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Abstract

We introduce the Realized moMents of Disjoint Increments (ReMeDI) paradigm

to measure microstructure noise (the deviation of the observed asset prices from

the fundamental values caused by market imperfections). We propose consistent

estimators of arbitrary moments of the microstructure noise process based on high-

frequency data, where the noise process could be serially dependent, endogenous,

and nonstationary. We characterize the limit distributions of the proposed estima-

tors and construct confidence intervals under infill asymptotics. Our simulation and

empirical studies show that the ReMeDI approach is very effective to measure the

scale and the serial dependence of microstructure noise. Moreover, the estimators

are quite robust to model specifications, sample sizes and data frequencies.
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1 Introduction

Economic time series are often modelled as the sum of a latent process obtained from
an underlying economic model and another term that reflects a variety of adjustments
to or departures from the frictionless theoretical model, thus

Y︸︷︷︸
observed series

= X︸︷︷︸
underlying process

+ ε︸︷︷︸
deviation

. (1)

The two processes X and ε are generated by different mechanisms, and can have quite
distinct statistical properties and economic interpretations. Both quantities may be
of interest as they give interpretation of some underlying economic theory and its
relevance for the observed data. However, since only the sum process Y is observable,
this makes the estimation and inference about the underlying signal X and noise ε

challenging.
We are concerned with applications of this framework in financial markets where

the observed asset price1 (Y) subsumes both the market microstructure noise (ε) and the
efficient price (or fundamental value) (X). The fundamental theorem of asset pricing says
that X should be a semimartingale process (Delbaen and Schachermayer (1994)). In
practice however, many market frictions, such as: transaction costs, price discreteness,
inventory holdings, information asymmetry, measurement errors, may cause the ob-
served prices to deviate from this ideal price. One may also want to allow for temporary
misspricing (French and Roll (1986)) or fad effects (Lehmann (1990)); see also O’Hara
(1995) and Hasbrouck (2007) for insightful reviews. A lot of early work proceeded on
the basis that the microstructure noise process was i.i.d., but recently this assumption
has been shown to be too strong; both theoretically and empirically the microstruc-
ture noise may exhibit rich dynamics depending on its origin. If the microstructure
effects are negligible, the observed price should be close to the efficient price and be
unpredictable. Therefore, the dispersion and persistence of the microstructure noise
serve as natural measures of market quality. Market quality is of concern to regulators
and practitioners as well as academics; proxies for market quality are widely used in
empirical analysis, see Linton and Mahmoodzadeh (2018).

We introduce a general econometric approach to measure microstructure noise in
a nonparametric setting. Specifically, we propose a new estimator of the moments
of a general dependent noise process based on the observed noisy high-frequency
transaction prices; we call our estimator the Realized moMents of Disjoint Increments
(ReMeDI). The estimation method is based on the differencing paradigm, which is

1By price it always means the logarithmic price in this paper unless stated otherwise.
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widely used in microeconometrics to eliminate nuisance parameters, see, e.g., Angrist
and Pischke (2008).2 We build on the general setup introduced in the seminal work of
Jacod et al. (2017). Specifically, we assume that the underlying efficient price follows a
semimartingale, which may accommodate stochastic volatility, jumps, etc. We allow
the microstructure noise to be weakly dependent and to have a serial correlation of an
unknown form that may decay at an algebraic rate; this may capture, for instance, the
effects of clustered (or hidden) order flows or herding (Park and Sabourian (2011)). The
microstructure noise is allowed to have time-varying and stochastic heteroskedasticity,
which allows for intraday variation in the scale of the noise. The general setting we
consider allows for random and endogenous observation schemes. We develop estima-
tors of arbitrary moments of the microstructure noise; this includes the autocovariance
function of powers of the noise process as well as other quantities of interest. We derive
the stable convergence in law of the estimated quantities as the sample size increases
on a given domain. We provide a consistent estimator of the asymptotic variance that
allows us to quantify the accuracy of our estimator.

We present some simulation studies comparing the ReMeDI approach with the
method of Jacod et al. (2017). We find that the ReMeDI approach is relatively robust to:
the data frequency, the sample size, the tuning parameter, and the model specification.
We provide an empirical study on an individual stock price, which reveals that the
microstructure noise has non-trivial serial dependence, but that the dependence struc-
ture falls short of being long memory. This is consistent with leading microstructure
models,3 and differs from the findings in Jacod et al. (2017).

The robustness of the ReMeDI approach as demonstrated in our simulation and
empirical studies has an intuitive explanation. The differencing method works because
the increments of X over disjoint intervals (the efficient returns) are small and/or
uncorrelated, and what remains is attributed to ε. This property distinguishes the
ReMeDI approach from alternative high-frequency estimators that rely structurally on
the infill asymptotics.

There are a number of methods for estimation of the moments of noise and the pa-
rameters of the efficient price. Specifically: the two-scale/multi-scale realized volatility
by Zhang et al. (2005), Zhang (2006), Aït-Sahalia et al. (2011); the optimal-sampling
realized variance by Bandi and Russell (2008); the maximum likelihood estimators
by Aït-Sahalia et al. (2005), Xiu (2010); the pre-averaging method developed in Jacod
et al. (2009), see also Li (2013); and the realized kernel by Barndorff-Nielsen et al. (2008).

2 The differencing method has been used in high-frequency econometrics recently, see, e.g., Todorov
(2013), Hansen and Lunde (2014), Andersen et al. (2020).

3For example, Hasbrouck and Ho (1987), Choi et al. (1988) and Huang and Stoll (1997) model the
probability of order reversal, and microstructure noise becomes an AR(1) process.
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Most of this literature only considers i.i.d. microstructure noise.
Several recent papers explore richer microstructure models by allowing for auto-

correlated noise. The estimators of the second moments of noise in Da and Xiu (2019)
and Li et al. (2020) are by-products of the integrated volatility estimators in the presence
of autocorrelated noise. In a recent seminal paper, Jacod et al. (2017) introduced the
first feasible procedure, called the local averaging (LA) method, to estimate arbitrary
moments of microstructure noise using high-frequency data. They also introduced a
general framework allowing for a stochastic observation scheme and a microstructure
noise with a semimartingale “size process”. We follow their general setup and derive
asymptotic properties of our estimators under this general framework. We differentiate
our paper from Jacod et al. (2017) as follows. First, the ReMeDI method is based on
differencing; while the LA method is based on deviations from local averages, both ideas
are widely used in other contexts such as panel data and semiparametric estimation
to eliminate nuisance parameters. Second, the ReMeDI approach works beyond the
infill framework. Specifically, in the working paper version, Li and Linton (2019),
we proved that the ReMeDI estimator is consistent and has an associated CLT in a
long-span, non-infill setting. In this case, the method works provided the efficient price
is a martingale in which case its increments are uncorrelated at any horizon. The LA
method, however, is inconsistent when applied to low-frequency data. Next, the finite
sample performance of the LA estimators heavily depends on the sample size and
the noise-to-signal ratio (the ratio of noise variance to the integrated volatility of the
efficient price), see an analysis in Jacod et al. (2017). This may cause many issues in the
implementations with real data.4 The bias of the ReMeDI estimators by contrast only
depends on the slope of the autocovariance function of the microstructure noise, and
in short memory contexts this bias can be very small. Last, the ReMeDI approach has
another two advantages in real implementations: it is computationally very efficient,5

and it is very robust to a wide range of tuning parameters.

