THE INSURER'S PROBLEM in the one-period model discussed in Section 3.1 of the paper (administrative costs but no Medicaid) is

$$\max_{\pi^g, \pi^b, \iota^g, \iota^b} \psi \{ \pi^g \theta^g \lambda \iota^g + \gamma I(\iota^g > 0) \}$$

$$+ (1 - \psi) \{ \pi^b \theta^b \lambda \iota^b + \gamma I(\iota^b > 0) \},$$

subject to

$$(PC_i) \quad U(\theta^i, \pi^i, \iota^i) - U(\theta^i, 0, 0) \geq 0, \quad i \in \{g, b\},$$

$$(IC_i) \quad U(\theta^i, \pi^i, \iota^i) - U(\theta^i, \pi^j, \iota^j) \geq 0, \quad i, j \in \{g, b\}, i \neq j,$$

where $\lambda \geq 1$ captures variable costs and $\gamma \geq 0$ captures fixed costs.

Denote consumption of an individual with risk type i as $c_{i \text{NH}}$ in the NH state and c_i^o otherwise. An individual’s utility function is

$$U(\theta^i, \pi^i, \iota^i) = \theta^i u(\omega - \pi^i - m + \iota^i) + (1 - \theta^i) u(\omega - \pi^i)$$

$$= \theta^i u(c_{i \text{NH}}^i) + (1 - \theta^i) u(c_i^o),$$

and the associated marginal rate of substitution between premium and indemnity is

$$\frac{\partial \pi}{\partial \iota}(\theta^i) = - \frac{U_i(\cdot)}{U_{\pi}(\cdot)} = \frac{\theta^i u(c_{i \text{NH}}^i)}{\theta^i u(c_{i \text{NH}}^i) + (1 - \theta^i) u(c_i^o)} \equiv \text{MRS}(\theta^i, \pi^i, \iota^i).$$

Assume that the utility function has the property that $\text{MRS}(\theta^i, \pi^i, \iota^i)$ is strictly increasing in $\theta^i, i \in \{g, b\}$. This is true, for example, if $u(\cdot) > 0$. Under this assumption, which is referred to as the single crossing property, any menu of contracts that satisfies incentive compatibility will have the property that if $\theta^i > \theta^i$, then $\pi^i \geq \pi^i$ and $\iota^i \geq \iota^i$.

© 2019 The Econometric Society https://doi.org/10.3982/ECTA15295
At the optimal menu, Equation (S2) will bind for the good types and Equation (S3) will bind for the bad types. If the optimal menu features positive insurance, then it will also satisfy the two first-order conditions

\[
\begin{align*}
\psi \text{MRS}(\theta_g, \pi_g, \iota_g) + (1 - \psi) \left[\frac{U_\pi(\theta_b, \pi_g, \iota_g)}{U_\pi(\theta_b, \pi_b, \iota_b)} - \frac{U_\pi(\theta_b, \pi_b, \iota_b)}{U_\pi(\theta_b, \pi_b, \iota_b)}\right] \\
= \lambda \psi \theta_g, \\
\text{MRS}(\theta_b, \pi_b, \iota_b) = \lambda \theta_b.
\end{align*}
\]

(S6)

(S7)

When \(\lambda = 1\) and \(\gamma = 0\), the equilibrium menu is standard. This means that it will always be a separating one with bad types receiving full insurance. When \(\lambda > 1\) and/or \(\gamma > 0\), the optimal menu may be a pooling menu. In the case of \(\gamma > 0\) and \(\lambda = 1\), the only type of pooling menu that can arise is a menu consisting of a single \((0, 0)\) contract (a denial). When \(\lambda > 1\), both denials and pooling menus featuring positive insurance can arise. An optimal pooling menu featuring positive insurance must satisfy

\[
\begin{align*}
\text{MRS}(\theta_g, \pi, \iota) = \lambda \eta, \\
U(\theta_g, \pi, \iota) - U(\theta_g, 0, 0) = 0.
\end{align*}
\]

(S8)

(S9)

These two equations can be derived using Equations (S2), (S3), (S6), and (S7), where \(\pi = \pi_g = \pi_b\) and \(\iota = \iota_b = \iota_b\).

For simplicity, the good types’ contract in Figures 1(a) and 1(b) in the paper are illustrated as the optimal pooling contract. Rearranging the first-order conditions, one can show that Equation (S6) is equivalent to

\[
\begin{align*}
\text{MRS}(\theta_g, \pi_b, \iota_b) = \lambda \left[\frac{\psi \theta_g (1 - \psi) + \theta_b A}{\psi + (1 - \psi) B}\right],
\end{align*}
\]

where \(A \equiv U_\pi(\theta_b, \pi_g, \iota_b) / U_\pi(\theta_b, \pi_b, \iota_b)\) and \(B \equiv U_\pi(\theta_b, \pi_g, \iota_b) / U_\pi(\theta_b, \pi_b, \iota_b)\). The figure corresponds to cases where \(A\) and \(B\) are approximately 1.

PROPOSITION S-1: If \(\lambda > 1\), then the optimal menu features incomplete insurance for both types, that is, \(\nu_i < m\) for \(i \in \{b, g\}\).

PROOF: First, note that the slope of the indifference curve at the full insurance level of indemnity always equals \(\theta^i\) or

\[
\begin{align*}
\text{MRS}(\theta^i, \pi^i, m) = \frac{\theta^i u'(\omega - \pi^i - m + \nu^i)}{\theta^i u'(\omega - \pi^i - m + \nu^i) + (1 - \theta^i) u'(\omega - \pi^i)} = \theta^i,
\end{align*}
\]

(S11)

for all \(\pi^i\). Second, note that the slope of the indifference curve declines with the level of indemnity or

\[
\begin{align*}
\frac{\partial \text{MRS}(\theta^i, \pi^i, \nu^i)}{\partial \nu^i} = \frac{-\theta^i (1 - \theta^i) u'(c_{NH}) u'(c_0)}{[\theta^i u'(c_{NH}) + (1 - \theta^i) u'(c_0)]^2} < 0.
\end{align*}
\]

(S12)

The good type is always under-insured, regardless of whether the optimal contract is pooling or separating. To see this for the optimal pooling contract \((\pi^p, \nu^p)\), combine Equation
(S8) with Equation (S11) to obtain the following inequality:

\[\text{MRS}(\theta^g, \pi^p, \nu^p) = \lambda \eta > \theta^g = \text{MRS}(\theta^g, \pi^p, m), \]

which holds when \(\lambda > 1 \) since \(\eta = \psi \theta^g + (1 - \psi) \theta^b \geq \theta^g \). Then it follows from Equation (S12) that \(\nu^p < m \). If instead the equilibrium is separating, then combine the expression for Equation (S10) and Equation (S11) to obtain

\[\text{MRS}(\theta^g, \pi^g, \nu^g) = \lambda \eta > \theta^g = \text{MRS}(\theta^g, \pi^g, m), \]

where \(A = U_\nu(\theta^b, \pi^g, \nu^g)/U_\nu(\theta^b, \pi^b, \nu^b) \) and \(B = U_\pi(\theta^b, \pi^g, \nu^g)/U_\pi(\theta^b, \pi^b, \nu^b) \). The inequality holds for \(\lambda \geq 1 \) since, under the single-crossing property, any incentive compatible separating contract must be such that \(\pi^g < \pi^b \), which implies that

\[\pi^g - \pi^b \leq \text{MRS}(\theta^g, \pi^g, \nu^g)(\nu^b - \nu^g). \]

\[\text{PROPOSITION S-2: There will be no trade, that is, the optimal menu will consist of a single } (0, 0) \text{ contract iff} \]

\[\text{MRS}(\theta^b, 0, 0) \leq \lambda \theta^b, \quad (S13) \]

\[\text{MRS}(\theta^g, 0, 0) \leq \lambda \eta, \quad (S14) \]

both hold.

\[\text{PROOF: Assume that } u \text{ is strictly concave so that } u'(\cdot) > 0 \text{ and } u''(\cdot) < 0 \text{ and } \gamma = 0. \]

First, we will show that if Equations (S13) and (S14) hold, then the optimal menu will be a single \((0, 0)\) contract.

