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THE REPUTATION TRAP

DAVID K. LEVINE
Department of Economics and RSCAS, EUI and WUSTL

Few want to do business with a partner who has a bad reputation. Consequently,
once a bad reputation is established, it can be difficult to get rid of. This leads on the
one hand to the intuitive idea that a good reputation is easy to lose and hard to gain.
On the other hand, it can lead to a strong form of history dependence in which a single
beneficial or adverse event can cast a shadow over a very long period of time. It gives
rise to a reputational trap where an agent rationally chooses not to invest in a good
reputation because the chances others will find out is too low. Nevertheless, the same
agent with a good reputation will make every effort to maintain it. Here, a simple rep-
utational model is constructed and the conditions for there to be a unique equilibrium
that constitutes a reputation trap are characterized.
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“Glass, china, and reputation are easily cracked, and never well mended.”
sometimes attributed to Benjamin Franklin.

1. INTRODUCTION

IT IS CONVENTIONAL TO THINK that a good reputation is easy to lose and hard to gain.
One reason we suspect this might be the case is that if you have a good reputation people
will be eager to do business with you; hence if they are cheated, it will quickly become
known. On the other hand, if you have a bad reputation, few will do business with you; so
even if you are honest, few will find out. In such a setting, it is intuitive that history mat-
ters. If an adverse event causes a loss of reputation, the difficulty of restoring it provides
little incentive for honesty, so the bad reputation will deservedly remain so long after the
circumstances that caused it are gone. On the other hand, there are reasons for honesty
besides reputation—if circumstances dictate honesty, it will take a long time before others
find out, but once they do reputation will be restored—and even after the circumstances
dictating honesty are gone, it will be desirable to continue to be honest to avoid losing
reputation. In other words, once reputation is restored, it will also persist. Consequently,
two otherwise identical individuals may find themselves with entirely different incentives
for honesty because of an adverse or beneficial event that happened in the distant past.

This paper examines that intuition in an entry game between a long-run and short-run
player prototypical of those used in the reputational literature. It follows in the tradi-
tion of the gang-of-four, Kreps and Wilson (1982) and Milgrom and Roberts (1982), who
studied good equilibria in which the long-run player is always honest and showed that with
behavioral types if the long-run player is sufficiently patient not only does such an equilib-
rium exist but it is necessary, that is, a good equilibrium is the only equilibrium. This paper
studies trap equilibrium of the type described in the first paragraph in which a long-run
player with a good reputation is honest and retains a good reputation while a long-run
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player with a bad reputation is dishonest and retains a bad reputation. As we indicate in
our subsequent literature review, it is known that without behavioral types such an equi-
librium can exist if the long-run payer is sufficiently patient. This paper moves beyond that
by using behavioral types to characterize which particular equilibrium we should expect
to see. In line with the existing literature, we show that for sufficient patience there can
be no trap. The crucial new finding is that for an intermediate range of patience not only
does a trap exist but it is necessary, that is, a trap equilibrium is the only equilibrium.

In the entry game we study, the short-run player prefers to enter if the long-run player
provides costly effort and not otherwise, and the long-run player prefers effort and entry
to the short-run player staying out. As indicated, the model is driven by behavioral types:
We have both good types corresponding to beneficial events as in the gang-of-four and bad
types corresponding to adverse events as in Mailath and Samuelson (2001). These types
are persistent but not completely so as in Mailath and Samuelson (2001) and Hörner
(2002).1 Finally, we insist that the information generated about long-run player behavior
is greater if the short-run player chooses to enter than if not.2 This observational asym-
metry leads to an important change from the Mailath and Samuelson (2001) model where
good and bad events are symmetric and reputation is equally easily lost or restored.

This model leads to a unique trap if we add an additional assumption concerning the
short-run player. If short-run players stay out and no information is generated, it even-
tually becomes likely that the long-run player has migrated back to a “normal” type. It is
now possible for the short-run players and long-run player to coordinate. On a particular
date, it is common knowledge that if the long-run player is normal, honest behavior will
take place and that the short-run player will enter. This is then a self-fulfilling prophecy.3
It is not, however, a very compelling one: It requires that both players agree about the
exact timing of events in the long-distant past and that they agree that “today is the day.”
To rule this out, we assume that agents know only about events that took place during
their lifetime and that short-run player strategies and beliefs are independent of calendar
time.

2. THE MODEL

A dynamic game is played between overlapping generations of finitely lived players.
There are two player roles: player 1 is a long-run player who lives many periods and player
2 represents a mass of short-run players who live a single period. Each period t = 1�2� � � �
a stage game is played. In the stage game, the long-run player must first choose whether
or not to provide effort. Let a1 ∈ {0�1} denote the decision of the long-run player with 1
meaning to provide effort and the cost being ca1 where 0 < c < 1. The short-run player
moves second and without observing the effort choice of the long-run player4 decides
whether to enter a2 = 1 or stay out a2 = 0. The short-run player receives utility 0 for
staying out, utility −1 for entering when no effort has been made and utility V > 0 for
entering when effort is provided. There are three privately known types τ ∈ {b�n�g} of
long-run player where g means “good” (a beneficial event), b means “bad” (an adverse
event), and n means “normal.” Player type is fixed during the lifetime of the player. The

1As Cripps, Mailath, and Samuelson (2004) showed this is essential if we are to have reputations restored
as well as decline.

2Fudenberg and Levine (1989) showed how this limits the possibilities for reputation building.
3In Acemoglu and Wolitzky (2012), this induces a cycle.
4This means the game is simultaneous move.
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good and bad types are behavioral types: The good type always provides effort and the
bad type never does. The stage game payoff of the normal type is given by a2 −ca1. Players
care only about expected average utility during their lifetime.

The life of a long-run player is stochastic: With probability δ, the player continues for
another period, and with probability 1 − δ is replaced. This replacement is not observed
by the short-run player. When a long-run player is replaced the type may change. The
probability type τ is replaced by a type σ �= τ is Qτσε/(1−δ) where Qτσ > 0. Note that the
scaling by 1 − δ implies that 1/ε is a measure of the number of long-run player lifetimes
before a type transition. We are interested in the case in which types are persistent, that
is, in which ε is small.

At the beginning of each period, a public signal z of what occurred in the previous
period is observed and takes on one of three values: 1, 0, N . If entry took place last
period, the signal is equal to last-period long-run player effort decision. If the short-run
player stayed out last period, then with probability 1 ≥ π > 0, the signal is equal to last
period long-run player effort decision and with probability 1 − π the signal is N . Here,
we are to think of “1” as a good signal (effort was observed), “0” as a bad signal (it was
observed that there was no effort), and “N” as no signal.