4One can easily verify the following scenarios by simulation: (1) the LA estimator may report positive
autocovariances when the true noise process is uncorrelated or even negatively autocorrelated; (2) the
LA estimator has larger bias and variance if there are bursts of volatility in the efficient price process, e.g.,
when the volatility process jumps; (3) the LA estimator gives very different estimates over two samples
where the noise processes are identical but the efficient prices have different variances.

5For example, the LA (ReMeDI) takes 99.77% (0.23%) of the CPU time to estimate the variance of the
noise using noisy price data from a random walk plus AR(1) noise model, based on 1,000 simulated
samples of size 23,400. The ReMeDI estimator has been included in the R-package for high-frequency
analysis, see https://CRAN.R-project.org/package=highfrequency. The Matlab code is also available
on the authors’ homepage, see https://sites.google.com/view/merrickli/research.
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2 Continuous-Time Framework and Assumptions

We follow the general framework of Jacod et al. (2017) to specify the continuous-time
efficient price process, the observation scheme, and the microstructure noise.6

2.1 Efficient price process

We assume that the efficient price process X is an Itô semimartingale defined on a
filtered probability space (Ω,F , {Ft}t≥0, P) with the Grigelionis representation

Xt := X0 +
∫ t

0
bsds +

∫ t

0
σsdWs +

(
ϑ1{|ϑ|≤1}

)
? (p− q)t +

(
ϑ1{|ϑ|>1}

)
? pt, (2)

where W, p are a Wiener process and a Poisson random measure on R+and E re-
spectively. Here, (E, E) is a measurable Polish space on (Ω,F , {Ft}t≥0, P) and the
predictable compensator of p is q(ds, dz) = ds⊗ λ(dz) for some given σ-finite mea-
sure on (E, E), see Jacod and Shiryaev (2003) for detailed introduction of the last two
integrals. Moreover, X satisfies the following regularity condition:7

Assumption (H). The process b is locally bounded, the process σ is càdlàg , there is a localizing
sequence {τn}n of stopping times and for each n a deterministic nonnegative function Γn on
E satisfying

∫
Γ2

n(z)λ(dz) < ∞ such that |ϑ(ω, t, z)| ∧ 1 ≤ Γn(z) for all (ω, t, z) satisfying
t ≤ τn(ω).

The efficient price process is very general, it allows for stochastic volatility and
jumps in both the price and volatility processes.

2.2 Observation scheme

For each n, let {Tn
i : i ∈N+} be a sequence of random finite observed times (usually

when a transaction or quote occurs) with 0 = Tn
0 < Tn

1 < . . . , where N+ is the set of
nonnegative integers. We denote

Nn
t := ∑

i≥0
1{Tn

i ≤t}, δ(n, i) := Tn
i − Tn

i−1, i ≥ 1. (3)

6We have almost the same regularity conditions as Jacod et al. (2017). The only difference is that we
have a slightly stronger restriction on the serial dependence of the stationary noise, see Remark 2.1.

7 This is a standard condition in high-frequency econometric analysis, see Aït-Sahalia and Jacod (2014)
and Jacod and Protter (2011). In the sequel, by saying an Itô semimartingale satisfies Assumption (H),
we mean the components of its Grigelionis representation (recall (2)) satisfies Assumption (H).
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Here, Nn
t is the stochastic number of observations recorded on the interval [0, t] for

t ∈ R+, while δ(n, i) is the ith spacing of the observation times. For any process V, we
denote Vn

i := VTn
i
.

Let {δn}n be a positive sequence of real numbers satisfying δn → 0 as n→ ∞. We
may think of δn as the average magnitude of the spacings between successive obser-
vation times: if the observation times were equally spaced (the regular observation
scheme), then δn would be proportional to that spacing. The difference between the
regular observation scheme and the general scheme is characterized by two semi-
martingale intensity processes α, α. Conditional upon an appropriate σ-algebra, the
expectations of δ(n, i)/δn and (δ(n, i)αn

i−1 − δn)2/δ2
n are approximately equal to 1/αn

i−1

and αn
i−1, respectively. Specifically, we assume

Assumption (O). α, α are two Itô semimartingales defined on (Ω,F , {Ft}t≥0, P) satisfying
Assumption (H). We further assume there is a localizing sequence {τm}m of stopping times and
positive constants κm,p and κ such that:

(i) For t < τm, we have 1
κm,1
≤ αt− ≤ κm,1 and αt− ≤ κm,1, where αt− and αt− are the left

limits of αt and αt.

(ii) Let (Fn
t )t≥0 be the smallest filtration satisfying

(a) Ft ⊂ Fn
t ,

(b) Tn
i is a {Fn

t }t≥0 stopping time for i = 0, 1, 2, . . . ,

(c) δ(n, i), conditional Fn
i−1 := Fn

Tn
i−1

, is independent of F∞ :=
∨

t≥0Ft for i =

0, 1, 2, . . .

(iii) With the restriction {Tn
i−1 < τm}, and for all p > 0,∣∣∣∣∣E (δ(n, i)

∣∣Fn
i−1
)
− δn

αn
i−1

∣∣∣∣∣ ≤ κm,1δ
3
2+κ
n ,∣∣∣E((δ(n, i)αn

i−1 − δn
)2 ∣∣Fn

i−1

)
− δ2

nαn
i−1

∣∣∣ ≤ κm,2δ2+κ
n ,

E
(
δ(n, i)p ∣∣Fn

i−1
)
≤ κm,pδ

p
n .

(4)

A useful consequence of our setting is the following convergence in probability:

δnNn
t

P−→ At :=
∫ t

0
αsds. (5)

The observation times framework is very general, and includes, inter alia: regular
sampling scheme, time-changed regular sampling scheme, modulated Poisson sampling scheme,
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and predictably-modulated random walk sampling scheme, see the discussion in Jacod et al.
(2017).

2.3 Microstructure noise

We suppose that the microstructure noise has a multiplicative form that allows for serial
dependence, stochastic scale, and dependence of the scale on the efficient price process.

Assumption (N). Let {χi}i∈Z be a stationary ρ-mixing random sequence with mixing coeffi-
cients {ρk}k∈N+

.8 We further assume that {χi}i∈Z is centred at 0 with variance 1 and finite
moments of all orders, and is independent of F∞. Moreover, there is some K > 0, v > 0 such
that

ρk ≤ Kk−v, ∀ k ∈N+. (6)

At stage n, the noise at time Tn
i is given by

εn
i = γn

i · χi, (7)

where γ is a nonnegative Itô semimartingale on (Ω,F , {Ft}t≥0, P) satisfying Assumption
(H) and is not identically zero on any interval.