Part 1: We will show that if Equation (S13) holds, then the optimal menu must be a pooling menu. Suppose the optimal menu features a contract for the good types \((\pi^g, \nu^g)\) with \(\nu^g \geq \pi^g \geq 0 \) and a contract for the bad types \((\pi^b, \nu^b)\) with \(\nu^b \geq \pi^b \geq 0 \). The following inequalities hold:

\[\theta^b \lambda \geq \text{MRS}(\theta^b, 0, 0) \geq \text{MRS}(\theta^g, \nu^g, \pi^g). \]

The first inequality is Equation (S13) and the second follows from \(u'(\cdot) > 0, \nu^g \geq \pi^g \geq 0, \) and \(\theta^b > \theta^g \). By single-crossing, we have that \(\pi^b \geq \pi^g \) and \(\nu^b \geq \nu^g \). This together with the fact that \(u \) is strictly concave means that

\[\pi^b - \pi^g \leq \text{MRS}(\theta^g, \nu^g, \pi^g)(\nu^b - \nu^g). \]
Combining (S15) and (S16) yields

\[\pi^b - \pi^g \leq \theta^b \lambda (v^b - v^g), \]

(S17)

and rearranging gives

\[\pi^g - \theta^b \lambda v^g \geq \pi^b - \theta^b \lambda v^b. \]

(S18)

However, this implies that giving the bad types \((\pi^g, \iota^g)\) which they value as equal to \((\pi^b, \iota^b)\) does not reduce (and may increase) profits. The only way this can be is if \((\pi^g, \iota^g) = (\pi^b, \iota^b) \equiv (\pi, \iota)\).

Part 2: We will show that if Equation (S14) holds, then the optimal pooling contract must be a \((0, 0)\) contract. If \(\pi > 0\) and \(\iota > 0\), then the following inequalities hold:

\[\eta \lambda \geq \text{MRS}(\theta^g, 0, 0) > \text{MRS}(\theta^g, \iota, \pi). \]

(S19)

The first inequality is Equation (S14) and the second follows from \(u'(\cdot) > 0\) and \(\iota \geq \pi > 0\). Thus, \((\pi, \iota)\) does not satisfy the first-order optimality conditions for a pooling contract. The pooling contract must be \((0, 0)\).

Now, we will show that if the optimal menu is a single \((0, 0)\) contract, then Equations (S13) and (S14) hold. Suppose Equation (S13) does not hold. Then there exists a menu that gives \((0, 0)\) to good types and a small amount of insurance to bad types with a contract \((\pi^b, \iota^b)\) that satisfies

\[\text{MRS}(\theta^b, \pi^b, \iota^b) \geq \lambda \theta^b, \]

and with a premium chosen such that \(U(\theta^b, \pi^b, \iota^b) = U(\theta^b, 0, 0)\). This menu satisfies all the constraints of the insurer’s problem and delivers higher profits to the insurer. Thus, the optimal menu cannot consist of a single \((0, 0)\) contract.

Suppose Equation (S14) does not hold. Then there exists a pooling contract \((\pi, \iota)\) that gives a small amount of insurance to both types and satisfies

\[\text{MRS}(\theta^g, \pi, \iota) \geq \lambda \eta, \]

with the premium such that \(U(\theta^g, \pi, \iota) = U(\theta^g, 0, 0)\). This menu satisfies all the constraints of the insurer’s problem and delivers higher profits to the insurer. Thus, the optimal menu cannot consist of a single \((0, 0)\) contract.

Q.E.D.

Intuition: No trade equilibria occur when the amount individuals are willing to pay for even a small positive separating or pooling equilibrium is less than the amount required to provide nonnegative profits to the insurer. Condition (S13) rules out profitable separating menus where only bad types have positive insurance, such as the one illustrated in Figure 1(e) in the paper. Condition (S14) rules out profitable pooling and separating menus where both types are offered positive insurance.

S1.2. Additional Material for Section 3.2 of the Paper

The insurer’s problem in the version of the one-period model discussed in Section 3.2 of the paper (Medicaid but no administrative costs) is

\[\max_{\pi^g, \iota^g, \pi^b, \iota^b} \psi \{ \pi^g - \theta^g \iota^g \} + (1 - \psi) \{ \pi^b - \theta^b \iota^b \}, \]

(S20)
subject to

\[(\text{PC}_i) \quad U(\theta^i, \pi^i, \iota^i) - U(\theta^i, 0, 0) \geq 0, \quad i \in \{g, b\}, \quad (S21)\]

\[(\text{IC}_i) \quad U(\theta^i, \pi^i, \iota^i) - U(\theta^i, \pi^j, \iota^j) \geq 0, \quad i, j \in \{g, b\}, i \neq j, \quad (S22)\]

where an individual’s utility function is

\[U(\theta^i, \pi^i, \iota^i) = \int_{\omega}^{\hat{\omega}} \left[\theta^i u(c_{\text{NH}}^i(\omega)) + (1 - \theta^i) u(c_0^i(\omega)) \right] dH(\omega), \quad (S23)\]

with

\[c_0^i(\omega) = \omega - \pi^i, \quad (S24)\]

\[c_{\text{NH}}^i(\omega) = \omega + \text{TR}(\omega, \pi^i, \iota^i) - \pi^i - m + \iota^i. \quad (S25)\]

The Medicaid transfer is defined by Equation (1) in the paper.

We first show that, if \(u'(\cdot) > 0\), the single-crossing property continues to obtain when Medicaid is present and the endowment is stochastic.

LEMMA S-1—Single-Crossing Property: If \(u'(\cdot) > 0\), the single-crossing property holds when the endowment is stochastic and Medicaid is present with \(c_{\text{NH}} > 0\).

PROOF: Denote \(h(\cdot)\) as the density function associated with the distribution \(H(\cdot)\) and define \(\hat{\omega}(\pi, \iota) \equiv c_{\text{NH}} + m - \iota + \pi\). Note that by Equation (1) in the paper, Medicaid transfers are zero for all \(\omega \geq \hat{\omega}\) and positive for all \(\omega < \hat{\omega}\). The proof shows that \(\frac{\partial \text{MRS}(\theta, \pi, \iota)}{\partial \theta} > 0\) for all \(\pi, \iota \in \mathbb{R}^+\). Recall that

\[
\text{MRS}(\theta, \pi, \iota) = -\frac{U_\pi(\theta, \pi, \iota)}{U_{\pi\theta}(\theta, \pi, \iota)},
\]

where

\[
U_\iota(\theta, \pi, \iota) = \theta \int_{\omega}^{\hat{\omega}} u'(c_{\text{NH}}(\omega)) dH(\omega) > 0, \quad (S26)
\]

\[
U_\pi(\theta, \pi, \iota) = -U_\iota(\theta, \pi, \iota) - (1 - \theta)B < 0, \quad (S27)
\]

with \(B \equiv \int_{\omega}^{\hat{\omega}} u'(c_0(\omega)) dH(\omega) > 0\). Differentiating the MRS with respect to \(\theta\) yields

\[
\frac{\partial \text{MRS}}{\partial \theta} = -\frac{U_{\iota\theta}U_\pi - \theta U_{\iota\pi}U_{\pi\theta}}{U_\pi^2}, \quad (S28)
\]

where

\[
U_{\iota\theta} = \theta^{-1}U_\iota > 0, \quad (S29)
\]

\[
U_{\pi\theta} = -U_{\iota\theta} + B = -\theta^{-1}U_\iota + B, \quad (S30)
\]

and the arguments are omitted to save space. Using Equations (S26)–(S30), it is easy to show that

\[
\frac{\partial \text{MRS}}{\partial \theta} = \frac{BU_{\iota\theta}}{\theta U_\pi^2} > 0.
\]

