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Abstract

Asymptotic justi�cation of the bootstrap often takes the form of weak convergence of the bootstrap

distribution to some limit distribution. Theoretical literature recognized that the weak convergence

does not imply consistency of the bootstrap second moment or the bootstrap variance as an estimator

of the asymptotic variance, but such concern is not always re�ected in the applied practice. We bridge

the gap between the theory and practice by showing that such common bootstrap based standard error

in fact leads to a potentially conservative inference.

JEL Classi�cation: C12, C14, C31, C32
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1 Introduction

A typical asymptotic justi�cation of bootstrap takes the following form. First, it is shown that an

estimator of interest (after subtracting the estimand and properly rescaling the di¤erence) converges

weakly to an asymptotic distribution, usually normal with mean equal to zero and variance equal to �2,

say. Second, it is shown that the bootstrap version of the estimator (again, after proper centering and

rescaling) also converges weakly to the same asymptotic distribution. See Bickel and Freedman (1981),

Giné and Zinn (1990), Arcones and Giné (1992), Hahn (1995, 1996), Chen, Linton and Van Keilegom

(2003), etc. These results can be used to justify the bootstrap inference based on percentile methods.

Given the weak convergence result, it may appear intuitive to estimate the asymptotic variance by

the second moment of the bootstrap distribution, but such an intuition is not supported by theory.
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Weak convergence concerns expectations of all continuous and bounded functions of a random variable,

but because moments concern unbounded functions of that variable, weak convergence does not imply

convergence of moments. In particular, consistency of moments may not follow in settings in which large

outliers may occur with a vanishing probability. In fact, the second moment of the bootstrap distribution

was shown to be inconsistent in Ghosh, Parr, Singh, and Babu�s (1984, p.1131) example,1 where it was

pointed out that under some conditions, the bootstrap second moment of the sample median diverges to

in�nity even though the asymptotic variance of the sample variance is �nite,2 and as a consequence, the

implied con�dence interval has an asymptotic coverage probability equal to one regardless of the nominal

coverage probability.

Despite these theoretical concerns, the bootstrap second moment is often used as an estimator of �2.3

We note that the moment-based bootstrap does not have any inconsistency problem when the mean is

the parameter of interest, which is often used as an example in introductory discussions of the bootstrap.

Historically, bootstrap was originally developed by Efron (1979), and he devoted a fair amount of space

for discussion of bootstrap moments. This may be partly why applied researchers often choose to use the

moment-based bootstrap, even in complicated models where the moment-based bootstrap is not justi�ed.

Regardless of the reason, the bootstrap second moment is often used in econometric inference, and there

is an obvious gap between theory and practice.

The purpose of this paper is to �ll the gap by showing that the bootstrap second moment and the

bootstrap variance often lead to conservative inference. Loosely speaking, we show that the bootstrap

second moment (or the bootstrap variance) cannot be smaller than �2, and as such, the resultant inference

would be more conservative than is suggested by the nominal signi�cance level.

The paper is organized as follows. Section 2 presents the main results of the paper under the assump-

tion that the data are i.i.d. Section 3 discusses the extension of the main results under weaker conditions

and their applicability to time series data. Section 4 reports simulation results. Section 5 concludes. The

appendix contains proofs of the main results and additional technical details.

1See also Shao�s (1992, p.96) example. Although Ghosh, Parr, Singh, and Babu (1984), and Babu (1985) discuss

additional regularity conditions under which bootstrap second moments are consistent for �2, such consistency results for

the bootstrap second moments are not commonly available for other econometric estimators, and often the only available

results in the literature take the form of weak convergence of bootstrap distribution of various estimators.
2The asymptotic variance of the sample median is known to be 1=

�
4f2

�
, where f is the density at the population median.

3Shao (1992) and Gonçalves and White (2005) propose modi�cation of the bootstrap to make sure that the resultant

estimator of �2 is consistent, but their proposals do not always seem to be adopted in applied practice.
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2 Main Results

Suppose that we are interested in estimating a scalar parameter �0 with a random sample fWigni=1 from

a random sequence fWig1i=1 which takes values in a probability space (
;F ;P). Let ! denote a generic

point in 
, which can be understood as one of the realizations of the in�nite sequence fWig1i=1. Given the

sample fWigni=1, let Pn (!) denote the empirical distribution function, i.e., it is a multinomial distribution

that puts equal weights on each W1; : : : ;Wn, where the ! 2 
 emphasizes the conditional nature of the

empirical distribution. An estimator b�n of the parameter �0 of interest is understood to be some function
gn (W1; : : : ;Wn) of the sample fWigni=1. We assume that

n1=2(b�n � �0)) Z; (1)

where Z is a random variable with mean zero and variance �2 > 0, and the arrow �)�denotes weak

convergence. In many econometric applications, it happens that Z � N(0; �2).4

Letting fW �
i gni=1 denote the n i.i.d. random variables from the empirical distribution Pn (!), we

have a bootstrap version of the estimator b��n = gn (W
�
1 ; : : : ;W

�
n). Letting P�n (!) denote the empirical

distribution of fW �
i gni=1, we can understand both b�n and b��n to be a function of the empirical distributions

Pn (!) and P�n (!) respectively, and write b�n (!) and b��n (!) when we need to emphasize their dependence
on !. A typical asymptotic justi�cation of the bootstrap establishes that

n1=2
�b��n (!)� b�n (!)�) Z !-almost surely (2)

which means that n1=2
�b��n (!)� b�n (!)� converges in distribution to Z for almost all ! under the measure

P.