There are two features of this information technology. First, even when the short-run
player stays out some information is generated. Second, when the short-run players enter
information is perfect. Subsequently, we will model more closely investment and informa-
tion and demonstrate the robustness of our results when information upon entry is less
than perfect.

The game begins with an initial draw of the public signal z(1) and private type τ(1)
from the common knowledge distribution μzτ(1).

Players are only aware of events that occur during their lifetime. The long-run player
also knows their own generation T .5 Let h denote a finite history for a long-run player.
A strategy for the normal type of long-run player is a choice of effort probability
α1(h� t�T ) as a function of privately known history, calendar time, and generation T .
A strategy for the short-run player is a probability of entering α2(z� t) as a function of the
beginning of period signal and calendar time.

We study Nash equilibria of this game.
Throughout the paper, we will assume generic cost in the sense that

c /∈
{
δ�

δ

2 −π
�

δπ

1 − δ+ δπ
�

δπ(π − δπ)
(1 − δπ)(1 − δ)) + δπ(π − δπ)

}
�

Short-Run Player Beliefs and Time Invariant Equilibrium

If players know calendar time, as indicated in the Introduction, they can use this in-
formation to coordinate their play in an implausible way. Hence we wish to assume that
short-run player strategies and beliefs are independent of calendar time.6 Notice that this
same assumption is implicit in the definition of a Markov equilibrium, but is weaker since
long-run player strategies may depend on the entire lifetime history of events as well as
generation and calendar time.

For brevity, all references to a decision problem of the long-run player should be un-
derstood to refer to the normal type. A strategy for a short-run player is a now a time

5That is, how many replacement events have taken place since the beginning of the game.
6See Clark, Fudenberg, and Wolitzky (2019) for the consequences of a similar information restriction in an

overlapping generations setting.
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invariant probability of entering α2(z) ∈ [0�1] as a function of the beginning of period sig-
nal. Given such a strategy the normal type faces a well-posed Markov decision problem.
It depends only on the probability α2 with which the short-run player enters. Let V (α2)
denote the corresponding expected average value of utility. First period utility is α2 − ca1.
With probability δ, the game continues and the probability of the next signal is P(z′|z�a1)
where P(1|z�1) = P(0|z�0) = α2(z) + (1 −α2(z))π and P(N|z�a1) = (1 −α2(z))(1 −π).
Hence the Bellman equation is

V (α2) = max
a1

(1 − δ)[α2 − ca1] + δ
∑
z′

P
(
z′|z�a1

)
V

(
α2

(
z′))�

As usual, this has a unique solution. The set of best responses, for the normal type, then is
determined entirely by the current state through α2(z). Hence at time t with signal zt , any
best response of the normal type α1(yt� t�Tt) must lie in this set. Time invariant beliefs of
the short-run player about the effort probability of the normal type, which we denote by
α1(z), are then a weighted average of the best responses α1(yt� t�Tt), and so must also be
a best response and lie in this set.

Prior to observing the signal zt , the short-run player at time t has unconditional beliefs
about the joint distribution μzτ(t) from which the signal and type of the long-run player
are drawn. After observing zt , short-run player beliefs about long-run player type are
given by the conditional probability μτ|zt (t). This together with beliefs about the normal
type effort α1(zt) determines μ1(zt� t) the overall beliefs about the probability of long-run
player effort. The short-run player strategy α2(zt) must then be a best response to those
beliefs.

The evolution of μzτ(t) depends upon the initial condition μzτ(1) and the beliefs of
the short-run player about the probabilities with which earlier normal-type long-run and
short-run players chose actions α1(z), α2(z). It does not depend on the actual choice
of those actions or the earlier signals, none of which are observed. This has two conse-
quences. First, no action or deviation by the long-run player has any effect on the evolu-
tion of μzτ(t). Second, the evolution of μzτ(t) is deterministic as it does not depend on
the stochastic realization of actions, signals, or types. The stochastic nature of short-run
player beliefs are due to the single stochastic variable they observe, the signal, that is,
μτ|zt (t) is stochastic because zτ is.

Since μzτ(t) follows a deterministic law of motion, if we let −→μ (t) denote the vector
with components μzτ(t) that law is −→μ (t + 1) = A−→μ (t) where A is a Markov transition
matrix the coefficients of which are determined by α1(z), α2(z) and π, Q, ε.7 To have
an equilibrium with time invariant beliefs, it must be that −→μ (t + 1) = −→μ (t) and this is
true if and only if the initial condition μzτ(1) is a stationary distribution of A. For time
invariance, we cannot have arbitrary initial short-run player beliefs μzt (1), but only initial
beliefs that are consistent with the strategies of the players and the passage of time.

We take our object of study then to be time invariant equilibrium. This is a Nash equilib-
rium in which the initial beliefs of the short-run players are determined endogenously to
be the stationary distribution that arises from the equilibrium strategies. It is conveniently
described as a triple (α1(z)�α2(z)�μzτ) where α1(z) and μzτ are time invariant beliefs of
the short-run player and α2(z) is the strategy of the short-run players. The conditions for
equilibrium are that α1(z) is a solution to the Markov decision problem induced by the

7This is computed in the Appendix.
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short-run player strategy α2(z), that μzτ is a stationary distribution of the Markov transi-
tion matrix A determined by α1(z), α2(z), and Q, ε, and that α2(z) is a best response to
beliefs about long-run player action μ1(z) determined from α1(z), μzτ.

Let z(y) be the most recently observed signal by the long-run player in the history y .
We may conveniently summarize the discussion.

THEOREM 1: If (α1(z)�α2(z)�μzτ) is a time invariant equilibrium, then the strategies
α1(y� t�T ) = α1(z(y)), α2(z� t) = α2(z) are a Nash equilibrium with respect to the ini-
tial condition μzτ(1) = μzτ. Conversely, if α1(y� t�T ), α2(z� t) is a Nash equilibrium that
satisfies the time invariant short-run player condition that the short-run player equilib-
rium beliefs α1(z� t) = α1(z), μzτ(t) = μzτ , and equilibrium strategy α2(z� t) = α2(z), then
(α1(z)�α2(z)�μzτ) is a time invariant equilibrium.

Hereafter by equilibrium, we mean time invariant equilibrium.

3. CHARACTERIZATION OF EQUILIBRIUM

Our main result characterizes when a trap does and does not occur. It shows that there
is a single pure strategy equilibrium that is one of three types and give conditions un-
der which that equilibrium is unique. In reading the theorem, note that 1 − δ + δπ is a
weighted average of 1 and π so is strictly greater than π.

