\cdot), \mu, \sigma^2\}$ satisfies assumptions $[A_1]$, $[A_2]$, and $[A_3]$. Then: (E$_1$) there exist countably many eigenvalues-eigenfunctions pairs solving equation (12); (E$_2$) the eigenvalues are real, negative, non-repeated, and diverge, that is, $0 > \lambda_1 >$...

\(^6\)Due to the focus on a problem without reinjections, the optimal return point x^* is not needed to solve for eigenfunctions and eigenvalues.
λ_2 > \cdots \), with \(\lambda_j \to -\infty \) as \(j \to \infty \); (E_3) the eigenfunctions \(\{ \varphi_j \} \) form an orthonormal base of \(L^2_w \), that is, \(\langle \varphi_i, \varphi_j \rangle = \delta_{ij} \), that is, equals 1 if \(j = i \) and zero otherwise, and any function \(f \in L^2_w \) can be obtained by the projection into the eigenfunctions: \(||f - \sum_{j=1}^{\infty} \langle f, \varphi_j \rangle \varphi_j || = 0 \); and (E_4) the eigenfunctions are indexed by their number of interior zeroes, with \(\varphi_j \) having \(j - 1 \) zeroes on \((\bar{x}, \bar{x})\). If, in addition, \(\{ \bar{x}, x^2, \bar{x}, \xi(\cdot) \} \) is symmetric in the sense of Definition 2, then: [E_5] the eigenfunctions \(\varphi_j \) indexed by \(j = 1, 3, \ldots \) are symmetric and those indexed by \(j = 2, 4 \ldots \) are anti-symmetric.

A special case of interest occurs when the generalized hazard function is constant, that is, \(\xi(x) = \bar{\xi} \), so that we have the Calvo-plus model. In this case, equation (12) takes the form of the well-known heat equation studied by Fourier, whose eigenvalues and eigenfunctions are

\[
\lambda_j = -\left[\bar{\xi} + \frac{1}{2} \mu^2 + \frac{\sigma^2}{2} \left(\frac{j \pi}{\bar{x} - x} \right)^2 \right] \quad \text{and} \quad \varphi_j(x) = \frac{e^{-\frac{1}{2} \sigma^2} \sin \left(\frac{|x - \bar{x}|}{\bar{x} - x} j \pi \right)}{\sqrt{\left(\frac{x - \bar{x}}{\bar{x} - x} \right)^2}} \quad \text{for} \quad j = 1, 2, 3, \ldots
\]

We are now ready to state our main result:

THEOREM 1: Assume that the price gaps are governed by \(\{ \bar{x}, \bar{x}, \xi(\cdot), \mu, \sigma^2 \} \) which satisfies assumptions \([A_1], [A_2], \) and \([A_3]\). Let \(f \in L^2_w \) be piecewise differentiable, with countably many discontinuities. Furthermore, let \(\bar{P} \in L^2_w \) be a piecewise continuous density with at most countably many mass points, \(K \). Then the impulse response in equation (7) is

\[
G(t; f, \bar{P}) = \sum_{j=1}^{\infty} e^{\lambda_j t} \langle \varphi_j, f \rangle \langle \varphi_j, \bar{P} \rangle w + \sum_{j=1}^{\infty} \sum_{k=1}^{K} e^{\lambda_j t} \langle \varphi_j, f \rangle \varphi_j(x_k) p_m(x_k),
\]

where \(\langle \cdot, \cdot \rangle \) is the inner product defined in equation (11), each of the eigenvalue-eigenfunction pair satisfies equation (12), and the double summation accounts for \(K \) mass points.

Theorem 1 provides a tractable analytic representation of the impulse response function. One interesting property of the solution is that it separates the effect of the function of interest \(f \), encoded in the projection coefficient \(\langle \varphi_j, f \rangle \), from the effect of the initial impulse \(\bar{P} \), encoded in the projection coefficient \(\langle \varphi_j, \bar{P} \rangle w \), and from the effect of time, encoded in the eigenvalues \(\lambda_j \). This implies, for instance, that to analyze the effects of different shapes of the cross-sectional distribution, one only needs to change the projection coefficients of the initial condition \(\bar{P} \), leaving all other coefficients unchanged. Notice that although the eigenvalues (encoding the time decay) are unchanged, the modified coefficients will affect the shape of the impulse response function by changing the “weights” with which the different eigenvalues enter the expression. In Section 4.1, we illustrate an application that compares the propagation of a small versus a large monetary shock in the model of Golosov and Lucas (2007).

In the case where the initial condition \(\bar{P} \) has no mass points, the expression consists only of the first part: \(G(t; f, \bar{P}) = \sum_{j=1}^{\infty} e^{\lambda_j t} \langle \varphi_j, f \rangle \langle \varphi_j, \bar{P} \rangle w \). Note moreover that, in the case of \(\mu \neq 0 \), one of the two projections, that is, either the one for \(f \) or the one for \(\bar{P} \),
is weighted by the function \(w(x) = e^{\frac{-\mu^2}{\sigma^2}} \), while the other one is not. Where convenient, equation (14) can equivalently be rewritten as

\[
G(t; f, \hat{P}) = \sum_{j=1}^{\infty} e^{\lambda j t} \langle \varphi_j, f/w \rangle \varphi_j \hat{P} + \sum_{j=1}^{K} \sum_{k=1}^{K} e^{\lambda j t} \langle \varphi_j, f/w \rangle \varphi_j (x_k) p_m(x_k) w(x_k).
\]

In the case with no drift, that is, when \(\mu = 0 \), then \(w(x) = 1 \), the two formulations coincide since the projections do not include any weight.

In most of our applications, we will use the Calvo-plus model and variations of it, for which we have the eigenvalues and eigenfunctions shown in equation (13). The alert reader will note that, in general, the eigenfunctions and eigenvalues of equation (12) are, after change in units, the ones of the one-dimensional Schrödinger equation with a potential given by \(\xi(\cdot) \), and where the “particle” is confined to a box \([x, \bar{x}]\). Given the central role that such eigenvalues and eigenfunctions play in quantum mechanics, the solution for this equation is either known in closed form or perturbation techniques have been developed to obtain analytical approximations, as summarized in Fernandez (2001). In Section 4.5, we illustrate an application where the generalized hazard function is quadratic, that is, \(\xi(x) = \kappa x^2 \), which turns out to be one of the most studied quantum mechanical systems, namely the quantum harmonic oscillator, for which eigenvalues and eigenfunctions are known in closed form.