Given the result in (2), it may be tempting to estimate �2 = E[Z2] by the second moment of the

bootstrap distribution where E[�] denote the expectation taken under P. We let

bs�2n � E�
h
n(b��n � b�n)2i

denote the bootstrap second moment around b�n, where E� [�] denotes the expectation taken under the
bootstrap distribution.5 As discussed in the introductory section, bs�2n should not be viewed as a consis-

tent estimator of �2 with the weak convergence result (2) alone. It is a consequence of the fact that

weak convergence does not necessarily imply convergence of moments, although it does not seem to be

appreciated in practice. In other words, there is a gap between theory and practice. We argue that this

gap can be bridged by using the following lemma:
4Throughout this paper, A � B means that random variable/vector A has the same distribution as B.
5Throughout this paper, we use a � b to denote that a is de�ned as b.
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Lemma 1 Suppose that Fn is a sequence of distributions on a metric space. Also suppose that Fn ) F ,

where the support of F is separable. We then have lim infn!1
R
z2Fn (dz) �

R
z2F (dz).

Proof. See appendix.6

Taking Fn and F to denote the distribution of n1=2
�b�� (!)� b� (!)� and Z respectively, we can

conclude from (2) and Lemma 1 that lim infn!1 bs�2n � �2 on each ! such that n1=2
�b��n (!)� b�n (!)�) Z.

Because the set of such ! has probability equal to 1, we conclude that

lim inf
n!1

bs�2n � �2, !-almost surely. (3)

The result (3) essentially contains every practical implication about the conservative nature of the boot-

strap second moment; because the bootstrap second moment bs�2n tends to be at least as large as �2, we

can intuitively expect that the inference based on bs�2n should be conservative.

Another tempting approach to use (2) is to use the bootstrap variance to estimate �2. Let

b��2n � bs�2n � �E� hn1=2(b��n � b�n)i�2 (4)

denote the bootstrap variance. Lemma 3 in the appendix, which was not straightforward to us, provides

a counterpart of Lemma 1. Using the same argument that led to (3) along with Lemma 3, we can obtain

lim inf
n!1

b��2n � �2, !-almost surely. (5)

This result has practical signi�cance. Because of (3), a practitioner may want to use an estimator of

�2 which is less conservative than the bootstrap second moment bs�2n . Because variances are bounded
above by second moments, the bootstrap variance b��2n is a natural candidate. On the other hand,

the practitioner may be concerned that the bootstrap variance may potentially under-estimate �2, and

therefore, the inference based on bootstrap variance may not be valid even from the conservative point

of view. However, (5) indicates that it is not the case.

From (5) we derive the main result formally:

Theorem 1 Suppose that (1) and (2) hold, and that Z is continuously distributed. Then for any �nite

z > 0, we have:

(i) lim supn!1 P
�
n1=2(b�n � �0).b��n > z� � P (Z/� > z) ;

(ii) lim supn!1 P
�
n1=2(b�n � �0).b��n < �z� � P (Z/� < �z) ;

(iii) lim supn!1 P
����n1=2(b�n � �0).b��n��� > z� � P (jZ/�j > z) :

6Lemma 1 is available in standard literature, e.g. Lehmann and Casella (1998, Lemma 1.14). We present our proof in

the appendix for ease of reading.
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Proof. In Appendix.

Theorem 1 implies that the inference based on b��n may be more conservative than is expected by the
nominal signi�cance level. Suppose that the asymptotic distribution of n1=2(b�n � �0) is N �0; �2�. Let z�
denote the upper �-quantile of the standard normal random variable.7 Then Theorem 1(i) implies that

lim sup
n!1

P
�
n1=2(b�n � �0).b��n > z�� � �;

which shows the size control of the one-sided test based on n1=2(b�n � �0)=b��n. Similarly by Theorem 1(ii,

iii), we can show that

lim sup
n!1

P
�
n1=2(b�n � �0).b��n < �z�� � � and lim sup

n!1
P
����n1=2(b�n � �0).b��n��� > z�=2� � �:

Because bs�2n � b��2n , we can see that the same is true for the inference based on bs�n. In other words,
Theorem 1(i, ii, iii) remain true even if b��n is replaced by bs�n.8

