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ADAPTIVE BAYESIAN ESTIMATION OF DISCRETE-CONTINUOUS DISTRIBUTIONS

UNDER SMOOTHNESS AND SPARSITY

Andriy Norets1

and Justinas Pelenis

We consider nonparametric estimation of a mixed discrete-continuous distri-

bution under anisotropic smoothness conditions and a possibly increasing num-

ber of support points for the discrete part of the distribution. For these settings,

we derive lower bounds on the estimation rates. Next, we consider a nonpara-

metric mixture of normals model that uses continuous latent variables for the

discrete part of the observations. We show that the posterior in this model con-

tracts at rates that are equal to the derived lower bounds up to a log factor.

Thus, Bayesian mixture of normals models can be used for (up to a log factor)

optimal adaptive estimation of mixed discrete-continuous distributions. The pro-

posed model demonstrates excellent performance in simulations mimicking the

first stage in the estimation of structural discrete choice models.

Keywords: Bayesian nonparametrics, adaptive rates, minimax rates, anisotropic

smoothness, posterior contraction, discrete-continuous distribution, mixed scale,

mixtures of normal distributions, latent variables, discrete choice models.

.

1. INTRODUCTION

Nonparametric estimation methods have become more accessible and useful in empirical

work due to availability of fast computers and very large datasets. The theory and practical

implementation of nonparametric methods for continuous data are very well developed at

this point. However, in most economic applications, the data contain both continuous and

discrete variables. Nonparametric methods for multivariate discrete and mixed discrete-

continuous distributions and their theoretical properties are less well understood and

developed. We address this issue in the present paper.

The standard flexible approach to estimation of discrete distributions is to use sample

frequencies as estimators of the corresponding probabilities. These estimators do not per-

form well in the case where the number of values that discrete variables can take is larger
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or comparable to the sample size, which we, following Hall and Titterington (1987), refer

to as sparsity. The sparsity in the multivariate case is rather a rule than an exception;

for example, estimating a joint distribution of 5 discrete variables each taking 10 values

would involve estimation of 105 probabilities by the corresponding sample frequencies.

The presence of continuous variables in addition to the discrete ones further exacerbates

the problem. In economics, these issues often arise in the context of estimation of single-

agent and game-theoretic static and dynamic discrete choice models. Popular two stage

estimation procedures for these models pioneered by Hotz and Miller (1993) deal with

discrete dependent variables such as market entry decisions and discrete covariates such

as the number of entrants currently in the market. A natural solution to this problem that

appears to work well in practice (Aitchison and Aitken (1976), Li and Racine (2007)) is

to smooth discrete data, hoping that probabilities at nearby discrete values are close or

smooth in some sense and that one could learn about a probability of a certain value

from the observations at nearby values. Of course, smoothing can only be beneficial if the

underlying data have certain smoothness properties. Ideally, a procedure for estimation

of discrete distributions should be able to optimally take advantage of smoothness in the

data generating process if it is present and at the same time perform no worse than the

standard frequency estimators if the data generating process is not (sufficiently) smooth.

In this paper, we formalize these ideas for multivariate mixed discrete-continuous dis-

tributions by setting up an asymptotic framework where the multivariate discrete part

of the data generating distribution can have either a large or a small number of support

points and it can be either very smooth or not, and these characteristics can differ from

one discrete coordinate to another. In these settings, we derive optimal minimax rates

for estimation of discrete-continuous distributions. We show that smoothing is beneficial

only for a subset of discrete variables with a quickly growing number of support points

and/or sufficiently high level of smoothness.

We propose an estimation procedure that adaptively (without a priori knowledge of

smoothness levels of the data generating process) achieve the derived optimal convergence

rates. The procedure is based on a Bayesian mixture of multivariate normal distributions.

Mixture models have proven to be very useful for Bayesian nonparametric modeling of

univariate and multivariate distributions of continuous variables. These models possess

outstanding asymptotic frequentist properties: in Bayesian nonparametric estimation of

smooth densities the posterior in these models contracts at optimal adaptive rates up to
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a log factor (Rousseau (2010), Kruijer et al. (2010), Shen, Tokdar, and Ghosal (2013)).

Tractable Markov chain Monte Carlo (MCMC) algorithms for exploring posterior distri-

butions of these models are available and they are widely used in empirical work (see Dey,

Muller, and Sinha (1998)).

From the computational perspective, discrete variables can be easily accommodated

through the use of continuous latent variables in Bayesian MCMC estimation (Albert and

Chib (1993)). In nonparametric modelling of discrete-continuous data by mixtures, latent

variables were used by Canale and Dunson (2011) and Norets and Pelenis (2012) among

others. Some results on frequentist asymptotic properties of the posterior distribution in

such models have also been established. Norets and Pelenis (2012) obtained approximation

results in Kullback-Leibler distance and weak posterior consistency for mixture models

with a prior on the number of mixture components. DeYoreo and Kottas (2017) establish

weak posterior consistency for Dirichlet process mixtures. In similar settings, Canale and

Dunson (2015) derived posterior contraction rates that are not optimal. In the present

paper, we show that a mixture of normals model with a prior on the number of mixture

components that uses latent variables for modeling the discrete part of the distribution

can deliver optimal posterior contraction rates for nonparametric estimation of discrete-

continuous distributions. The obtained optimal posterior contraction rates are adaptive

since the priors we consider do not depend on the size of the support and the smoothness

of the data generating process.

We illustrate our theoretical results in an application to the first stage estimation of

discrete choice models. Specifically, we use data from Monte Carlo experiments in Pakes,

Ostrovsky, and Berry (2007) who compare various two stage estimation procedures on a

model of firm’s entry decisions. Our procedure delivers 2.5 times reduction in the esti-

mation error relative to the frequency estimator. Overall, our theoretical and simulation

results suggest that models for discrete data based on mixtures and latent variables should

be an important part of the econometric toolkit.

The rest of the paper is organized as follows. In Section 2, we describe our framework

and the Bayesian model. Section 3 presents simulation results and favorable comparisons

with frequency and kernel estimators. The asymptotic theoretical results are presented

in Section 4. MCMC algorithm for model estimation and proof outlines are given in

Appendices. Auxiliary results and proof details are delegated to the online supplement.
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2. DATA GENERATING PROCESS AND BAYESIAN MODEL

Let us denote the continuous part of observations by x ∈ X ⊂ Rdx and the discrete

part by y = (y1, . . . , ydy) ∈ Y , where

Y =

dy∏
j=1

Yj, with Yj =

{
1− 1/2

Nj

,
2− 1/2

Nj

, . . . ,
Nj − 1/2

Nj

}
,

is a grid on [0, 1]dy (a product symbol Π applied to sets hereafter denotes a Cartesian

product). The number of values that the discrete coordinates yj can take, Nj, can po-

tentially grow with the sample size or stay constant. For each discrete coordinate value

yj ∈ Yj, let

Ayj =


(−∞, yj + 0.5/Nj] if yj = 0.5/Nj

(yj − 0.5/Nj,∞) if yj = 1− 0.5/Nj

(yj − 0.5/Nj, yj + 0.5/Nj] otherwise

be an interval that includes yj and has a length of 1/Nj, except for the first and the

last intervals that are expanded to include the rest of the negative and positive parts

of the real line correspondingly. Then, every value of the discrete part of observations

y = (y1, . . . , ydy) ∈ Y can be associated with a hyper-rectangle Ay =
∏dy

j=1Ayj . Let us

represent the data generating density-probability mass function p0(y, x) as an integral of

a latent density f0 over Ay,

(1) p0(y, x) =

∫
Ay

f0(ỹ, x)dỹ,

where f0 belongs to the set of probability density functions (pdf) on Rd with respect to

the Lebesgue measure, and d = dx+dy. The representation of a mixed discrete-continuous

distribution in (1) is so far without a loss of generality since for any given p0 one could

always define f0 using a mixture of densities with non-overlapping supports included in

Ay, y ∈ Y .