Theorem 1 can be readily understood by considering the discrete time and discrete state of the representation in equation (8). In this case, \(q_t(y|x) \) corresponds to the \{y, x\} element of the \(t \)th power of the one-period transition matrix. Diagonalizing this matrix delivers the eigenvalue and eigenvectors that can be used to compute projections that are equivalent to the ones in equation (14). A straightforward application of Theorem 1 using a limiting argument for the function \(f(z; y, \epsilon) = 1_{z \in (y-\epsilon, y+\epsilon)}/(2\epsilon) \), the definition of a density function \(q_t(y|x) \), and an initial condition with all the probability in a mass point at \(x \), that is, \(p_m(x) = 1 \), gives a closed-form expression for the transition function \(q_t(y|x) \) defined in equation (8):

COROLLARY 1: Let \((x, y) \in [x, \bar{x}]^2\). The transition density from \(x \) to \(y \) in \(t \) periods is

\[
q_t(y|x) = \sum_{j=1}^{\infty} e^{\lambda j t} w(y) \varphi_j(y) \varphi_j(x).
\]

As was the case for the impulse response function, the theorem delivers a neat separation between the time and the state which gives a simple characterization of the time evolution of the whole distribution after a shock.

4. APPLICATIONS TO STICKY-PRICE MODELS

This section uses Theorem 1 to analyze several economic applications: first, an analytic summary of monetary shocks in the standard menu cost model, as in, for example, Golosov and Lucas (2007), for both small and large shocks. We show that this model has a single parameter determining its behavior, pinned down by the frequency of price changes. Second, we use the Nakamura and Steinsson (2010) Calvo-plus model, encompassing a large class of models that span Golosov–Lucas and Calvo, to discuss the “selection effect,” a key mechanism that explains why different sticky-price models yield different real
effects (Section 4.2). We show that the selection effect creates a wedge between the duration of price spells and the duration of the aggregate output response. The two durations coincide when there is no selection, as in the Calvo model. Analytically, such a wedge is visible in the magnitude of the eigenvalues that control, respectively, the dynamics of the survival function of prices and the dynamics of aggregate output. Third, we present a surprising result proving that, following a marginal monetary shock, the response of even centered moments is zero at all horizons (Section 4.3). This applies, for instance, to the cross-sectional price dispersion, to the kurtosis of the price changes, as well as to the survival function. Since the cross-sectional price dispersion is the main measure of inefficiency in models with price stickiness, the result implies that in these models, such a cost should be measured in an “average” sense, and not as a consequence of a particular shock. Fourth, we study the propagation of monetary shocks in models with price-plans introduced by Eichenbaum, Jaimovich, and Rebelo (2011) to model the phenomenon of temporary price changes (prices that move from a reference value for a short period of time and then return to it). These models can be given a full analytical characterization and are particularly interesting because they may yield non-monotone impulse response functions (Section 4.4). Fifth, we apply Theorem 1 to a setup pioneered by Caballero and Engel (1993a), that uses a “generalized hazard function” to model price-setting behavior. This setup allows for a vast variety of empirical price-setting patterns to be considered. We analytically solve the model by Caballero and Engel (2007) using a quadratic generalized hazard function as an example (Section 4.5). We conclude by mentioning other tractable applications, including the effect of volatility shocks on the propagation of monetary impulses and models with multi-product firms.

We solve the canonical menu cost model, obtained by setting $\mu = 0$ and $\zeta = 0$ in the problem of Section 2.1, which yields the symmetric inaction region $x = -\bar{x}$ with optimal return $x^* = 0$. To compute the impulse response of output, we use $f(x) = -x$ since the contribution of a firm to the deviation of output (relative to steady state) is inversely proportional to its price gap. As prescribed by equation (11), we compute the projection coefficient $\langle f, \varphi_j \rangle$ in equation (14) integrating $f(x)$ against the eigenfunctions $\varphi_j(x)$ given in equation (13). This gives

$$\langle f, \varphi_j \rangle = \frac{4x^{3/2}}{j\pi} \quad \text{for } j = 2, 4, 6, \ldots, \quad \text{and} \quad \langle f, \varphi_j \rangle = 0 \quad \text{otherwise.} \quad (16)$$

We first consider a marginal monetary shock so that $\hat{p}(x) = \delta \hat{p}'(x)$, as in equation (9). The invariant distribution for this model is readily derived from equation (2) and the associated boundary conditions, which gives the triangular density $\hat{p}(x) = 1/\bar{x} - |x|/\bar{x}^2$ for $x \in (-\bar{x}, \bar{x})$. It is apparent that $\hat{p}'(x)$ is a step function, equal to $1/\bar{x}^2$ for $x \in [-\bar{x}, 0)$ and equal to $-1/\bar{x}^2$ for $x \in (0, \bar{x}]$. As before, we construct the projection coefficients $\langle \hat{p}', \varphi_j \rangle$ integrating $\hat{p}'(x)$ against $\varphi_j(x)$; this gives

$$\langle \hat{p}', \varphi_j \rangle = \frac{8}{j\pi \bar{x}^{3/2}} \quad \text{if } j = 2 + 4i \text{ for } i = 0, 1, 2, \ldots, \quad \text{and}$$

$$\langle \hat{p}', \varphi_j \rangle = 0 \quad \text{otherwise.} \quad (17)$$
Thus, the impulse response coefficients for equation (14) are

\[\langle \bar{p}', \varphi_i \rangle (f, \varphi_j) = \frac{32}{(j\pi)^2} \quad \text{if } j = 2 + 4i \text{ for } i = 0, 1, 2, \ldots, \quad \text{and} \]

\[\langle \bar{p}', \varphi_i \rangle (f, \varphi_j) = 0 \quad \text{otherwise}. \]

The eigenvalues are immediately obtained from equation (13) setting \(\mu = \zeta = 0 \) using \(x = -\bar{x} \), to get \(\lambda_j = -\frac{\sigma^2}{8} \left(\frac{j\pi}{2} \right)^2 = -\frac{\bar{x}^2}{8} N \), where the second equality uses that the frequency of price adjustment is \(N = (\sigma/\bar{x})^2 \).