In many empirical studies, the bootstrap estimator b��n (or bs�n) is reported, and is often plugged in
the test statistic n1=2(b�n � �0)=b��n (or n1=2(b�n � �0)=bs�n) for one-sided or two-sided test of the null �0 = 0
using critical values from the standard normal distribution. Such convention is not theoretically justi�ed

if the purpose is to construct con�dence intervals whose asymptotic coverage probability is the same as

the nominal coverage probability, e.g., as was noted in the introductory section. On the other hand,

Theorem 1 implies that the one-sided and two-sided tests based on n1=2(b�n � �0)=b��n lead to potentially
conservative inference, thereby establishing the direction of the possible size distortion for these tests.

We now consider the multivariate generalization where d � dim (�) > 1 (yet �nite). We assume that

the random variable Z in (1) and (2) has a mean equal to 0 and variance-covariance matrix equal to �,

which we assume is a �nite positive de�nite matrix. Let

Ŝ�n � E�
h
n(b��n � b�n)(b��n � b�n)0i and �̂�n � Ŝ�n � E�

h
n1=2(b��n � b�n)iE� hn1=2(b��n � b�n)0i

denote the bootstrap second moment and the bootstrap variance-covariance matrix, which are often used

for joint inference of �0 based on the Wald test statistics

n(b�n � �0)0(Ŝ�n)�1(b�n � �0) or n(b�n � �0)(�̂�n)�1(b�n � �0):
We can derive the analogs of Theorem 1:

7We assume that � < 0:5 to make sure that z� > 0.
8We are grateful for the editor�s insight which simpli�ed the argument here.

5



Theorem 2 Suppose that (1) and (2) hold, and that Z is continuously distributed. Then for any �nite

z > 0, we have:

(i) lim supn!1 P
�
n(b�n � �0)0(Ŝ�n)�1(b�n � �0) > z� � P �Z 0��1Z > z� ;

(ii) lim supn!1 P
�
n(b�n � �0)0(�̂�n)�1(b�n � �0) > z� � P �Z 0��1Z > z� :

Proof. In Appendix.

Suppose that the asymptotic distribution of n1=2(b�n � �0) is N (0;�). Let ��(d) denote the upper
�-quantile of the Chi-square random variable with degree of freedom d. Then Theorem 2 implies that

lim sup
n!1

P
�
n(b�n � �0)0(Ŝ�n)�1(b�n � �0) > ��(d)� � �; and

lim sup
n!1

P
�
n(b�n � �0)0(�̂�n)�1(b�n � �0) > ��(d)� � �

which shows that the Chi-square tests based on

n(b�n � �0)0(Ŝ�n)�1(b�n � �0) and n(b�n � �0)0(�̂�n)�1(b�n � �0)
lead to potentially conservative inference.9

3 Discussion

Our result was predicated on the assumption that a typical bootstrap result takes the form (2). It can

be easily extended to the case where a bootstrap result takes the form

�
�
n1=2(b��n � b�n); Z� = op (1) ; (6)

where � denotes any metric that metrizes weak convergence such as Prokhorov metric. This is because

of the following reasoning. For any subsequence fnkg, there is a further subsequence fnpg such that

�
�
n
1=2
p (b��np � b�np); Z� ! 0 almost surely. We can then see that our main results hold true along this

subsequence fnpg, which implies that our main results are valid along the original sequence fng.

For simplicity, we assumed that our sample fWigni=1 is independent and identically distributed, but

this is not necessary either. Our result only requires that the bootstrap result takes the form (2) or (6),

so it applies to various modi�ed bootstrap approaches. The modi�ed bootstrap methods include (but

not limited to) the subsampling (see, e.g., Politis and Romano (1994), Hong and Scaillet (2004) and

9For any nonzero � 2 Rd, by (1) and (2), n1=2�0(b�n� �0)) �0Z and n1=2(b��n (!)� b�n (!))) �0Z !-almost surely, based

on which we can also obtain straightforward generalization of Theorem 1 for inference of the linear combination �0�0. See

Appendix B.
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Hong and Li (2019)), the residual bootstrap (see, e.g., Bose (1988, 1990) and Franke and Kreiss (1992)),

the block bootstrap (see, e.g., Künsch (1989) and Liu and Singh (1992)), the wild bootstrap (see, e.g.,

Wu (1986) and Liu (1988)) for the dependent and/or non-identically distributed observations, as well as

the alternative methods to bootstrap for ease of computation (see, e.g., Armstrong, Bertanha and Hong

(2014) and Honoré and Hu (2017)). Our results apply to these modi�ed or alternative bootstrap methods

as well.10

4 Simulation Study

In this section, we study the properties of the bootstrap standard deviation and related inference by

simulation. We consider the standard linear simultaneous model

yi = xi� + ui;

xi = zi� + vi;

where ui, vi and zi are all standard normal and (ui; vi) is independent of zi. We let � � Cov (ui; vi)

and � = 0 in our simulation. For the values of � and �, we follow Hansen, Hausman and Newey (2008,