We assume that the data available for estimation of p0 are comprised of n independently

identically distributed observations from p0: (Y n, Xn) = (Y1, X1, . . . , Yn, Xn). Let P0, E0,

P n
0 , and En

0 denote the probability measures and expectations corresponding to p0 and

its product pn0 .

When Nj’s grow with the sample size n the generality of the representation in (1) can

be lost when assumptions such as smoothness are imposed on f0. Nevertheless, in what
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follows we do allow for f0 to be smooth. The interpretation of the smoothness is that the

values of discrete variables can be ordered and that borrowing of information from nearby

discrete points can be useful in estimation.

2.1. Bayesian Model

Our nonparametric Bayesian model for the data generating process in (1) is based on a

mixture of normal distributions with a variable number of components for modelling the

joint distribution of (ỹ, x),

f(ỹ, x|θ,m) =
m∑
k=1

αkφ(ỹ, x;µk, σ · ν−1/2
k )

p(y, x|θ,m) =

∫
Ay

f(ỹ, x|θ,m)dỹ,(2)

where θ = (µk, νk, αk, k = 1, 2, . . . ;σ) and φ(·;µk, σ · ν−1/2
k ) denotes a multivariate normal

density with mean µk ∈ Rd and a diagonal covariance matrix with the squared elements

of vector σ · ν−1/2
k = (σ1ν

−1/2
k1 , . . . , σdν

−1/2
kd ) on the diagonal.

We use the following prior for (θ,m). The prior for (α1, . . . , αm) conditional on m is

Dirichlet(a/m, . . . , a/m), a > 0,

Π(α1, . . . , αm|m) =
Γ(a)

Γ(a/m)m

m∏
j=1

α
a/m−1
j .

It is a standard conjugate prior for discrete probability distributions and it is commonly

used in finite mixture models. The prior means and variances of the mixing weights are

equal to 1/m and (m−1)/([a+1]m2) correspondingly. The hyperparameter a is called the

concentration parameter: when a is large, the prior concentrates on equal mixing weights;

when a is small, a considerable fraction of mixing weights tend to be close to 0 a priori.

For applications of Dirichlet priors in econometrics, see, for example, Chamberlain and

Imbens (2003). The prior probability mass function for the number of mixture components

m is

(3) Π(m) ∝ e−γm(logm)τ1 , m = 1, 2, . . . , γ > 0, τ1 ≥ 0,

where ∝ means “proportional to”. The exponential tails of Π(m) attain a tradeoff between

putting just enough prior probability on the relevant finite mixture approximations of f0

and putting appropriately small prior probabilities on rough mixtures that would overfit

the data.
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A popular alternative to specifying a prior on m and (α1, . . . , αm) is a Dirichlet process

mixture (m is set to infinity and a “stick-breaking” prior (Sethuraman (1994)) is used for

the infinite sequence of mixing weights (α1, . . .)). This prior would deliver the same poste-

rior contraction rates for continuous variables or settings where smoothing is important;

however, when smoothing is not beneficial, the Dirichlet process mixture prior does not

seem to put sufficient weight on the relevant finite mixture approximations, and, hence,

we focus on the mixtures of finite mixtures here.

The component specific scale parameters νk are not necessary for asymptotic results;

it is a common practice in the literature to include them (see, for example, Geweke

(2005)) and they seem to improve the finite sample performance. We use independent

conditionally conjugate gamma-normal priors for (µkj, νkj). The common scale parameters

σ are required to ensure that the prior puts sufficient probability on small values of the

variances of all mixture components at once (the variances play a role of the bandwidth

in asymptotic results). We use independent inverse Gamma priors for the components

of σ. A detailed description of the model, priors, and the MCMC algorithm for model

estimation is given in Appendix A. Section 4.3.1 provides more general conditions on the

prior that deliver adaptive posterior contraction rates for the model in (2).

The Bayesian model, the MCMC estimation algorithm, and the theoretical results pre-

sented below can be easily modified to accommodate settings with variables that take

both discrete and continuous values. A standard example of such variables is the con-

sumer expenditure on a good that can be zero with positive probability and otherwise is

continuous on R+. To accommodate this example, we can associate the discrete value of 0

with interval A0 = R− for a latent variable ỹ and treat the continuous positive expenditure

values as x in model (2). We do not pursue such modifications here for brevity.

An important issue in kernel smoothing estimation of densities with bounded support

is the estimator bias near the boundary. It is not known if a similar problem arises in

Bayesian normal mixture models as the locations of the normal distributions in the mix-

ture models are chosen effectively by the penalized likelihood maximization rather than

set equal to the observations as in kernel smoothing. Nevertheless, the normal densities

have unbounded support and normal mixture models appear to perform better when

continuous variables with known bounds are appropriately transformed into unbounded

variables, which is also a common remedy in the literature on kernel smoothing.
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3. APPLICATION

In applied economics literature, nonparametric estimation of multivariate discrete or

mixed discrete-continuous distributions is often used in the first stage of two stage estima-

tion procedures for structural discrete choice models. Pakes, Ostrovsky, and Berry (2007)

compare various two stage estimation procedures on a model of firm’s entry decisions.

Their Monte Carlo experiments provide convenient and realistic settings for demonstrat-

ing the performance of the mixture based models in practice.

The first stage in Pakes et al. (2007) requires estimation of entry and exit probabilities

conditional on the number of entrants currently in the market and a discretized market

size measure. These conditional probabilities are essentially obtained from the standard

frequency estimator of the joint distribution for the four-dimensional vector of discrete

random variables: the market size, the number of firms currently in the market, the

number of new entrants, and the number of exiting firms. In what follows, we use the

simulated data from Pakes et al. (2007) to compare our estimator with the standard

frequency estimator and a classical kernel estimator with special discrete kernels from

a publicly available R package np (Hayfield and Racine (2008)). The kernel bandwidth

parameters are selected in the package by cross-validation as described in Li and Racine

(2003); the latter authors provide simulation evidence that their methods outperform

several other alternatives in the classical literature; the package np implements a wide

variety of nonparametric methods presented in a textbook on nonparametric econometrics

by Li and Racine (2007).

Pakes et al. (2007) simulate a structural entry exit model to obtain one million draws

for their Monte Carlo experiments. We use this one million simulated draws as a pop-

ulation distribution to estimate. The support of this population distribution consists of

2617 values of the four dimensional random vectors describing the market size, the current

number of firms, the number of entrants and the number of exits. The marginal population

distributions of each vector component are depicted in Figure 1. All the discrete values

shown in the figure have non-zero probabilities, although some of those probabilities are

small. From this population, we draw 50 random samples of size n = 500 (Pakes et al.

