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APPENDIX C

IN THIS APPENDIX, we elaborate on the results mentioned in Section 6 of “Cheap Talk
With Transparent Motives” and discuss some additional relevant results.

C.1. Proof of Proposition 1: Effective Communication

We now operationalize Chakraborty and Harbaugh’s (2010) insight of using fixed-point
reasoning to show effective communication is possible, proving Proposition 1. We begin
by representing the prior as an average of three posterior beliefs, μ1, μ2, and μ3, such
that the three induced estimates of the statistic are noncollinear; one can always find such
beliefs because the statistic is itself multivariate. Next, we find a circle of beliefs around
the prior within the convex hull of {μ1�μ2�μ3}. By construction, each belief on said circle
yields a different estimate of the statistic. We then document a generalization of the one-
dimensional Borsuk–Ulam theorem, which yields an antipodal pair of beliefs μ and μ′ on
the circle such that V (μ)∩ V (μ′) is nonempty. Therefore, we can split the prior across μ
and μ′ to obtain an equilibrium information policy.

In what follows, define the circle S = {(x� y) ∈ R2 : x2 + y2 = 1}, and let Tμ denote the
estimate

∫
T dμ of statistic T for any belief μ ∈ �Θ.

LEMMA 8: Let T be a multivariate statistic. Then, a continuous ϕ : S → �Θ exists such
that every z ∈ S has:

1. 1
2ϕ(z)+ 1

2ϕ(−z)= μ0;
2. T(ϕ(z)) �= T(ϕ(ẑ)) for every ẑ ∈ S \ {z};
3. 2ϕ(z)−μ0 ∈ �Θ.

PROOF: By assumption, T(Θ) is noncollinear, and so Tμ0 /∈ co{Tθ1�Tθ2} for some
distinct θ1� θ2 ∈ Θ. Because μ0 has full support, both μ0(N1) > 0 and μ0(N2) > 0 for any
open neighborhoods N1 of θ1 and N2 of θ2. We can then define the conditional distri-
bution μi(·) := μ0(Ni∩(·))

μ0(Ni)
for i ∈ {1�2}. Letting N1, N2 be sufficiently small neighborhoods,

we may assume N1 ∩ N2 = ∅, Tμ0 /∈ co{Tμ1�Tμ2}, and μ(N1 ∪ N2) < 1. Therefore, let-
ting μ3(·) := μ0((·)\(N1∪N2))

1−μ0(N1∪N2)
, we know that μ0 ∈ co{μ1�μ2�μ3}, that μ0 is not in the convex

hull any two of {μ1�μ2�μ3}, and that the three points {Tμ1�Tμ2�Tμ3} are affinely inde-
pendent. So μ0 = ∑3

i=1 λiμi for some μ1�μ2�μ3 ∈ �Θ and λ1�λ2�λ3 ∈ (0�1). Therefore,
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letting ε := 1
2 min{λ1�λ2�λ3}, define the map

ϕ : S → �Θ�

(x� y) 	→ (λ1 + εx)μ1 + (λ2 + εy)μ2 + [
λ3 − ε(x+ y)

]
μ3	

Affine independence of Tμ1, Tμ2, Tμ3 ensures T ◦ϕ is injective, and the other desiderata
for ϕ are obviously satisfied. Q.E.D.

Next, we document a generalization of the one-dimensional Borsuk–Ulam theorem.

LEMMA 9: Suppose f : S → R is upper semicontinuous, and every z ∈ S has max{f (z)�
f (−z)} ≥ 0. Then, some z ∈ S exists such that min{f (z)� f (−z)} ≥ 0.

PROOF: Define f̃ : S → R by letting f̃ (z) := f (−z). By hypothesis, both f and f̃ are
upper semicontinuous and {f̃ < 0} ⊆ {f ≥ 0}. Assume for a contradiction that the lemma
fails, so that {f̃ ≥ 0} ⊆ {f < 0}. Because {f̃ < 0} ∪ {f̃ ≥ 0} = S and {f ≥ 0} ∩ {f < 0} = ∅,
these containments in fact imply {f̃ < 0} = {f ≥ 0} and {f̃ ≥ 0} = {f < 0}. But (given the
definition of f̃ ) the two sets would both be empty if either were, and so would fail to cover
S. Therefore, the set {f ≥ 0} is a nonempty clopen proper subset of the connected space
S, a contradiction. Q.E.D.

We now complete the proof of the generalization of Chakraborty and Harbaugh’s
(2010) Theorem 1.

PROOF OF PROPOSITION 1: First, let ϕ : S → R be as delivered by Lemma 8. Next, de-
fine the function

f : S → R�

z 	→ maxV
(
ϕ(z)

) − minV
(
ϕ(−z)

)
	

Two properties of f are immediate. First, f is upper semicontinuous because V is up-
per hemicontinuous. Second, any z ∈ S satisfies f (z) + f (−z) ≥ 0 because maxV ≥
minV . Therefore, Lemma 9 delivers z ∈ S with f (z)� f (−z) ≥ 0. That is, maxV (ϕ(z)) ≥
minV (ϕ(−z)) and maxV (ϕ(−z)) ≥ minV (ϕ(z)). Said differently (recall V is convex-
valued), V (ϕ(z)) ∩ V (ϕ(−z)) �= ∅. Lemma 1 then guarantees the existence of an equi-
librium that generates information policy p = 1

2δϕ(z) + 1
2δϕ(−z). In particular, Tμ is not

p(μ)-a.s. constant. Q.E.D.