THEOREM 2: For given V , Q, there exists an ε > 0 such that for all ε ∈ (0� επ2(1 − π))
and

i. [bad] If

c > δ

then there is a unique equilibrium, it is strict and in pure strategies, there is no effort by the
normal type, and the short-run player enters only on the good signal.

ii. [trap] If

δ > c > δπ/(1 − δ+ δπ)

then there is exactly one pure strategy equilibrium, it is strict, the normal type provides effort
only on the good signal, and the short-run player enters only on the good signal. If in
addition c > δ/(1 + δ(1 −π)), this is the unique equilibrium.

iii. [good] If

c < δπ/(1 − δ+ δπ)

then there is exactly one pure strategy equilibrium, the normal type always provides effort,
and the short-run player enters only on the good signal.

Note that the boundary cases are ruled out by the generic cost assumption.8

This result is described in terms of the comparative statics of entry cost c: it shows
how the set of equilibria changes as c is reduced. As all of the cutoffs δπ/(1 − δ+ δπ) =
δπ/(1−δ(1−π)) and δ/(1+δ(1−π)) are strictly increasing in δ the results may equally

8There is also a fourth case: if c < δ/(1 + δ(1 − π)) and there are “enough” normal types then there are
at least two mixed strategy equilibria. As this result is not central, it is discussed only in the Appendix of the
Online Supplementary Material (Levine (2021)).
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be described in terms of increasing the discount factor δ, with the (more complicated)
cutoffs described in terms of c.

The proof is outlined below with the detailed computations in the Appendix. The result
has two main parts: the characterization of pure strategy equilibria and the uniqueness of
pure strategy equilibria. We will discuss each of these in turn.

The pure strategy equilibrium is relatively intuitive. The assumption that ε is small
means that types are highly persistent so the short-run player does not put much weight
on the possibility of the type changing. Given the possible strategies of the long-run player,
the signal 0 indicates either a bad type or a normal type who will not provide effort if entry
is not anticipated. Hence it makes sense for the short-run player not to enter in the face
of bad signal. Similarly, the signal 1 indicates either a good type or a normal type who will
provide effort if entry is anticipated, so it makes sense for the short-run player to enter in
the face of a good signal.

More subtle is the inference of the short-run player when the signal N is observed. The
short-run player can infer that the previous short-run player chose not to enter; hence
must have received the bad signal or was in the same boat with the signal N . As a result
while less decisive than the signal 0 the signal N also indicates past bad behavior by the
long-run player, so staying out is a good idea.

For the long-run player, the choice is whether to provide effort when entry is anticipated
and when it is not. The difference between the two cases lies in the probability that effort
results in a good reputation, which we may denote by p = 1 when entry is anticipated and
p = π when it is not. It is useful to consider the problem for general values of p: when the
cost c is incurred there is a probability p of successfully establishing a good reputation and
gaining 1 − c in the future and probability 1 − p of failing to establish a good reputation
and starting over again. Here, the expected average present value of the gain from effort
is 
= −(1 − δ)c + δp(1 − c) + δ(1 −p)
 or


= δp(1 − c) − (1 − δ)c
1 − δ(1 −p)

�

If this is negative, that is, δp(1 − c) < (1 − δ)c, then it is best not to provide effort and
conversely. Take first the case where information is revealed immediately, that is p = 1.
This is the situation most conducive to effort. The condition for not wishing to provide
effort is c > δ so when this is the case there will be no effort. This is a standard case,
corresponding to part (i) of Theorem 2 in which the long-run player is impatient and does
not find it worthwhile to give up c for a future gain of 1 − c. In this case, effort will be
provided only occasionally during beneficial events when the good type provides effort
for nonreputational reasons.

When c < δ, it is worth it to maintain a reputation when the short-run player enters as
indeed in this case p = 1. The remaining question is whether it is also worth it to provide
effort when the short-run player does not enter. In this case p = π, and the condition for
effort is that given in (iii). If c is very small, then it is worth providing effort even when
the short-run player does not enter. This good equilibrium corresponds to the “usual”
reputational case, for example, in Kreps and Wilson (1982), Milgrom and Roberts (1982),
Fudenberg and Levine (1989), Fudenberg and Levine (1992), or Mailath and Samuelson
(2001). There the long-run player is always is willing to provide effort over the relevant
horizon.9 Here, as in Mailath and Samuelson (2001), occasionally an adverse event occurs

9In models without type replacement, eventually effort stops and the equilibrium collapses permanently into
a no effort trap. Mailath and Samuelson (2001) showed that with type replacement there is always effort.
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and the bad type does not provide effort regardless of reputational consequences so there
is no effort until another normal or good type arrives.

The new and the interesting case is the trap equilibrium in case (ii) where δ > c so
the cost of effort is low enough to maintain a reputation, but c > δπ/(1 − δ + δπ) so it
is not worth it to try to acquire a reputation. Here, we have strong history dependence.
Depending on the history a normal type will be in one of two very different situations.
A normal type that follows a history of good signals, will provide effort, have a good
reputation, and have a wealthy and satisfactory life with an income of 1 − c. A normal
type that has the ill-luck to follow a history in which the last signal was bad or there was
no signal will not provide effort, will have a (deservedly) bad reputation, and have an
impoverished life with an income of 0. This is a reputational trap. The only difference
between these normal types is an event that took place in the far distant past: Did the
last behavioral type correspond to an adverse or beneficial event? Looked at another
way, adverse and beneficial events, rare as they are, cast a very long shadow. After a
beneficial event, there will be many lives of prosperous normal types—indeed until an
adverse event occurs. Contrariwise, following an adverse event normal types will be mired
in the reputation trap until they are fortunate enough to have a beneficial event.

Observe that δπ/(1 − δ + δπ) is increasing in π so as π increases and news spreads
quickly the range of costs for the reputation trap diminishes and we are more likely to see
the “usual” good reputation case. More important, although we will defer discussion of
mixed strategies, is the condition

δ > c > δmax
{

π

1 − δ+ δπ
�

1
1 + δ(1 −π)

}

in which the trap equilibrium is the only equilibrium; that is, in this case not only does the
pure strategy equilibrium constitute a trap but there is no other equilibrium. Here, the
crucial fact is that both π/(1 − δ + δπ) and 1/(1 + δ(1 − π)) are both strictly less than
one, so there is always a range of costs c in which the trap is the unique equilibrium.

4. DISCUSSION

We place this result in the literature then give the idea of the proof.