(2007) use n = 250 and n = 1000 in their Monte Carlo experiments). For each sample, we

compute the standard frequency estimator, the kernel estimator, and the mixture model

estimators for a fixed m ∈ {1, . . . , 30} and a variable m. The MCMC algorithm for the

fixed m model is standard in the literature (Diebolt and Robert (1994)). For the vari-
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able m model, we implemented two MCMC algorithms: an adaptation of a split-merge

algorithm for Dirichlet process mixtures from Jain and Neal (2004) and an approximately

optimal reversible jump algorithm from Norets (2020); they produce the same estimation

results in the Monte Carlo experiments but the latter algorithm converges much faster.

The reversible jump algorithm is described in detail in Appendix A.

0 10 20 30 40
0.02

0.025

0.03

0.035

0.04
Market Size

0 5 10 15 20
0

0.05

0.1

0.15

Current Number of Firms

0 2 4 6
0

0.5

1
Number of Entrants

0 1 2 3
0

0.5

1
Number of Exits

Figure 1.— Marginal population distributions
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0
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0.3

0.4

pm
f

posterior
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Figure 2.— MCMC trace plot and prior and posterior of m for two samples

Figure 2 presents the reversible jump MCMC draws and the prior and the posterior dis-

tributions of m for the first two samples used in the Monte Carlo experiment. Estimation
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results for the fixed and variable m models are obtained from 10,000 and 50,000 MCMC

draws correspondingly, as MCMC convergence is slower for the variable m models. As can

be seen from the MCMC trace plots in the figure, the posterior simulator reliably explores

the posterior distribution; MCMC results for other samples are similar.

The priors used in estimation experiments are roughly based on the first two sample

moments: the prior for the location parameter µkj is centered at the corresponding sample

average, Ȳj =
∑n

i=1 Yij/n and has variance equal to the sample variance, σ̂2
j =

∑n
i=1(Yij−

Ȳj)
2/n. The prior mode of the precision parameter σ−2

j is set to the inverse of the sample

variance, σ̂−2
j and its variance is set to 1. The component specific scale parameters have

prior mode and precision equal to 1. These empirical Bayes priors are similar to unit

variance priors centered at 0 for location parameters and 1 for scale parameters used in

conjunction with standardized data.

Choosing reasonable values for the Dirichlet parameter a and the prior hyper-parameters

for m is less straightforward. We set τ1 = 0 as the finer adjustments that it can provide

to the penalization of larger values of m in the prior do not appear to be important in

simulations. We set γ = 0.5, approximately the smallest value at which every mixture

component has at least several observations assigned to it by latent mixture allocation

variables (defined in Appendix A) on most iterations of MCMC sampler runs. The Dirich-

let parameter a = 15 is set to be comparable to the values of MCMC draws of m (larger

values of a shrink towards equal mixing probabilities). Prior robustness and sensitivity

checks are important, especially for these hyper-parameters. The estimation results are

not sensitive to moderate variations in the prior (a ∈ {10, 15, 20} and γ ∈ {0.25, 0.5, 1}),
as we illustrate in the online supplement.

The estimation errors in L1, L2, and L∞ averaged over the 50 random samples are

presented in Figure 3. The Lr distance between discrete-continuous distributions p1 and

p2 can be defined by

dLr(p1, p2) =

(∑
y∈Y

∫
X
|p1(y, x)− p2(y, x)|rdx

)1/r

, r > 0.

The L1 distance is also equal to two times the largest difference between the probabilities

that the two distributions can assign to the same event; in the case of only discrete

variables, L∞ is the sup-norm; L2 is most commonly used in classical nonparametrics for

analytical tractability.
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Figure 3.— Average Estimation Errors for Bayesian Fixed and Variable m Estimators

and Frequency and Kernel Estimators

As can be seen from the figure, the mixture based estimators match the average L1 error

of the frequency estimator with just two mixture components and that of the kernel

estimator with six mixture components. The results for L2 and L∞ are similar, except the

kernel estimator performs slightly worse than the frequency estimator in the sup-norm.

The use of a higher number of mixture components and a variable number of components

further reduces the estimation error of the Bayesian estimators. The improvements of

the mixture model over the standard frequency estimator are expected given the smooth

appearance of the probability mass functions in Figure 1, the sample size (n = 500),

and the cardinality of the population support, 2617. The mixture models outperform

the kernel estimator on average as shown in the figure and in each of the 50 random

samples. Theoretical properties (beyond the consistency and the asymptotic normality for

a fixed discrete support) are not known for the discrete kernel estimator in our asymptotic

settings with smoothness and a possibly growing support. Our conjecture is that at least

without considerable modifications this kernel estimator is unlikely to deliver the adaptive

optimal estimation rates that are established for mixture models in the following section;

and, perhaps, that is why the kernel estimator is outperformed by the mixture model in
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our simulations. A few other applications and favorable comparisons of a fixed m mixture

model with standard parametric and nonparametric alternatives can be found in Norets

and Pelenis (2012).

The performance of the variable m model is practically the same as the performance

of models with a large fixed m. Somewhat unexpectedly, the estimation results for the

models with fixed m do not deteriorate when m is large (m = 30). The estimation errors

are slightly more volatile for larger m, but on average, the errors decrease in m as can

be seen in Figure 3. Of course, the performance can be easily evaluated in simulation

settings, when the data generating process is known. As far as we are aware, theoretically

justified Bayesian procedures for choosing a fixed m have not been developed in nonpara-

metric settings and their development is an interesting subject for future research. Hence,

presently the variable m model with the asymptotic guarantees obtained in this paper is

the preferred option, and the fixed m models should be used for sensitivity and robustness

checks.

Overall, the Monte Carlo simulations presented in this section suggest that models for

discrete data based on mixtures and latent variables should be an important part of the

toolkit in empirical industrial organization and economics more generally. The following

section presents asymptotic results that further justify this claim from the theoretical

perspective.

4. ASYMPTOTIC FRAMEWORK AND RESULTS

To get more refined results and to accommodate discrete variables that are not ordered

or “smooth”, we allow Nj’s to grow at different rates for different j’s or to be constant for

some j’s. For the same reason, we allow for anisotropic smoothness of the density f0 that

accommodates the existence of derivatives of different orders along different coordinates.

4.1. Anisotropic Smoothness

For each coordinate j ∈ {1, . . . , d}, we introduce a smoothness coefficient, βj > 0, such

that bβjc (the largest integer that is strictly smaller than βj) is the highest possible order

of the partial derivative with respect to the coordinate j. In the univariate case, bβjc’th
derivative is often assumed to satisfy a Holder condition with the exponent βj − bβjc to

accommodate noninteger smoothness coefficients and to deliver Taylor expansion approx-

imations with remainders of the appropriate order. Different generalizations of these ideas
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to the multivariate case are possible. We introduce a generalization below that is suitable

for our purposes. Let Z+ denote the set of non-negative integers. For smoothness coeffi-

cients (β1, . . . , βd) and an envelope constant L, an anisotropic (β1, . . . , βd)-Holder class,

Cβ1,...,βd,L, is defined as follows.