Putting together the (nonzero) projection coefficients and the eigenvalues so derived yields the marginal impulse response of output as defined in equation (10):

\[Y(t) = \sum_{k=0}^{\infty} \frac{8}{(1 + 2k)\pi^2} e^{-\frac{N((1 + 2k)\pi)^2}{2}}. \]

(18)

There are two surprising properties of the model unveiled by equation (18). First, the model dynamics are fully encoded in a single parameter, namely the average number of price changes per period \(N \). Second, not all eigenvalues matter for output dynamics. In particular, the dominant eigenvalue \(\lambda_1 \), the one related to the very low frequencies, is irrelevant. This is a general property of several models that we further discuss in Corollary 4. As a summary measure, consider the Cumulative IRF or CIR, defined to be \(\mathcal{M}(f, \hat{P}) = \int_0^\infty G(t; f, \hat{P}) \, dt \). For a marginal shock, direct computation using the expression for \(Y \) gives \(\mathcal{M}(f, \hat{P}) = \frac{\delta}{N^2} \), which agrees with the general formula for CIR in Alvarez, Le Bihan, and Lippi (2016), Alvarez, Lippi, and Oskolkov (2022), \(\mathcal{M}(f, \hat{P}) = \frac{\delta}{N} \frac{K_u}{6} \), featuring in the numerator the kurtosis of the distribution of price changes (equal to 1 in the Golosov–Lucas model, equal to 6 in, for example, Calvo). Notice that including only the term for the first eigenvalue with nonzero projection, that is, \(\lambda_2 = -N \frac{\bar{x}^2}{2} \), gives an excellent approximation of the shape of the IRF and of the CIR. Indeed, the ratio of the CIR using all the eigenvalues to the CIR using only the second is equal to \(96/\pi^4 \approx 0.985 \), which indicates the accuracy of the approximation.

A Large Monetary Shock. Consider now a large shock that displaces half of the mass of firms outside of the inaction region, namely \(\delta = \bar{x} \).\(^7\) The cross-sectional density right after the shock is \(p(x, 0) = -x/\bar{x}^3 \) for \(x \in (-\bar{x}, 0) \), and \(p(x, 0) = 0 \) for \(x \in (0, \bar{x}) \). The large shock leads half of the firms to adjust prices on impact, and given the symmetry of the problem, we can ignore those firms for the computation of the impulse response.

Using equation (11) gives the projection coefficients \(\langle p_0, \varphi_i \rangle = \frac{2}{\pi^{1/2}} \text{ if } j = 2 + 2i \text{ for } i = 0, 1, 2, \ldots \). The odd-indexed projection coefficients are irrelevant since they will be multiplied by the zero coefficients of \(f \); see equation (16). We can then normalize by the shock size \(\bar{x} \) and use equation (14) to compute the impulse response function (per unit of shock):

\[Y_{\text{large}}(t) = \sum_{k=0}^{\infty} \frac{2}{((1 + k)\pi)^2} e^{-\frac{N((1 + k)\pi)^2}{2}} t. \]

(19)

\(^7\)We are thankful to an anonymous referee for suggesting this application.
Notice that this expression depends only on a single parameter, as was the case for the marginal impulse response. Also note that this impulse response features some even-index eigenvalues that were not present in the marginal one (e.g., \(j = 4, 6, 8, \ldots \)). This implies a change of the coefficients, that yields a much smaller persistence of the shocks. This can be easily seen by inspecting the coefficients of the two expressions. We can also compute the CIR for the large shock \(\delta = \hat{x} \). In this case, we obtain \(\mathcal{M}(f, \hat{P}) = \frac{1}{2} \frac{1}{\bar{x}} \). We can see that, per unit of shock, the CIR of a large shock is much smaller than the one for a marginal shock, about one fourth in magnitude. Notice that the leading eigenvalue \(\lambda_2 = -N\frac{\bar{x}^2}{2} \), which is the same in both impulse responses, is associated with a coefficient that is exactly four times larger in the case of a marginal shock, so that the IRF (per unit of shock) is approximately four times larger at each time \(t \).

4.2. The “Selection Effect” in the Calvo-Plus Models

This section applies Theorem 1 to illustrate why different sticky-price models display different degrees of “selection.” The notion of selection, coined by Golosov and Lucas, refers to the fact that firms that adjust prices following a monetary shock are selected from a particular set, such as those that need to make a large adjustment. This contrasts with models where adjusting firms are not systematically selected, such as models where the times of price adjustment are exogenously given, such as the Taylor or the Calvo model. It is known that different amounts of selection affect the propagation of monetary shocks. We illustrate this result analytically using the Calvo-plus model, a model that nests several special cases featuring different degrees of selection, from Golosov–Lucas to the pure Calvo model.

Decision Rules and Steady State in the Calvo-Plus Model. Next, we use the decision problem defined in Section 2.1, assume zero inflation (\(\mu = 0 \)), and a quadratic profit function \(R(x) = x^2 \). It is straightforward that \(\tilde{x} = -\bar{x} > 0 \) and that the optimal return is \(x^* = 0 \). Given the policy parameters \(-\tilde{x}, \bar{x}\) and the law of motion of the state \(dx = \sigma dW \), it is immediate that the eigenvalues-eigenfunctions of the problem are those computed in equation (13). Since the eigenvalues depend on the speed at which prices are changed, we find it convenient to rewrite them in terms of the average number of price changes per unit of time.

\[\mathcal{M}(f, \hat{P}) = \frac{1}{2} \frac{1}{\bar{x}} \]

where \(\phi \equiv \frac{\tilde{x}^2}{\sigma^2} \). Note that as \(\tilde{x} \to \infty \), then \(N \to \zeta \), which is the Calvo model where all adjustments occur after an exogenous Poisson shock. As \(\zeta \to 0 \), then \(N \to \sigma^2/\tilde{x}^2 \), so that the model is Golosov and Lucas. This single parameter \(\phi \in (0, \infty) \) controls the degree to which the model varies between Golosov–Lucas and Calvo. Note that with this parameterization, we can distinguish between \(N \) and the importance of the randomness in the menu cost \(\zeta \) versus the width of the barriers, \(\tilde{x}^2/\sigma^2 \). Indeed, \(\zeta/N \), the share of adjustment due to random free adjustments, depends only on \(\phi \). We let \(\frac{\tilde{x}}{N} = \ell(\phi) \) where this function is defined as \(\ell(\phi) = 1 - \text{sech}(\sqrt{2\phi}) \). The function \(\ell(\cdot) \) is increasing in \(\phi \), and ranges from 0 to 1 as \(\phi \) goes from 0 to \(\infty \). The invariant density function \(\bar{p} \) solves the Kolmogorov forward \(\bar{p}(x) = \sigma^2/2\hat{p}(x) \) in the support, except at \(x = 0 \), integrates to 1, and it is zero at \(\pm \bar{x} \). This gives