Q.E.D.
Figure S-1 illustrates how the optimal contracts, profits, and Medicaid takeup rates evolve as the Medicaid consumption floor, \(c_{NH} \), is increased from zero in the setup with endowment uncertainty. The figure is divided into five distinct regions. In region 1, the consumption floor is so low that, even if an individual has no private LTCI and the smallest realization of the endowment, he will not qualify for Medicaid. In this region, Medicaid has no effect on the optimal contracts. In region 2, Medicaid influences the contracts even though, in equilibrium, neither type receives Medicaid transfers. In this region, Medicaid has a similar effect to that illustrated in Figure 2(b) in the paper. For some realizations of the endowment, good types qualify for Medicaid if the contract is \((0, \omega)\). This tightens their participation constraint and the contract offered to them has to be improved. A better contract for good types tightens, in turn, the incentive compatibility constraint for bad types. The insurer responds by reducing premiums for both types, and the indemnity of the good types and loads on both types fall. Since Medicaid’s presence has resulted in more favorable contracts for individuals, the insurer’s profits fall. In region 3, Medicaid has the same effects as in region 2 but now, in addition, both types receive Medicaid benefits in equilibrium for some realizations of \(\omega \). As discussed above, the partial insurance of NH shocks via Medicaid results in optimal contracts that feature partial coverage and, in this region, both types have less than full private insurance. Proposition S-3 provides a sufficient condition for this to occur.
Proposition S-3: If \(\omega < c_{NH} \), then the optimal menu features incomplete insurance for both types, that is, \(\iota_i < m \) for \(i \in \{b, g\} \).

Proof: Denote \(h(\cdot) \) as the density function associated with the distribution \(H(\cdot) \) and define \(\hat{\omega}(\pi, \iota) \equiv c_{NH} + m - \iota + \pi \). Note that by Equation (1) in the paper, Medicaid transfers are zero for all \(\omega \geq \hat{\omega} \) and positive for all \(\omega < \hat{\omega} \).

We start by showing that if \(\omega < c_{NH} \), then the optimal contract for any type \(i \in \{b, g\} \), \((\pi^i, \iota^i)\), is such that \(\hat{\omega}(\pi^i, \iota^i) > \omega \). Suppose instead that \(\hat{\omega}(\pi^i, \iota^i) \leq \omega \). In this case, no one of type \(i \) is on Medicaid in equilibrium. The utility function in Section 3.2 of the paper can be stated as

\[
U(\theta^i, \pi^i, \iota^i) = \int_{\omega}^{\pi^i} \left[\theta^i u(c_{NH}) + (1 - \theta^i)u(c_o) \right] dH(\omega),
\]

where \(c_{NH} = \omega - m + \iota^i - \pi^i \) and \(c_o = \omega - \pi^i \), and the marginal rate of substitution is

\[
MRS(\theta^i, \pi^i, \iota^i) = \frac{\theta^i \int_{\omega}^{\pi^i} u'(c_{NH}) dH(\omega)}{\theta^i \int_{\omega}^{\pi^i} u'(c_{NH}) dH(\omega) + (1 - \theta^i) \int_{\omega}^{\pi^i} u'(c_o) dH(\omega)}.
\]

Following the same proof strategy as that of Proposition 1, it is easy to show that if \(\lambda \geq 1 \), then \(\iota^i \leq m \) for \(i \in \{g, b\} \). However, since \(\omega < c_{NH} \), we have

\[
c_{NH} + m - \iota^i + \pi^i \equiv \hat{\omega}(\pi^i, \iota^i) \leq \omega < c_{NH},
\]

which implies that \(\iota^i - \pi^i > m \), and since \(\pi^i > 0 \), it must be that \(\iota^i > m \), a contradiction.

If \(\hat{\omega}(\pi^i, \iota^i) \geq \omega \), then everyone of type \(i \) is on Medicaid in equilibrium and the utility function in Section 3.2 of the paper can be stated as

\[
U(\theta^i, \pi^i, \iota^i) = \int_{\omega}^{\pi^i} \left[\theta^i u(c_{NH}) + (1 - \theta^i)u(c_o) \right] dH(\omega),
\]

where \(c_o = \omega - \pi^i \). In this case, \(MRS(\theta^i, \pi^i, \iota^i) = 0 \) for all \((\pi^i, \iota^i)\) and the optimal contract is \((0, 0)\).

We now establish that for \(i \in \{b, g\} \), \(\iota^i < m \) holds when \(\hat{\omega}(\pi^i, \iota^i) \in (\omega, \omega) \) by showing that \(\iota^i \geq m \) leads to a contradiction. The utility function in Section 3.2 of the paper can be stated as

\[
U(\theta^i, \pi^i, \iota^i) = \int_{\omega}^{\hat{\omega}(\pi^i, \iota^i)} \left[\theta^i u(c_{NH}) + (1 - \theta^i)u(c_o) \right] dH(\omega)
+ \int_{\hat{\omega}(\pi^i, \iota^i)}^{\pi^i} \left[\theta^i u(c_{NH}) + (1 - \theta^i)u(c_o) \right] dH(\omega),
\]
where \(c_{NH} = \omega - m + \iota - \pi' \) and \(c_o = \omega - \pi' \), and the marginal rate of substitution is

\[
MRS(\theta^i, \pi^i, \iota^i) = \frac{\theta^i \int_{\hat{\omega}}^{\omega} u'(c_{NH}) \, dH(\omega)}{\theta^i \int_{\hat{\omega}}^{\omega} u'(c_{NH}) \, dH(\omega) + (1 - \theta^i) \int_{\omega}^{\hat{\omega}} u'(c_o) \, dH(\omega)}
\]

\[
= \left[1 + \frac{(1 - \theta^i)}{\theta^i} \frac{\int_{\omega}^{\hat{\omega}} u'(c_o) \, dH(\omega)}{\int_{\omega}^{\hat{\omega}} u'(c_{NH}) \, dH(\omega)} \right]^{-1}.
\]

If \(\iota^i \geq m \), then \(MRS(\theta^i, \pi^i, \iota^i) < \theta^i \). To see this, suppose that \(MRS(\theta^i, \pi^i, \iota^i) \geq \theta^i \), which implies that

\[
\int_{\omega}^{\hat{\omega}} u'(c_o) \, dH(\omega) \leq \int_{\omega}^{\hat{\omega}} [u'(c_{NH}) - u'(c_o)] \, dH(\omega).
\] (S31)

Since \(\iota^i \geq m \), we have \(c_{NH} = \omega - \pi' + \iota - m \geq c_o = \omega - \pi' \), which implies \(u'(c_{NH}) - u'(c_o) \leq 0 \). Equation (S31) becomes

\[
\int_{\omega}^{\hat{\omega}} u'(c_o) \, dH(\omega) \leq \int_{\omega}^{\hat{\omega}} [u'(c_{NH}) - u'(c_o)] \, dH(\omega) \leq 0,
\] (S32)

which is a contradiction since \(u'(c_o) > 0 \) and \(\omega < \hat{\omega} < \hat{\omega} \).