Definition 1 f ∈ Cβ1,...,βd,L if for any k = (k1, . . . , kd) ∈ Zd+,
∑d

l=1 kl/βl < 1, mixed

partial derivative of order k, Dkf , is finite and

(4) |Dkf(z + ∆z)−Dkf(z)| ≤ L
d∑
j=1

|∆zj|βj(1−
∑d
l=1 kl/βl),

for any ∆z such that ∆zj = 0 when
∑d

l=1 kl/βl + 1/βj < 1.

In this definition, a Holder condition is imposed on Dkf for a coordinate j when Dkf

cannot be differentiated with respect to zj anymore (
∑d

l=1 kl/βl < 1 but
∑d

l=1 kl/βl +

1/βj ≥ 1). This definition slightly differs from definitions available in the literature on

anisotropic smoothness that we found. Section 13.2 in Schumaker (2007) presents some

very general anisotropic smoothness definitions but restricts attention to integer smooth-

ness coefficients. Ibragimov and Hasminskii (1984), and most of the literature on min-

imax rates under anisotropic smoothness that followed including Barron et al. (1999)

and Bhattacharya et al. (2014), do not restrict mixed derivatives. Shen et al. (2013) use

|∆zj|min(βj−kj ,1) instead of |∆zj|βj(1−
∑
l kl/βl) in (4). Their requirement is stronger than ours

for functions with bounded support, and it appears too strong for our derivation of lower

bounds on the estimation rate. However, our definition is sufficiently strong to obtain a

Taylor expansion with remainder terms that have the same order as those in Shen et al.

(2013) (while the definitions that do not restrict mixed derivatives do not deliver such an

expansion).

When βj = β, ∀j and
∑d

l=1 kl/β + 1/β ≥ 1, βj(1−
∑d

l=1 kl/βl) = β − bβc, and we get

the standard definition of β-Holder smoothness for the isotropic case.

The envelope L can be assumed to be a function of (z,∆z) to accommodate densi-

ties with unbounded support. We derive lower bounds on estimation rates for a constant

envelope function; the derived bounds are applicable to functions with non-constant en-

velops as a constant envelop is just a special case of a non-constant one. Upper bounds

on posterior contraction rates are derived under more general assumptions on L.
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4.2. Lower Bounds on Estimation Rates

For a class of probability distributions P , ζ is said to be a lower bound on the estimation

error in metric ρ if there exists a positive constant c independent of n such that

inf
p̂

sup
p∈P

P (ρ(p̂, p) ≥ ζ) ≥ c > 0.

This definition means that there does not exist an estimator that asymptotically delivers

an estimation error in ρ that is smaller than ζ for all data generating distributions in

P . If the estimation error for a given estimator for distributions in P matches (up to

a multiplicative constant) a lower bound for P , then this estimator is considered rate

optimal. A comprehensive introduction into the theory of lower bounds can be found

in Tsybakov (2008). In this section, we present lower bounds for discrete continuous

distributions that are matched with upper bounds on estimation errors for the mixture

based models in Section 4.3.

We consider the following class of probability distributions: for a positive constant L,

let

(5) P =

{
p : p(y, x) =

∫
Ay

f(ỹ, x)dỹ, f ∈ Cβ1,...,βd,L, f is a pdf

}
.

To define our lower bounds we need the following additional notation. Let A denote a

collection of all subsets of indices for discrete coordinates {1, . . . , dy}. For J ∈ A, let

J c = {1, . . . , d} \ J and yJ denotes the sub-vector {yj, j ∈ J} for a vector y. Then,

NJ =
∏
j∈J

Nj

denotes the number of values a discrete subvector yJ can take, dJ = card(J), and

βJc =

[∑
j∈Jc

β−1
j

]−1

denotes an aggregate smoothness coefficient for the subvector containing the coordinates

of the continuous part of observations x and the continuous latent variables ỹ with indices

in J c. For J = ∅ or J c = ∅, we set N∅ = 1, β∅ =∞, and β∅/(2β∅ + 1) = 1/2.

Theorem 1 For P defined in (5),

(6) Γn = min
J∈A

[
NJ

n

] βJc
2βJc+1

=

[
NJ∗

n

] βJc∗
2βJc∗

+1

multiplied by a positive constant is a lower bound on the estimation error in the L1 dis-

tance.
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One could recognize expression [NJ/n]
βJc

2βJc+1 in (6) as the standard estimation rate for

a dJc-dimensional density with anisotropic smoothness coefficients {βj, j ∈ J c} and the

sample size n/NJ (Ibragimov and Hasminskii (1984)). One way to interpret this is that

the density of {x, ỹj, j ∈ J c} conditional on yJ is {βj, j ∈ J c}-smooth and the number of

observations available for its estimation (observations with the same value of yJ) should be

of the order n/NJ ; also, the estimation rate for the marginal probability mass function for

yJ is [NJ/n]1/2, which is at least as fast as [NJ/n]
βJc

2βJc+1 . In this interpretation, smoothing

is not performed over the discrete coordinates with indices in set J , and the lower bound

is obtained when J minimizes [NJ/n]
βJc

2βJc+1 . Thus, an estimator that delivers the rate in

(6) should, in a sense, optimally choose the subset of discrete variables over which to

perform smoothing. In the standard asymptotic settings, when the support of the discrete

variables stays constant and the smoothness coefficients for all the continuous variables

are the same, βdy+1 = . . . = βd, the lower bound on the estimation rate in Theorem 1

simplifies to the familiar expression, n−βd/(2βd+dx), which explicitly showcases the curse of

dimensionality inherent in nonparametric estimation.

It should be possible to extend the results on the lower bounds to other distances.

However, suitable sufficient conditions in the Bayesian nonparametrics literature for the

corresponding upper bounds appear to be currently available only for the L1 distance (or

the Hellinger and the total variation distances, which are equivalent); hence, we focus on

L1 here. The proof of Theorem 1 is given in Appendix B.

4.2.1. Related Literature on Lower Bounds

Let us briefly review most relevant results on lower bounds and place our results in that

context. The most closely related results on minimax rates for anisotropic continuous dis-

tributions are developed in Ibragimov and Hasminskii (1984). The minimax estimation

rates for mixed discrete continuous distributions appear to be studied first by Efromovich

(2011). He considers discrete variables with a fixed support and no smoothness assump-

tions on the discrete part of the distribution. He shows that in these settings the optimal

rates for discrete continuous distributions are equal to the optimal nonparametric rates

for the continuous part of the distribution. Relaxing the assumption of the fixed support

for the discrete part of the distribution is very desirable in nonparametric settings. It

has been commonly observed at least since Aitchison and Aitken (1976) that smoothing

discrete data in nonparametric estimation improves results in practice. Hall and Titter-
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ington (1987) introduced an asymptotic framework that provided a precise theoretical

justification for improvements resulting from smoothing in the context of estimating a

univariate discrete distribution with a support that can grow with the sample size. In

their setup, the support is an ordered set and the probability mass function is β-smooth

(in a sense that analogs of β-order Taylor expansions hold). They show that in their

setup the minimax rate is the smaller one of the following two: (i) the optimal estimation

rate for a continuous density with the smoothness level β, n−β/(2β+1), and (ii) the rate of

convergence of the standard frequency estimator, (N/n)1/2, where N is the cardinality of

the support and n is the sample size. Hall and Titterington (1987) refer to their setup as

“Sparse Multinomial Data” since N can be larger than n and this is the reason we refer

to sparsity in the title of the paper. Burman (1987) established similar results for β = 2.