\[
\bar{p}(x) = \frac{\theta\left[e^{\theta(\bar{x}-|x|)} - e^{\theta|x|}\right]}{2(1 - e^{\theta\bar{x}})^2} \quad \text{for } x \in [-\bar{x}, \bar{x}] \text{ where } \theta \equiv \sqrt{2\zeta}/\sigma^2. \tag{20}
\]
Finally, using equation (13) for \(j = 1, 2, \ldots \), we have the eigenvalues:

\[
\lambda_j = -\xi - \frac{\sigma^2 (j \pi)^2}{x^2} = -\xi \left[1 + \frac{(j \pi)^2}{8\phi} \right] = -N\bar{\epsilon}(\phi) \left[1 + \frac{(j \pi)^2}{8\phi} \right] \text{ where } \phi = \frac{\xi x^2}{\sigma^2}.
\]

(21)

As in Section 4.1, we use \(f(x) = -x \) and consider a marginal monetary shock so that \(\hat{p}(x) = \delta \hat{p}(x) \), as in equation (9), to analyze the response of output to a small monetary shock. We write the output IRF \(Y(t) \) per unit of the shock \(\delta \) as in equation (10). Application of Theorem 1 gives the projection coefficients \(\langle \hat{p}', \varphi_j \rangle \langle f, \varphi_j \rangle \). Getting rid of the zero projections, and after some careful algebra, we have the following:

COROLLARY 2: The marginal impulse response in the Calvo-plus model is

\[
Y(t) = \sum_{k=1}^{\infty} \frac{2\theta^2}{\theta^2 + (k \pi)^2} \left(\frac{(-1)^k (1 + e^{2\theta}) - 2e^\theta}{(1 - e^\theta)^2} \right) e^{-\left(\frac{\xi (k \pi)^2}{2\theta^2}\right)t}.
\]

(22)

Interpretation of the Dominant Eigenvalue. The dominant eigenvalue has the interpretation of the asymptotic hazard rate of price changes. In particular, let \(h(t) \) be the hazard rate of price spells as a function of the duration of the price spell \(t \). Let \(\tau \) be the stopping time for prices, that is, \(\tau \) is the first time at which \(\sigma W(t) \), which started at \(W(0) = 0 \), either hits \(\bar{x} \) or \(x = -\bar{x} \), or that the Poisson process changes. Let \(S(t) \) be the survival function, that is, \(S(t) = \Pr \{ \tau \geq t \} \). Notice that the function of interest to compute the survival function is the indicator \(f(x) = 1 \) for all \(t < \tau \). The hazard rate is defined as \(h(t) = -S'(t)/S(t) \). Application of Theorem 1 gives the following:

COROLLARY 3: The survival function \(S(t) \) depends only on the odd-indexed eigenvalues-eigenfunctions, that is, \(\lambda_i, \varphi_i \) for \(i = 1, 3, 5, \ldots \). Let \(h(t) \) be the hazard rate of price changes. Then the dominant eigenvalue \(\lambda_1 \) is equal to the asymptotic hazard rate, that is,

\[
S(t) = \sum_{j=1,3,5,\ldots} e^{\lambda_1 t} \langle 1, \varphi_j \rangle \varphi_j(0) \text{ and } -\lambda_1 = \lim_{t \to \infty} h(t),
\]

where we use equation (14) assuming a degenerate random variable concentrated at \(x = 0 \) so that \(p_m(0) = 1 \).

Irrelevance of Dominant Eigenvalue for Output IRF. Next, we show that the dominant eigenvalue \(\lambda_1 \), as well as all other odd-indexed eigenvalue-eigenfunction pairs, play no role in the output impulse response. Consider the output coefficients in the impulse response, given by equation (16). It is apparent that the coefficients \(\langle f, \varphi_i \rangle \) for all the odd-indexed eigenvalues-eigenfunctions \((j = 1, 3, \ldots) \) are zero, that is, the loadings of these terms are zero. This implies that the coefficient corresponding to the dominant eigenvalue \(\lambda_1 \) is zero. The first nonzero term, which we call the “leading” eigenvalue, involves \(\lambda_2 \). This is because \(\varphi_i(\cdot) \) is symmetric around \(x = 0 \) for \(j \) odd, and anti-symmetric for \(j \) even. Thus: \(\int_{-\bar{x}}^{\bar{x}} \varphi_j(x) f(x) \, dx = 0 \implies \langle f, \varphi_j \rangle = 0 \) for \(j = 1, 3, \ldots \). This happens since all the odd-indexed eigenfunctions \(\varphi_j \) \((j = 1, 3, \ldots) \) are symmetric functions, and thus the projection onto them of an asymmetric function, such as \(f(x) = -x \), yields a zero \(\langle f, \varphi_j \rangle \) coefficient. We summarize this result in the next corollary.
COROLLARY 4: The output impulse response function for the Calvo-plus model depends only on the even-indexed eigenvalues-eigenfunctions \((\lambda_j, \varphi_j, \text{with } j = 2, 4, \ldots)\), and has zero loadings on the odd-indexed ones, such as the dominant eigenvalue. Thus, the first leading term corresponds to the second eigenvalue \(\lambda_2 = -(\zeta + \frac{\pi^2 \sigma^2}{2 \bar{x}^2})\). The marginal impulse response, given in equation (22), satisfies \(\lambda_2 = \lim_{t \to \infty} \frac{\log Y(t)}{t}\).