Remark 2.1. To obtain limit results, we shall suppose that v > 1 for consistency and that
v > 2 to derive the limit distribution, which allows for quite strong dependence close to the long
memory boundary. Jacod et al. (2017) require v > 0 for consistency and v > 1 to establish the
limit distribution.

2.4 The observed noisy price

Finally, the observed noisy price Yn
i is given by (for i = 1, . . . , Nn

t )

Yn
i = Xn

i + εn
i . (8)

Note that both X and ε are latent, only Y is observable. Our purpose is to estimate the
moments of ε using Y only.

8 For any k ∈N+, the mixing coefficients for k are given by:

ρk := sup
{
|E(VhVk+h)| : E(Vk) = E(Vk+h) = 0, ‖Vh‖2 ≤ 1, ‖Vk+h‖2 ≤ 1, Vh ∈ Gh, Vk+h ∈ Gk+h

}
,

where Gp := σ{χk : p ≥ k}, Gq := σ{χk : q ≤ k}. The sequence {χi}i∈Z is ρ mixing if ρk → 0 as k→ ∞.
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3 The Design and the Intuition of the ReMeDI Estima-

tors

3.1 The estimator of the autocovariance function

The intuition of the ReMeDI design can best be seen in a simpler setting. Let {εi}i∈Z

be a stationary mixing sequence with mean zero and finite variance; we would like
to estimate its autocovariance r` := Cov(εi, εi+`). The natural estimator is the sample
analogue

r̂` :=
1
n

n−`
∑
i=0

εiεi+`, (9)

which is consistent and asymptotically normal under very mild conditions.
We consider instead an estimator that replaces the “observations” εi, εi+` by the

“long differences”, i.e.,

r̃n
` :=

1
n

n−`−kn

∑
i=k′n

(
εi − εi−k′n

)
(εi+` − εi+`+kn) , (10)

where kn, k′n are integers that grow at certain rates as the sample size increases. The
estimator r̃n

` follows the ReMeDI design and it provides another consistent estimator
of r`, provided kn ∧ k′n → ∞, and kn∨k′n

n → 0. The intuition of the consistency becomes
immediate if one rewrites r̃n

` as

r̃n
` =

1
n

n−`−kn

∑
i=k′n

εiεi+` −
1
n

n−`−kn

∑
i=k′n

εiεi+`+kn −
1
n

n−`−kn

∑
i=k′n

εi−k′n εi+` +
1
n

n−`−kn

∑
i=k′n

εi−k′n εi+`+kn .

(11)
The first average is (asymptotically) equivalent to the sample analogue (9), thus it
converges in probability to r`; the remaining three averages are centered at r`+kn , r`+k′n ,
and r`+kn+k′n , which themselves converge to zero at a rate depending on (6) as n→ ∞.

Taking differences seems redundant if the time series {εi}i is observable. However,
in our framework, ε is masked by the efficient price X, and we only observe Y = X + ε.
Taking time differences removes the effect of the efficient price. The intuition of such
removal under the infill asymptotics is that the differences of the efficient prices, say,
Xn

i − Xn
i−k′n

, are much smaller than the differences of the noise as n increases.
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3.2 The general ReMeDI design

We next formally define the ReMeDI estimator of a general class of parameters. First,
we provide some notations that we will use below. Let J be the set of all finite sequences
of integers satisfying

J :=
{

j = (j1, j2, . . . , jq) : jl ∈ Z, l = 1, 2, . . . , q; q ≥ 2
}

.

In the sequel, we will assume without loss of generality that j1 = max{jl : jl ∈ j} for
any j ∈ J. The j-moments of χ, the stationary component of microstructure noise, are
given by

r(j) := E

(
q

∏
l=1

χjl

)
. (12)

This is our parameter of interest (upto the scaling by the γ heteroskedasticity process);
it includes the autocovariance function of the noise process and many other examples
as special cases.

Let k = (k1, . . . , kq) be a q-tuple of integers. For any j ∈ J and any process V, let
I(k, j)n

t be the set of observation indices on [0, t] for which the following multi-difference
operator ∆k

j (·)n
i is well defined:9

∆k
j (V)n

i :=
q

∏
l=1

(
Vn

i+jl −Vn
i+jl−kl

)
. (13)

Then the ReMeDI estimator corresponding to r(j) based on data {Yn
i }

Nn
t

i=1 and tuning
parameters k is defined by

ReMeDI(Y; j, k)n
t := ∑

i∈I(k,j)n
t

∆k
j (Y)

n
i . (14)

Note that we do not normalize yet by Nn
t .

Remark 3.1. The estimator (10) can be written in this general form with j = (`, 0), k =

(−kn, k′n), I(k, j)n
t = {k′n, . . . , n− l − kn}, where the differencing operator ∆k

j (·)n
i is applied

to the data ε0, . . . , εn. The general ReMeDI approach shares two features with the special case
estimator (10) regarding the choices of k: 1) the first entry of k will be negative whereas the
remaining ones are positive, i.e., the first difference is a forward difference and the remaining
ones are backward differences; 2) ∀1 ≤ l ≤ q, |kl| → ∞ as n → ∞, and we will often write
kn = (k1,n, . . . , kq,n) in the sequel to reflect such dependence.

9By convention we set ∆k
j (V)n

i = 1 if j = ∅ and ∆k
j (V)n

i = 0 if j is a singleton.
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Yn
i+j3−4kn

Yn
i+j2−2kn Yn

i+j2
Yn

i+j3
Yn

i+j1
Yn

i+j1+kn

Figure 1: Illustration of the ReMeDI estimator of j-moments with j = (j1, j2, j3) and kn = (−kn, 2kn, 4kn).

We discuss a little more why the general ReMeDI procedure works under infill
asymptotics. For this purpose, suppose that the noise size process γ is constant equal
to one so that r(j) = E

(
∏

q
l=1 εn

i+jl

)
. Suppose that kn satisfies the two properties in

Remark 3.1. Next, we explain how to connect E
(

∏
q
l=1 εn

i+jl

)
and ∆kn

j (Y)n
i with ∆kn

j (ε)n
i .

To see this, we first note that {i + jl − kl,n}l are the “distant” indices of the intervals on
which the backward and forward differences are taken. Figure 1 illustrates a simple
example with j = (j1, j2, j3), kn = (−kn, 2kn, 4kn) for some kn ∈ N+. The forward
difference starts at the (i+ j1)-th observation and ends at the (i+ j1 + kn)-th observation;
for the remaining indices in j, the associated differences start from i + j2, i + j3 and end
at i + j2 − 2kn, i + j3 − 4kn, respectively. The intuition of the ReMeDI approach is that
the “distant” noise terms are approximately independent of each other, and are also
independent of the “clustered” noise {εn

i+jl
}l (this is because the elements in kn are

quite “sparse”, recall a special case outlined in (11)). Hence any term that has one (or
more) of the distant noise as a factor will have a zero expectation approximately. On
the other hand, expanding ∆kn

j (ε)n
i yields

∆kn
j (ε)n

i = ∏q
l=1 εn

i+jl + terms that have at least one of the distant noise as a factor.