Just as Proposition 1 generalizes Chakraborty and Harbaugh’s (2010) Theorem 1, the
following result generalizes their Theorem 2.

COROLLARY 6: Let T be any statistic, and suppose ũ : coT(Θ) → R is a strictly quasicon-
vex function such that v(μ) = ũ(Tμ) for every μ ∈ �Θ. If T is multivariate, an S-beneficial
equilibrium exists.

Before proving this result, we note the result follows immediately from Proposition 1
under the additional hypothesis that R has a unique best response to every belief—as
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assumed in Chakraborty and Harbaugh (2010). Indeed, following Chakraborty and Har-
baugh’s (2010) argument, strict quasiconvexity of ũ would imply the binary-message equi-
librium constructed above is S-beneficial. The below proof for the general case is similar
in spirit, although one additional step is needed.

PROOF OF COROLLARY 6: Again, let ϕ : S → R be as delivered by Lemma 8. Now, de-
fine f := v ◦ ϕ − v(μ0) : S → R, which is upper semicontinuous because v is. Moreover,
for any z ∈ S, the distinct estimates Tϕ(z) and Tϕ(−z) have Tμ0 as their midpoint, and
so max{f (z)� f (−z)} ≥ 0 by quasiconvexity of ũ. Applying Lemma 9 to f then delivers a
z ∈ S such that v ◦ϕ(z)� v ◦ϕ(−z) ≥ v(μ0).

By Lemma 8 Part 3, both μ := 2ϕ(z) − μ0 and μ′ := 2ϕ(−z) − μ0 are in �Θ. Because
Tϕ(z) = 1

2Tμ+ 1
2Tμ0, strict quasiconvexity of ũ delivers the following inequality chain:

v(μ0)≤ v ◦ϕ(z)= ũ
(
Tϕ(z)

)
< max

{
ũ(Tμ)� ũ(Tμ0)

} = max
{
v(μ)� v(μ0)

}
	

It follows v(μ) > v(μ0). By the same argument, v(μ′) > v(μ0). Thus, the information
policy p = 1

2δμ + 1
2δμ′ secures min{v(μ)� v(μ′)} > v(μ0). The result then follows from

Theorem 1. Q.E.D.

C.2. The Equilibrium Payoff Set

In this subsection, we briefly comment on how our tools, and the belief-based approach
more broadly, can generate a more complete picture of the world of cheap talk with state-
independent S preferences. As will be clear, the results outlined herein are all straightfor-
ward to derive given earlier results in the paper.

C.2.1. Other Sender Payoffs

Following the recent literature on communication with S commitment, our focus has
largely been on high equilibrium S values, that is, those providing payoffs at least as high
as those attainable under uninformative communication. However, the tools developed
in our paper work equally well to characterize bad sender payoffs. Indeed, the proof of
Lemma 1 used no special features of V other than it being a Kakutani correspondence,
which −V is as well. Therefore, our game has the same equilibrium distributions over
A×Θ as the game with S objective −uS . To deliver the mirror-image versions of our main
results, define the value function from S-adversarial tiebreaking, w := minV : �Θ→ R.

Theorem 1 implies a sender payoff s ≤ w(μ0) is an equilibrium payoff if and only if
some p ∈ I(μ0) exists such that p{w ≤ s} = 1. Combining this observation with the orig-
inal statement of the securability theorem tells us s ∈ R is an equilibrium S payoff if and
only if p+�p− ∈ I(μ0) exist such that p+{v ≥ s} = p−{w ≤ s} = 1. An easy consequence is
that the equilibrium S payoff set is convex, which we document in Corollary 3. Corollary 1
has a mirror image as well, telling us the set of S equilibrium payoffs is exactly[

min
p∈I(μ0)

supw(suppp)� max
p∈I(μ0)

infv(suppp)
]
	

Note convexity of the set of attainable S payoffs is special to the case in which S’s payoffs
are state independent; indeed, the leading example of Crawford and Sobel (1982) does
not share this feature.
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The mirrored counterpart of our geometric Theorem 2 is that the lowest S payoff attain-
able in equilibrium is w(μ0), where w is the quasiconvex envelope of w, that is, the point-
wise highest quasiconvex and lower semicontinuous function that minorizes w. Therefore,
we can geometrically characterize S’s equilibrium payoff set as [w(μ0)� v̄(μ0)].
C.2.2. Receiver Payoffs

Our most powerful tools (the securability theorem and its descendants) pertain to S
payoffs. However, the belief-based approach (i.e., Lemma 1) can be used to describe
R payoffs as well. Indeed, let vR : �Θ → R be R’s value function, given by vR(μ) :=
maxa∈A

∫
Θ
uR(a� ·)dμ. It follows from R’s interim rationality that any equilibrium that

generates outcome (p� s) will deliver a payoff of r = ∫
�Θ

vR dp to R.
Given equilibrium S payoff s, we can then more explicitly derive the set of equilibrium

R payoffs compatible with an equilibrium in which S gets payoff s. Let

Bs := {w ≤ s ≤ v} =
{
μ ∈ �Θ : ∃a+� a− ∈ arg max

a∈A

∫
Θ

uR(a� ·)dμ s.t. uS(a−)≤ s ≤ uS(a+)
}
	

Then, (s� r) is an equilibrium payoff profile if and only if r = ∫
�Θ

vR dp for some p ∈
I(μ0) ∩ �(Bs). The best such R payoff (given s) is given by v̂sR(μ0), where vsR : Bs → R is
the restriction of vR and v̂sR : coBs → R is the concave envelope of vsR.