Having established that \(\iota^i \geq m \) implies \(MRS(\theta^i, \pi^i, \iota^i) < \theta^i \) for \(i \in \{b, g\} \), the final step is to show that this condition violates the necessary conditions for an optimal contact. First, consider an optimal pooling contract \((\pi^p, \iota^p)\). Note that \(\theta^g < \lambda \eta \) since \(\lambda \geq 1 \) and \(\eta = \psi \theta^g + (1 - \psi) \theta^b > \theta^g \). So \(MRS(\theta^g, \pi^p, \iota^p) < \lambda \eta \) when \(\iota^p \geq m \). This is a contradiction because the optimal pooling contract must satisfy Equation (S8). It follows that \(\iota^p < m \).

Now, consider an optimal separating contract. First, consider good types. Under the optimal contract it must be that \(\theta^g < \lambda (\psi \theta^g + (1 - \psi) \theta^b) / (\psi + (1 - \psi) \theta^b) \), since \(\lambda \geq 1 \) and due to single-crossing (established in Lemma S-1) and incentive compatibility \(\pi^g < \pi^b \) so

\[
A = \frac{\theta^b \int_{\hat{\omega}(\pi^g, \iota^g)}^{\omega} u'(c_{NH}) \, dH(\omega)}{\theta^b \int_{\hat{\omega}(\pi^g, \iota^g)}^{\omega} u'(c_{NH}) \, dH(\omega) + (1 - \theta^b) \int_{\omega}^{\hat{\omega}(\pi^g, \iota^g)} u'(c_o) \, dH(\omega)} \]
\[
> \frac{\theta^b \int_{\hat{\omega}(\pi^g, \iota^g)}^{\omega} u'(c_{NH}) \, dH(\omega) + (1 - \theta^b) \int_{\omega}^{\hat{\omega}(\pi^g, \iota^g)} u'(c_o) \, dH(\omega)}{\theta^b \int_{\hat{\omega}(\pi^g, \iota^g)}^{\omega} u'(c_{NH}) \, dH(\omega) + (1 - \theta^b) \int_{\omega}^{\hat{\omega}(\pi^g, \iota^g)} u'(c_o) \, dH(\omega)} = B,
\]
where \(c_{NH}^i = \omega - m + \nu_i - \pi_i \) and \(c_o^i = \omega - \pi_i \). Hence \(\text{MRS}(\theta^b, \pi^g, \nu^g) < \lambda(\psi \theta^g + (1 - \psi) \theta^b A) / (\psi + (1 - \psi) B) \) when \(\nu^g \geq m \). This is a contradiction because the equilibrium contract for good types must satisfy Equation (S6). It follows that \(\nu^g < m \).

Second, consider bad types. We have established that if \(\nu^b \geq m \), then \(\text{MRS}(\theta^b, \pi^b, \nu^b) < \theta^b \leq \lambda \theta^b \) since \(\lambda \geq 1 \). This is a contradiction because the equilibrium contract for bad types must satisfy Equation (S7). It follows that \(\nu^b < m \). Q.E.D.

Recall that Proposition S-1 showed that when the price of private insurance is high due to variable administrative costs incurred by the insurer, the optimal contracts will feature less than full insurance for both risk types. Similarly, Proposition S-3 shows that when the implicit price of private insurance is high because individuals are at least partially covered by Medicaid, then the optimal contracts will also feature less than full insurance.

In region 4 in the graphs in Figure S-1, the consumption floor is so high that the good types, whose willingness-to-pay for private LTCI is lower than the bad types, choose to drop out of the private LTCI market. Notice that, even though the average loads are declining as the consumption floor increases, the load on bad types jumps up upon entry into this region. In regions 1–3, the contracts exhibit cross-subsidization with bad types benefiting from negative loads and good types facing positive loads. In region 4, the insurer is able to make a small amount of positive profits by offering a positive contract that is only attractive to the bad types. Finally, in region 5, Medicaid has a similar effect to that depicted in Figure 2(c) in the paper. The consumption floor is so large that there are no terms of trade that generate positive profits from either type. The insurer denies applicants when the consumption floor is in this region as the optimal menus consist of a single \((0, 0)\) contract.

Due to the non-convexities Medicaid creates, conditions (S13) and (S14) in Proposition S-2 are no longer sufficient conditions for coverage denials to occur, and, although still necessary, are not very useful. Proposition S-4 provides a stronger set of necessary conditions for coverage denials in the presence of Medicaid and a stochastic endowment.

PROPOSITION S-4: If the optimal menu is a \((0, 0)\) pooling contract, then

\[
U(\theta^b, \lambda \theta^b \nu, \nu) < U(\theta^b, 0, 0), \quad \forall \nu \in \mathbb{R}_+	ag{S33}
\]

and

\[
U(\theta^g, \lambda \nu, \nu) < U(\theta^g, 0, 0), \quad \forall \nu \in \mathbb{R}_+.\tag{S34}
\]

PROOF: The proposition is proved by showing that if the conditions do not hold, one can find a menu with at least one nonzero contract that satisfies all the constraints and delivers nonnegative profits.

First, assume that condition (S33) does not hold but that condition (S34) does. If (S33) does not obtain, there exists \(\nu \in \mathbb{R}_+ \) such that

\[
U(\theta^b, \lambda \theta^b \nu, \nu) \geq U(\theta^b, 0, 0). \tag{S35}
\]

Give bad types \((\lambda \theta^b \nu, \nu)\) and good types \((0, 0)\). Under this menu, the insurer’s profits are

\[
\Pi = (1 - \psi) \lambda \theta^b \nu + \psi 0 - (1 - \psi) \lambda \theta^b \nu - \psi 0 = 0;
\]

the participation constraint for the bad types, which is also their incentive compatibility constraint, holds by condition (S35); the participation constraint of the good types is
trivially satisfied; and the incentive compatibility constraint for the good types is satisfied since
\[U(\theta^g, \lambda \theta^b, \iota) < U(\theta^g, \lambda \eta \iota, \iota) < U(\theta^g, 0, 0), \]
where the first inequality follows from the fact that \(\eta < \theta^b \) and the second from condition (S34).

Second, assume that condition (S34) does not hold, which means there exists \(\iota \in \mathbb{R}^+ \) such that
\[U(\theta^g, \lambda \eta \iota, \iota) \geq U(\theta^g, 0, 0). \tag{S36} \]

Give both types \((\lambda \eta \iota, \iota)\). Under this pooling contract, the insurer’s profits are
\[\Pi = \lambda \eta \iota - \lambda \eta \iota = 0; \]
the participation constraint of the good types holds by condition (S36); and the participation constraint for the bad types holds since condition (S36) holds and \(U \) satisfies the single-crossing property established in Lemma S-1. Note that the incentive compatibility constraints are trivially satisfied since both types get the same contract. \(Q.E.D. \)

If condition (S33) fails, then one can find a profitable contract that bad types would take, and, if condition (S34) fails, then one can find a profitable pooling contract that good types would take. The conditions are not sufficient because, while they rule out profitable pooling contracts and separating contracts where good types get no insurance, they do not rule out separating contracts where both types get positive insurance. Absent Medicaid, there can never exist a separating contract that increases profits if the optimal pooling contract is \((0, 0)\). However, the non-convexities introduced by Medicaid break this property. As a result, even when the optimal pooling contract generates negative profits, a profitable separating contract might still exist.