Subsequent literature in multivariate settings (e.g., Dong and Simonoff (1995), Aerts et al.

(1997)) did not consider lower bounds but demonstrated that when the support of the

discrete distribution grows sufficiently fast then estimators that employ smoothing can

achieve the standard nonparametric rates for β-smooth densities on Rd, n−β/(2β+d).

We generalize the results of Hall and Titterington (1987) on lower bounds for univari-

ate discrete distributions to multivariate mixed discrete-continuous case and anisotropic

smoothness. Alternatively, our results can be viewed as a generalization of results in Efro-

movich (2011) to settings with anisotropic smoothness and potentially growing supports

for discrete variables.

4.3. Posterior Contraction Rates for a Mixture of Normals Model

4.3.1. Assumptions on Prior

The assumptions on the prior for model (2) in Section 2.1 can be slightly generalized

as follows. For positive constants a1, a2, . . . , a9, for each j ∈ {1, . . . , d}, σj is assumed

independent of other parameters a priori and the prior satisfies

Π(σ−2
j ≥ s) ≤ a1e

−a2sa3 for all sufficiently large s > 0(7)

Π(σ−2
j < s) ≤ a4s

a5 for all sufficiently small s > 0(8)

Π{s < σ−2
j < s(1 + t)} ≥ a6s

a7ta8e−a9s
1/2

, s > 0, t ∈ (0, 1).(9)

The inverse Gamma prior for σi satisfies (7)-(9).

A priori, the components of µk, µkj, k = 1, . . . ,m, j = 1, . . . , d are assumed independent

from each other, other parameters, and across k. Prior density for µkj is bounded below
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for some a11, a12, τ2 > 0 by

(10) a11 exp(−a12|µkj|τ2),

and for some a13, τ3 > 0 and all sufficiently large µkj > 0,

(11) Π(µkj /∈ [−µ, µ]) ≤ e−a13µ
τ3 .

Normal priors for µkj satisfy these conditions.

A prior on m that can be bounded above and below by functions in the form of the right

hand side of (3), possibly with different constants, would work; to simplify the notation

we assume (3). We also set the component specific scale parameters νji to 1. An extension

of the posterior contraction results to variable νkj’s is straightforward, see, for example,

Theorem A.5 in Norets and Pati (2017) for continuous variables, and it is not presented

here for brevity.

4.3.2. Posterior Contraction Rates

This section presents upper bounds on the posterior contraction rates for the Bayesian

mixture model that match the lower bounds in Section 4.2 up to a log factor. That means

that the Bayesian mixture model deliver a rate optimal (up to a log) estimator for the data

generating process in (1) under our smoothness assumptions. The estimator is adaptive

since the prior and model specification do not depend on the smoothness of the data

generating density and the fineness of the support relative to the sample size. To simplify

the exposition we present the results below in Theorem 2 for the case when the data

generating latent density f0 has a bounded support.

Theorem 2 Assume the conditions on the prior in Sections 4.3.1. Suppose f0 ∈ Cβ1,...,βd,L

and f ≥ f0 ≥ f > 0 holds on the support of f0, where L, f , and f are finite positive con-

stants. Let

(12) εn = min
J∈A

([
NJ

n

]βJc/(2βJc+1)

(log n)tJ

)
where

tJ >
(
dJc + β−1

Jc + max{τ1, 1}
)
/
(
2 + β−1

Jc

)
+ max{0, (1− τ1)/2}

and τ1 is a parameter in the prior on m. Suppose also nε2n → ∞ and for J∗ that attains

the minimum in (12), NJ∗ = o(n1−ν) for some small ν > 0. Then, the posterior contracts
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at the rate εn: there exists M̄ > 0 such that

Π
(
p : dL1(p, p0) > M̄εn|Y n, Xn

) Pn0→ 0.

As in Section 4.2, when J c = ∅, βJc can be defined to be infinity and βJc/(2βJc+1) = 1/2

in (12). The assumption NJ∗ = o(n1−ν) excludes the cases with very slow (non-polynomial)

rates as some parts of the proof require log(1/εn) to be of order log n.

The theorem is a special case of the results presented in Appendix C that can accommo-

date unbounded support for f0. The proof of Theorem 2 follows from the discussion of the

more general assumptions in the appendix as the bounded support case is used there to

illustrate the assumptions. Similarly to other papers on posterior contraction for mixtures

of normal densities though, the more general sufficient conditions in the appendix require

subexponential tails for f0. The results for f0 with an unbounded support also require the

envelope function L in the smoothness definition to be comparable to f0.

The proof of the posterior contraction results is based on the general sufficient conditions

from Ghosal et al. (2000). It exploits approximations of smooth densities by mixtures

of normal distributions developed in the Bayesian nonparametrics literature (Rousseau

(2010), Kruijer et al. (2010), de Jonge and van Zanten (2010), and Shen, Tokdar, and

Ghosal (2013)) and also develops appropriate approximations for nonsmooth discrete

distributions. Posterior contraction rates for nonparametric density estimation by mixture

models derived in the aforementioned papers also include a log factor similar to (log n)tJ

in (12). It is not known in the literature whether the log factor can be avoided; however,

it is not a very important issue as the log factor is negligible compared to the polynomial

part of the rate.

The results on the upper bounds in this section and lower bounds in Section 4.2 also hold

for the data generating processes where f0 is not smooth at all in some discrete coordinates.

The resulting rates can be obtained from those we derive by setting the corresponding

coordinates in β to (values arbitrarily close to) zero in (6), so that for the optimal rate,

smoothing is effectively not performed for these coordinates. Thus, the proposed Bayesian

model achieves the objective outlined in the introduction: it optimally takes advantage of

smoothness in the data generating process if it is present and at the same time performs

no worse than the standard frequency estimators if the data generating process is not

(sufficiently) smooth. Simulations in Section 3 suggest that the model performs better in

practice than available parametric and nonparametric alternatives and appears to live up

to its excellent theoretical properties.
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5. FUTURE WORK

In many applications, conditional rather than joint distributions are actually of in-

terest. Of course, one could always estimate the joint distribution and then extract the

conditional distributions of interest. When the smoothness of the joint and conditional

distributions is the same then rate optimality of joint distribution estimator implies rate

optimality for the corresponding conditional distribution estimator. However, when the

conditional distribution is smoother then it could be beneficial to estimate the conditional

distribution directly. In an ongoing work, Norets and Pelenis (2021), we pursue an ex-

tension of our posterior contraction results to conditional distribution models based on

covariate dependent mixtures; the extension is similar to work by Norets and Pati (2017)

on continuous distributions.

It would also be of interest to explore whether other Bayesian nonparametric models

(for example, those based on Gaussian process priors) or classical nonparametric methods

based on higher order kernels or orthogonal series expansions can deliver estimators with

adaptive optimal convergence rates in our asymptotic framework.
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APPENDIX A: MODEL, PRIORS, AND MCMC ALGORITHM

A.1. Model and Priors

For the MCMC implementation and description, it is convenient to formulate the model

in (2) using mixture allocation latent variables (Diebolt and Robert (1994)), (s1, . . . , sn),

latent variables (Ỹ1, . . . , Ỹn) corresponding to discrete observations, and precision param-

eters hj = σ−2
j so that for each observation index i ∈ {1, . . . , n} and mixture component

index k ∈ {1, . . . ,m},

(Ỹi, Xi)|si = k, µk, h, νj,m ∼ φ
(
·;µk, (h−1/2

1 ν
−1/2
k1 , . . . , h

−1/2
d ν

−1/2
kd )

)
,

p(si = k|θ,m) = αk.