C.2.3. Implementing Equilibrium Payoffs

In addition to their role in proving Theorem 1, barely securing policies generate a
straightforward way of implementing any equilibrium S payoff.41 If S could commit, we
could apply the revelation principle42 to implement any S commitment payoff with a com-
mitment protocol in which S makes a pure action recommendation to R, and R always
complies. Using barely securing policies, we can show a similar result holds with cheap
talk, with one important caveat: R must be allowed to mix. To state this result, for any S
strategy σ , define Mσ as the set of messages in σ ’s support.43

PROPOSITION 2: Fix some S payoff s. Then, the following are equivalent:
1. s is generated by an equilibrium.
2. s is generated by an equilibrium with Mσ ⊆ �A and ρ(α)= α ∀α ∈Mσ .
3. s is generated by an equilibrium with Mσ ⊆ A and ρ(a|a) > 0 ∀a ∈Mσ .

The proposition suggests two ways in which one can implement a payoff of s via
incentive-compatible recommendations. The first way has S giving R a mixed action rec-
ommendation that R always follows. The second way has S giving R a pure action recom-
mendation that R sometimes follows. Both ways can result in R mixing.

That 1 implies 2 follows from standard revelation principle logic. To prove 1 implies
3,44 we start with a minimally informative information policy that secures s. Because p
is minimally informative, it must barely secure s, meaning (p� s) is an equilibrium. Let E

41For S payoffs s ≤ minV (μ0), we use the mirror image of barely securing policies, that is, information
policies p such that {minV (·)≤ s} ∩ co{μ�μ0} = {μ} holds for p-a.e. μ.

42See, for example, Myerson (1986), Kamenica and Gentzkow (2011), and Bergemann and Morris (2016).
43That is, let Mσ = ⋃

θ∈Θ suppσ(·|θ).
44The equivalence between 1 and 3 echoes an important result of Bester and Strausz (2001), who studied

a mechanism-design setting with one agent, finitely many types, and partial commitment by the principal.
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be Part 2’s implementation of (p� s), and take a(μ) to be some S-preferred action among
all those that R plays in E at belief μ. By minimality of p, a(·) must be p-essentially
one-to-one, because pooling any posteriors that induce the same a(·) value would yield
an even less informative policy that secures s. Thus, a(·) takes distinct beliefs to distinct
(on-path) actions: R can infer μ from a(μ). One can then conclude the proof by having S
recommend a(μ) and R respond to a(μ) as he would have responded to μ under E .

The formal proof is below.

PROOF OF PROPOSITION 2: Because 2 and 3 each immediately imply 1, we show the
converses.

Suppose s is an equilibrium S payoff. Now take some p ∈ I(μ0) Blackwell-minimal
among all policies securing payoff s, and let D := supp(p) ⊆ �Θ.45 Lemma 4 guarantees
(p� s) is an equilibrium outcome, say, witnessed by equilibrium E1 = (σ1�ρ1�β1). Letting
α = αs : D → �A be as delivered by Lemma 2, we may assume ρ1(·|m) = α(·|β(m)). In
particular, ρ1 specifies finite-support play for every message.

Let M := margMPE1 and X := supp[M ◦ ρ̂−1] ⊆ �A, and fix arbitrary (α̂� μ̂) ∈ supp[M ◦
(ρ1�β1)

−1]; in particular, α̂ ∈ X . By continuity of uR and receiver incentive compatibility,
α̂ ∈ arg maxα∈�A uR(α ⊗ μ̂). Defining ρ′ : M → �A (resp. β′ : M → �Θ) to agree with ρ1

(β1) on path and take value α̂ (μ̂) off path, an equilibrium E ′ = (σ1�ρ
′�β′) exists such that

PE ′ = PE1 and ρ′(·|m) ∈ X for every m ∈M .
Now define

σ2 :Θ → �X ⊆ �M�

θ 	→ σ1(·|θ) ◦ ρ′−1�

ρ2 :M → X ⊆ �A�

m 	→
{
m :m ∈X�

α̂ :m /∈X�

β2 :M → �Θ�

m 	→
{
Em∼M

[
β(m)|ρ(m)

] :m ∈X�

μ̂ :m /∈X	

By construction, (σ2�ρ2�β2) is an equilibrium that generates outcome (p� s),46 proving 1
implies 2.