Literature Review and the Role of Behavioral Types

There are two distinct strands of the reputation literature. The first follows the gang-
of-four Kreps and Wilson (1982) and Milgrom and Roberts (1982) and uses behavioral
types. It focuses not only on the existence of equilibria, but on the uniqueness of equi-
librium. The second follows the repeated long-run short run player game (without types)
literature starting with Fudenberg, Kreps, and Maskin (1990) who show that many types
of equilibria are possible.

In the literature with behavioral types, the possibility of unique history dependent equi-
librium has been studied, but the type of equilibrium that has been studied is cyclic. In a
cyclic equilibrium, long-run players with a good reputation exploit it by providing low ef-
fort and reduce their reputation while those with a bad reputation provide high effort in
an attempt to rebuild their reputation. This is the opposite of a trap equilibrium where
those with a good reputation work to preserve it and those with a bad reputation choose
not to rebuild it. Like a trap equilibrium, a cyclic equilibrium alternates between good and
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bad reputation, but a player with a bad reputation is by no means trapped: That player
has a bad reputation through the earlier choice of running it down and is actively working
to rebuild it. Cyclic equilibria are studied by Liu (2011) and Liu and Skrzypacz (2014),
and earlier work by Benabou and Laroque (1992) points in the same direction. A related
analysis can be found in Board and Meyer-ter-Vehn’s (2013) good news case. Here, it can
clearly be seen the the informational assumption is the opposite of the one that leads to
a trap: When low effort is provided, information leaks out slowly even when the short-
run player enters. A related result is Phelan (2006), who also examines reputation that is
gradually rebuilt, albeit this is driven by the normal type playing a mixed strategy.10

In the literature without behavioral types, trap equilibria have been studied but there
are no uniqueness results and trap equilibria are but one of many. The idea can be un-
derstood by examining the model here without the behavioral types. As usual, the bad
equilibrium, the static Nash equilibrium of always stay out and never provides effort, is
a subgame perfect equilibrium. In the high cost/low discount case (i) of Theorem 2, this
is the only equilibrium regardless of whether their are behavioral types. For higher dis-
count factors, both the trap and good strategies are also Nash equilibria11 What enables
us to pin down a particular equilibrium are the behavioral types. In the usual way in the
gang-of-four literature, the presence of good types eliminates the static Nash equilibrium
once the discount factor is high enough. The bad types, however, are key in selecting be-
tween the trap and good equilibria, and this is the new result of this paper. The presence
of behavioral types insures that the ergodic distribution is unique and that all signals (ex-
cept possibly N) are present, and so acts somewhat like trembles. The good equilibrium is
eliminated in the intermediate case (ii) and the trap equilibrium in low cost/high discount
factor case (iii) because play must be optimal following a signal of no effort.12

The result that without types their can be multiple equilibria including trap equilibria is
well established in the literature. Rob and Fishman (2005) used an information structure
similar to that here and established the existence of a trap equilibrium in which those
with a good reputation provide effort and those with a bad reputation do not. However,
equilibrium is their model is certainly not unique and indeed they “note the existence of a
trivial equilibrium, which replicates the static equilibrium under a one-shot interaction.”
Along the same lines is the bad-news case of Board and Meyer-ter-Vehn (2013). Their
model differs from the standard reputation model. In the standard reputation model,
reputation is analyzed as a substitute for commitment. By contrast, Board and Meyer-ter-
Vehn (2013) allow partial commitment in the sense that actions by the long-run player
once taken persist for some length of time. In this setting with a bad news information
structure similar to the one here, they show that trap equilibria exist. They do not es-
tablish uniqueness, but in the opposite direction they do give a sufficient condition for a
continuum of equilibria to exist.

One paper that does combine the information structure of this paper with (good) be-
havioral types is Ordonez (2007). That paper, however, is not focused on uniqueness,
but rather introduces a second dimension of long-run player action, how many groups to
serve, and focuses on the issue how the number of groups served depends on reputation
and whether or not it is efficient.

10Mathevet, Pearce, and Stachetti (2019) examined mixing by the behavioral type.
11Only the trap equilibrium is subgame perfect, however.
12The good equilibrium is chosen in case (iii) despite the fact that it is not subgame perfect. Although normal

types always provide effort, it is optimal for the short-run player to stay out on a signal of no effort. This is
because such a signal indicates a bad type.
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Outline of the Proof: Pure Strategies

The proof of the main theorem involves the interplay between the strategy of the long-
run player and the beliefs of the short-run player. The detailed calculations are given in
the Appendix through a series of lemmas. Lemma 1 analyzes the optimum of the long-run
player. It shows that regardless of the strategy of the short-run player the long-run player
must provide effort when entry is is anticipated if she is willing to do so when entry is
not anticipated. It shows in addition that unless the short-run player enters on the good
signal and stays out on the bad signal the long-run player should never provide effort.
This information is subsequently used to rule out many combinations of long-run and
short-run player strategies.

The next series of steps are to characterize the ergodic beliefs of the short-run player
about the long-run player. Lemma 2 examines the marginal ergodic beliefs of the short-
run player about the type of long-run player. As these transition probabilities are exoge-
nous, it is straightforward to show that these beliefs do not depend on ε and are bounded
away from zero.

The key to showing that the unique equilibrium strategy of the short-run player is to
enter only on a good signal is to characterize the ergodic beliefs of the short-run player
about the type of long-run player conditional on the signal. Let B be the probability of
effort that makes the short-run player indifferent to entering, that is, BV = (1−B). Recall
that μ1(z) is the ergodic belief of the short-run player about the probability that the long-
run player will provide effort. If μ1(z) > B� it is strictly optimal to enter, and if it is less
than this, strictly optimal to stay out. If we can show that

μ1(1) ≥ 1 −K
ε

min{π�1 −π}

and

μ1(0)�μ1(N) ≤K
ε

min{π�1 −π}

for some positive constant K depending only on Q then it follows that for

K
ε

min{π�1 −π}
< min{B�1 −B}

it is strictly optimal for the short-run player to stay out on a bad or no signal and to enter
on a good signal. This then gives the main theorem with ε = min{B�1 −B}/K.