The joint distribution of observables and unobservables in the model is

p
(
Yi, Ỹi, Xi, si, i = 1, . . . , n;µ1, ν1, . . . , µm, νm;h,m

)
=(13)

n∏
i=1

1{Ỹi ∈ AYi}φ
(
Ỹi, Xi;µsi , (h

−1/2
1 ν

−1/2
si1

, . . . , h
−1/2
d ν

−1/2
sid

)
)
αsi

· Π(α1, . . . , αm|m) ·
d∏
j=1

Π(hj)
m∏
k=1

Π(µkj|νkj)Π(νkj) · Π(m).
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The common precision parameter, hj, is a priori distributed as a square of a gamma

distributed random variable with shape Ahj and rate Bhj
, which is consistent with the

conditions in Section 4.3.1:

Π(hj) ∝ h
Ahj

/2−1

j e
−Bhj ·h

1/2
j .

The priors for (νkj, µkj) are conditionally conjugate gamma-normal:

Π(νkj) ∝ ν
Aνj
−1

kj e
−Bνj ·νkj ,

Π(µkj|νkj) ∝ ν
1/2
kj e

−0.5hµj
νkj(µkj−µj)

2

.

The priors for mixing weights and m are as described in Section 2.1:

Π(α1, . . . , αm|m) ∝
m∏
k=1

α
a/m−1
k ,

Π(m) ∝ e−γm(logm)τ1 .

A.2. MCMC Algorithm

We develop a Metropolis-within-Gibbs algorithm with a reversible jump step for m

(Green (1995)) for exploring the posterior distribution. See, for example, Geweke (2005)

for a textbook treatment of MCMC algorithms in general and for mixture models in

particular.

Conditional on m, the distributions for the Gibbs sampler blocks of the parameters and

the latent variables are proportional to (13) and can be written as follows:

Ỹij| . . . ∼ φ
(
Ỹij;µsij, h

−1/2
j ν

−1/2
sij

)
· 1{Ỹij ∈ AYij} (truncated normal)

p(si = k| . . .) ∝ φ
(
Ỹi, Xi;µk, (h

−1/2
1 ν

−1/2
k1 , . . . , h

−1/2
d ν

−1/2
kd )

)
αk (multinomial)

p(α1, . . . , αm| . . .) ∝
m∏
k=1

α
a/m+

∑n
i=1 1{si=k}−1

k (Dirichlet)

p(µkj, νkj| . . .) ∝ ν
Āνj−1/2

kj e−B̄νj ·νkj−0.5h̄µj νkj(µkj−µ̄j)
2

(gamma-normal)

with parameters

h̄µj = hµj + hj ·
n∑
i=1

1{si = k}, µ̄j = h̄−1
µj

[hµjµj + hj ·
∑
i: si=k

Ỹij],
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Āνj = Aνj + 0.5
n∑
i=1

1{si = k}, B̄νj = Bνj
+ 0.5[hj

∑
i: si=k

Ỹ 2
ij + hµjµ

2

j
− h̄µj µ̄2

j ].

The block for hj is simulated by the Metropolis-Hastings-within-Gibbs with a gamma

proposal with shape parameter Ahj/2 +n/2, rate parameter 0.5
∑n

i=1 νsij(Ỹij −µsij)2 and

the Metropolis-Hastings acceptance probability min{1, eBhj (h0.5j −(h∗j )0.5)}, where h∗j is the

proposal and hj is the current value. In the descriptions of blocks for µkj, νkj, and hj above,

it was implicitly assumed that index j refers to discrete coordinates (j ∈ {1, . . . , dy}); for

j ≥ dy, Ỹij should be replaced by Xij in the descriptions of these blocks.

For the model with variable m, a block for m is added to the MCMC algorithm. The

update for m is performed by an approximately optimal reversible jump algorithm from

Norets (2020). To apply the algorithm we first transform the mixing weights into unnor-

malized weights α̃k, k = 1, . . ., so that conditional on m, αk = α̃k/
∑m

l=1 α̃l and the Dirich-

let prior on (α1, . . . , αm) corresponds to a gamma prior for the unnormalized weights:

α̃k|m ∼ Gamma(a/m, 1), k = 1, . . . ,m. Let θk = (µk, νk, α̃k), θ1m = (h, θ1, . . . , θm),

Y = {Yi, Ỹi, Xi i = 1, . . . , n} and denote a proposal distribution for the parameter of

a new mixture component m + 1 by π̃m+1(θm+1|Y, θ1m). The algorithm works as fol-

lows. Simulate proposal m∗ from Pr(m∗ = m + 1|m) = Pr(m∗ = m − 1|m) = 1/2. If

m∗ = m + 1, then also simulate θm+1 ∼ π̃m+1(θm+1|Y, θ1m). Accept the proposal with

probability min{1, α(m∗,m)}, where

α(m∗,m) =
p(Y |m∗, θ1m∗)Π(θ1m∗|m∗)Π(m∗)

p(Y |m, θ1m)Π(θ1m|m)Π(m)

·
(

1{m∗ = m+ 1}
π̃m(θm+1|θ1m, Y )

+ 1{m∗ = m− 1}π̃m−1(θm|θ1m−1, Y )

)
.(14)

Norets (2020) shows that an optimal choice of proposal π̃m is the conditional posterior

p(θm+1|Y,m + 1, θ1m). The conditional posterior can be evaluated up to a normalization

constant; however, it seems hard to directly simulate from it and compute the required

normalization constant. Hence, we use a Gaussian approximation to p(θm+1|Y,m+1, θ1m)

as the proposal (with the mean equal to the conditional posterior mode, obtained by a

Newton method, and the variance equal to the inverse of the negative of the Hessian

evaluated at the mode).

From an initial value of parameters, (θ
(0)
1m,m

(0)), the MCMC algorithm sequentially

updates parameters by simulating from the algorithm blocks. The resulting Markov chain,

(θ
(r)
1m,m

(r)), r = 1, . . . ,M , is used to approximate posterior objects of interest such as the
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posterior predictive (or posterior mean) density-point mass

p(y, x|Y n, Xn) ≈ 1

M

M∑
r=1

p(y, x|θ(r)
1m,m

(r)).

APPENDIX B: PROOF OUTLINE FOR LOWER BOUNDS

In this section, we set up the notation and an outline of the proof of Theorem 1. Detailed

calculations are delegated to lemmas in the supplement. The proof is based on a general

theorem from the literature on lower bounds, which we present next in a slightly simplified

form.

Lemma 1 (Theorem 2.5 in Tsybakov (2008)) ζ is a lower bound on the estimation

error in metric ρ for a class Q if there exist a positive integer M ≥ 2 and qj, qi ∈ Q,

0 ≤ j < i ≤M such that ρ(qj, qi) ≥ 2ζ, qj << q0, j = 1, . . . ,M and

(15)
M∑
j=1

KL(Qn
j , Q

n
0 )/M < log(M)/8,

where KL is the Kullback-Leibler divergence and Qn
j is the distribution of a random sample

from qj.