The corollary states that only half of the eigenvalues (those with an even index) show up in the output impulse response function. The largest eigenvalue is \(\lambda_2\), which we call the “leading” eigenvalue of the output response function. It is interesting to notice that the dominant eigenvalue \(\lambda_1\) does not appear in the impulse response for output. Notice the difference with the survival function where the only eigenvalues that appear are those with an odd-index. The left panel of Figure 1 plots the ratio between the leading eigenvalue for output \(\lambda_2\) and the dominant eigenvalue \(\lambda_1\). It is straightforward to see that the ratio, \(\frac{\lambda_2}{\lambda_1} = \frac{8\phi + 4\pi^2}{8\phi + \pi^2}\), depends only on \(\phi\), so that it can be immediately mapped into the “Calvoness” of the problem \(\ell(\phi) \in (0, 1)\), measuring the share of random free adjustments. It appears that the ratio, which can also be interpreted as the ratio between the asymptotic duration of price changes over the asymptotic duration of the output impulse response, is monotonically decreasing in \(\ell\), and converges to 1 as \(\ell \to 1\). The economics of this result is that the shape of the impulse response of output depends on the differential impact of the aggregate shock on price increases and price decreases. Instead, the dominant eigenvalue controls the asymptotic behavior of price changes, both increases and decreases. As \(\ell \to 1\), selection disappears from the model and the two durations coincide. The right panel of the figure uses the particular case of a small monetary shock to illustrate that as \(\ell\) increases, the cumulated output effect becomes larger due to a muted selection effect.

4.3. IRF of Cross-Sectional Even Moments After a Monetary Shock

This section shows that in an economy with low inflation, where the distribution of price gaps is symmetric, the response of even centered moments to a marginal monetary shock
is zero at all horizons. One particular implication of the result is that the cross-sectional price dispersion is not sensitive to small monetary shocks in a low inflation economy. The result is relevant because it shows that one of the two sources of inefficiencies in monetary models, namely the one due to the cross-sectional price dispersion, does not deviate (up to second-order terms) from its steady-state value. For the result to hold, a small inflation is required. Interestingly, it can be easily shown that under a small inflation, an identical result holds in a large class of time-dependent models that includes the well-known Calvo model: the effects of a small monetary shock on all even moments do not include any first-order terms. An advantage of the analytic approach is to clearly illustrate the forces behind this surprising result.

Let us then analyze how the dispersion of markups behaves following a small monetary shock of size δ. Let $M_k(t; \delta) \equiv E[(x(t) - E(x(t)))^k]$, for $k = 2, 4, \ldots$, denote the kth even centered moment of x, measured t periods after the monetary shock δ hits the economy at the steady state. In particular, $M_2(t; \delta)$ will denote the cross-sectional variance of markups t periods after the monetary shock. We have the following result:

Proposition 3: Assume the initial condition \hat{p}, the signed mass right after the aggregate shock, is anti-symmetric. Then the initial impulse \hat{p} does not have a first-order effect on any even centered moment $M_k(t; \delta)$ with $k = 2, 4, \ldots$.

The proposition implies that a small (marginal) monetary shock does not have a first-order impact on the dispersion of markups at all $t > 0$ after the monetary shock. It also shows that a zero first-order effect is predicted for all even centered moments of the distribution of markups, such as kurtosis. The result does not apply to the uneven moments, such as the mean markup (proportional to total output) or the skewness of the distribution, that display a nonzero first-order effect following a marginal monetary shock. As mentioned at the beginning of the section, this result matters because even moments, such as the dispersion of price gaps, map directly into the efficiency of the economy. In terms of measurement, the result implies one should look at the effect of varying the level of inflation on price dispersion as in Alvarez, Beraja, Gonzalez-Rozada, and Neumeyer (2019) or Nakamura, Steinsson, Sun, and Villar (2018). Likewise, the hazard rate of price changes should not react to a small monetary shock. This gives a theoretical foundation to the estimation of hazard rates of price changes using unconditional time series evidence. Alternatively, this prediction can be used to test the model.

4.4. Price-Plans and the Hump-Shaped Output IRF

The model with price-plans assumes that, upon paying the menu cost, the firm can choose two, instead of one price. At any point in time, the firm is free to charge either price within the current plan, but changing the plan is costly. The idea was first proposed...
by Eichenbaum, Jaimovich, and Rebelo (2011) to model the phenomenon of temporary price changes (prices that move from a reference value for a short period of time and then return to it). In Alvarez and Lippi (2021), we provided an analytic solution to this problem and characterized the determinants of \bar{x}, the threshold where a new plan is chosen, as well as the optimal prices within the plan, named \tilde{x} and $-\tilde{x}$. When $x \in [-\bar{x}, 0]$, the firm charges $-\tilde{x}$, and when $x \in (0, \bar{x}]$, it charges \tilde{x}. The invariant density of price gaps is still given by equation (20). For a given threshold \bar{x}, the value of \tilde{x} is given by

$$\tilde{x} = \bar{x} \left[\frac{e^{\sqrt{2}\varphi} - e^{-\sqrt{2}\varphi} - 2\sqrt{2}\varphi}{2\varphi(e^{\sqrt{2}\varphi} + e^{-\sqrt{2}\varphi})} \right] = \bar{x} \rho(\varphi) > 0$$

where $\varphi = \frac{\bar{x}^2}{2\sigma^2}$. The function $\rho(\varphi)$ gives the optimal price within the plan as a function of the adjustment threshold, namely $\tilde{x} = \rho(\varphi)\bar{x}$. Simple analysis shows that the images of $\rho(\varphi)$ lie in the interval $(0, 1/3)$, and that $\lim_{\varphi \to 0} \rho(\varphi) = 1/3$.

In this model, the output of a firm with gap x is given by $\tilde{f}(x) = -x - \tilde{x}$ if $x \in [-\bar{x}, 0]$ and $\tilde{f}(x) = -x + \tilde{x}$ if $x \in (0, \bar{x}]$. By the linearity of Fourier series, we can add to the coefficients of the function $f(x) = -x$, given in equation (16), the ones of the step function: $f_0(x) = -\tilde{x}$ if $x \in [-\bar{x}, 0]$ and $f_0(x) = \tilde{x}$ if $x \in (0, \bar{x}]$. The function f_0 has coefficients equal to $\langle f_0, \varphi_j \rangle = -\frac{8\sqrt{2}\rho(\varphi)}{j\pi}$ if $j = 2 + 4i$ for $i = 0, 1, 2, \ldots$, and $\langle f_0, \varphi_j \rangle = 0$ otherwise. The expression for the impulse response thus features the additional term

$$\langle \tilde{p}', \varphi \rangle \langle f_0, \varphi \rangle = \begin{cases} 0 & \text{if } j \text{ is odd or if } j \text{ is even and } \frac{j}{2} \text{ is even,} \\ -4\rho(\varphi) \left[\frac{1 + \cosh(\sqrt{2}\varphi)}{\cosh(\sqrt{2}\varphi) - 1} \right] \left[\frac{1}{1 + \frac{j^2}{8\varphi^2}} \right] & \text{if } j \text{ is even and } \frac{j}{2} \text{ is odd.} \end{cases}$$