Figure S-1 highlights some important distinctions between our model, where contracts are optimal choices of an issuer, and previous research by, for instance, Brown and Finkelstein (2008), Mommaerts (2016), and Ko (2018), who modeled demand-side distortions in the LTCI market but set contracts exogenously. In regions 2 and 3, notice that Medicaid’s presence only impacts the pricing and coverage of the optimal private contracts. In these regions, the insurer responds to the reduced demand for private LTCI by adjusting the terms of the contracts but still offers positive insurance. In contrast, in regions 4 and 5, Medicaid’s presence also impacts the fraction of individuals who have any private LTCI. Notice that the Medicaid recipiency rates of both types increase as the consumption floor is increased in these regions. This means that, even though good types do not have LTCI in region 4 and no individuals have it in region 5, Medicaid is covering their NH costs only for a subset of the endowment space. For some realizations of \(\omega \), they self-insure. Thus, in these regions, Medicaid is crowding out demand for private LTCI despite providing only incomplete coverage itself. This crowding-out effect is also present in models with exogenous contracts; however, the effects of Medicaid on the terms of positive contracts is not. Thus, allowing the insurer to adjust the contracts in response to the presence of Medicaid is important because, if the terms of the contracts cannot adjust, then the crowding-out effect of Medicaid on the size of the LTCI market will be overstated.
S1.3. Varying Denial Rates Across Risk Groups

The analysis in Sections 3.1 and 3.2 of the paper focuses on the problem of an insurer that offers insurance to a single risk group. We now turn to describe how the extent of denials changes as we vary observable characteristics of individuals. This discussion provides intuition for the results found using the quantitative model which features an environment with a rich structure of public information and thus multiple risk groups.

One data fact we want the model to account for is that those with lower wealth have lower LTCI takeup rates. An explanation for this observation is that risk groups with low expected endowments are more likely to be denied coverage by the insurer due to Medicaid. The following proposition formalizes this claim.

PROPOSITION S-5: When $\omega - m \leq c_{NH}$, the possibility of a denial in equilibrium increases if the distribution of endowments on $[\omega, \omega]$ is given by $H_1(\cdot)$ instead of $H(\cdot)$ where $H_1(\cdot)$ is first-order stochastically dominated by $H(\cdot)$.

PROOF: It is useful to express Equations (S33)–(S34) as

$$U(\theta^i, \pi^i, \iota) - U(\theta^i, 0, 0) < 0, \quad \forall \iota \in \mathbb{R}^+, i \in \{g, b\},$$ \hspace{1cm} (S37)

where

$$U(\theta^i, \pi^i, \iota) = \int_\omega^{\omega} \left[\theta^i u(\max(c_{NH}, \omega - \pi^i - m + \iota)) + (1 - \theta^i) u(\omega - \pi^i) \right] dH(\omega),$$

with

$$\pi^i = \begin{cases} \lambda \theta^b \iota, & \text{if } i = b, \\ \lambda \eta \iota, & \text{if } i = g. \end{cases}$$

Without loss of generality, assume that $m \geq \iota \geq \pi > 0$.

Let $\Delta U(H)$ and $\Delta U(H_1)$ represent $U(\theta^i, \pi^i, \iota) - U(\theta^i, 0, 0)$ when the endowment distribution is given by $H(\cdot)$ and $H_1(\cdot)$, respectively. Then

$$\Delta U(H) = \int_\omega^{\omega} \tilde{u}(\omega) dH(\omega),$$

and

$$\Delta U(H_1) = \int_\omega^{\omega} \tilde{u}(\omega) dH_1(\omega),$$

where

$$\tilde{u}(\omega) = \left[\theta^i u(\max(c_{NH}, \omega - \pi^i - m + \iota)) + (1 - \theta^i) u(\omega - \pi^i) \right] - \left[\theta^i u(\max(c_{NH}, \omega - m)) + (1 - \theta^i) u(\omega) \right].$$

If $\tilde{u}(\omega)$ is non-decreasing, then $\Delta U(H) \geq \Delta U(H_1)$ and denials are weakly more likely under H_1 than H. When $\omega - m \leq c_{NH}$, we have

$$\tilde{u}(\omega) = \left[\theta^i u(\max(c_{NH}, \omega - \pi^i - m + \iota)) + (1 - \theta^i) u(\omega - \pi^i) \right] - \left[\theta^i u(c_{NH}) + (1 - \theta^i) u(\omega) \right].$$
and
\[
\frac{d\tilde{u}(\omega)}{d\omega} = \begin{cases}
\theta' u' (\omega - \pi^i - m + \iota) + (1 - \theta') [u'(\omega - \pi) - u'(\omega)], & \omega - \pi^i + \iota > \zeta_{NH}, \\
(1 - \theta') [u'(\omega - \pi^i) - u'(\omega)], & \omega - \pi^i + \iota \leq \zeta_{NH}.
\end{cases}
\]

It is easy to see that \(\frac{d\tilde{u}(\omega)}{d\omega} > 0\). \textit{Q.E.D.}

It immediately follows from Proposition S-5 that the possibility of denials increases if the expected endowment decreases when \(\omega - m \leq \zeta_{NH}\). When \(\omega - m > \zeta_{NH}\), decreasing the expected endowment may also lead to an increased possibility of denial. However, in this case, it is also possible that the likelihood of denials goes down since, absent Medicaid, lowering an individual’s endowment raises his demand for insurance.

We also want the model to account for the fact that LTCI takeup rates are declining in frailty and that insurers are more likely to deny frail individuals. In the quantitative model, individuals vary by endowments and frailty, both of which are observable by the insurer, and the distribution of private information varies across these observable types. The following proposition shows two ways of varying the distribution of private information with frailty to generate an increasing possibility of denial. Note that the proof is for the No Medicaid case, although, as the quantitative results illustrate, the proposition holds even when Medicaid is present.

Proposition S-6: When \(\lambda > 1\) and \(\theta^b\) is sufficiently close to 1, the possibility of a denial in equilibrium increases if:
1. \(\theta^b\) increases;
2. \(\theta^b\) increases and \(\theta^g\) decreases such that the mean NH entry probability \(\eta \equiv \psi \theta^g + (1 - \psi) \theta^b\) does not change.

Proof: Without Medicaid, denial will occur in equilibrium iff
\[
f_b(\theta^b) \equiv \lambda \theta^b - \text{MRS}(\theta^b, 0, 0) \geq 0, \tag{S38}
\]
and
\[
f^g(\theta^g, \theta^b) \equiv \lambda \eta - \text{MRS}(\theta^g, 0, 0) \geq 0, \tag{S39}
\]
where \(\eta \equiv \psi \theta^g + (1 - \psi) \theta^b\).

1. Differentiating \(f_b^b\) with respect to \(\theta^b\) yields
\[
\frac{f_b(\theta^b)}{d\theta^b} = \lambda - \frac{\int_\omega^\pi u'(\omega - m) dH(\omega) \int_\omega^\pi u(\omega) dH(\omega) - \theta^b \int_\omega^\pi u'(\omega - m) dH(\omega) + \int_\omega^\pi (1 - \theta^b) u'(\omega) dH(\omega)}{\left[\theta^b \int_\omega^\pi u'(\omega - m) dH(\omega) + (1 - \theta^b) \int_\omega^\pi u'(\omega) dH(\omega)\right]^2}. \tag{S40}
\]

When \(\theta^b = 1\), Equation (S40) is positive since
\[
\left.\frac{f_b(\theta^b)}{d\theta^b}\right|_{\theta^b=1} = \lambda - \frac{\int_\omega^\pi u'(\omega) dH(\omega)}{\int_\omega^\pi u'(\omega - m) dH(\omega)}.
\]
\(\lambda \geq 1, \) and \(u'(\omega) < u'(\omega - m) \) for \(m > 0. \) It is easy to see that Equation (S40) is increasing in \(\theta^b. \) Thus, if \(\theta^b \) is sufficiently close to 1, increasing \(\theta^b \) will increase \(f^b. \) Differentiating \(f^g \) with respect to \(\theta^b \) yields

\[
\frac{f^g(\theta^g, \theta^b)}{d \theta^b} = \lambda (1 - \psi) > 0.
\]

Thus, increasing \(\theta^b \) increases \(f^g. \)

2. The proof that \(f^b \) increases when \(\theta^g \) increases and \(\theta^g \) decreases is the same as in 1 since \(f^b \) does not depend on \(\theta^g. \) The first term of \(f^g \) does not change. The second term only depends on \(\theta^g \) and differentiating it with respect to \(\theta^g \) yields

\[
\frac{dMRS(\theta^g, 0, 0)}{d \theta^g} = \frac{\int_\omega u'(\omega - m) dH(\omega) \int_\omega u(\omega) dH(\omega)}{\left[\theta^g \int_\omega u'(\omega - m) dH(\omega) + (1 - \theta^g) \int_\omega u'(\omega) dH(\omega) \right]^2} > 0.
\]

So \(f^g \) increases when \(\theta^g \) declines.