Now define the (A- and D-valued, respectively) random variables a, μ on 〈D�p〉 by let-
ting a(μ) := arg maxa∈suppα(μ) uS(a) and μ(μ) := μ for μ ∈ D. Next define the conditional
expectation f := Ep[μ|a] : D→ D, which is defined only up to a.e.-p equivalence. By con-
struction, the distribution of μ is a mean-preserving spread of the distribution of f. That
is, p is weakly more informative than p ◦ f−1. By hypothesis, a(μ) is incentive compatible

Applying a graph-theoretic argument, they showed one can restrict attention to direct mechanisms in which
the agent reports truthfully with positive probability. Although the proof techniques are quite different, a
common lesson emerges. Agent mixing helps circumvent limited commitment by the principal: in Bester and
Strausz’s (2001) setting, by limiting the principal’s information, and in ours, by limiting her control.

45Some policy secures s if s is an equilibrium payoff. The set of such policies is closed (and so compact)
because v is upper semicontinuous. Therefore, because the Blackwell order is closed-continuous, a Blackwell-
minimal such policy exists.

46It generates (p̃� s) for some garbling p̃ of p. Minimality of p then implies p̃ = p.
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for R at every μ ∈ D. But D = supp(p ◦ f−1), which implies p ◦ f−1 secures s. But mini-
mality of p implies p ◦ f−1 = p. So f = Ep[μ|a] and μ have the same distribution, which
implies f =μ a.s.-p. By definition, f is a-measurable, so that Doob–Dynkin delivers some
measurable b :A→ D such that f = b ◦ a.

Summing up, we have some measurable b :A→ D such that b◦a =a	e	−p μ. Now define

σ3 :Θ → �A⊆ �M�

θ 	→ σ2(·|θ) ◦ (a ◦β2)
−1�

ρ3 :M → X ⊆ �A�

m 	→
{
α
(
b(m)

) :m ∈ A�

α̂ :m /∈ A�

β3 :M → �Θ�

m 	→
{

b(m) :m ∈ A�

μ̂ :m /∈ A	

By construction, (σ3�ρ3�β3) is an equilibrium that generates outcome (p� s), proving 1
implies 3. Q.E.D.

Proposition 2 shows some forms of communication are without loss as far as S payoffs
are concerned. First, any S equilibrium payoff is attainable in an equilibrium in which S
recommends mixed actions that are (on path) followed exactly. This equivalence extends
to equilibrium payoff pairs, with the same argument: Pooling messages that lead to the
same R behavior relaxes incentive constraints and generates the same joint distribution
over actions and states, preserving payoffs. Second, any S equilibrium payoff is attainable
in an equilibrium in which S recommends pure actions that are followed with positive
probability. Whether this result holds in general for payoff pairs is an open question. It is
easy to see why, at least, our argument does not go through as stated. The proof begins by
considering an information policy that gives no “extraneous” information to R, subject to
securing the relevant S value. But taking information away from R in this way can result
in a payoff loss.

Still, we can leverage Lemma 1 to show a result of a similar spirit: To implement an
equilibrium payoff profile, it is sufficient for R to only use binary mixed actions, the sup-
port of which is S’s message.

PROPOSITION 3: Fix some payoff profile (s� r). Then, the following are equivalent:
1. (s� r) is generated by an equilibrium.
2. (s� r) is generated by an equilibrium with Mσ ⊆ �A and ρ(α)= α ∀α ∈Mσ .
3. (s� r) is generated by an equilibrium with Mσ ⊆ { 1

2δa + 1
2δa′ : a� â ∈ A} and

supp[ρ(α)] = supp(α) ∀α ∈Mσ .

We can interpret 3 as describing equilibria in which S tells R, “Play a or â,” for some
pair of actions, but does not suggest mixing probabilities.

To see the equivalence between 1 and 3, Lemma 2 from the Appendix can be used to
show equilibrium payoff profile (s� r) can be implemented with an equilibrium in which
R only ever uses pure actions or binary-support mixtures, with the latter only being used
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when S is not indifferent between the two supported actions. Without loss, say such equi-
librium is as in 2, with S suggesting an incentive-compatible mixture to R. But S rational-
ity implies no two on-path recommendations can have the same support, because then S
would have an incentive to deviate to the one putting a higher probability on the preferred
action. Therefore, the same behavior could be induced by having every message replaced
with a uniform distribution over its (at most binary) support, and the result follows.

With finitely many actions, Proposition 3 yields an a priori upper bound on the number
of distinct messages required in equilibrium, similar to Proposition 2. Still, the upper
bound of Proposition 2 is significantly smaller: Whereas Proposition 2 says no more than
n := |A| messages are required to span the set of equilibrium S values, Proposition 3
guarantees any equilibrium payoff pair can be attained with at most n(n−1)

2 messages.

C.3. Long Cheap Talk

Let us define the long-cheap-talk game. In addition to the objects in our model
section, R has some message space M̃ , which we assume is compact metrizable. Let
H<∞ := ⊔∞

t=0(M × M̃)t , H∞ := (M × M̃)N, and Ω := H∞ × A × Θ. In a long-cheap-talk
game, S first sees the state θ ∈ Θ. Then, at each time t ∈ Z+, players send simultaneous
messages: S sends mt ∈ M and R sends m̃t ∈ M̃ . Finally, after seeing the sequence of
messages, R chooses an action a ∈ A. Formally, a (behavior) strategy for S is a measur-
able function σ : Θ×H<∞ → �M , and a strategy for R is a pair of measurable functions
(σ̃�ρ), where σ̃ : H<∞ → �M̃ and ρ : H∞ → �A. These maps induce (together with the
prior μ0) a unique distribution, Pσ�σ̃�ρ ∈ �Ω, which induces payoff uS(margAPσ�σ̃�ρ) and
uR(margA×ΘPσ�σ̃�ρ) for S and R, respectively.