Therefore, we have by taking expectations that

E
(

∆kn
j (ε)n

i

)
≈ E

(
∏q

l=1 εn
i+jl

)
.

If kl,n is still relatively small such that supl δn |kl,n| → 0, the differences/increments of
the efficient price over the intervals are asymptotically negligible. That is, ∆kn

j (Y)n
i ≈

∆kn
j (ε)n

i . Thus the averages of ∆kn
j (Y)n

i will converge in probability to E
(

∏
q
l=1 εn

i+jl

)
by

the law of large numbers. This is the intuition of the identification.

Remark 3.2 (The intuition of the LA method). The ReMeDI method is essentially based
on differencing, while the local averaging (LA) method employs deviations from local
averages. Specifically, a local average of the observable noisy prices provides a proxy of the
efficient price since the noise is averaged out, i.e., Yn

i := ∑kn−1
j=0 Yn

i+j/kn ≈ Xn
i ; consequently,

Yn
i −Yn

i ≈ εn
i . Therefore, the moments of noise can be estimated by the sample moments of the

proxies {Yn
i −Yn

i }i. This is the intuition of the LA method.

10



4 The Asymptotic Properties of the ReMeDI Estimators

4.1 Consistency

We next give the large sample properties of the ReMeDI estimator (for a given choice of
kn) in our general setting. For a general γ process that satisfies Assumption (N), the
“average size” of the noise moments E

(
∏

q
l=1 εn

i+jl

)
is
∫ t

0 γ
q
s dAs/At, and this scaling

appears in the probability limit of the ReMeDI estimators. Also recall (6) that v is the
parameter that controls the degree of serial dependence in the noise.

Theorem 4.1. Let Assumptions (H, O, N) hold, assume v > 1 and kn satisfies
−k1,n → ∞, kl,n → ∞, ∀ l ≥ 2,

supl

∣∣δη
nkl,n

∣∣→ 0, η ∈ (0, 1/2), ∀ l ≥ 1,

kl+1,n − kl,n → ∞, ∀ l ≥ 2,

(15)

as n→ ∞. For j ∈ J, we have the following convergence in probability:

ReMeDI(Y; j, kn)n
t

Nn
t

P−→ R(j)t :=

∫ t
0 γ

q
s dAs

At
r(j), (16)

where r(j) is defined in (12) and At in (5).

This says that our estimator consistently estimates r(j) up to a time t-varying scaling
factor that depends on the average scale of the noise and on the stochastic process
governing the observation times.

Let {kn}n be a sequence of integers satisfying kn → ∞, knδn → 0. Let kn be specified
as follows: kl,n = −kn if l = 1, and kl,n = (l − 1)kn if l ≥ 2. Then, kn satisfies the
conditions in (15).

4.2 Limit distribution

We first restrict further the values of kn in order to facilitate the limit theory.10 Among
many possibilities, we propose the following specification of kn, which is solely deter-
mined by a single integer kn:

kl,n =

−kn if l = 1,

2l−1kn if l ≥ 2,
(17)

10In the supplementary material Li and Linton (2021), we discuss how to select kn in practice.
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where kn is related to v as follows:

v > 2, knδ
η
n → 0, η ∈

(
1

2v
,

1
3

)
.

Remark 4.1. Note that (17) implies (15). In the sequel, we will omit kn and simply write
∆j(Y)n

i and ReMeDI(Y; j)n
t instead of ∆kn

j (Y)n
i and ReMeDI(Y; j, kn)n

t when kn satisfies (17).

We establish the CLT for both the following centered stochastic processes:

Z(j)n
t :=

1√
δn

(
δnReMeDI(Y; j)n

t − r(j)
∫ t

0
γ

q
s dAs

)
; Z(j)n

t :=
√

Nn
t

(
ReMeDI(Y; j)n

t
Nn

t
− R(j)t

)
.

The first process involves unknown but deterministic norming, whereas the second
process is normed by the observed stochastic sample size. Thus the second one is
“feasible” in practice.

Theorem 4.2. Let Assumptions (H), (O) and (N) hold, and kn, v satisfy (17). For any t >

0, j, j′ ∈ J, we have the following F∞-stable convergence in law

(a) (Z(j)n
t , Z(j′)n

t )
Ls−F∞−→ (Z(j)t, Z(j′)t) , where the limit is defined on an extension (Ω̃, F̃ , P̃)

of (Ω,F , P). Conditionally on F , (Z(j)t, Z(j′)t) are centred Gaussian with (co)variances
σ(j, j′)t that is given by

σ(j, j′)t :=s(j, j′)
∫ t

0
γ

q+q′
s dAs + r(j)r(j′)

∫ t

0
γ

q+q′
s αsdAs, (18)

where s(j, j′) is given by (A.2).

(b)
(
Z(j)n

t , Z(j′)n
t
) Ls−F∞−→

(
Z(j)t, Z(j′)t

)
, where the limit is defined on an extension (Ω̃, F̃ , P̃)

of (Ω,F , P). Conditionally on F ,
(
Z(j)t, Z(j′)t

)
are centred Gaussian with (co)variances

σ(j, j′)t that is given by

σ(j, j′)t :=
s(j, j′)

At

∫ t

0
γ

q+q′
s dAs +

r(j)r(j′)
At

∫ t

0
γ

q+q′
s αsdAs +

R(j)tR(j′)t

At

∫ t

0
αsdAs

− R(j)tr(j′)
At

∫ t

0
γ

q′
s αsdAs −

r(j)R(j′)t

At

∫ t

0
γ

q
s αsdAs.

(19)

Remark 4.2. The term s(j, j′) is the asymptotic variance of the ReMeDI estimators contributed
by the stationary part of the noise. The explicit form is given by (A.2) in Appendix A. If the
sampling scheme is regular, e.g., equally spaced at millisecond frequency, then αt ≡ 0 ∀t and
the asymptotic variances in (18) and (19) are greatly simplified, since terms other than the first
one are zero. We provide further discussion of this in Appendix B.
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Remark 4.3 (Asymptotic variances of ReMeDI and LA). Note that the ReMeDI and LA
estimators have very similar asymptotic (co)variances. The only difference lies in the s(j, j′)
part, which represents the asymptotic variance contributed by the stationary part of the noise.
The s(j, j′) of the ReMeDI estimators includes the asymptotic (co)variances of the “distant”
noise terms (recall the discussion in Section 3.2). It is therefore larger than the counterpart of
the LA estimators. Hence, the LA estimators are asymptotically more efficient (although one
can improve the efficiency of ReMeDI by taking averages of estimators computed using different
kn, see Section 4.4.1). However, simulation studies show that the ReMeDI class works better
in finite samples with realistic sample sizes (or equivalently, data frequency) — it has smaller
finite sample variance and is almost unbiased under various model specifications. Moreover, the
ReMeDI approach has greater computational efficiency, which pays off when one is working
with massive high-frequency datasets (recall Footnote 5).