The following standard result on bounding the number of unequal elements in binary

sequences is used in our construction of qj, j = 1, . . . ,M .

Lemma 2 (Varshamov-Gilbert bound, Lemma 2.9 in Tsybakov (2008)) Consider the set

of all binary sequences of length m̄,

Ω = {w = (w1, . . . , wm̄) : wr ∈ {0, 1}} = {0, 1}m̄.

Suppose m̄ ≥ 8. Then there exists a subset {w1, . . . , wM} of Ω such that w0 = (0, . . . , 0),

m̄∑
r=1

1{wjr 6= wir} ≥ m̄/8, ∀0 ≤ j < i ≤M,

and

M ≥ 2m̄/8.

To define qj’s for our problem, we need some additional notation. Let

K0(u) = exp{−1/(1− u2)} · 1{|u| ≤ 1}.
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This function has bounded derivatives of all orders and it smoothly decreases to zero at

the boundary of its support. This type of kernel functions is usually used for construct-

ing hypotheses for lower bounds, see Section 2.5 in Tsybakov (2008). Since we need to

construct a smooth density that integrates to 1, we define (as illustrated in Figure 4)

g(u) = c0[K0(4(u+ 1/4))−K0(4(u− 1/4))],

where c0 > 0 is a sufficiently small constant that will be specified below.

Figure 4.— Function g for c0 = 1.

Function g will be used as a kernel in construction of qk’s. Let us define the bandwidth

for these kernels first.

For the continuous coordinates, we define the bandwidth as in Ibragimov and Hasmin-

skii (1984),

hi = Γ1/βi
n , i ∈ {dy + 1, . . . , d}.

For the discrete ones, over which smoothing is beneficial, we define the bandwidth as

hi = %i · Γ1/βi
n =

2

Ni

·Ri, i ∈ J c∗ ∩ {1, . . . , dy},

where Ri = bΓ1/βi
n Ni/2c+ 1 is a positive integer and %i ∈ (1, 2] as shown in Lemma 7.

For the rest of the discrete coordinates, our innovation is to first define artificial

anisotropic smoothness coefficients β∗i = − log(Γn)/ logNi, i ∈ J∗, at which the rate
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in (6) would have the same value whether we smooth over yi (i ∈ J c∗) or not (i ∈ J∗).

Then, we define the bandwidth as

hi = 2 · Γ1/β∗i
n = 2/Ni, i ∈ J∗.

To streamline the notation, we also define β∗i = βi for i ∈ J c∗ .
Let mi be the integer part of h−1

i , i = 1, . . . , d. Let us consider m̄ =
∏d

i=1 mi adjacent

rectangles in [0, 1]d, Br, r = 1, . . . , m̄, with the side lengths (h1, . . . , hd) and centers

cr = (cr1, . . . , c
r
d), c

r
i = hi(kir−1/2), kir ∈ {1, . . . ,mi}. For z ∈ Rd and r = 1, . . . , m̄, define

gr(z) = Γn

d∏
i=1

g((zi − cri )/hi),

which can be non-zero only on Br. A set of hypotheses is defined by sequences of binary

weights on gr’s as follows

(16) qj(y, x) =

∫
Ay

[
g0(ỹ, x) +

m̄∑
r=1

wjrgr(ỹ, x)

]
dỹ,

where wjr ∈ {0, 1}, j = 0, . . . ,M , and M are defined in Lemma 2, and g0 satisfies the

following conditions: (i) it is a density on Rd, (ii) it is bounded away from zero on [0, 1]d,

(iii) it belongs to Cβ1,...,βd,L/2 for some L ≥ 2. Examples of g0 include uniform (g0 = 1[0,1]d),

a normal density, and a smoothed to zero uniform that is proportional to

d∏
i=1

[
1[0,1](zi) + IK0(zi + 1) · 1(zi < 0) + IK0(2− zi) · 1(zi > 1)

]
,

where IK0(zi) =
∫ zi
−1
K0(u)du

/∫ 1

−1
K0(u)du.

The rest of the proof is delegated to lemmas in the supplement, which show that qk

in (16) satisfy the sufficient conditions from Lemma 1. Specifically, Lemma 3 derives the

lower bound on the L1 distance. Lemma 4 verifies condition (15) when m̄ ≥ 8. Lemma

5, part (i) of Lemma 7, and the assumptions on g0 imply that the latent densities in the

definition of qj belong to Cβ1,...,βd,L, j = 0, . . . ,M .

This argument (Lemma 4 specifically) requires m̄ ≥ 8 as it relies on Lemma 2. Observe

that as n → ∞, m̄ ≥ 8 if there are continuous variables or there are discrete variables

over which smoothing is beneficial (J c∗ 6= ∅). Thus, m̄ < 8 can happen only if there are no

continuous variables and NJ∗ = N1 · · ·Nd is bounded. This is just a problem of estimating

a multinomial distribution with finite support and the standard results for parametric

problems deliver the usual n−1/2 rate.
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APPENDIX C: POSTERIOR CONTRACTION RATES FOR UNBOUNDED SUPPORT

C.1. Assumptions on the Data Generating Process for Unbounded Support

In what follows, we consider a fixed subset of discrete indices J ∈ A and show that

under regularity conditions, the posterior contraction rate is bounded above by
[
NJ
n

] βJc
2βJc+1

times a log factor. If the regularity conditions we describe below for a fixed J hold for

every subset of A, then the posterior contraction rate matches the lower bound in (6) up

to a log factor.

Without a loss of generality, let J = {1, . . . , dJ}, I = {dJ+1, . . . , dy}, J c = {1, . . . , d}\J ,

and dJc = card(J c). Similarly to Y and Ay defined in Section 2, we define YJ =
∏

j∈J Yj
and AyJ =

∏
i∈J Ayi . Also, let yJ = {yi}i∈J , ỹI = {ỹi}i∈I , x̃ = (ỹI , x) ∈ X̃ = RdJc .

To formulate the assumptions on the data generating process, we need additional no-

tation,

f0J(yJ , x̃) =

∫
AyJ

f0(ỹJ , x̃)dỹJ ,

π0J(yJ) =

∫
X̃
f0J(yJ , x̃)dx̃,

f0|J(x̃|yJ) =
f0J(yJ , x̃)

π0J(yJ)
,

p0|J(yI , x|yJ) =

∫
AyI

f0|J(ỹI , x|yJ)dỹI .

Also, let F0|J and E0|J denote the conditional probability and expectation corresponding

to f0|J . If π0J(yJ) = 0 for a particular yJ , then we can define the conditional density

f0|J(x̃|yJ) arbitrarily. We make the following assumptions on the data generating process.

Assumption 1 There are positive finite constants b, f̄0, τ such that for any yJ ∈ YJ and

x̃ ∈ X̃

f0|J(x̃|yJ) ≤ f̄0 exp (−b||x̃||τ ) .(17)

It appears that all the papers on (near) optimal posterior contraction rates for mixtures

of normal densities impose similar tail conditions on the data generating densities.