Proposition S-6 presents two ways to increase the possibility of coverage denials occurring. Either of the two ways can, in theory, be used to generate decreasing LTCI takeup rates with frailty. If, as in way 1, only \(\theta^b \) increases, then both the mean and the dispersion of the NH entry probabilities will increase. However, way 2 states that increasing the dispersion of entry probabilities while holding the mean fixed by varying both \(\theta^b \) and \(\theta^g \) can also generate increased denial rates. In short, to generate an increase in denial rates with frailty, both ways require an increase in the dispersion in NH entry probabilities with frailty. However, way 1 also requires an increase in the mean.

The fact that both ways of increasing the denial rates require an increase in dispersion of private information is consistent with the empirical findings of Hendren (2013) that adverse selection is more severe among individuals that are more likely to be denied coverage by LTC insurers. In addition, we show in Section 4 in the paper that the increase in dispersion is consistent with the pattern of NH entry probabilities in the data, but the increase in the mean implied by case 1 is inconsistent. Thus, both \(\theta^b \) and \(\theta^g \) must vary with frailty, as in case 2, to generate patterns of both LTCI takeup rates and NH entry probabilities that are consistent with the data. Note that Hendren (2013) also presented a theory of how private information can generate no-trade equilibria (denials). His mechanism, however, is different from ours. We generate no-trade equilibria by modeling administrative costs on the insurer and Medicaid. In his model, there is a continuum of private types and he allowed there to be a positive mass of individuals who have probability 1 of incurring the loss. He showed that, under this assumption, the presence of private information can lead to no-trade equilibria. To activate his mechanism in our model with two private types, we would have to assume that \(\theta^b = 1. \) He also showed that the possibility of denials increases as the magnitude of private information increases. In our model, an increase in the magnitude of private information is equivalent to an increase in \(\theta^b - \theta^g. \) With \(\theta^b < 1, \) this does not necessarily increase the possibility of denial. For example, increasing \(\theta^b - \theta^g \) and at the same time lowering both \(\theta^b \) and \(\theta^g \) can reduce the probability of denial.
S1.4. Variable Costs Proportional to Claims versus Premia

It is easy to see that the setup with variable costs proportional to premia is equivalent to a setup with variable costs proportional to indemnities. Let $\tilde{\lambda} \in [0, 1)$ be a cost proportional to the premium and $\tilde{\gamma} \geq 0$ be a fixed cost. Then the insurer’s maximization problem is given by

$$\max_{\pi^i, \iota^i} \left\{ \tilde{\lambda} \pi^g - \theta^g \left[\iota^g + \tilde{\gamma} I(\iota^g > 0) \right] \right\} + (1 - \psi) \left\{ \tilde{\lambda} \pi^b - \theta^b \left[\iota^b + \tilde{\gamma} I(\iota^b > 0) \right] \right\},$$

subject to (S2) and (S3). The objective function can be rewritten as

$$\max_{\pi^i, \iota^i} \tilde{\lambda} \left\{ \psi \left[\pi^g - \theta^g \left[\frac{1}{\tilde{\lambda}} \iota^g + \frac{\tilde{\gamma}}{\tilde{\lambda}} I(\iota^g > 0) \right] \right] \right\} + (1 - \psi) \left\{ \tilde{\lambda} \pi^b - \theta^b \left[\frac{1}{\tilde{\lambda}} \iota^b + \frac{\tilde{\gamma}}{\tilde{\lambda}} I(\iota^b > 0) \right] \right\}. \tag{S42}$$

If $\tilde{\lambda} = 1/\lambda$ and $\tilde{\gamma} = \gamma/\lambda$, then the optimization problem above is equivalent to the one with costs proportional to indemnity, as stated by equations (S1)–(S3), up to the scaler in the profits. That is, the optimal contracts are identical under both setups, but profits are lower when costs are proportional to the premium.

S1.5. Adding More Periods to the Quantitative Model

In this section, we show that period 1 of our three-period model can easily be replaced with multiple periods in which the young make consumption and savings decisions at annual frequencies. To simplify the analysis, we abstract from initial differences in frailty and assume that the entire working-age endowment is received when individuals retire. In our three-period model, working-age individuals face no risks. Thus, the essence of the savings decision of a working-age person in our model is captured by the following two-period consumption-savings problem for an individual where, for convenience, we assume that the endowment ω_o is received at the start of the second and final period of life, $V(a_o)$ is the value function of an individual at the point of retirement, and E is the expectations operator:

$$\max_{c_y, a_o} \frac{c_y^{1-\sigma}}{1-\sigma} + \beta EV(a_o)$$

s.t.

$$c_y + a_o/R = \omega_o.$$

The FONC is

$$c_y^* = R\beta EV'(a_o),$$

and combining the FONC with the budget constraint yields the following expression for a_o:

$$a_o = \left(\omega_o - \left[R\beta EV'(a_o) \right]^{-1/\sigma} \right) R.$$
Suppose instead that an individual works for \(J \) years before retiring. The problem is given by

\[
\max_{(c_j)_{j=1}^J, \hat{c}_0} \sum_{j=1}^J \gamma^{j-1} \frac{c_j^{1-\sigma}}{1 - \sigma} + \gamma^j EV(a_o)
\]

subject to

\[
\sum_{j=1}^J c_j/\hat{R}_{j-1} + \hat{a}_o/\hat{R} = \omega_o.
\]

The FONCs for this problem are

\[
\hat{R} \gamma EV'(a_o) = c_{j-\sigma},
\]

\[
c_{j-\sigma} = c_{j-\sigma} (\gamma \hat{R})^{j-1}.
\]

Using these expressions, we can express \(a_o \) as

\[
a_o = \left[\omega_o - \sum_{j=1}^J \frac{[\gamma \hat{R}]^{j-1}}{\hat{R}^{j-1}} ((\hat{R} \gamma)^j EV'(a_o)) \right] \hat{R}^j.
\]

(S43)

Next, note that if there are 40 years of youth, then \(\gamma = \beta^{1/J} \) and, for a given \(R \), Equation (S43) can be solved to find the corresponding value of \(\hat{R} \) that delivers the same assets at retirement, \(a_o \), in the two problems.

S1.6. Cast of Model Characters

Table SI provides a list of the model parameters with brief descriptions.

S2. DETAILS OF THE DATA WORK

Our HRS sample is constructed from the 1992 to 2012 waves of HRS and AHEAD. The sample is essentially the same as Braun, Kopecky, and Koreshkova (2017) and Kopecky and Koreshkova (2014). Beyond adding additional data from 1992, 1994, and 2012, there are a few other changes. There is no censoring at \(-500\) and \(500\) for asset values near \(0\). We assign an individual’s 1998 weight (or post-1998 mean weight, if their 1998 weight is \(0\)) to pre-1998 waves where their weight is \(0\). The main definitional novelties/changes are now provided. An individual is retired if his labor earnings are less than \($1500\) (in 2000 dollars). An individual is considered to have ever had long-term care insurance if they report having been covered in half or more of their observed waves.