Theorem 4.3. Suppose that all the conditions of Theorem 4.2 hold. For any j ∈ J, we have the
following F∞-stable convergence in law√

Nn
t√

σ̂(j, j′)n
t

(
ReMeDI(Y; j)n

t
Nn

t
− R(j)t

)
Ls−F∞−→ Φ, (20)

where Φ is a standard normal random variable that is defined on an extension of the space and is
independent of F , and σ̂(j, j′)n

t is a consistent estimator of the asymptotic variance constructed
in (B.3).

4.3 Estimating the autocovariances of microstructure noise

In this section we consider the special case concerning the estimation of the autocovari-
ance function of the microstructure noise. Let j` = (`, 0), ` ∈N+, and let

R̂n
t,` :=

1
Nn

t
ReMeDI(Y; j`)n

t =
1

Nn
t

Nn
t −kn−`

∑
i=2kn

(
Yn

i+` −Yn
i+`+kn

) (
Yn

i −Yn
i−2kn

)
. (21)

The following corollary provides the limit distribution.

Corollary 4.1 (ReMeDI estimators of autocovariances). Under the conditions of Theo-
rem 4.2, we have √

Nn
t

(
R̂n

t,` − Rt,`

) Ls−F∞−→ N (0, σ(j`, j`)t) ,
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where

σ(j`, j`)t :=
1
At

(
s`
∫ t

0
γ4

s dAs + r2
`

∫ t

0
γ4

s αsdAs + R2
t,`

∫ t

0
αsdAs − 2Rt,`r`

∫ t

0
γ2

s αsdAs

)
;

(22)

Rt,` := r`

∫ t
0 γ2

s dAs

At
, s` :=

∞

∑
k=−∞

(
E((χ0χ` − r`)(χkχk+` − r`)) + 3r2

k

)
.

Moreover, under the assumptions of Theorem 4.3, we have√
Nn

t√
σ̂(j`, j`)n

t

(
R̂n

t,` − Rt,`

) Ls−F∞−→ Φ, (23)

where Φ is a standard normal random variables as in Theorem 4.3 and σ̂(j`, j`)n
t is provided

in (B.3).

Remark 4.4. s` represents the variance of the ReMeDI estimators contributed by the stationary
part of noise. It has two components. The first part ∑∞

k=−∞ E((χ0χ` − r`)(χkχk+` − r`)) is
in fact the asymptotic variance of the sample analogue, recall (9). The second part 3 ∑∞

k=−∞ r2
k

is the asymptotic variance of the three additional terms appear in (11) that arise in differencing.

Remark 4.5. The last three terms of σ(j`, j`)t that appear in (22) arise because of the stochastic
sampling scheme; this term is non-negative, and is zero whenever r` = 0, αs ≡ 0 or γs ≡ K,
where K is a constant.

We note that while the multiplicative structure of the microstructure noise (recall (7))
allows for a time-varying and stochastic size of the noise, the serial correlation of
the noise is not affected by the size process. This structure allows us to estimate the
autocorrelations of noise directly once we have an estimator of the autocovariances.
Define the ReMeDI estimator of the noise autocorrelation, r̂(`)n

t := R̂n
t,`/R̂n

t,0, and its
asymptotic variance estimator

σ̂(`)n
t :=

σ̂(j`, j`)n
t (Nn

t )
2

(ReMeDI(Y, j0)n
t )

2 −
2(Nn

t )
2σ̂(j0, j`)n

t ReMeDI(Y, j`)n
t

(ReMeDI(Y, j0)n
t )

3

+
(Nn

t )
2(ReMeDI(Y, j`)n

t )
2σ̂(j0, j0)

n
t

(ReMeDI(Y, j0)n
t )

4 .

The following corollary spells out the limit distribution of the proposed estimators.

Corollary 4.2 (ReMeDI estimators of autocorrelations). Under the conditions of Theo-
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rem 4.3, we have the following F∞-stable convergence in law√
Nn

t
σ̂(`)n

t
(r̂(`)n

t − r(`)) Ls−F∞−→ Φ,

where Φ is a standard normal random variable as in Theorem 4.3.

4.4 Some extended discussions

Here, we comment on the efficiency issue and on the behavior of our procedure under
the rounding model of discrete prices.

4.4.1 Variance reduction

The efficiency of the ReMeDI estimator can be improved by combining estimators
that use different kn sequences satisfying the regularity conditions. We explain the
procedure for R̂n

t,` defined in (21). Rewrite R̂n
t,` as R̂n

t,`(kn) to indicate its dependence
on kn. Let {kn,d : d = 1, . . . , dn} be a sequence of tuning parameters, and define the
combined estimator R̂n,effi

t,` := 1
dn

∑dn
d=1 R̂n

t,`(kn,d). As we know from other contexts, see,
e.g., Abadie and Imbens (2006), that averaging reduces variance. We just sketch the
argument here. It suffices to consider the noise part:11

1√
Nn

t dn

dn

∑
d=1

Nn
t −`−kn,d

∑
i=2kn,d

(
εn

i εn
i+` − εn

i εn
i+`+kn,d

− εn
i−2kn,d

εn
i+` + εn

i−2kn,d
εn

i+`+kn,d

)
.

The key observation is that sums over the last three terms will have negligible asymp-
totic variance provided dn is large. To see this, consider the sum 1

dn
∑dn

d=1 εn
d , where

εn
d :=

1√
Nn

t

Nn
t −`−kn,d

∑
i=2kn,d

εn
i εn

i+`+kn,d
.

The sequence {εn
d}

dn
d=1 has asymptotically negligible covariances if {kn,d}dn

d=1 are sparse
enough, e.g., kn,d = dkn. As a consequence, the asymptotic variance of ∑dn

d=1 εn
d = o(d2

n).

The asymptotic distribution is entirely determined by 1√
Nn

t dn
∑dn

d=1 ∑
Nn

t −`−kn,d
i=2kn,d

εn
i εn

i+`, i.e.,

the three additional terms appear in (11) from differencing will not affect the limiting
variance. Therefore, σ(j`, j`)t (recall (22)) will be reduced since the asymptotic variance
of the stationary noise becomes s` = ∑∞

k=−∞ E((χ0χ` − r`)(χkχk+` − r`)).

11Since the efficient returns and cross terms of efficient returns and noise are of smaller order under
infill asymptotics.
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4.4.2 Rounding errors

The additive noise model (1) is the main framework in the literature, but there is a small
but growing literature on rounding models that captures the effect of price discreteness,
see for example Delattre and Jacod (1997), Rosenbaum (2009), and Li and Mykland
(2015). Rounding of a continuous state efficient price process can induce negative
first order autocovariance in the observed returns similar to that induced by bid-ask
bounce and infrequent trading (Schwartz and Whitcomb, 1977), and this effect may
be particularly large when the nominal stock price level is low and when trading is
frequent. Some applied papers in market microstructure have explicitly allowed for
rounding errors, see for example Glosten and Harris (1988). Theoretically, the rounding
model is difficult to work with in the very general semimartingale setting we have
for the efficient price, and we have not so far managed to include this feature in our
theoretical analysis. However, we do have simulation evidence suggesting that the
ReMeDI estimator also works quite well in this case, see Section E.2 in Li and Linton
(2021). Li and Mykland (2015) find that subsampling helps mitigate rounding errors.
The ReMeDI approach shares something with subsampling methods in that it takes
differences over long intervals. Perhaps this explains the superior performance of the
ReMeDI estimators in the presence of rounding errors in the simulation experiments.