C.3.1. Extra Rounds Cannot Help the Sender

Below, we use our Theorem 1 to show that any S payoff attainable under long cheap
talk is also attainable under one-shot communication.47

PROPOSITION 4: Every sender payoff attainable in a Nash equilibrium of the long-cheap-
talk game is also attainable in a perfect Bayesian equilibrium of the one-shot cheap-talk game.

To prove the proposition, fix a payoff s∗ that S cannot attain in the one-shot game, and
use our securability theorem to construct a continuous biconvex function on �Θ×R that
is strictly positive at (μ0� s

∗) and zero on V ’s graph. Mimicking Appendix A.3 of Aumann
and Hart (2003), we then take an arbitrary equilibrium of the long-cheap-talk game, and
construct a bimartingale {μk� sk}k, that is, a martingale over the graph of V such that only
one coordinate ever moves at a time.48 The bimartingale converges to a measure over
V ’s graph and has a time-zero value of (μ0� s0) = (μ0� s0), where s0 is S’s payoff in said
equilibrium. We then follow the easy direction of Aumann and Hart’s (1986) character-
ization of the bi-span of a set, noting the expectations of continuous biconvex functions
of a bimartingale grow over time, and so the function constructed at the beginning of the

47To ease notational overhead, we employ Nash equilibrium as our solution concept in studying long cheap
talk, and so have no need to define a belief map for the receiver. We therefore obtain a stronger result, because
any perfect Bayesian equilibrium is also Bayes Nash.

48Although the bimartingale we construct is related to the stochastic process of pairs of R beliefs and S
payoffs, the two processes are not the same: Each round of communication corresponds to two periods under
the bimartingale. Aumann and Hart (2003) used the same construction.
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proof assigns (μ0� s0) a weakly negative value. It follows that (μ0� s0) �= (μ0� s
∗). Because

the chosen long-cheap-talk equilibrium was arbitrary, no such equilibrium can yield S a
payoff of s∗.

Other than our construction of a biconvex function, the proof follows the logic pre-
sented in Aumann and Hart (2003) and Aumann and Hart (1986). Because both papers
assume a finite state space, the results of Aumann and Hart (1986) and Aumann and Hart
(2003) do not apply directly. We therefore provide a self-contained proof below.

PROOF OF PROPOSITION 4: Take any s∗ ∈ R that is not an equilibrium payoff for prior
μ0 in the one-shot cheap-talk game. In particular, s∗ /∈ V (μ0). Focus on the case of
s∗ > v∗(μ0), the mirror-image case being analogous. Fix some payoff s′ ∈ (v∗(μ0)� s∗). Let-
ting B be the closed convex hull of v−1[s′�∞), Theorem 1 tells us μ0 /∈ B. Hahn–Banach
then gives an affine continuous ϕ : �Θ → R such that ϕ(μ0) > maxϕ(B). Now define the
function49

F : �Θ×R → R+�

(μ� s) 	→ [
ϕ(μ)− maxϕ(B)

]
+
[
s − s′]

+	

Observe that F is biconvex and continuous. Moreover, F(μ� s) = 0 whenever s ∈ V (μ):
either s < s′ because μ /∈ B, or μ ∈ B and so ϕ(μ) ≤ maxϕ(B).

Now consider any Nash equilibrium (σ� (σ̃�ρ)) of the long-cheap-talk game. Let us
define several random variables on the Borel probability space 〈Ω�Pσ�σ̃�ρ〉. For ω =
((mt� m̃t)

∞
t=0� a�θ) ∈Ω, let θ(ω) := θ and a(ω) := a; and, for t ∈ Z+, let m2t(ω) :=mt and

m2t+1(ω) := m̃t . From these, we define a filtration (Fk)k∈K with index set K = Z+ ∪ {∞}
by letting each Fk be the σ-algebra generated by {m�}�∈Z+��<k. Finally, for each k ∈ K,
define the (�Θ-valued and R-valued, respectively) random variables μk := E[δθ|Fk] and
sk := E[uS(a)|Fk]; and let Pk ∈ �(�Θ×R) denote the distribution of (μk� sk). Note that,
by construction, P0 has a distribution δ(μ0�s0) for some s0 ∈ R. Our task is to show s0 �= s∗.