Nursing Home Event

A nursing home event occurs when an individual spends 100 days or more in a nursing home within the approximately two-year span between HRS interviews or within the period between their last interview and death. If the individual dies less than 100 days after their last interview, but at the time of their death had been in a nursing home for over 100
<table>
<thead>
<tr>
<th>Notation</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>frailty status</td>
</tr>
<tr>
<td>w</td>
<td>endowment vector: $[w_g, w_b]$</td>
</tr>
<tr>
<td>i</td>
<td>private NH entry type, either good g (low) or bad b (high)</td>
</tr>
<tr>
<td>$s_{f,w}$</td>
<td>survival probability of individual of type (f, w)</td>
</tr>
<tr>
<td>$\theta_{i,w}$</td>
<td>probability of nursing home entry for individual of type (i, f, w)</td>
</tr>
<tr>
<td>$\pi_{i,w}$</td>
<td>LTC insurance premium for individual of type (i, f, w)</td>
</tr>
<tr>
<td>$\iota_{i,w}$</td>
<td>LTC insurance benefit (indemnity) for individual of type (i, f, w)</td>
</tr>
<tr>
<td>ψ</td>
<td>fraction of individuals realizing low probability of nursing home entry</td>
</tr>
<tr>
<td>λ</td>
<td>variable (proportional) cost of paying insurance claims</td>
</tr>
<tr>
<td>γ</td>
<td>fixed cost of paying insurance claims</td>
</tr>
<tr>
<td>κ</td>
<td>random fraction of retirement wealth consumed prior to nursing home entry</td>
</tr>
<tr>
<td>β</td>
<td>discount factor between working-age and retirement periods of life</td>
</tr>
<tr>
<td>α</td>
<td>discount factor between retirement and nursing home entry subperiods</td>
</tr>
<tr>
<td>m</td>
<td>nursing home cost</td>
</tr>
<tr>
<td>r</td>
<td>net rate of return on savings</td>
</tr>
<tr>
<td>a</td>
<td>assets saved for retirement</td>
</tr>
<tr>
<td>e_y</td>
<td>consumption of working-age individuals</td>
</tr>
<tr>
<td>$e_{i,\kappa}$</td>
<td>consumption of a retired type-i individual who never enters nursing home</td>
</tr>
<tr>
<td>e_{NH}</td>
<td>consumption of nursing home resident of type (i, κ)</td>
</tr>
<tr>
<td>c_{NH}</td>
<td>Medicaid's consumption floor in nursing home</td>
</tr>
</tbody>
</table>

days, this also counts as a nursing home event. In the HRS, there are several (sometimes inconsistent) variables that provide information about the number of days spent in a nursing home. From the RAND data set, we use the total nursing nights over all stays during the wave, as well as the number of days one has been in a nursing home (conditional on being in a nursing home at the time of the interview). This information is also pulled from the exit data, as well as the date of entry to a nursing home, provided the individual died there. Interview and death dates are used when a respondent reports having been continuously in a nursing home since the previous wave. Since the information is sometimes conflicting, and one piece often missing when another observed, a nursing home event is assigned if any of the variables suggest a person met the criteria described above.

Permanent Income

To calculate permanent income, first sum the household head’s Social Security and pension income and average this over all waves in which the household head is retired. The cumulative distribution of this average is defined as the permanent income, which ranges from 0 to 1. For singles, the household head is the respondent, and for couples, it is the male.

Wealth

We use the wealth variable ATOTA which is the sum of the value of owned real estate (including primary residence), vehicles, businesses, IRS/Keogh accounts, stocks, bonds, checking/savings accounts, CDs, Treasury bills, and “other savings and assets” less any debt reported.
S2.1. Denials

Many applications for LTCI are denied. Murtaugh, Kemper, and Spillman (1995), in one of the earliest analyses of LTCI underwriting, estimated that 12–23% of 65-year-olds, if they applied, would be denied coverage by insurers because of poor health. Their estimates are based on the National Mortality Followback Survey. Since their analysis, underwriting standards in the LTCI market have become more strict. We estimate denial rates of between 36% and 56% for 55–65-year-olds by applying underwriting guidelines from Genworth and Mutual of Omaha to a sample of HRS individuals.

To understand how we arrive at these figures, it is helpful to explain how LTCI underwriting works. Underwriting occurs in two stages. In the first stage, individuals are queried about their prior LTC events, pre-existing health conditions, current physical and mental capabilities, and lifestyle. Some common questions include: Do you require human assistance to perform any of your activities of daily living? Are you currently receiving home health care or have you recently been in a NH? Have you ever been diagnosed with or consulted a medical professional for the following: a long list of diseases that includes diabetes, memory loss, cancer, mental illness, heart disease? Do you currently use or need any of the following: wheelchair, walker, cane, oxygen? Do you currently receive disability benefits, Social Security disability benefits, or Medicaid? A positive answer to any one of these questions is sufficient for the insurers to deny applicants before they have even submitted a formal application. Many of these same questions are asked to HRS participants. As Table SII shows, the fraction of individuals in our HRS sample who would respond affirmatively to at least one question is high and ranges from 40.5% to 49.6% depending on age. Denial rates are also high in the top half of the wealth distribution, ranging from 30.8% to 39.3%. Question 3 pertaining to previously diagnosed diseases received the highest frequency of positive responses. If we are conservative and omit question 3, the prescreening declination rate ranges from 17.5% to 22.5% for all individuals and from 10.0% to 12.1% for individuals in the top half of the wealth distribution.

If applicants pass the first stage, they are invited to make a formal application. Medical records and blood and urine samples are collected and the applicant’s cognitive skills are tested. One in five formal applications are denied coverage based on industry surveys (see Thau, Helwig, and Schmitz (2014)). Assuming a 20% denial rate for the second round, the overall denial rate is 55.6% for 55–66-year-olds in our HRS sample using all questions and 35.9% if question 3 is omitted. For individuals in the top half of the wealth distribution, the denial rates are 47.7% and 28.0%, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55–56</td>
</tr>
<tr>
<td>All</td>
<td>41.8</td>
</tr>
<tr>
<td>Top Half of Wealth Distribution Only</td>
<td>30.8</td>
</tr>
</tbody>
</table>

TABLE SII

PERCENTAGE OF HRS RESPONDENTS WHO WOULD ANSWER “YES” TO AT LEAST ONE LTCI PRESCREENING QUESTION

aData source: Authors’ calculations using our HRS sample.

Table SIII lists the variables we used to construct the frailty index for HRS respondents. The choice of these variables is based on Genworth and Mutual of Omaha LTCI underwriting guidelines. To construct the frailty index, first sum the variables listed in the first column of Table SIII, assigning each a value according to the second column. Then divide this sum by the total number of variables observed for the individual in the year.