Section 4) for guidance. Surveying articles published in various venues, they note that the medians of the

concentration parameter (i.e., �2 �
Pn
i=1(zi�)

2=E[v2i ]) and � are 23:6 and 0:279, respectively. Inspired

by this, we calibrate � (with � > 0) so that �2 = 25 for n = 100 and n = 1; 000, which implies that

R2 � Var (zi�)

Var (zi�) + Var (vi)
= 0:2 and 0:025:

As for �, we choose � = 0:25 and 0:5 respectively.

We consider the case that � is exactly identi�ed here for two reasons. First, we would like to work with

the limited information maximum likelihood (LIML) estimator while ensuring that it is well de�ned for

all bootstrap samples. If � is overidenti�ed, the LIML estimator would involve the inverse of
Pn
i=1 ziz

0
i.

When we consider the nonparametric bootstrap, the bootstrap counterpart of
Pn
i=1 ziz

0
i is singular with

positive probability, which leads to an issue of de�ning the bootstrap moments. With exact identi�cation,

the LIML estimator becomes b� � Pn
i=1 ziyi=

Pn
i=1 zixi and the problem disappears. Second, exactly

identi�ed models are not unusual in empirical practice. Hansen, Hausman and Newey (2008, p.405) note

10Our focus is the �rst-order validity of the inference based on the boostrap variance, and the higher-order consideration

is outside the scope of this paper. For higher order re�nements, see, e.g., Hall and Horowitz (1996) and Andrews (2002,

2004).
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�50% of the articles had at least one overidentifying restrictions�, which we take as evidence that 50% of

the articles were exactly identi�ed.

We investigate the properties of two estimators of the asymptotic standard deviation of
p
n(b� � �)

based on the nonparametric bootstrap. The �rst is the bootstrap estimator b��n de�ned in (4). The second
is de�ned as

p
n
�
���2 � �

�
�1

�
=(z�2 � z�1), where ���1 and �

�
�2 (or z�1 and z�2) denote the �1 and �2

quantiles of the bootstrap distribution (or the standard normal distribution), respectively. This estimator

is considered in Machado and Parente (2005). We work with (�1; �2) = (1=4; 3=4) in the simulation and

the corresponding estimator is called the inter-quartile range (IQR) estimator. The two estimators are

normalized/divided by the asymptotic standard deviation of the LIML estimator b�, which equals to
��1 (� > 0) in our simulation design. In Table 1 below, we will call them normalized standard error

estimators.

Second, we study and compare the rejection probabilities of four con�dence intervals at the 10%

nominal signi�cance level. The �rst (denoted as B-CI) is based on the bootstrap estimator b��n, i.e.,b��1:645b��nn�1=2. For the second (denoted as IQR-CI), we replace the bootstrap estimator b��n in the �rst
con�dence interval by the IQR estimator. The third and fourth con�dence intervals (denoted as BP-CI

and BPT-CI, respectively) are based on the percentile method and the percentile-t method, respectively.

All the simulation results are based on 999 bootstrap replications with 100; 000 simulation replications.

Table 1. Properties of the Normalized Standard Error Estimators

B-SD IQR-SD

n R2 � Mean SD Median IQR Mean SD Median IQR

100 0.025 0.25 220.50 7567.03 21.63 55.96 1.46 1.10 1.12 1.07

1; 000 0.025 0.25 4.51 469.09 1.10 0.43 1.09 0.33 1.02 0.32

100 0.200 0.25 4.92 152.71 1.10 0.52 1.08 0.38 1.01 0.38

1; 000 0.200 0.25 1.01 0.09 1.01 0.12 1.01 0.09 1.00 0.12

100 0.025 0.50 239.53 21891.88 21.79 57.28 1.45 1.24 1.07 1.06

1; 000 0.025 0.50 6.20 357.48 1.11 0.54 1.11 0.45 1.01 0.38

100 0.200 0.50 6.87 317.41 1.12 0.64 1.10 0.47 1.00 0.42

1; 000 0.200 0.50 1.02 0.10 1.01 0.14 1.01 0.10 1.00 0.14

Table 1 presents the mean, the standard deviation (SD), the median and the IQR of the normalized

bootstrap standard error estimator (denoted as B-SD), and the normalized IQR standard error estimator

(denoted as IQR-SD). From Table 1, we see that the variability of the bootstrap standard error estimator
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is much larger than that of the IQR standard error estimator when the sample size is small and/or the

instrumental variable (IV) is not strong, which re�ects the moment issue of the LIML estimator under

exact identi�cation. When the sample size is large and the IV is strong, i.e., n = 1; 000 and R2 = 0:2,

the properties of these two standard error estimators are almost the same.