In what follows, take any statements about the stochastic processes (μk)k∈K and (sk)k∈K
to hold Pσ�σ̃�ρ-almost surely. By construction, μ2t+2 = μ2t+1 for every t ∈ Z+, and both
(μk)k∈K and (sk)k∈K are martingales. By S rationality, s2t = E[s2t+1|F2t+1] = s2t+1 for ev-
ery t ∈ Z+. Because F is biconvex and continuous,

∫
F dP0 ≤ ∫

F dP1 ≤ · · · . In particu-
lar,

∫
F dPk ≥ ∫

F dP0 = F(μ0� s0) for every k ∈ Z+. By the martingale convergence the-
orem, sk converges to s∞. By the same, every continuous g : Θ → R has

∫
Θ
gdμk con-

verging to
∫
Θ
gdμ∞; so μk converges (weak*) to μ∞. But Pk converges (weak*) to P∞.

Therefore,
∫
F dP∞ = limk→∞

∫
F dPk ≥ F(μ0� s0). By R rationality, s∞ ∈ V (μ∞), imply-

ing F(μ∞� s∞) = 0, so that
∫
F dP∞ = 0, too. Therefore, F(μ0� s0) ≤ 0 < F(μ0� s∗). So

s0 �= s∗, as required. Q.E.D.

C.3.2. Extra Rounds Can Help the Receiver

Unlike S, R may benefit from long cheap talk when S’s preferences are state in-
dependent. To see this, consider the following example, which we describe informally.
Let Θ = {0�1}; μ0(1) = 1

8 ; A = {��b� t� r}; uS(b) = 0, uS(�) = 1, uS(t) = uS(r) = 2; and
uR(a�θ) = −(za − θ)2, where z� = 0, zr = 1, and zb = zt = 1

2 . The associated value corre-
spondence V and prior belief μ0 are depicted in Figure 3.

49Recall that [·]+ := max{·�0}.
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FIGURE 3.—S’s value correspondence in an example where R strictly benefits from long cheap talk.

Because every μ ∈ �Θ with μ(1) ≤ μ0(1) has V (μ) = {1}, Lemma 1 immediately im-
plies every equilibrium outcome (p� s) of the one-shot cheap-talk game has s = 1 and
p{μ : μ(1) ≤ 3

4 } = 1. In particular, every equilibrium of the long-cheap-talk game gener-
ates a “mean outcome” of y0, as depicted in the figure.

Given the above observations, an equilibrium exists with one round of communication
with R beliefs supported on {0� 3

4 }, and every other one-shot equilibrium generates less
information (in a Blackwell sense) for R; we can depict this equilibrium as generating
support {x1� y1} in the figure. But now, with a jointly controlled lottery, this y1 can be
split in the next round to {x2� y2}.50 Finally, S can provide additional information in the
next round to split y2 into {x3� y3}. Because action t is optimal for R at belief 3

4 (i.e.,
that associated with y2) but not at belief 1 (i.e., that associated with y3), this additional
information is instrumental to R. Therefore, our equilibrium is strictly better for R than
any one-round equilibrium.

Thus, although additional rounds of communication do not change S’s equilibrium pay-
off set, the static and long-cheap-talk models are economically distinct, even under state-
independent S preferences.

C.4. Optimality of Full Revelation

This section presents formal results discussed in Section 6.4. This section’s main re-
sult is Proposition 5, which shows two things when v is nowhere quasiconcave: First, full
revelation is an S-favorite equilibrium; and second, every S-favorite equilibrium entails
full revelation if the state is binary or R’s best response is unique for every belief. We also
demonstrate, via an example, that nowhere quasiconcavity is insufficient for full revelation
to be uniquely S-optimal. The example also illustrates S-unfavorable tie breaking can cre-
ate a benefit from commitment even when full revelation is both S’s favorite equilibrium
and S’s favorite commitment policy. We conclude the section by discussing conditions un-
der which v is nowhere quasiconcave. In particular, we show a strictly quasiconvex v is
nowhere quasiconcave if and only if it is nowhere quasiconcave on each of the simplex’s
one-dimensional extreme subsets (Corollary 7).

50Informally, following Aumann and Hart (2003), each player could toss a fair coin (independent of the
state for S) and announce its outcome. Then, the players move to x2 if the coins come up the same, and
y2 otherwise. Such jointly controlled randomization could be done simultaneously with the information that S
initially conveys, so that our three-round example can be converted into a slightly more complicated two-round
example.
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The next few lemmas serve as preliminary steps toward Proposition 5. Lemma 10 pro-
vides a way of constructing a measurable correspondence. Using this lemma, we show
every non-full revelation commitment policy can be improved upon when v is nowhere
concave, by splitting non-extreme beliefs. Similarly, one can split such beliefs to weakly
increase a policy’s secured value whenever v is nowhere quasiconcave (Lemma 11). An
immediate consequence is that under nowhere quasiconcavity, full revelation secures S’s
highest equilibrium value (Lemma 12). Nowhere quasiconcavity also implies S can do bet-
ter than no information at every non-extreme belief (Lemma 13). We then combine these
lemmas with the observation that the payoff secured by full revelation depends only on
the prior’s support to show full revelation barely secures S’s highest equilibrium payoff.

We now proceed with proving Lemma 10. This lemma is based on Aliprantis and Bor-
der’s (2006) discussion concerning measurability of correspondences. All measurability
statements are made with respect to the appropriate Borel σ-algebras.

LEMMA 10: Let X and Y be compact metrizable spaces, Ξ : X → R upper semicontinu-
ous, and Υ : Y → R measurable. Then,

� : Y ⇒ X�

y 	→ Ξ−1[Υ(y)�∞)�

is weakly measurable.