The derivation of the bounds requires several steps. Lemma 3 shows that to a good
approximation the beliefs of the short-run player about the type of long-run player are
the same at the beginning of a period where the type may have changed as they were
at the end of the previous period. This enables us to compute approximate conditional
beliefs about types and signals from the simpler problem in which types are persistent. We
then want to apply Bayes law to compute the probability of types conditional on signals. To
implement this, we need to know a lower bound on the marginal probability of the signals:
In the case of the good and bad signal, this follows from the fact that the good and bad
types are playing the good and bad action; the crucial case of no signal is addressed in
Lemma 4 using ergodic calculations simplified by Lemma 3. Lemma 5 then uses Bayes
law for the special case in which the long-run player takes an action independent of signal
(as is the case for the behavioral types).
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At this point, there are three possible strategies for the long-run player and eight for
the short-run. It is now possible to check each of the twenty-four combinations to find
the ergodic beliefs and show that the only best response for the short-run player to a best
response of the long-run player is to enter on a good signal and stay out for all others.
Fortunately, many combinations can be checked at once. This is done in Proposition 1
using the previously established bounds and partial characterization of optimal strategies.

Finally, now that we know the unique strategy of the short-run player, we must calculate
the best response of the long-run player: this is the computation with 
 above.

Intuition of the Main Result: Mixed Strategies

The important result is that there is a range of c for which there is a reputation trap and
also no other equilibria. Why must this be the case? The reason is that the equilibrium
short-run player pure strategy of staying out on a bad or no signal z ∈{0�N} and entering
on a good signal z = 1 provides the greatest incentive for the normal type to provide
effort. If c > δ, this is not enough, so weakening the incentive to provide effort by mixing
does not help and the only equilibrium is the one in which the normal type never provides
effort.

In the Appendix, it is shown that if the short-run player uses a pure strategy the long-run
player must do so as well. To understand why the short-run player strategy must remain
pure even for c < δ (but not too small), consider that at c = δ the normal type strictly
prefers to not to provide effort on a bad or no signal and is indifferent to effort on a good
signal. When c is lowered slightly, the normal type now strictly prefers to provide effort
on a good signal, while of course the strict preference on bad and no signals remain. Can
there be an equilibrium in which the short-run player mixes only “a little?” That cannot
happen on a bad or no signal since to get the short-run player to mix the normal type
would have to mix “a lot,” and this in turn would require the short-run player to mix “a
lot.”

What about the good signal? Here, with c a little less than δ “a little” mixing by the
short-run player gets the normal type back to indifference. Without types, this can be
an equilibrium but not with types. The reason is tied to the ergodic distribution of types
and signals. With the normal type providing no effort on a bad or no signal once those
states are reached, the normal type will no longer get the good signal. With the short-run
player mixing on the good signal, there is a positive probability that the normal type will
get no signal: This “drains” the normal types from the good signal so that in the ergodic
distribution of types and signals conditional on a good signal it is extremely likely the
short-run player is facing a good type. Consequently, the short-run player will not mix on
a good signal—rather the short-run player will enter for certain.

The conclusion is that mixed strategy equilibria require the short-run player to mix
“a lot.” Formally, it is shown in Lemma 14 that in any mixed equilibrium the short-run
player must be at least as likely to enter on no signal as on a good signal. This provides
substantially less incentive for the normal type to provide effort than the short-run player
equilibrium pure strategy in which the short-run player is a lot less likely to enter on no
signal than on a good signal. Hence the value of c that is low enough to provide adequate
incentive for effort is higher for a pure strategy equilibrium than for any mixed strategy
equilibrium.
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5. ROBUSTNESS

As indicated, we made two key assumptions about the information technology: first,
that some information is generated even when the short-run player stays out, and sec-
ond, that there is perfect information when the short-run player enters; to focus thinking,
it is useful to think of the short-run player as choosing between a single investment or
purchase or making a large number K of identical investments or purchases. Each is sub-
ject to an idiosyncratic shock. In particular, for each investment/purchase, we may imag-
ine that there is an independent probability π that the behavior of the long-run player
is observed. Hence with a single investment/purchase—“staying out”—the probability of
observation is π as in the base model. If there are K investment/purchases, then the prob-
ability that the behavior of the long-run player is observed is 1− (1−π)K . Hence the base
model corresponds to the limit in which there are many investments or purchases in which
case the probability of observation is one.

In this context, it is important to know that our results are robust to K large but fi-
nite. This is straightforward because Theorem 2 shows that the pure strategy equilibria
are strict for both the long-run and short-run player. The equilibrium conditions in the
Appendix consist of finitely many continuous equalities and inequalities. Hence by stan-
dard arguments, the equilibrium correspondence is upper-hemicontinuous as K → ∞. In
the crucial case in which equilibrium is unique, since it is strict, for K sufficiently large,
the equilibrium strategies are unique and exactly those described in Theorem 2: The key
result about a unique trap holds for K sufficiently large.

There is a second issue of importance, and that is the timing of information. We have
assumed that the effort of the long-run player is observed by the short-run player only
after entry, although of course it is not the timing that matters, but the fact that neither
player knows the action of the other when the decision is taking. If the short-run player
observes the effort of the long-run player before the entry decision is taken, then the
long-run player is a Stackelberg leader in the stage-game and the normal type will always
invest: This is standard—there is no need for reputation as a substitute for commitment
when commitment is possible in the stage game.

There is also the opposite timing: The long-run player observes the entry decision of
the short-run player before deciding whether or not to provide effort. This is the case in
Veugelers (1993), who studies a long-run government facing a series of short-run foreign
investors using a conventional reputational model with a single good type and unlimited
memory with the conventional result that if the long-run player is sufficiently patient near
first best results are obtained. Veugelers (1993) is interested in the case of a government
with low state capacity unable to provide a rule of law that must decide ex post whether or
not to expropriate. While complete analysis of this case is beyond the scope of this paper,
it is easy to see that if the long-run player instead of observing the signal of the short-run
player observes whether or not the short-run player entered there can be no trap. The
strategy spaces of the players and the belief dynamics of the short-run players remain
unchanged. Hence for the trap parameters, the long-run player provides effort when the
short-run player enters, and does not do so when the short-run player stays out. If a bad
or no signal means that the short-run player very likely faces a normal type, it follows
that the short-run player should enter knowing that the long-run player will respond by
providing effort. This contradicts the supposition that the short-run player stays out on
these signals.
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APPENDIX

For brevity and clarity, only the results of lengthy computations are reported here. The
interested reader can find the computations themselves in the Online Supplementary Ma-
terial of this Appendix.