Table 2. Empirical Rejection Probabilities (Nominal Size = 0.10)

n R2 � B-CI IQR-CI BP-CI BPT-CI

100 0.025 0.25 0.0056 0.0763 0.0414 0.4176

1; 000 0.025 0.25 0.0518 0.0772 0.0449 0.1507

100 0.200 0.25 0.0582 0.0886 0.0541 0.1598

1; 000 0.200 0.25 0.0959 0.0985 0.0937 0.1041

100 0.025 0.50 0.0149 0.1222 0.0683 0.4227

1; 000 0.025 0.50 0.0613 0.0795 0.0771 0.1574

100 0.200 0.50 0.0654 0.0893 0.0823 0.1629

1; 000 0.200 0.50 0.0969 0.0994 0.0966 0.1053

Table 2 provides the empirical rejection probabilities of the four con�dence intervals mentioned above.

From this table, we see that the B-CI under-rejects in all cases we considered, and the size distortion

is sometimes quite severe. The inference based on the bootstrap percentile method also under-rejects

in all cases we considered. It is slightly more conservative than the B-CI in some cases, but avoids the

severe size distortion in B-CI. The inference based on the IQR-CI also under-rejects except when n = 100,

R2 = 0:025 and � = 0:5. Overall, the IQR-CI seems to have the smallest size distortion. Finally, the

inference based on the bootstrap percentile-t method is over-rejecting in all cases we considered.

5 Summary

Theoretical literature on the bootstrap often establishes that the bootstrap distribution converges weakly

to a desired limit distribution, but not much more. Given such state of the theory literature, theoretical

econometricians and statisticians have long advocated the use of the percentile method, which would

produce con�dence intervals with correct asymptotic coverage probabilities. Theoretical econometricians

and statisticians have also developed a few variants of bootstrap to get more accurate con�dence intervals

(i.e., re�nements). We recommend these standard bootstrap procedures to be used in practice.

Despite the lack of theoretical justi�cation, the bootstrap second moment or the bootstrap variance is
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often used as a basis of inference in practice. Therefore, it may be of interest to look for an understanding

of the inference based on bootstrap moments. Our result clari�es the conservative nature of such inference.

Appendix

A Proof of the results in Section 2

Proof of Lemma 1. By Skorokhod�s representation theorem, there exist random variables Zn and Z

de�ned on a common probability space such that Zn � Fn, Z � F , and Zn ! Z almost surely. It follows

that Z2n ! Z2 almost surely. So by Fatou�s lemma, we have lim infn!1E
�
Z2n
�
� E

�
Z2
�
. The conclusion

follows by observing that E
�
Z2n
�
=
R
z2Fn (dz) and E

�
Z2
�
=
R
z2F (dz).

Lemma 2 Suppose that Zn ) Z and limn!1Var (Zn) < Var (Z). Then lim supn!1 jE[Zn]j � j�j+ 4�,

where � � E [Z] and �2 � Var (Z)

Proof. By the weak convergence and Chebyshev�s inequality,

lim inf
n!1

P (�2� < Zn � � < 2�) � P (�2� < Z � � < 2�) � 3=4; (7)

which implies that for all large n,

P (jZn � �j < 2�) � 3(1� ")=4 (8)

for " > 0 su¢ ciently small. By the triangle inequality jE[Zn]� �j � jZn � E[Zn]j+ jZn � �j, so we have

P (jZn � �j < 2�) � P (jE[Zn]� �j < jZn � E[Zn]j+ 2�) ; (9)

which can be combined with (8) to yield

lim inf
n!1

P (jE[Zn]� �j < jZn � E[Zn]j+ 2�) � 3(1� ")=4: (10)

Since jE[Zn]� �j � I fjE[Zn]� �j < jZn � E[Zn]j+ 2�g � jZn � E[Zn]j+ 2�, we obtain

jE[Zn]� �j � P (jE[Zn]� �j < jZn � E[Zn]j+ 2�) � E [jZn � E[Zn]j] + 2�: (11)

The �rst element on the right-hand side of the inequality (11) can be bounded by E [jZn � E[Zn]j] �

(E[jZn � E[Zn]j2])1=2 = (Var (Zn))
1=2, which can be further bounded by � for all large n using the

condition limn!1Var (Zn) < �2. It follows that for all large n

jE[Zn]� �j �
3�

P (jE[Zn]� �j < jZn � E[Zn]j+ 2�)
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and therefore

lim sup
n!1

jE [Zn]j � j�j+ lim sup
n!1

jE[Zn]� �j

� j�j+ 3�

lim infn!1 P (jE[Zn]� �j < jZn � E[Zn]j+ 2�)

� j�j+ 4�

1� "; (12)

where the last inequality is by (10). The claim of the lemma follows by letting " ! 0 on the right-hand

side of the last inequality in (12).