PROOF: Recall that a nonempty-compact-valued correspondence into X is weakly
measurable if and only if it is measurable when viewed as a KX -valued function (Theo-
rem 18.10 from Aliprantis and Border (2006)).51 We now proceed with proving the lemma.
To begin, let z̄ = maxΞ(X), and observe that

Λ : (−∞� z̄] ⇒ X�

z 	→ Ξ−1[z�∞) = {Ξ ≥ z}�
is nonempty-compact-valued because Ξ is upper semicontinuous. We claim below that Ξ
is weakly measurable. It follows that y 	→ Λ ◦ Υ(y) is a measurable function from Y into
KX , and so is weakly measurable when viewed as a correspondence. Noting � = Λ ◦ Υ
completes the proof.

We now argue Ξ is weakly measurable. To do so, consider any open G⊆ X . The lower
inverse image of G under Λ is

Λl(G)= {
z ≤ z̄ :Λ(z)∩G �= ∅}

= {
z ≤ z̄ : {Ξ ≥ z} ∩G �= ∅}

= {
z ≤ z̄ :Ξ(G)� (−∞� z)

}
�

which is an interval. Q.E.D.

When v is nowhere (quasi)concave, Lemma 10 gives a splitting of each non-extreme
belief that increases v’s expected (secured) value. We present this result below.

51KX denotes all nonempty compact subsets of X , equipped with the Hausdorff metric.
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LEMMA 11: Suppose v is nowhere (quasi)concave. Then, a measurable selector r of
I : �Θ ⇒ ��Θ exists such that

∫
vdr(μ) > v(μ) (infv(supp r(μ)) > v(μ)) for all μ ∈

�Θ\{δθ}θ∈Θ.

PROOF: Observe that v̂(·) (v̄(·)) is upper semicontinuous and therefore measurable.
Moreover, p 	→ ∫

vdp (p 	→ infv(suppp)) is an upper semicontinuous function from
��Θ to R. Therefore, Lemma 10 implies μ 	→ {p ∈ ��Θ : ∫

vdp ≥ v̂(μ)} (μ 	→ {p ∈
��Θ : infv(suppp) ≥ v̄(μ)}) is weakly measurable. Noting I is also weakly measurable
(by upper hemicontinuity) implies

μ 	→ I(μ)∩
{
p ∈ ��Θ :

∫
vdp ≥ v̂(μ)

}
(
μ 	→ I(μ)∩ {

p ∈ ��Θ : infv(suppp)≥ v̄(μ)
})

is weakly measurable. Because the latter correspondence is nonempty-valued, it ad-
mits a measurable selector, r, by the Kuratowski and Ryll–Nardzewski selection theo-
rem (Theorem 18.13 from Aliprantis and Border (2006)). The result follows from not-
ing v̂(μ) > v(μ) (v̄(μ) > v(μ)) holds for all μ ∈ �Θ\{δθ}θ∈Θ whenever v is nowhere
(quasi)concave (appealing to Corollary 1). Q.E.D.

Lemma 11 above immediately implies full revelation is S’s uniquely optimal commit-
ment protocol whenever v is nowhere concave. The reason is that any other information
policy can be strictly improved upon via the splitting generated by the lemma. Lemma 11
also implies that when v is nowhere quasiconcave, full revelation secures S’s maximal
equilibrium. We prove the latter result in the lemma below.

LEMMA 12: If v is nowhere quasiconcave, v̄(μ)= infθ∈supp(μ) v(δθ) for all μ ∈ �Θ; that is,
full information secures S’s maximal equilibrium value.

PROOF: Fix μ ∈ �Θ. A unique pF ∈ I(μ) exists with pF{δθ}θ∈Θ = 1; clearly, pF has
support {δθ}θ∈supp(μ). By Corollary 1, we know v̄(μ) is the highest securable value at prior
μ. Thus, letting P := {p ∈ I(μ) : p secures v̄(μ)}, our aim is to show pF ∈P . Corollary 1
tells us P is nonempty, and upper semicontinuity of v implies P is closed. The mean-
preserving spread order being closed-continuous, P contains some maximal element, p,
with respect to this order. Letting r be as delivered by Lemma 11, the policy

∫
r dp belongs

to P as well.52 But maximality of p requires that p = ∫
r dp, implying p = pF . Q.E.D.

The next lemma establishes that under nowhere quasiconcavity, S can always benefit
from cheap talk.

LEMMA 13: If v is nowhere quasiconcave, v̄(μ) > v(μ) for all μ ∈ �Θ\{δθ}θ∈Θ.

PROOF: Fix any μ ∈ �Θ\{δθ}θ∈Θ. By hypothesis, μ′�μ′′ ∈ �Θ and λ ∈ (0�1) exist such
that μ = λμ′ + (1 − λ)μ′′ and v(μ) < v(μ′)� v(μ′′). Therefore, p = λδμ′ + (1 − λ)δμ′′ ∈
I(μ) secures a value strictly above v(μ), and so v̄(μ) > v(μ) by Theorem 1. Q.E.D.

We now prove our main result regarding nowhere quasiconcavity.