Problem of the Long-Run Player

We examine the problem of the normal type of long-run player. Recall the Bellman
equation

V (α2) = max
a1

(1 − δ)[α2 − ca1] + δ
∑
z′

P
(
z′|z�a1

)
V

(
α2

(
z′))�

We may write this out as

V (α2)

= max
a1

(1 − δ)[α2 − ca1] + δ
[(
α2 + (1 − α2)π

)
V

(
α2(a1)

) + (1 − α2)(1 −π)V
(
α2(N)

)]
�

LEMMA 1: The optimum for the normal type of long-run-player depends on the state only
through α2 and one of three cases applies:

(i) V (α2(1)) − V (α2(0)) < c(1 − δ)/δ: It is strictly optimal to provide no effort in every
state. In particular, if α2(1) = α2(0) this is the case.

(ii) V (α2(1)) − V (α2(0)) > c(1 − δ)/(δπ): it is strictly optimal to provide effort in every
state.

Defining

α̃2 = 1 − δ

δ(1 −π)
(
V

(
α2(1)

) − V
(
α2(0)

))c − π

1 −π
�

(iii) It is strictly optimal to provide effort if α2(z) > α̃2 and conversely. In particular, the
strategy α1(0) >α1(1) is never optimal.

In addition,
(iv) If α2(0) = 1, then it is strictly optimal to provide no effort in every state.
Finally, if the short-run player uses a pure strategy then the optimum of the long-run player

is strict and pure.

PROOF: The argmax is derived from

max
a1

−(1 − δ)ca1 + δ
(
α2 + (1 − α2)π

)
V

(
α2(a1)

)
�

The gain to providing no effort is

G(α2) = (1 − δ)c − δ(α2 + (1 − α2π)
[
V

(
α2(1)

) − V
(
α2(0)

)]
�

We then solve this equation form α2 to see when effort is and is not optimal.
Finally, we analyze best response of the long-run player when the short-run player uses

a pure strategy. From (i) and (iv) if α2(0) ≥ α2(1), it is strictly best to provide no effort.
That leaves only the case α2(a1) = a1, or rather two cases, depending on α2(N). This is a
matter of solving the Bellman equations for each case to determine the value of c (if any)
there can be a tie. This are the “nongeneric” values listed in the text. Q.E.D.
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Ergodic Beliefs of the Short-Run Player

Next, we examine the beliefs of the short-run player. For given pure strategies of both
players the signal type pairs (z� τ) are a Markov chain with transition probabilities inde-
pendent of δ and depending only on ε, π, and the strategies of the two players. Excluding
the state N in case the short-run player always enters the chain is irreducible and ape-
riodic so it has a unique ergodic distribution μzτ. We first analyze the marginals μτ and
μz .

LEMMA 2: The marginals μτ are independent of ε. Let μ = minτ �=n μτ. Then μ > 0,
μ0�μ1 ≥ πμ, if α2(0) = α2(1) = 1, then μN = 0, otherwise if the short-run player plays a
pure strategy then μN ≥ (1 −π)μ.

PROOF: The type transitions are independent of the signals, so we analyze those first.
For ε > 0, we have μτ > 0 since every type transition has positive probability. This ergodic
distribution is the unique fixed point of the 3 × 3 transition matrix A, which is to say given
by the intersection of the null space of I −A with the unit simplex. Since A = I +Qε, it
follows that it is given by the intersection of the null space of Qε with the unit simplex. As
the null space of Qε is independent of ε, the marginals μτ are independent of ε as well.

For the signals, we have μ1 ≥ πμg and μ0 ≥ πμb. If if a2(0) = a2(1) = 1, then the state
N is transient. If α2(1) = 0, then μN ≥ (1 − π)μg while if α2(0) = 0 then μN ≥ (1 −
π)μb. Q.E.D.

It will be convenient to normalize so that max(μσ/μτ)Qτσ = 1. Next, we show how
the conditional probabilities μz|τ can be computed approximately by using the ergodic
conditions for ε = 0.

LEMMA 3: When z = N ,

μN|τ = (1 −π)
(∑

y

(
1 − α2(y)

)
μy|τ + εHNτ

)

when z �= N ,

μz|τ

=
∑
y

1
(
(z = 1)α1(τ� y) + 1(z = 0)

(
1 − α1(τ� y)

))[
α2(y) +π

(
1 − α2(y)

)]
μy|τ + εHzτ�

where |Hzτ|≤ 2 for all z.

PROOF: The idea is that the process for types is exogenous, so the stationary proba-
bilities can be computed directly. This enables us to find a linear recursive relationship
for the conditionals where the coefficients depend upon the strategies and the (already
known) marginals over types. We then show that when ε is small to a good approximation
we can do the computation for ε = 0, that is, ignoring the type transitions, with the result
above showing how good the approximation is for given ε. Q.E.D.

To apply Bayes law, we will need to bound marginal probabilities of signals from below.
The hard case is that of no signal where we must solve the equations for the conditionals
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simultaneously. Here, we analyze the short-run pure strategy case. If the short-run player
enters for both z = 0�1, then no signals are unlikely as they are generated only from type
transitions, so we rule that out.

LEMMA 4: Suppose α2(a1) = 0 for some a1 ∈{0�1}. Then

μN ≥ 1 −π

2

(
1 − 4ε

π

)
μ�

PROOF: Let τ be the type that plays a1. We have

μa1|τ =
∑
y

[
α2(y) +π

(
1 − α2(y)

)]
μy|τ + εHa1τ�

μN|τ = (1 −π)
(∑

y

(
1 − α2(y)

)
μy|τ + εHNτ

)
�

These imply the inequalities

μa1|τ ≥ π(1 −μN|τ) + [
α2(N) +π

(
1 − α2(N)

)]
μN|τ + εHa1τ�

μN|τ ≥ (1 −π)
((

1 − α2(N)
)
μN|τ +μa1|τ + εHNτ

)
�

Hence

μN|τ ≥ (1 −π)
(
π + (1 −π)μN|τ + εHNτ + εHa1τ

)
�

It follows that

μN|τ ≥ 1 −π

2

(
1 − 4ε

π

)
�

The result now follows from μN ≥ μN|τμτ ≥ μN|τμ. Q.E.D.

Finally, we compute bounds on beliefs about types that play the same action indepen-
dent of the signal. Here, we combine bounds from the equations for the conditionals with
Bayes law.