Lemma 3 Suppose that Zn ) Z. Then lim infn!1Var (Zn) � Var (Z).

Proof. By Lemma 1, there exists a subsequence fnkg of fng such that

lim
k!1

E
�
Z2nk

�
= lim inf

n!1
E
�
Z2n
�
� E

�
Z2
�
: (13)

Suppose that lim infn!1Var (Zn) < �2. Then there exists a further subsequence fnpg of fnkg such that

lim
p!1

Var
�
Znp

�
= lim inf

k!1
Var (Znk) < �

2 (14)

and

lim
p!1

��E[Znp ]�� = lim sup
k!1

jE[Znk ]j � j�j+ 4�; (15)

where the inequality in (15) is by Lemma 2. Combining the results in (14) and (15), we get

lim
p!1

E
h
Z2np

i
= lim
p!1

Var
�
Znp

�
+ lim
p!1

(E[Znp ])
2 � 33�2 + 2�2: (16)

Since
��Znp�� I ���Znp�� � C	 � C�1Z2np , by (16)

lim sup
p!1

E
���Znp�� I ���Znp�� � C	� � C�1(33�2 + 2�2); (17)

which implies that
��Znp�� is uniformly integrable. Therefore, limp!1E[Znp ] = E[Z] = � which together

with (14) implies that

lim
p!1

E
h
Z2np

i
= lim
p!1

Var
�
Znp

�
+ lim
p!1

(E[Znp ])
2 < �2 + �2 = E[Z2];

which contradicts (13).

Lemma 4 Under (2), we have lim supn!1 P
�b��2n < �2 � �

�
= 0 for any � > 0.
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Proof. Let C�;� �
�
! : lim infn!1 b��2n (!) < �2 � �	. By (2) and Lemma 3, lim infn!1 b��2n (!) � �2,

!-almost surely, which implies that P (C�;�) = 0. For any ! =2 C�;�, there exists n! such that b��2n (!) �
�2 � � for all n � n!. This implies that Cc�;� � [n�1 \m�n Bcm;�, where Bn;� � f! : b��2n (!) < �2 � �g, or
C�;� � \n�1 [m�n Bm;� = lim supn!1Bn;�. We therefore have 0 � P (lim supn!1Bn;�) � P (C�;�) = 0.

Because lim supn!1 P(Bn;�) � P(lim supn!1Bn;�), we obtain the desired conclusion.

Proof of Theorem 1. By the union bound of the probability, we have for any " > 0

P

 
n1=2(b�n � �0)b��n > z

!
= P

 
n1=2(b�n � �0)

�
>
b��n
�
z

!

= P

 
n1=2(b�n � �0)

�
>
b��n
�
z; b��n � �(1� ��1")

!

+ P

 
n1=2(b�n � �0)

�
>
b��n
�
z; b��n < �(1� ��1")

!

� P
 
n1=2(b�n � �0)

�
> z � z��1"

!
+ P (b��n < � � ") ;

which together with Lemma 4 shows that

lim sup
n!1

P

 
n1=2(b�n � �0)b��n > z

!
� lim sup

n!1
P

 
n1=2(b�n � �0)

�
> z � z��1"

!

for any " > 0. Because n1=2(b�n � �0)) Z and Z is a continuous random variable, we conclude that

lim sup
n!1

P

 
n1=2(b�n � �0)b��n > z

!
� P

�
Z

�
> z � z��1"

�
for any " > 0. By letting "! 0 and using the continuity of Z, we conclude that

lim sup
n!1

P

 
n1=2(b�n � �0)b��n > z

!
� P

�
Z

�
> z

�
;

which proves the �rst claim. The second and the third claims can be proved similarly and their proofs

are omitted.

Theorem 3 Let Sd �
�
� 2 Rd : �0� = 1

	
. Then under (2), we have

lim inf
n!1

P
�
inf
�2Sd

�0(��1=2Ŝ�n�
�1=2)� � 1� �

�
= 1 (18)

and

lim inf
n!1

P
�
inf
�2Sd

�0(��1=2�̂�n�
�1=2)� � 1� �

�
= 1 (19)

for any � > 0.
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Proof. Let D0 � f! : n1=2��1=2(b��n (!) � b�n (!)) ) ��1=2Zg, and note that P (D0) = 1. Consider

any given real vector � 2 Sd. Letting Fn and F denote the distributions of n1=2�0��1=2
�b��n (!)� b�n (!)�

and �0��1=2Z respectively, we can conclude from (3) that lim infn!1 �0��1=2Ŝ�n (!) �
�1=2� � �0� = 1

on each ! 2 D0. In particular, we have

lim inf
n!1

�0��1=2Ŝ�n (!) �
�1=2� � 1 for all � 2 Sd (20)

for each ! 2 D0. By the Slutzky theorem, we can also obtain a stronger result: As long as �n 2 Sd

converges to some � 2 Sd, we would have n1=2�0n��1=2
�b��n (!)� b�n (!)�) �0��1=2Z so we get

lim inf
n!1

�0n�
�1=2Ŝ�n (!) �

�1=2�n � 1 (21)

for all �n ! � on each ! 2 D0.