Thus, the marginal impulse response is given by

$$Y_{Plan}(t) = Y_{Calvoplus}(t) + \sum_{j=1}^{\infty} \langle \tilde{p}', \varphi \rangle \langle f_0, \varphi \rangle e^{\lambda_j(\varphi)t},$$

![Output IRF to monetary shock, Price Plan Model](image)

Figure 2.—Price-plan model. *Note:* The figure plots the output IRF for an economy with “price-plans” for two levels of “Calvoness” $\ell \in (0, 1)$, namely the share of random free adjustments.
where the expression for $Y_{\text{Calvoplus}}$ was given in equation (22). While the impulse response is monotone decreasing in the Calvo-plus model, in the price-plan model the impulse response can be hump-shaped. Indeed, as ϕ increases, the Calvoness index $\ell \equiv \zeta / N \in (0, 1)$ defined before also increases, and the impulse response goes from being decreasing to being hump-shaped when $\zeta = \sigma^2 / \bar{x}^2$, as shown in Figure 2 (see Proposition 9 in Alvarez and Lippi (2019) for a formal statement).

4.5. Models With a Generalized Hazard Function

In a series of influential papers, Caballero and Engel (1993a, 1999, 2007) proposed models of infrequent adjustment, for either price setting or investment decisions, where the firm’s behavior is summarized by a generalized hazard function $\xi(x)$, giving the probability of adjustment as a function of the state x. The microfoundation for such behavior can be derived from our setup, namely equation (1), or from a setup with random menu costs as in the original papers by Caballero and Engel. The generalized hazard function provides a considerable generalization of the Calvo-plus model where the hazard function ξ is constant within the inaction region, as in the case considered in equation (13). Instead, in this more general setup, the hazard function ξ depends on the value of the state, as in equation (12). Many authors have employed this setup, starting with the seminal work by Dotsey, King, and Wolman (1999).

A case considered in the price-setting literature is the one where $\xi(x)$ is quadratic and $\bar{x} = \infty$, as in Caballero and Engel (2007) and Berger and Vavra (2018). For this case, all the eigenvalues and eigenfunctions are known analytically, as shown below. Another tractable example is the one where the hazard function is the absolute value, $\xi(x) = \kappa |x|$, a case that is strongly supported by the estimates of Figures 8 and 9 in Eichenbaum, Jaimovich, and Rebelo (2011). Both the quadratic and the absolute-value hazard give rise to cross-sectional patterns that are consistent with empirical observations on the frequency and size of price changes. The eigenvalues and eigenfunctions for this case are known to be the Airy functions and its zeroes. More broadly, we note that there is a wealth of analytical approximations used in quantum mechanics to characterize both eigenvalues and eigenfunctions for this type of equations, including perturbation methods which expand ξ around a known solution, expansion methods around small values of σ^2, and approximation methods that replace ξ by a piecewise constant functions, as discussed in Appendix B of the Supplemental Material.

The Quadratic Generalized Hazard. Consider the quadratic generalized hazard for the symmetric unbounded case, that is, where $\xi(x) = \xi_0 + \frac{1}{2} \xi_2 x^2$ where ξ_0 and ξ_2 are non-negative parameters characterizing the hazard function. Let $\{\lambda_j, \varphi_j\}$ be the eigenvalues and eigenfunctions that solve equation (12) for this $\xi(x)$. After a change of variables, this is exactly the equation for the eigenvalues (energy levels) and eigenfunctions (eigenstates) of the quantum harmonic oscillator, a well-known problem in physics whose solution we exploit for the next result:

12In Alvarez, Lippi, and Oskolkov (2022), we characterize price setting in the case with no drift and with a symmetric instantaneous profit function. We have shown that any symmetric increasing function $\xi(x)$ can be rationalized by some distribution of menu cost, and also shown that ξ itself is uniquely identified by the steady-state distribution of price changes. Moreover, we have shown that the cumulative impulse response of output for an economy where price setting is given by any such generalized hazard function equals the kurtosis of the price changes divided by six times the frequency of price changes.
Figure 3.—Output response and hazard rates in different models (with \(N=1\)). Note: The left panel plots the impulse response to a small monetary shock for three models with the same average frequency and standard deviation of price changes. The horizontal lines in the right panel are the asymptotic hazard of these same models.

Proposition 4: The eigenvalues and eigenfunctions \(\{\lambda_j, \varphi_j\}\) that solve equation (12) with \(\xi(x) = \xi_0 + \frac{1}{2}\xi_2 x^2\) and \(\bar{x} = -\bar{x} = \infty\) and \(\mu = 0\) are given by

\[
\lambda_j = -\left[\sigma \sqrt{\xi_2} \left(j - \frac{1}{2} \right) + \xi_0 \right] \quad \text{for all } j = 1, 2, \ldots, \tag{24}
\]

\[
\varphi_j(x) = (2^{j-1}(j-1)!\sqrt{\pi})^{-\frac{1}{2}} \sqrt{\eta} e^{-\frac{x^2}{\eta}} H_{j-1}(\eta x) \quad \text{for all } x, \tag{25}
\]

where \(\eta \equiv (\xi_2/\sigma^2)^{1/4}\) and \(H_j(\cdot)\) is the (physicist’s) Hermite polynomial of degree \(j\), given by \(H_j(x) = (-1)^j e^{x^2} \frac{d^j}{dx^j} e^{-x^2}\).

It is immediate to see that, as was the case for the Calvo-plus model, the constant \(\xi_0\) simply adds to each of the eigenvalues obtained for \(\xi_0 = 0\) case, and does not affect the eigenfunctions.

We use the proposition to compare the impulse response function generated by three different models: the Golosov and Lucas model described in equation (18), a model with quadratic hazard (where \(\xi_0 = 0\) and \(\xi_2 = 1\)), and a Calvo model (with constant hazard rate \(N\)). All models feature the same number of price adjustments per unit of time, so that we normalize \(N = 1\) without loss of generality. The left panel of Figure 3 plots the impulse response produced by each model. It is apparent that the output response in the quadratic hazard model (dashed line) is close to the one by Golosov and Lucas (dotted line), and much smaller than the one in Calvo (solid line).