5 Simulation Study

5.1 Model settings

We suppose that the efficient price process has stochastic volatility and jumps that
appear in both the price and volatility processes:

dXt = κ1(µ1 − Xt)dt + σtdW1,t + ξ1,tdNt; dσ2
t = κ2(µ2 − σ2

t )dt + ησtdW2,t + ξ2,tdNt;

Corr(W1, W2) = υ; ξ1,t ∼ N (0, µ2/10) ; Nt ∼ Poi(λ); ξ2,t ∼ Exp(δ).

(24)

We set

κ1 = 0.5; µ1 = 3.6; κ2 = 5/252; µ2 = 0.04/252; η = 0.05/252; υ = −0.5; λ = 1; δ = η.

This setting is motivated by some empirical facts that jumps in price levels and volatility
tend to occur together, see Todorov and Tauchen (2011).

We further suppose that the stationary component of the microstructure noise
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follows an AR(1) process with Gaussian innovations

χi+1 = ρχi + ei, ei
i.i.d.∼ N

(
0, 1− ρ2

)
, |ρ| < 1.

Note that χ has unit variance. We set ρ = 0.7, motivated by the empirical studies
in Aït-Sahalia et al. (2011) and Li et al. (2020).

5.2 LA versus ReMeDI

We estimate the autocovariances of microstructure noise using the ReMeDI estimator
and the local averaging (LA) estimators (Jacod et al., 2017). We assume that the noise is
stationary so that we can compare the estimates to the true parameters. We also assume
that the observation scheme is regular so that we know explicitly the data frequency,
which is a key factor that affects the finite sample performance of many high-frequency
estimators.

The top and middle panels of Figure 2 present the estimation of the first 20 autoco-
variances of the noise by ReMeDI and LA.12 The solid lines are the mean estimates over
1,000 replications; the shaded region represents the 95% simulated confidence intervals.
We simulate 23,400 observations for each sample path, corresponding to the number of
seconds in a business day (6.5 trading hours). The ReMeDI estimators perform well:
the estimates are approximately unbiased with narrow confidence bands. Surprisingly,
there is a significant average deviation of the LA estimates from the true parameters,
and the confidence bands are much larger as well.

The deviation of the LA estimates is elicited by a finite sample bias, which is known
to be a fraction of the prior unknown quadratic variation (QV) of the efficient price,
see the discussion in Jacod et al. (2017). Thus to correct the bias, we need an estimate
of the QV. But the estimation of QV in the presence of dependent noise is not trivial,
see a discussion in Li et al. (2020). In a simulation context, we can obtain the QV and
thus can give the LA estimators the privilege to make the bias correction, which is, of
course not feasible in practice. The bottom panel of Figure 2 displays the bias corrected
estimation of LA. Even with accurate bias correction, however, the ReMeDI estimators
still outperform the LA estimators with almost no bias but greater accuracy.

It is interesting to compare ReMeDI and LA when the data frequencies vary. How-
ever, increasing the data frequency in a fixed time span has two effects: both the number
of observations and the noise-to-signal ratio of tick returns will increase. We design a
simulation study to separate the two effects and examine how sensitive ReMeDI and

12We select the same tuning parameter for the LA estimator as in Jacod et al. (2017); we also check
other alternatives, and we find kn = 6 leads to smaller bias.
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Figure 2: Estimation of the autocovariances of noise by the ReMeDI method (top panel), the
local averaging method (middle panel) and the bias corrected local averaging method (bottom
panel). The blue solid lines are the mean estimates of 1,000 simulations by the three estimators.
The tuning parameters of the ReMeDI and LA estimators are 10 and 6, respectively. The noise
scale is fixed at γ ≡ 5× 10−4.
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LA are to these changes.
The left panel of Figure 3 presents the mean-squared-error (MSE) of the ReMeDI

and LA estimators for the first 20 autocovariances of noise. The sample size varies
from 23,400 (1 trading day) to 117,000 (1 trading week), and 468,000 (1 trading month).
The MSE of the ReMeDI estimators remains low and slightly drops when the sample
sizes increases. The LA estimators, however, has larger MSE in a larger sample!
This is statistically counterintuitive. However, it does make sense if we recall that
the integrated volatility contributes to the finite sample bias of the LA estimators.
Hence longer time span induces larger integrated volatility (relatively to the number
of observations), which in turn leads to a larger finite sample bias. This is especially
so if the sample covers a period of volatility burst, and the likelihood of an such event
increases if the sampling period becomes large, see our empirical studies with real
transaction prices.

The right panel of Figure 3 compares ReMeDI and LA when noise variance varies
from 10−8 (small noise) to 10−6 (large noise). We note that the advantage of ReMeDI
over LA is more prominent when the scale of noise is smaller. Indeed, the size of
noise in practice is closer to the small noise scenario, see an extensive empirical study
by Christensen et al. (2014). Thus in an extreme case when the noise has identical
statistical properties in two samples, LA may give very different estimates due to the
differences in sample sizes or noise-to-signal ratios. The ReMeDI approach remains
robust and accurate.

5.3 Random noise size and observation times

As the last robustness check, we now allow for stochastic observation times and random
scales of noise. Following Jacod et al. (2017), we let {Tn

i } follow an inhomogeneous
Poisson process with rate nαt where αt = (1 + cos(2πt))/2 and the process γ satisfies

γt = Cγγ′t, dγ′t = −ργ(γ
′
t − µt)dt + σγdWt.

We set ργ = 10, µt = 1 + 0.1 cos(2πt), σγ = 0.1, Cγ = 5× 10−4. Figure 4 reports the
estimation of the autocorrelation functions by the two estimators. We observe similar
patterns presented in Figure 2: compared to the ReMeDI estimators, the LA estimators
have large biases with a wide confidence band.

The supplementary material Li and Linton (2021) provides additional simulation
studies to examine the quality of the CLT approximation, the effect of rounding error
due to the discreteness of price, and the sensitivity to the choice of tuning parameters.