We now argue that

lim inf
n!1

�
inf
�2Sd

�0
�
��1=2Ŝ�n (!) �

�1=2
�
�

�
� 1 !-almost surely. (22)

Suppose that (22) is not satis�ed. Then there exist an " > 0 and a set D1 of !s with P (D1) > 0 such

that there exists a subsequence fnkg such that

inf
�2Sd

�0��1=2Ŝ�nk (!) �
�1=2� < 1� 2"

for all ! 2 D1. Because (21) is satis�ed with probability 1, we may assume that (21) is satis�ed at

! 2 D1. For each �xed nk, we can choose �nk (!) 2 Sd such that

�nk (!)
0
�
��1=2Ŝ�nk (!) �

�1=2
�
�nk (!) < inf

�2Sd
�0
�
��1=2Ŝ�nk (!) �

�1=2
�
�+ ":

This implies that for any ! 2 D1

�nk (!)
0
�
��1=2Ŝ�nk (!) �

�1=2
�
�nk (!) < 1� ":

Because Sd is compact, and there is a further subsequence fnpg of fnkg such that �np (!) ! � (!) for

some � (!). This implies that

�np (!)
0
�
��1=2Ŝ�np (!) �

�1=2
�
�np (!) < 1� "

for any ! 2 D1, which contradicts (21).

Now, let C� �
n
! : lim infn!1(inf�2Sd �

0(��1=2Ŝ�n(!)�
�1=2)�) � 1� �

o
. Then by (22), P (C�) = 1.

Let

An;� �
�
! : inf

�2Sd
�0
�
��1=2Ŝ�n(!)�

�1=2
�
� � 1� �

�
:

13



Then C� � [n�1 \m�n Am;� = lim inf An;�. We therefore have

1 � lim inf P(An;�) � P (lim inf An;�) � P (C�) = 1

which proves (18).

As for (19), we note that because n1=2�0n�
�1=2

�b��n (!)� b�n (!)�) �0��1=2Z for all �n ! � on each

! 2 D0, by Lemma 3

lim inf
n!1

�0n�
�1=2�̂�n�

�1=2�n � 1 (23)

for all �n ! � on each ! 2 D0. Using the same arguments of showing (22) but replacing (21) with (23)

we can show that

lim inf
n!1

�
inf
�2Sd

�0
�
��1=2�̂�n(!)�

�1=2
�
�

�
� 1 !-almost surely. (24)

The rest of the proof of (19) is the same as (18), and therefore is omitted.

Theorem 4 Suppose that (2) holds. Then for any � > 0, lim infn!1 P
�
�min(Ŝ

�
n) � (1� �)�min(�)

�
= 1

and lim infn!1 P
�
�min(�̂

�
n) � (1� �)�min(�)

�
= 1, where �min (A) denotes the minimum eigenvalue of

a real symmetric matrix A.

Proof. For any � 2 Sd,

�0(��1=2Ŝ�n�
�1=2)� =

�0(��1=2Ŝ�n�
�1=2)�

�0��1�
�0��1�

� �0(��1=2Ŝ�n�
�1=2)�

�0��1�
(�min(�))

�1:

Since inf�2Sd
�0(��1=2Ŝ�n�

�1=2)�
�0��1� = �min(Ŝ

�
n), from the above inequality we obtain

inf
�2Sd

�0(��1=2Ŝ�n�
�1=2)� � �min(Ŝ�n)(�min(�))�1

which together with Theorem 3 proves the �rst result. The second result can be proved similarly.

Remark 1 The Wald test statistics based on Ŝ�n and �̂
�
n require these bootstrap matrices invertible to be

well-de�ned. The invertibility of Ŝ�n and �̂
�
n are established by Theorem 4 above.

14



Proof of Theorem 2. (i) For the ease of notations, we let bcn � ��1=2n1=2(b�n � �0) and ban �bcn (bc0nbcn)�1=2. Then for any " in (0; 1),n
n(b�n � �0)0(Ŝ�n)�1(b�n � �0) > zo

=
n
(bc0nbcn)ba0n(��1=2Ŝ�n��1=2)�1ban > zo

=
n
(bc0nbcn)ba0n(��1=2Ŝ�n��1=2)�1ban > z; ba0n(��1=2Ŝ�n��1=2)�1ban > 1 + "o
[
n
(bc0nbcn)ba0n(��1=2Ŝ�n��1=2)�1ban > z; ba0n(��1=2Ŝ�n��1=2)�1ban � 1 + "o