LEMMA 5: A long-run type τ that plays the pure action a1 regardless of the signal has

μτ|−a1 ≤ 2
μ

(
ε

π

)

and if α2(1) = 1 and α2(0) = 0 then a type τ that plays the action 1 regardless of signal has

μτ|N ≤ 8(
1 − 4

(
ε

π

))
μ

(
ε

π

)
�

PROOF: If long-run type τ plays the pure action a1 from Lemma 3 μ−a1|τ = εH−a1τ ≤ 2ε.
From Lemma 2, μ−a1 ≥ πμ and Bayes law then implies

μτ|−a1 ≤ ε2
πμ

�
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For the second part, we have from Lemma 3,

μN|τ = (1 −π)
(
μ0|τ + [

1 − α2(N)
]
μN|τ

) + (1 −π)εHNτ�

μ0|τ = εH0τ�

Plugging in μN|τ ≤ (1 −π)μN|τ + (1 −π)εH0τ + (1 −π)εHNτ , so

μN|τ ≤ (1 −π)4ε
π

�

From Lemma 4,

μN ≥ 1 −π

2

(
1 − 4ε

π

)
μ�

Hence Bayes law implies

μτ|N ≤ 8ε

π

(
1 − 4ε

π

)
μ

� Q.E.D.

Short-Run Player Optimality

Recall that μ1(z) is the probability of a1 = 1 in state z and that B = 1/(V + 1) is the
critical value of μ1(z) such that we have the following.

LEMMA 6: If μ1(z) > B� the short-run player strictly prefers to enter; if μ1(z) < B� the
short-run player strictly prefers to stay out, and if μ1(z) = B the short-run player is indifferent.

We next show that it cannot be optimal for the short-run player always to enter. Set
B ≡ μmin{π�1 −π}min{B�1 −B}.

LEMMA 7: For ε < (1/2)B, always enter a2(z) = 1 for all z is not an equilibrium.

PROOF: By Lemma 1, always enter implies no effort by the normal long-run player. As
there are few good types at z = 0, we show that this forces the short-run player to stay out
there so the short-run player should not in fact enter. Q.E.D.

LEMMA 8: For ε < (1/16)B, the strict equilibrium response to never providing effort is to
enter only on z = 1 and do so with probability 1.

PROOF: As the normal and bad types never provide effort the signal z = 1 implies a
good type with high probability so the short-run player should enter there. This means
that the long-run player can have the signal z = 1�N only through a type transition. In
particular, the bad signal is dominated by normal and bad types so the short-run player
should stay out. This in turn means that most of the N signals are generated by normal
and bad types, so the short-run player should stay out there, too. Q.E.D.

LEMMA 9: For ε < (1/16)B, there is no equilibrium in which α2(0) = 1.
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PROOF: By Lemma 1, α2(0) = 1 implies never provide effort so by Lemma 8 α2(0) = 0
a contradiction. Q.E.D.

LEMMA 10: For ε < (1/32)B, the unique equilibrium response to always provide effort is
to enter only on z = 1 and do so with probability 1.

PROOF: This is basically the opposite of Lemma 8. Now at z = 1, there are mainly good
and normal types so it is optimal for the short-run player to enter. While at z = 0, there
are mainly bad types so it is optimal for the short-run player to stay out. Hence no-signal
is generated by bad types from z = 0 so it is optimal for the short-run player to stay out
there, too. Q.E.D.

LEMMA 11: If ε < (1/2)B and for some a1, we have α1(a1) = a1, then α2(a1) = a1.

PROOF: If α1(0) = 0, then from Lemmas 3 and 2 μ1(0) = μ0|gμg/μ0 = εH0gμg/μ0 ≤
2ε/(πμ). If α1(1) = 1, then 1 − μ1(1) = μ1|bμb/μ1 = εH1bμb/μ1 ≤ 2ε/(πμ). Hence for
ε/π < Bμ/2, it follows that α2(a1) = a1. Q.E.D.

Uniqueness of Short-Run Pure Equilibria

We define an equilibrium response of the short-run player to a strategy of the long-run
player to be a best response to μzτ induced by the long-run player strategy and itself.

PROPOSITION 1: There exists an ε > 0 depending only on V such that for any ε satisfying

ε >
ε

μmin{π�1 −π}
> 0

in any short-run pure equilibrium the short-run player must enter on the good signal and only
on the good signal. Moreover, this is a strict equilibrium response.

PROOF: We rule out all other possibilities:
(a) Always enter a2(z) = 1 for all z is not an equilibrium. By Lemma 7,
(b) the unique equilibrium response to never provide effort is to enter only on z = 1, from

Lemma 7.
(c) A equilibrium response requires a2(1) = 1, a2(0) = 0. Any other strategy satisfies

a2(0) ≥ a2(1). From Lemma 1, this implies no effort by the long-run player. Part (b) then
forces 0 = a2(0) < a2(1) = 1 a contradiction.

(d) The unique equilibrium response to always provide effort is to enter only on z = 1, from
Lemma 10.

This leaves only the strategy ã in which the long-run player plays a1 = 1 on entry and
a1 = 0 if the short-run player stays out. As we know that α2(1) = 1, α2(0) = 0, there are
two possibilities α2(N) = 1 and α2(N) = 0. The former is ruled out because it leads to
primarily bad types at z = N , and the latter is a strict best response by the short-run
player because there are few good types at z =N . Q.E.D.
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Mixing

Recall that all of the lemmas concerning short-run optimality hold for ε ≤ B/32
(and the remaining lemmas do not place restrictions on ε) where B = μmin{π�1 −
π}min{B�1 − B}. Recall also the notion of a fundamental bound: It may depend on the
fundamentals of the game π, V , δ, c but not on the type dynamics Q, ε. Define the fun-
damental bound A ≡ π2(1 − π) min{B�1 − B} and observe that if ε ≤ μA/32 then also
ε≤ B/32. We shall assume ε≤ μA/32 hereafter.

LEMMA 12: There is no nonpure equilibrium with α1(1) = 1.

PROOF: By Lemma 2, μ1|b = εH1b ≤ 2ε. Hence for ε < B/2 by Lemma 6 α2(1) = 1.
Then by Lemma 2 μ1|n = μ1|n +∑

y∈{0�N}α1(y)[α2(y) +π(1−α2(y))]μy|n +εHzτ. It follows
that ∑

y∈{0�N}

α1(y)μy|n ≤ 2(ε/π) so max
y∈{0�N}

α1(y)μy|n ≤ 2(ε/π).

Moreover, for z ∈{0�N}, we have μz|g = εHzg ≤ 2ε. Hence

μ1(0) = μ0|gμg + α1(0)μ0|nμn

μ0
≤ 2(ε/π)(μg +μn)/(πμ) ≤ 2(ε/π)/(πμ)�

So for ε/π2 < Bμ/2 (this is why π2 appears in A) by Lemma 6, we have α2(0) = 0. This
implies by Lemma 4 that

μ1(N) = μN|gμg + α1(N)μN|nμn

μN

≤ 2(ε/π)(μg +μn)/μN

≤ 8(ε/π)

(1 −π)
(

1 − 4ε
π

)
μ

�

So when this is less than or equal B by Lemma 6, we have α2(N) = 0. For ε≤A/8, this is

16ε
π(1 −π)μ

≤ B

so holds for ε < μA/16, which was assumed. Q.E.D.