19



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
·10−6

Lags

M
ea

n
sq

ua
re

d
er

ro
r

Sample size = 23,400

LA
ReMeDI

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
·10−6

Lags

M
ea

n
sq

ua
re

d
er

ro
r

Sample size = 117,000

LA
ReMeDI

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
·10−6

Lags

M
ea

n
sq

ua
re

d
er

ro
r

Sample size = 468,000

LA
ReMeDI

0 5 10 15 20
0

0.5

1

1.5

·10−7

Lags

M
ea

n
sq

ua
re

d
er

ro
r

γ ≡ 0.0001

LA
ReMeDI

0 5 10 15 20
0

0.5

1

1.5

·10−7

Lags

M
ea

n
sq

ua
re

d
er

ro
r

γ ≡ 0.0005

LA
ReMeDI

0 5 10 15 20
0

0.5

1

1.5

·10−7

Lags

M
ea

n
sq

ua
re

d
er

ro
r

γ ≡ 0.001

LA
ReMeDI

Figure 3: Mean squared error (MSE) of the ReMeDI and LA estimators for the first 20 auto-
covariances of noise based on 1,000 simulations. In the left panel, the noise scale is fixed at
γ = 5× 10−4 and the sample size varies; in the right panel, the size sample is 23,400 while the
noise scale parameter varies. The tuning parameters of the ReMeDI and LA estimators are 10
and 6, respectively.
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Figure 4: Estimation of the autocorrelations of noise by the ReMeDI method (left panel) and
the local averaging method (right panel). The blue solid lines are the mean estimates of 1,000
simulations by the two estimators. The tuning parameters of the ReMeDI and LA estimators
are 10 and 6, respectively. The noise has stochastic scales and the observation times are random,
see the specifications in Section 5.3.

6 Empirical Study

We obtain the transaction prices of Coca-Cola (trading symbol KO)13 from the TAQ
database for January 2018 (21 trading days). We remove prices before 9:30 and after
16:00. We collect approximately 50,000 observations per day, i.e., 2.1 transactions per
second on average. The average price is $46.84, with a standard deviation of 0.85.

Figure 5 plots the estimated autocovariances of noise by the ReMeDI estimators
(the blue plots) based on samples of different sizes. The autocorrelation pattern is
non-trivial: noise exhibits positive autocorrelations up to 4 lags and shortly thereafter,
the sign switches to negative for a few lags, and then reverts to positive autocorrelations
before decaying to zero around 20 lags. The pointwise confidence interval14 includes
zero or excludes positive values after lag 5, which is incompatible with simple long
memory.

The ReMeDI estimates of microstructure noise presented in Figure 5 are economi-
cally intuitive. The positive autocovariances at the first several lags may be a conse-
quence of the order splitting strategies by high-frequency traders (Biais et al. (1995)), or
the successive transactions executed by limit orders (Parlour (1998)).15 The negative

13In the supplementary material Li and Linton (2021), we use the transaction prices of General Electric
(GE) and Citigroup (Citi), and we obtain similar results.

14Recall Section B that the duration of successive observed prices is part of the asymptotic variance
estimator. We do not plot the confidence intervals when we use transaction prices on different trading
days since the prices will cover overnight non-trading hours.

15Hasbrouck and Ho (1987) and Choi et al. (1988) model the continuation of order flows by an AR(1)
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autocovariances at the intermediate lags are consistent with the prediction of inventory
models (Ho and Stoll (1981), Hendershott and Menkveld (2014)), in which the market
makers induce negatively autocorrelated order flows to balance his inventories. How-
ever, the LA method gives very different estimates: it says that the noise is strongly
autocorrelated without any sign of decay after 20 lags. This is economically counterin-
tuitive — such a pattern, if it exists, would be exploited by high-frequency traders and
we would expect it to disappear rapidly. Moreover, the serial dependence, according to
the LA estimates, is even stronger when estimation is performed on a larger sample.
Since we only estimate autocovariances of noise up to 20 ticks/lags, or a few seconds,
it is statistically counterintuitive to obtain stronger autocovariance estimates using the
prices of a week than using the prices in a single trading day. This is in line with our
simulation study that the LA estimates are subject to a finite sample bias that depends
on the noise-to-signal ratio and sample size. The ReMeDI approach retains its accuracy
and robustness.

7 Concluding Remarks

We introduce a differencing method to separate the microstructure noise from the
underlying semimartingale efficient price in a general setting. We demonstrate the
robustness of the proposed method compared to the main existing approach. We
have concentrated on the infill setting primarily and the univariate case. The method
naturally extends to the multivariate case, although in that case, several issues arise.
First, the nonsynchronous trading issue has to be faced. Second, even when the assets
trade on a common clock, there are some remaining theoretical results that need to
be established for the infill case. We discussed briefly in Section 4.4.1 how one can
improve efficiency by combining the estimators associated with different choices of
kn. An alternative potential source of efficiency gain is from the heteroskedasticity
delivered by the γ process, which was not exploited by our method. Given a consistent
estimator of γu one may implement a kind of feasible GLS procedure. We leave these
problems for future research.

process.
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Figure 5: Estimation of autocovariances of noise for Coca-Cola (KO) in January 2018. In the
top panel, we use the transaction prices of KO on 2 January 2018; in the middle panel, we
use the transaction prices of KO in the second trading week (8 January 2018 to 12 January
2018); we employ the entire transaction prices of KO in January 2018 in the bottom panel. The
tuning parameters for ReMeDI and LA are 10 and 6, respectively. The shaded area in the top
panel represents the 95% confidence interval, and we set in = 5, φn = k4/5

n /Nn
t to compute the

asymptotic variances of the ReMeDI estimators, where Nn
t is the number of observations.
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Appendix A The asymptotic (co)variance

This section introduces s(j, j′) that appears in the asymptotic variance in Theorem 4.2.
In the sequel whenever we have two vectors j = (j1, . . . , jq), j′ = (j′1, . . . , j′q′) ∈ J, we
suppose without loss of generality that q ≤ q′. We denote

j⊕ j′ = (j1, j2, . . . , jq, j′1, j′2, . . . , j′q′), j−l = j\{jl},

j(+k) = (j1 + k, j2 + k, . . . , jq + k), for k ∈ Z,

jQq = (jl : l ∈ Qq) for Qq ⊂ {1, 2, . . . , q},

Qq := {Qq : Qq ( {1, 2, . . . , q}}.