Following the logic used in Corollary 3, we analytically compute the survival function and the hazard rate of adjustment as a function of durations, which are reported in the right panel of the figure (see Appendix B for the analytic solution). We proved in Corollary 4 that the dominant eigenvalue is irrelevant for the characterization of the output response, since its associated eigenfunction has a zero projection with respect to the (antisymmetric) output function. However, one might conjecture that the dominant eigenvalue might still contain useful information on the model dynamics. The right panel of the figure plots the dominant eigenvalue, which corresponds to the asymptotic value of the hazard...
function marked by the thin horizontal lines (as established in Corollary 3). This example shows that the ranking of the dominant eigenvalue is not matched by the ranking of the persistence of the monetary non-neutrality. The quadratic hazard model features the largest eigenvalue, in spite of the fact that the propagation in that model is in between Calvo and Golosov–Lucas.

The analytic results reveal the robustness of the patterns portrayed in the figure. The three dominant eigenvalues for these models are given by the expressions that feature only one parameter, namely the frequency of price adjustment N. Thus, for models with the same N, there is no other parameter affecting the magnitude of the dominant eigenvalue, so that the ranking between the dominant eigenvalues of these three models is always the one reported in the right panel of the figure.

4.6. More Applications: Multiple Shocks and Multi-Product Firms

We briefly mention other applications that are of interest and can be solved using Theorem 1. One application studies how changes to the volatility of shocks affect the propagation of monetary innovations. The issue matters to, for example, the effectiveness of monetary policy in recessions versus boom, when the state of the economy is assumed to feature, respectively, high versus low volatility of shocks as in Vavra (2014). Our method provides a sharp analytic answer to this question (see Appendix C of the Supplemental Material for details). Solving this problem also shows how to analyze the economy’s response to a sequence of unexpected shocks: in this case, there is first a volatility shock, which is then followed by a monetary shock. A similar approach can be used to study a sequence of monetary shocks.

We mention another setup, not nested by the one of Section 2, where the eigenvalues and eigenfunctions can be explicitly computed. This is the setup of a firm facing a multi-product price-setting problem, as in Midrigan (2011) for two products or the general case of n products considered in Alvarez and Lippi (2014). This case is analyzed in the Online Appendix F, where the n-dimensional problem is reduced to a two-dimensional problem.

5. SCOPE: LOCAL INSENSITIVITY TO ASYMMETRIES

In this section, we present a result that is useful to frame the scope of Theorem 1. We show that the output’s impulse response to a marginal monetary shock is locally insensitive to two forms of asymmetries. The first one concerns deviations from the zero drift, or zero inflation, assumption. The second concerns the deviation from the symmetry of the firm’s objective function. The insensitivity applies to the impulse response of any anti-symmetric function f, not just the one for output, following a marginal monetary shock. This gives the precise sense in which our result for a symmetric S-problem extends to a range of small inflation rates.

We let μ be the steady-state inflation. We also let a be a coefficient that measures the degree to which the firm’s period return function is asymmetric. In particular, we let $R(x, a)$ be the return function which satisfies

$$R(x, a) = R(-x, -a) \quad \text{for all } x, a. \quad (26)$$

The dominant eigenvalue, λ_1, in Calvo is $\lambda_{\text{Calvo}} = -N$, in the quadratic hazard model it is $\lambda_{\text{Quad}} = -\sqrt{\frac{2}{\pi}}(\frac{1}{2})^2N \approx -1.31N$, while in Golosov–Lucas it is: $\lambda_{\text{GL}} = -\pi^2/8N \approx -1.23N$.

13The dominant eigenvalue, λ_1, in Calvo is $\lambda_{\text{Calvo}} = -N$, in the quadratic hazard model it is $\lambda_{\text{Quad}} = -\sqrt{\frac{2}{\pi}}(\frac{1}{2})^2N \approx -1.31N$, while in Golosov–Lucas it is: $\lambda_{\text{GL}} = -\pi^2/8N \approx -1.23N$.

Note that $a = 0$ implies that the return function is symmetric. For $a \neq 0$, the function can be interpreted as the sum of a symmetric and anti-symmetric function. An example of this is $R(x, a) = Bx^2 + ax^3$, which can represent a third-order expansion of the original profit function around the static maximizing choice $x = 0$. In this case, a is $1/6$ times the third derivative of the original profit function at $x = 0$. When either $a \neq 0$ or $\mu \neq 0$, the thresholds of the optimal SS rule will not be equidistant from the optimal return point x^\ast.

The next proposition computes two derivatives of the output’s IRF to a small monetary shock at any horizon t and shows that they are both zero. One is the derivative with respect to steady-state inflation, and the other one is the derivative with respect to the degree of asymmetry of the objective function. For this proposition, we need to consider the general case with reinjection, since we do not have the required conditions of Proposition 1 that ensure that $H = G$. Also note that the steady-state distribution \bar{p} will be, in general, also a function of the drift and the degree of asymmetry (μ), and hence we include them as arguments of the initial impulse $\hat{p}(x; \delta, \mu, a)$, as well as of the function H itself, since this function depends on the process for x, and in particular the value of its drift, optimal return point x^\ast, and thresholds \bar{x}, \bar{x}. We also explicitly include the shock δ as an argument of \hat{p}, which will clarify the arguments below. The initial condition for a monetary shock thus is $\hat{p}(x; \delta, \mu, a) \equiv \bar{p}(x + \delta; \mu, a) - \bar{p}(x; \mu, a)$. Thus, the marginal impulse response is

$$Y(t; f, \mu, a) \equiv \frac{\partial}{\partial \delta} H(t; f, \hat{p}(\cdot, \delta, \mu, a), \mu, a) \bigg|_{\delta=0} \text{ for all } t \geq 0. \quad (27)$$

The next proposition states that impulse response $Y(t; f, \mu, a)$ at any horizon t is approximately the same as our benchmark case with zero inflation and with symmetric return function. Formally, we have the following:

PROPOSITION 5: Consider, for simplicity, the Calvo-plus model. Let μ be the drift of the state (the inflation rate), and a the index of asymmetry in the return function $R(x, a)$. Then,

$$\frac{\partial}{\partial \mu} Y(t; f, \mu, a) \bigg|_{\mu=0, a=0} = 0 \quad \text{and} \quad \frac{\partial}{\partial a} Y(t; f, \mu, a) \bigg|_{\mu=0, a=0} = 0 \text{ for all } t \geq 0 \quad (28)$$

for any anti-symmetric function f.