LEMMA 13: In any equilibrium, α1(0) = α2(0) = 0.

PROOF: We already know this to be true in any pure equilibrium, so we may assume the
equilibrium is not pure. From Lemma 11, if α1(0) = 0, then α2(0) = 0, so we may assume
this is not the case, that is, α1(0) > 0. From Lemma 12, we know that α1(1) < 1. It cannot
be that the normal type is indifferent at both z = 0�1 for then by Lemma 1, it must be that
α2(1) = α2(0) = α̃2 so that V1 = V (α̃) = V0 and that the normal type never provides effort
in which case by Lemma 8 we would have a pure strategy equilibrium. Hence either the
normal type strictly prefers to provide no effort at z = 1 and is willing to provide effort
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at z = 0 or the normal type is indifferent at z = 1, and strictly prefers to provide effort at
z = 0. In either case from Lemma 1, we must have α2(1) <α2(0).

The key point is that having the short-run player enter when there is no effort is kind
of like winning the lottery—you get something for nothing. If that happens in the state
0 it is particularly good because you are guaranteed that you get to play again. Since
α2(1) < α2(0), we can write α2(0) = β + (1 − β)α2(1) where β > 0 meaning that in the
state z = 0 there is a better chance of winning the lottery. We will use this to show that
V (α2(0)) ≥ V (α2(1)) so that never provide effort is optimal and the equilibrium must be
pure by Lemma 8. Q.E.D.

LEMMA 14: In any nonpure equilibrium 0 <α2(1) < 1, α1(N) > 0, and α2(N) ≥ α2(1).

PROOF: First, suppose that α2(1) = 1. Since the short-run player must be mixing and
by Lemma 13 is not doing so at z = 0 the short-run player must be mixing at z = N , that
is, that 0 < α2(N) < 1. Lemma 12 implies that at z = 1 the normal type does not strictly
prefer to provide effort. Since α2(N) < α2(1) Lemma 1 implies that at z = N normal
type strictly prefers not to provide effort, so α1(N) = 0. Hence μ1(N) = μN|gμg/μN =
εH0gμg/μN . As α2(0) = 0 by Lemma 13, it follows from Lemma 4 that

μ1(N) ≤ 4ε

(1 −π)
(

1 − 4ε
π

)
μ

as the RHS this is less than B by assumption we have α2(N) = 0 a contradiction.
Next, suppose that α2(1) = 0. By Lemma 13, we also have α2(0) = 0 so by Lemma 1

the long-run player never provides effort. Hence α2(1) > 0 follows from Lemma 8, a
contradiction. We have now shown strict mixing the short-run player at z = 1.

Now we show that since the short-run player is strictly mixing at z = 1 then α1(N) > 0.
Strict mixing by the short-run player at z = 1 implies from Lemma 6 1 −B = 1 −μ1(1) =
([1 − α1(1)]μ1|nμn + μ1|bμb)/μ1. From Lemma 3 and Lemma 13 if α1(N) = 0, we have
μ1|n ≤ α1(1)μ1|n + 2ε and μ1|b ≤ 2ε. Hence by Lemma 2 1 − μ1(1) ≤ 2ε/(πμ), so for
2ε/(πμ) < 1 −B this is a contradiction.

Since α2(N) > 0, the normal type weakly prefers to provide effort at z = N . If α2(1) >
α2(N) by Lemma 1, this implies the normal type would strictly prefer to provide effort at
z = 1 contradicting Lemma 12. Q.E.D.

Signal Jamming

Define the auxiliary system with respect to 0 ≤ λ, γ ≤ 1 as

V1 = (1 − δ)α̃2 + δ
[(
α̃2 + (1 − α̃2)π

)
V0 + (1 − α̃2)(1 −π)VN

]
�

VN = (1 − γ)(λ− c) + γV1�

V0 = δ(1 −π)
1 − δπ

VN�

Since in a mixed equilibrium, we know from Lemma 12 that α1(1) < 1 so that at z = 1 the
long-run player must be willing to provide no effort. This system corresponds to providing
no effort at z = 0�1. From the contraction mapping fixed-point theorem, this has a unique
solution V1, VN , V0. Define the function �(α̃2) ≡ V1 − V0.
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LEMMA 15: We have

V1 = δ(1 −π)(1 − γ)(λ− c) + (1 − δ)
[
1 − δπ − δ(1 −π)(1 − γ)(λ− c)

]
α̃2(

1 − δπ − γδ(1 −π)
) + γδ(1 −π)(1 − δ)α̃2

strictly increasing in α̃2.

PROOF: Here, we simply solve the linear system and determine the sign of the deriva-
tive of V1. Q.E.D.

LEMMA 16: �(α̃2) is strictly increasing. There is a solution 0 < α̂2 < 1 to

�(α̃2) = �(α̃2) ≡ 1 − δ

δ
(
α̃2 + (1 − α̃2)π

)c�
it and only if

c < δ

(
1 − δπ − δ(1 −π)

[
γ + λ(1 − γ)

])
1 − δπ − δ2(1 −π)

�

in which case it is unique.

PROOF: Here, solve V0 as a function of V1 from the system. We subtract this from V1 and
find that �(α̃2) is strictly increasing in V1. Hence we may apply Lemma 15. Since �(α̃2) is
decreasing, there will be a unique intersection if and only if �(0) >�(0) and �(1) <�(1).
By computation, we show that the first condition is always satisfied and the second is the
condition on c given as the result. Q.E.D.

PROPOSITION 2: If ε < μπ2(1 −π) min{B�1 −B}/32, and

c ≥ δ
1

1 + δ(1 −π)
�

all equilibria are in pure strategies.

PROOF: Suppose that α1(z), α2(z) is a nonpure equilibrium. If the normal type is will-
ing to provide effort at z = 1, we take α̂2 = α2(1). If the long-run player strictly prefers
to provide no effort at z = 1, we show how to construct a 1 > α̂2 > α2(1) for which the
long-run player is indifferent at z = 1 and strictly prefers to provide effort at z = N .
We show that 1 − c ≥ V (α2(N)) ≥ V (α̂2) and use this to show that at α̂2 we must have
�(α̂2) = �(α̂2) for λ = 1. Applying Lemma 16, then yields the desired condition. Q.E.D.
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