�
nba0n(��1=2Ŝ�n��1=2)�1ban > 1 + "o [�bc0nbcn > z

1 + "

�
:

Note that nba0n(��1=2Ŝ�n��1=2)�1ban > 1 + "o � n�max �(��1=2Ŝ�n��1=2)�1� > 1 + "o
=

�
�min

�
��1=2Ŝ�n�

�1=2
�
<

1

1 + "

�
�
�
inf
�2Sd

�0(��1=2Ŝ�n�
�1=2)� < 1� "

2

�
where �max (A) denotes the maximum eigenvalue of a real symmetric matrix A. Therefore, we haven

n(b�n � �0)0(Ŝ�n)�1(b�n � �0) > zo � � inf
�2Sd

�0(��1=2Ŝ�n�
�1=2)� < 1� "

2

�
[
�bc0nbcn > z

1 + "

�
;

which combined with the union bound of probability, the continuity of Z, (1) and (18) in Theorem 3

implies that

lim sup
n!1

P
�
n(b�n � �0)0(Ŝ�n)�1(b�n � �0) > z�

� lim sup
n!1

P
�bc0nbcn > z

1 + "

�
+ lim sup

n!1
P
�
inf
�2Sd

�0(��1=2Ŝ�n�
�1=2)� < 1� "

2

�
= P

�
Z 0��1Z >

z

1 + "

�
: (25)

The claim of the lemma follows by the continuity of Z and letting "! 0.

(ii) This claim can be proved similarly as part (i) and its proof is hence omitted.

B Inference on linear combination of �0

We obtain the following generalization of Theorem 1, which shows that the inference of the linear combi-

nation of �0 based on the bootstrap variance-covariance matrix �̂�n may also be potentially conservative.
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Theorem 5 Suppose that (1) and (2) hold, and that Z is continuously distributed. Then for any � 2 Sd

and any �nite z > 0, we have:

(i) lim supn!1 P
�
n1=2�0(b�n � �0). (�0�̂�n�)1=2 > z� � P ��0Z/ (�0��)1=2 > z� ;

(ii) lim supn!1 P
�
n1=2�0(b�n � �0). (�0�̂�n�)1=2 < �z� � P ��0Z/ (�0��)1=2 < �z� ;

(iii) lim supn!1 P
����n1=2�0(b�n � �0). (�0�̂�n�)1=2��� > z� � P ����0Z/ (�0��)1=2�� > z� :

Proof of Theorem 5. For any � 2 Sd,

�0(�̂�n � �)� = �0��
 
�0�̂�n�

�0��
� 1
!
� �0��

�
inf
�2Sd

�0(��1=2�̂�n�
�1=2)�� 1

�
:

Therefore, �0(�̂�n��)� � �� for any � 2 Sd whenever inf�2Sd �0(��1=2�̂�n��1=2)��1 � ��(�max(�))�1,

which together with (19) in Theorem 3 implies that

lim inf
n!1

P
�
inf
�2Sd

�0(�̂�n � �)� � ��
�
= 1 for any � > 0: (26)

Consider any � in (0; 1). By the union bound of probability, we have

P

 
n1=2�0(b�n � �0)
(�0�̂�n�)

1=2
> z

!

= P

 
n1=2�0(b�n � �0)
(�0��)1=2

>
(�0�̂�n�)

1=2

(�0��)1=2
z

!

= P

 
n1=2�0(b�n � �0)
(�0��)1=2

>
(�0�̂�n�)

1=2

(�0��)1=2
z;
�0�̂�n�

�0��
� 1� �

!

+ P

 
n1=2�0(b�n � �0)
(�0��)1=2

>
(�0�̂�n�)

1=2

(�0��)1=2
z;
�0�̂�n�

�0��
< 1� �

!

� P
 
n1=2�0(b�n � �0)
(�0��)1=2

> z(1� �)
!
+ P

�
inf
�2Sd

�0(�̂�n � �)� < ��min(�)�
�
;

which together with (26) shows that

lim sup
n!1

P

 
n1=2�0(b�n � �0)
(�0�̂�n�)

1=2
> z

!
� lim sup

n!1
P

 
n1=2�0(b�n � �0)
(�0��)1=2

> z(1� �)
!
:

Because n1=2(b�n � �0)) Z and Z is a continuous random variable, we conclude that

lim sup
n!1

P

 
n1=2�0(b�n � �0)
(�0�̂�n�)

1=2
> z

!
� P

�
�0Z

(�0��)1=2
> z(1� �)

�
:

By letting �! 0 and using the continuity of Z, we conclude that

lim sup
n!1

P

 
n1=2�0(b�n � �0)
(�0�̂�n�)

1=2
> z

!
� P

�
�0Z

(�0��)1=2
> z

�
;

which proves the �rst claim. The rest claims can be proved similarly and their proofs are omitted.
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