See Appendix A of the Supplemental Material for the proof. This result establishes the insensitivity of the marginal impulse response function with respect to small amounts of inflation and asymmetries in the objective function. Notice that the proof holds for any function of interest f that is anti-symmetric. So this holds true for the output impulse response, given by $f(x) = -x$, as well as for other anti-symmetric functions.

6. OTHER APPLICATIONS: SECTORAL REALLOCATION MODELS

In this section, we describe how to use our method to compute the impulse response to an aggregate shock for a class of models of sectoral reallocation based upon the Lucas and Prescott (1974) equilibrium search and unemployment model, as done for stylized versions in Rogerson (1987), Jovanovic (1987), Hamilton (1988), and Gouge and King (1997). Analyzing impulse responses to aggregate shocks in models such as Lucas and Prescott (1974) is interesting per se, and it presents a case where the assumptions of
symmetry and no-reinjection are not appropriate, and yet our main characterization holds with minor modifications.

In these models, output is produced in separate locations (or by different sectors) with a diminishing returns production function (or by sectors that produce differentiated products). Each location is subject to exogenous idiosyncratic persistent shocks to its productivity. Long-lived workers can stay in a location, where they earn a competitive wage, or relocate to a location of their choosing at a cost, that is, search is directed. In equilibrium, workers’ reallocation decisions must be consistent with the distribution of future wages, which requires to solve for the equilibrium value of reallocation, as described in Chapter 13 of Stokey, Lucas, and Prescott (1989). In this setup, one can analyze many interesting public policies such as unemployment insurance, minimum wages, firing taxes as in Alvarez and Veracierto (2000), as well as other related topics such as human capital accumulation by Rogerson (2005), and mobility and wage inequality by Kambourov and Manovskii (2009). The relevant state for each location in this model can be simplified substantially by assuming that the idiosyncratic shocks are geometric Brownian motions, so that one can carry just the equivalent of full employment wages for each sector, as shown in Alvarez and Shimer (2011). In the case of directed search, the steady-state dynamics of the relevant sector variables behave as a one-dimensional reflecting Brownian motion, with two barriers corresponding to the equivalent full employment wages where the sector either expels or attracts workers from the rest of the economy, and it makes workers indifferent between leaving a depressed location, or migrating to the best location, after paying the cost. Alvarez and Shimer (2011) worked out the case with an option to be out of the labor force, which under some conditions—that is, infinite Frisch elasticity for the decision—considerably simplifies the determination of the equilibrium value of reallocation.

So far we have just described models of reallocation where the economy is at a steady state, but aggregate fluctuations of unemployment, wages, productivity, and the dynamics of their cross-sectorial distributions, are clearly interesting research topics. Indeed, highly stylized versions of these models have been used to study aggregate fluctuations at least since the work by Rogerson (1987), Jovanovic (1987), Hamilton (1988), and Gouge and King (1997). Using the assumption discussed above to simplify the determination of the equilibrium value of search, we can easily adapt the method in this paper to study impulse responses to aggregate shocks in this setup. Examples of aggregate shocks will be permanent changes in aggregate productivity, or changes in the policies described above, which will result in a new steady state. In particular, we must make a small adjustment since at the barriers there is reflection, as opposed to a discrete adjustment to a central value. The main difference with the sticky-price economy described above is then to replace the Dirichlet boundary condition \(\varphi_j(\bar{x}) = \varphi_j(x) = 0 \) by the Neumann boundary condition \(\varphi_j'(\bar{x}) = \varphi_j'(x) = 0 \) for the eigenfunctions, due to the presence of the reflecting barrier. For instance, in the benchmark case of these models, where \(\xi(x) \) is constant, it is essentially just replacing the \(\sin(\cdot) \) in equation (13) by \(\cos(\cdot) \). One feature of our main result (Theorem 1) that is useful in this application is that the initial distribution triggered by a small displacement of the steady-state distribution will have mass points of the order of the displacement, due to the fact that the steady-state density is not zero at the boundaries. Moreover, for these models, we do not need to restrict the impulse response to the case without reinjection, that is, we follow every agent after the aggregate shock and compute \(H \) as defined in equation (4).14 Economically, the effects of a shock are very different

14Mathematically, the associated operator is measure-preserving and the dominant eigenvalue in this case is equal to zero.
from the ones in the sticky-price model discussed above; in particular, the response to a positive shock differs from the response to a negative shock. The reason for the asymmetry is that one of the reflecting boundaries corresponds to the sectors where workers leave the industries, and the other one represents the sector that receives workers.\footnote{Additionally, the technical difference is that there is a strictly positive density at the boundary points.}

7. CONCLUSION AND FUTURE WORK

We used an eigenvalue-eigenfunction decomposition technique to analytically characterize the impulse response function in a large class of sticky-price models. We illustrated the usefulness of this method with several applications. The main results were derived for problems “without reinjection,” an assumption that simplifies the analysis and allows us to consider moderate degrees of drift and asymmetry in the problem of interest.

Open questions for future research involve exploring setups featuring asymmetries and large drift, as well as the problem with strategic complementarities pioneered by Caplin and Leahy (1997) in a setup without idiosyncratic shocks.\footnote{Our characterization uses a general equilibrium environment which implies that there are no first-order strategic complementarities in the firm’s optimal decision rules.} For instance, asymmetries are important in inventory models, or problems where drift is important, as in models of capital relocation with frictions. Strategic complementarities can also be important depending on the general equilibrium setup faced by firms, as discussed by Leahy (2011) and Klenow and Willis (2016). More importantly, incorporating strategic complementarities in a setup with idiosyncratic shocks requires extending the result to endogenous moving boundary problems. In ongoing work, Alvarez, Lippi, and Souganidis (2021), we show that the theory of Mean Field Games can be suitably extended to analyze such problems analytically. Interestingly, the results derived here are essential, since the problem with complementarities is solved using a perturbation around the problem with no complementarities studied in this paper.

REFERENCES

ANALYTIC THEORY OF A MONETARY SHOCK

ALVAREZ, FERNANDO E., FRANCESCO LIPPI, AND PANAGIOTIS SOUGANIDIS (2021): “Price Setting With Strategic Complementarities as Mean Field Games,” Report, University of Chicago. [1678]

———

Co-editor Giovanni L. Violante handled this manuscript.

Manuscript received 28 May, 2019; final version accepted 26 November, 2021; available online 24 January, 2022.