52Here,
∫
r dp ∈ I(μ) is given by [∫ r dp](D) := ∫

r(D|·)dp for Borel D⊆ �Θ.
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PROPOSITION 5: Suppose v is nowhere quasiconcave. Then,
1. Some S-preferred equilibrium entails full information.
2. If Θ is binary, or if R has a unique best response to every belief, every S-preferred equi-

librium entails full information.

PROOF: We begin by showing full revelation barely secures v̄(μ0). Fix some θ ∈
suppμ0. Consider any μ ∈ co{δθ�μ0}\{δθ}. We argue v̄(μ0) > v(μ), and so v−1[v̄(μ0)�
∞) ∩ co{δθ�μ0} = {δθ}, as required. Because the support of μ and μ0 is the same, full
revelation secures the same value for both beliefs. Therefore, Lemma 12 and Lemma 13
yield

v(μ) < v̄(μ)= inf supv
({δθ}θ∈suppμ0

) = v̄(μ0)	

In other words, full revelation barely secures v̄(μ0). The securability theorem (more pre-
cisely, Lemma 4) then delivers the first point.

To show the second part, we claim below v̄(μ) ≤ v̄(μ0) for each μ ∈ �Θ\{δθ}θ∈Θ.
Lemma 13 then implies v(μ) < v̄(μ) ≤ v̄(μ0) for all μ ∈ �Θ\{δθ}θ∈Θ. As such, p ∈ I(μ0)
secures v̄(μ0) only if suppp ⊆ {δθ}θ∈Θ, that is, p provides full information. To conclude
the proof, we note (p� v̄(μ0)) is an equilibrium outcome only if p secures v̄(μ0), meaning
no p other than full revelation can yield S a payoff of v̄(μ0).

All that remains is to show v̄(μ) ≤ v̄(μ0) for all μ ∈ �Θ\{δθ}θ∈Θ. When |Θ| = 2, this
inequality holds with equality by Lemma 12. If R’s best response is unique, v is continuous,
and so every θ ∈Θ has

v(δθ)= lim
n→∞

v

(
n− 1
n

δθ + 1
n
μ0

)
≤ lim

n→∞
v̄

(
n− 1
n

δθ + 1
n
μ0

)
= v̄(μ0)�

where the last equality follows from Lemma 12. The same lemma then implies v̄(μ) =
infv({δθ}θ∈suppμ)≤ v̄(μ0), as required. Q.E.D.

We now provide an example that witnesses two properties. First, it shows nowhere qua-
siconcavity alone is insufficient for uniqueness of full revelation as an S-favorite equilib-
rium. Second, it is possible for S to benefit from commitment despite full revelation being
best for S both with and without commitment.

EXAMPLE 4: Let Θ := {−1�0�1}, A := {0�1} × �Θ, μ∗ := 1
2δ−1 + 1

2δ1, μ0 := 1
2δ0 + 1

2μ
∗,

and H : �Θ→ R+ a continuous and strictly concave function with H(δθ) = 0 ∀θ ∈ Θ. Let
players utilities uS :A → R and uR :A×Θ → R be given by

uS

(
(x� μ̂)

) := xH
(
μ∗) −H(μ̂)

and

uR

(
(x� μ̂)� θ

) := −
∑
θ̃∈Θ

[
μ̂(θ̃)− 1θ̃=θ

]2 − x
(
1 − θ2

)
	

Observe (x� μ̂) is a best response to R belief μ if and only if μ̂ = μ and xμ(0) = 0. There-
fore, the value function is given by v(μ) = H(μ∗)1μ(0)=0 − H(μ). By construction, this
function is strictly quasiconvex because −H is. Appealing to Corollary 7 (see below), the
value function is then nowhere quasiconcave, and so full information is an S-preferred
equilibrium, yielding S payoff min{H(μ∗)�0} = 0.
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Observe that, in an S-preferred equilibrium, R breaks indifferences against S when the
state is nonzero. Therefore, S gets a payoff strictly lower than her commitment value of
1
2H(μ∗). Moreover, full information is not the only S-preferred equilibrium information
policy, because Lemma 1 implies ( 1

2δδ0 + 1
2δμ∗�0) is an equilibrium outcome.

We conclude this section with sufficient conditions for v to be nowhere quasiconcave.
In particular, we show a strictly quasiconvex v is nowhere quasiconcave if and only if it is
nowhere quasiconcave on every one-dimensional extreme subset of �Θ.

COROLLARY 7: Let v be strictly quasiconvex. The following are equivalent:
(i) v is nowhere quasiconcave.

(ii) v|�{θ�θ′} is nowhere quasiconcave for every θ�θ′ ∈Θ.

PROOF: Clearly, (i) implies (ii). That (ii) implies (i) follows from applying Corollary 6
with T(θ) := δθ. Indeed, for any prior μ ∈ �Θ with | suppμ| ≥ 3, Corollary 6’s proof deliv-
ers a pair of beliefs μ′, μ′′ with μ as their midpoint such that v(μ) < v(μ′)� v(μ′′). There-
fore, the definition of nowhere quasiconcavity need only be verified at binary-support
beliefs whenever v is strictly quasiconvex. Q.E.D.
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