For each Qq ⊂ {1, 2, . . . , q}, there is an associated (unique) pair of subsets:

Qc
q := {1, 2, . . . , q}\Qq, Qq′ := Qq ∪ {q + 1, . . . , q′}. (A.1)

We denote for each k ∈ Z the following moments16

s0(j, j′; k) := r
(
j⊕
(
j′(+k)

))
− r (j) r

(
j′
)

;

s1(j, j′; k) := ∑
Qq∈Qq

r
(

jQq ⊕
(

j′Qq′
(+k)

))
∏

l∈Qc
q

r(jl, j′l + k);

s2(j, j′; k) := ∑
jl∈j,j′l′∈j′

l 6=l′

r(jl, j′l′ + k)r(j−l)r(j′−l′)−∑
jl∈j

r({jl} ⊕ j′(+k))r(j−l)

− ∑
j′
l′∈j′

r({j′l′ + k} ⊕ j)r(j′−l′);

Then s(j, j′) is given by

s(j, j′) := ∑
k∈Z

s0(j, j′; k) + s1(j, j′; k) + s2(j, j′; k). (A.2)

Appendix B The estimation of the asymptotic (co)variance

First, we introduce a sequence of notations

δ̂
n
i :=

(
knδ(n, i + 1 + kn)− Tn

i+2+2kn
+ Tn

i+2+kn

(Tn
i+kn
− Tn

i ) ∨ φn

)2

, U(1)n
t :=

Nn
t −w(1)n

∑
i=0

δ̂
n
i ,

U(2; j)n
t :=

Nn
t −w(2)n

∑
i=0

δ̂
n
i ∆j(Y)n

i+w(2)n
2
,

16By convention we let r(∅) = 1.
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U(3, j, j′)n
t :=

Nn
t −w(3)n

∑
i=0

δ̂
n
i ∆j(Y)n

i+w(3)n
2
∆j′(Y)n

i+w(3)n
3
,

U(4; j, j′)n
t := −

Nn
t −w(4)n

∑
i=2q−1kn

∆j(Y)
n
i ∆j′(Y)n

i+w(4)n
2
,

U(5, k; j, j′)n
t := ∑

Qq∈Qq

Nn
t −w(5)n

∑
i=2e(Qq)kn

∆jQq⊕(j′Qq′
(+k))(Y)

n
i ∏
`:l`∈Qc

q

∆(jl` ,j′l`
+k)(Y)

n
i+w(5)n

`+1
,

U(6, k; j, j′)n
t := ∑

jl∈j,j′l′∈j′

l 6=l′

Nn
t −w(6)n

∑
i=2kn

∆(jl ,j′l′+k)(Y)
n
i ∆j−l (Y)

n
i+w(6)n

2
∆j′−l′

(Y)n
i+w(6)n

3

−∑
jl∈j

Nn
t −w′(6)n

∑
i=2q′ kn

∆{jl}⊕j′(+k)(Y)
n
i ∆j−l (Y)

n
i+w′(6)n

2

− ∑
j′l′∈j′

Nn
t −w′′(6)n

∑
i=2qkn

∆{j′l′+k}⊕j(Y)
n
i ∆j′−l′

(Y)n
i+w′′(6)n

2
,

U(7, k; j, j′)n
t := ReMeDI(j⊕ j′(+k))n

t ; U(k; j, j′)n
t :=

7

∑
`=5

U(`, k; j, j′)n
t ,

where the indices appear above are given by

w(1)n := 2 + 2kn, w(2)n
2 := 2 + (3 + 2q−1)kn, w(2)n := w(2)n

2 + j1 + kn;

w(3)n
2 := 2 + (3 + 2q−1)kn, w(3)n

3 := 2 + (5 + 2q−1 + 2q′−1)kn + j1;

w(3)n := w(3)n
3 + j′1 + kn; w(4)n

2 := 2kn + q′n + j1, w(4)n := w(4)n
2 + j′1 + kn;

e(Qq) := (2|Qq|+ q′ − q− 1) ∨ 1, w(5)n
`+1 := 4`kn +

`

∑
`′=1

jl`′ ∨ (j′l`′ + k) for ` ≥ 1,

w(5)n := w(5)n
|Qc

q|+1 + jl|Qc
q |
∨ (j′l|Qc

q |
+ k) + kn;

w(6)n
2 := (2q−2 + 2)kn + j` ∨ (j′`′ + k), w(6)n

3 := (2q−2 + 2q′−2 + 2)kn + j1 + j` ∨ (j′`′ + k),

w′(6)n
2 := (2q−2 + 2)kn + j` ∨ (j′1 + k), w′′(6)n

2 := (2q′−2 + 1)kn + (j′`′ + k) ∨ j1,

w(6)n := w(6)n
3 + j′1 + kn, w′(6)n := w′(6)n

2 + j1 + kn, w′′(6)n := w′′(6)n
2 + j′1 + kn.

The asymptotic variance estimator is given by

σ̂(j, j′)n
t :=

1
Nn

t

3

∑
`=1

σ̂`(j, j′)n
t , (B.3)

where

σ̂1(j, j′)n
t := U(0; j, j′)n

t +
in

∑
k=1

(
U(k; j, j′)n

t + U(k; j′, j)n
t
)
+ (2in + 1)U(4; j, j)n

t ;
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σ̂2(j, j′)n
t := U(3, j, j′);

σ̂3(j, j′)n
t :=

1
(Nn

t )
2 ReMeDI(Y; j)n

t ReMeDI(Y; j′)n
t U(1)n

t

− 1
Nn

t

(
ReMeDI(Y; j)n

t U(2, j′)n
t + ReMeDI(Y; j′)n

t U(2, j)n
t
)

.

The estimators seem quite complicated. However, the intuition will be clear in light of
the following convergences, under the asymptotic conditions that

in

kv
n
→ 0, inδ

η
n → 0,

φn

knδn
→ 0,

k3/4
n δn

φn
→ 0. (B.4)

1
Nn

t
σ̂1(j, j′)n

t
P−→ s(j, j′)

At

∫ t

0
γ

q+q′
s dAs,

1
Nn

t
σ̂2(j, j′)n

t
P−→ r(j)r(j′)

At

∫ t

0
γ

q+q′
s αsdAs;

1
Nn

t
σ̂3(j, j′)n

t
P−→ R(j)R(j′)

At

∫ t

0
αsdAs −

R(j)r(j′)
At

∫ t

0
γ

q′
s αsdAs −

r(j)R(j′)
At

∫ t

0
γ

q
s αsdAs.

The proofs of the convergences are in the supplementary material Li and Linton (2021).
Now we consider some special cases where the asymptotic (co)variances are simpler.

As a consequence, the asymptotic variance estimators are also much simplified.
First, we consider the scenario αt ≡ 0. The observations schemes that satisfy this

condition include the regular sampling scheme, the time-changed regular sampling scheme;
next, let αt ≡ 1, one can verify that the modulated Poisson sampling scheme satisfies this
condition, see the discussion in Jacod et al. (2017). The asymptotic (co)variance becomes

σ(j, j′)t =


s(j,j′)

At

∫ t
0 γ

q+q′
s dAs, if αt ≡ 0;

s(j,j′)+r(j)r(j′)
At

∫ t
0 γ

q+q′
s dAs − R(j)tR(j′)t, if αt ≡ 1.

and a consistent estimator is given by

σ̂(j, j′)t =


1

Nn
t

σ̂1(j, j′)n
t , if αt ≡ 0;

1
Nn

t

(
σ̂1(j, j′)n

t + σ̂′2(j, j′)n
t + σ̂′3(j, j′)n

t
)

, if αt ≡ 1;

where

σ̂′2(j, j′)n
t =

Nn
t −w(3)n

∑
i=0

∆j(Y)n
i+w(3)n

2
∆j′(Y)n

i+w(3)n
3
,

σ̂′3(j, j′)n
t = − 1

Nn
t

ReMeDI(Y; j)n
t ReMeDI(Y; j′)n

t .
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