Assumption 2 There exists a positive and finite ȳ such that for any (yI , yJ) ∈ Y and

x ∈ X

(18)

∫
AyI∩{||ỹI ||≤ȳ}

f0|J(ỹI , x|yJ)dỹI ≥
∫
AyI∩{||ỹI ||>ȳ}

f0|J(ỹI , x|yJ)dỹI .
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This assumption always holds for AyI ⊂ [0, 1]dJc−dx . When AyI is a rectangle with at

least one infinite side, an interpretation of this assumption is that the tail probabilities for

ỹI conditional on (x, yJ) decline uniformly in (x, yJ). Bounded support for ỹI is a sufficient

condition for this assumption.

Assumption 3 We assume that

(19) f0|J ∈ CβdJ+1,...,βd,L,

where for some τ0 ≥ 0 and any (x̃,∆x̃) ∈ R2dJc

(20) L(x̃,∆x̃) = L̃(x̃) exp
{
τ0||∆x̃||2

}
,

(21) L̃(x̃+ ∆x̃) ≤ L̃(x̃) exp
{
τ0||∆x̃||2

}
.

The smoothness assumption (19) on the conditional density f0|J is implied by the

smoothness of the joint density f0 at least under boundedness away from zero assumption,

see Lemma 10 in Appendix D.3.3. A constant envelop function L used in the lower bound

construction would satisfy the assumption.

Assumption 4 There are positive finite constants ε and F̄ , such that for any yJ ∈ YJ
and k = {ki}i∈Jc ∈ NdJc

0 ,
∑

i∈Jc ki/βi < 1,

∫ [ |Dkf0|J(x̃|yJ)|
f0|J(x̃|yJ)

] (2+εβ−1
Jc

d−1
Jc

)∑
i∈Jc ki/βi

f0|J(x̃|yJ)dx̃ < F̄ ,(22)

∫ [
L̃(x̃)

f0|J(x̃|yJ)

]2+εβ−1
Jc d

−1
Jc

f0|J(x̃|yJ)dx̃ < F̄ .(23)

The envelope function and restrictions on its behaviour are mostly relevant for the case

of unbounded support. Condition (23) suggests that the envelope function L̃ should be

comparable to f0|J .

Assumption 5 For some small ν > 0,

(24) NJ = o(n1−ν).

We impose this assumption to exclude from consideration the cases with very slow

(non-polynomial) rates as some parts of the proof require log(1/εn) to be of order log n.
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C.2. Posterior Contraction Rates for Unbounded Support

Let us define a constant that determines the power of the log n term in the upper bound

on the posterior contraction rate derived below in Theorem 3,

(25) tJ0 =


dJc [1+1/(βJcdJc )+1/τ ]+max{τ1,1,τ2/τ}

2+1/βJc
if J c 6= ∅

max{τ1, 1}/2 if J c = ∅

where (τ, τ1, τ2) are defined in Sections 2.1, 4.3.1, and C.1.

Theorem 3 Suppose the assumptions from Sections 4.3.1 and C.1 hold for a given

J ∈ A. Let

(26) εn =

[
NJ

n

]βJc/(2βJc+1)

(log n)tJ ,

where tJ > tJ0 + max{0, (1 − τ1)/2}. Suppose also nε2n → ∞. Then, there exists M̄ > 0

such that

Π
(
p : dL1(p, p0) > M̄εn|Y n, Xn

) Pn0→ 0.

As in Section 4.2, when J c = ∅, βJc can be defined to be infinity and βJc/(2βJc+1) = 1/2

in (26). Note that in the bounded support case, τ can be chosen arbitrarily large and a

simplified expression in Theorem 2 can be used instead of tJ0 in the lower bound on tJ .

Corollary 1 Suppose the assumptions from Sections 4.3.1 and C.1 hold for every

J ∈ A. Let

(27) εn = min
J∈A

[
NJ

n

]βJc/(2βJc+1)

(log n)tJ ,

where tJ > tJ0 + max{0, (1 − τ1)/2}. Suppose also nε2n → ∞. Then, there exists M̄ > 0

such that

Π
(
p : dL1(p, p0) > M̄εn|Y n, Xn

) Pn0→ 0.

Under the assumptions of the corollary, Theorem 3 delivers a valid upper bound on

the posterior contraction rate for every J ∈ A including the one for which the minimum

in (27) is attained. Hence, the corollary is an immediate implication of Theorem 3. The

proof of Theorem 3 is presented below.
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C.3. Proof Outline for Posterior Contraction Results

To prove Theorem 3, we use the following sufficient conditions for posterior contraction

from Theorem 2.1 in Ghosal and van der Vaart (2001). Let εn and ε̃n be positive sequences

with ε̃n ≤ εn, εn → 0, and nε̃2n →∞, and c1, c2, c3, and c4 be some positive constants. Let

ρ be the Hellinger or L1 distance. Suppose Fn ⊂ F is a sieve with the following bound on

the metric entropy Me(εn,Fn, ρ)

logMe(εn,Fn, ρ) ≤ c1nε
2
n,(28)

Π(F cn) ≤ c3 exp{−(c2 + 4)nε̃2n}.(29)

Suppose also that the prior thickness condition holds

(30) Π(K(p0, ε̃n)) ≥ c4 exp{−c2nε̃
2
n},

where the generalized Kullback-Leibler neighborhood K(p0, ε̃n) is defined by

K(p0, ε) =

{
p :

∫
X

∑
y∈Y

p0(y, x) log
p0(y, x)

p(y, x)
dx < ε2,

∫
X

∑
y∈Y

p0(y, x)

[
log

p0(y, x)

p(y, x)

]2

dx < ε2
}
.

Then, there exists M̄ > 0 such that

Π
(
p : ρ(p, p0) > M̄εn|Y n, Xn

) Pn0→ 0.

The definition of the sieve and a verification of conditions (28) and (29) closely follow

analogous results in the literature on contraction rates for mixture models in the context

of density estimation. The details are given in Lemma 20 in the supplement. Verification

of the prior thickness condition is more involved and we formulate it as a separate result

in the following theorem.

Theorem 4 Suppose the assumptions from Sections 4.3.1 and C.1 hold for a given

J ∈ A. Let tJ > tJ0, where tJ0 is defined in (25), and

(31) ε̃n =

[
NJ

n

]βJc/(2βJc+1)

(log n)tJ .

For any C > 0 and all sufficiently large n,

Π(K(p0, ε̃n)) ≥ exp{−Cnε̃2n}.(32)
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Approximation results are key for showing the prior thickness condition (32). Appro-

priate approximation results for f0J(yJ , x̃) = f0|J(x̃|yJ)π0J(yJ) are obtained as follows.

Based on approximation results for continuous densities by normal mixtures from Shen

et al. (2013), we obtain approximations for f0|J(·|yJ) for every yJ in the form

(33) f ?|J(x̃|yJ) =
K∑
j=1

α?j|yJφ(x̃;µ?j|yJ , σ
?
Jc),

where the parameters of the mixture will be defined precisely below. For the discrete

variables over which smoothing is not performed, yJ , we show that π0J(yJ) can be appro-

priately approximated by∫
AyJ

∑
y′J

π0J(y′J)φ(ỹJ ; y′J , σ
?
J)dỹJ ,

where
∫
AyJ

φ(ỹJ , y
′
J , σ

?
J)dỹJ behaves like an indicator 1{yJ = y′J} for sufficiently small σ?J .

Section D.3 in the supplement presents proof details.
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