Table SIII

Health Variables for Frailty Index Construction

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some difficulty with ADL/IADLs:</td>
<td></td>
</tr>
<tr>
<td>Eating</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Dressing</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Getting in/out of bed</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Using the toilet</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Bathing/shower</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Walking across room</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Walking several blocks</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Using the telephone</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Managing money</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Shopping for groceries</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Preparing meals</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Getting up from chair</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Stooping/kneeling/crouching</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Lift/carry 10 lbs</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Using a map</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Taking medications</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Climbing one flight of stairs</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Picking up a dime</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Reaching/extending arms up</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Pushing/pulling large objects</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Cognitive Impairment:</td>
<td></td>
</tr>
<tr>
<td>Immediate word recall</td>
<td>+0.1 for each word not recalled (10 total)*</td>
</tr>
<tr>
<td>Delayed word recall</td>
<td>+0.1 for each word not recalled (10 total)*</td>
</tr>
<tr>
<td>Serial 7 test</td>
<td>+0.2 for each incorrect substraction (5 total)</td>
</tr>
<tr>
<td>Backwards counting</td>
<td>Failed test = 1, 2nd attempt = 0.5, 1st attempt = 0</td>
</tr>
<tr>
<td>Identifying objects & Pres/VP</td>
<td>0.25 for each incorrect answer (4 total)</td>
</tr>
<tr>
<td>Identifying date</td>
<td>0.25 for each incorrect answer (4 total)</td>
</tr>
<tr>
<td>Ever had one of following conditions:</td>
<td></td>
</tr>
<tr>
<td>High blood pressure</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Cancer</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Lung disease</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Heart disease</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Stroke</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Psychological problems</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Arthritis</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>BMI ≥ 30</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Drinks 15+ alcoholic drinks per week</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Smokes Now</td>
<td>Yes = 1, No = 0</td>
</tr>
<tr>
<td>Has smoked ever</td>
<td>Yes = 1, No = 0</td>
</tr>
</tbody>
</table>

*For the 1994 HRS cohort, 40 questions were asked (instead of 20) for word recall. In this year, each missed question receives weight 0.05.
as long as the total includes 30 or more variables. The construction of this frailty index mostly follows the guidelines laid out in Searle, Mitnitski, Gahbauer, Gill, and Rockwood (2008), and uses a set of HRS variables similar to the index created in Yang and Lee (2010). There are a couple of differences, however. Primarily, a few variables that do not necessarily increase with age (e.g., drinking > 15 drinks per week and smoking) were included. Also, cognitive tests are broken into parts which each count as separate variables, essentially increasing their weight in the index relative to Searle et al. (2008), which used only a single variable for cognitive impairment. Nevertheless, our frailty distribution still closely resembles those of frailty indices used in other papers.

S2.3. Evidence of Private Information

Hendren (2013) found that self-assessed NH entry risk is only predictive of a NH event for individuals who would likely be denied coverage by insurers. Hendren’s measure of a NH event is independent of the length of stay. Since we focus on stays that are at least 100 days, we repeat the logit analysis of Hendren (2013) using our definition of a NH stay and our HRS sample. We get qualitatively similar results. We restrict the sample to individuals ages 65–80. We find evidence of private information at the 10-year horizon (but not at the 6-year) in a subsample of this sample consisting of individuals who would likely be denied coverage by insurers. This subsample includes individuals who have any ADL/IADL restriction, past stroke, or past nursing or home care. The \(p \)-value for a Wald test which restricts the coefficients on subjective probabilities to zero is 0.003 at the 10-year horizon and 0.169 at the 6-year. If all individuals above age 80 are included in the denied sample as well, the \(p \)-values at both horizons are less than 0.000. For a sample of individuals who would likely not be denied, we are unable to find evidence of private information. The \(p \)-value for a Wald test which restricts the coefficients on subjective probabilities to zero is 0.210 at the 10-year horizon and 0.172 at the 6-year.

S2.4. LTCI Takeup Rate Patterns Controlling for Family Status

Tables SIV and SV show LTCI takeup rates by frailty and wealth quintiles for married versus single individuals and individuals with and without children. The general pattern of takeup rates by frailty and wealth are robust to controlling for marital status and children. LTCI takeup rates increase with wealth and decline with frailty for both married and single individuals and for both individuals with and without children. Comparing the levels of takeup rates across married and single individuals shows that, in many wealth

<table>
<thead>
<tr>
<th>Frailty Quintile</th>
<th>Wealth Quintile</th>
<th>Married</th>
<th>Not Married</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.011</td>
<td>0.044</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.031</td>
<td>0.057</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.011</td>
<td>0.027</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.014</td>
<td>0.036</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.026</td>
<td>0.026</td>
</tr>
</tbody>
</table>

\(^a\)For frailty (rows), quintile 5 has the highest frailty, and for wealth (columns), quintile 5 has the highest wealth. Data source: 62–72-year-olds in our HRS sample.
TABLE SV

LTCI Takeup Rates by Wealth and Frailty for Individuals With and Without Children

<table>
<thead>
<tr>
<th>Frailty Quintile</th>
<th>Wealth Quintile</th>
<th>Have Children</th>
<th>Do Not Have Children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0.012</td>
<td>0.058</td>
<td>0.100</td>
</tr>
<tr>
<td>2</td>
<td>0.017</td>
<td>0.051</td>
<td>0.103</td>
</tr>
<tr>
<td>3</td>
<td>0.022</td>
<td>0.033</td>
<td>0.085</td>
</tr>
<tr>
<td>4</td>
<td>0.017</td>
<td>0.033</td>
<td>0.067</td>
</tr>
<tr>
<td>5</td>
<td>0.017</td>
<td>0.025</td>
<td>0.043</td>
</tr>
</tbody>
</table>

*For frailty (rows), quintile 5 has the highest frailty, and for wealth (columns), quintile 5 has the highest wealth. Data source: 62–72 year-olds-in our HRS sample.

and frailty quintiles, there is no systematic difference between them. The only discernible differences between individuals with and without children are that wealthy individuals without children, those in quintiles 4 and 5 of the wealth distribution, tend to have slightly higher takeup rates than those with children.

S2.5. Description of the Auxiliary Simulation Model

To obtain survival and lifetime NH entry probabilities by frailty and PE quintile groups, we use an auxiliary simulation model similar to that in Hurd, Michaud, and Rohwedder (2014). First, using a multinomial logit, we estimate transition probabilities between four states that we observe in the HRS: alive and dead, each with and without a nursing home event in the last two years. These transition probabilities depend on age, PE, current NH status, and frailty, including polynomials and interactions of these variables. Specifically, age is modeled as a cubic function, frailty as a quadratic, and the others are both linear. Interactions include age with each of the other first-order terms, as well as frailty with PE. We also simulate lifetime frailty paths because we need them since, in contrast to Hurd, Michaud, and Rohwedder (2014), we include frailty in the multinomial logit. This is done using estimates from a fixed effects regression of frailty on lagged frailty, age, and age squared.

Simulations begin at age 67. To get the initial distribution of explanatory variables, we first average frailty and population weights across all observations at which an individual is between ages 62 and 72. PE and the estimated fixed effect are constant within individuals. The initial distribution then draws 500,000 times from this person-level weighted distribution. The model simulates two-year transitions, following the structure of the HRS data, and assigns age of death by randomly choosing an age between their last living wave and the death wave.²

S3. COMPUTATION

Computing an equilibrium in our model is subtle because Medicaid NH benefits are means-tested and Medicaid is a secondary payer of NH benefits. Individual saving policies

²Note that a half year is added to death age to account for the fact that reported ages are the floor of a respondent’s continuous age. Nursing home entry ages are similarly assigned, but we add only 0.2 years due to the 100-day requirement of a nursing home event. They are also upwardly bound by death age when both occur in the same wave.
exhibit jumps and the demand for private insurance interacts in subtle ways with \(q(\kappa) \), the distribution of consumption demand shocks.

We start by discretizing the endowment and frailty distributions. The number of grid points for endowments \(w \) is \(ny = 101 \) and frailty takes on \(nf = 5 \) grid points. The consumption demand shock \(\kappa \) is also discretized: \(nk = 50 \).

The specific algorithm for computing an equilibrium proceeds as follows. First, we guess values for profits (which gives us dividends) and taxes, and then we iterate over profits and taxes until profits converge and taxes satisfy the government budget constraint. In each iteration, we have to solve for allocations, contracts, and profits for each combination of endowments and frailty in the discretized state space. For each point in the discretized state space \((w_s, f_j)\), \(s = 1, nw \) and \(j = 1, nf \), we guess a level of savings: \(\hat{a}_{f_j, w_s} \). Given \(\hat{a}_{f_j, w_s} \), we then solve for the optimal contracts as follows. The optimal contract for a risk group depends on which individuals of observable type \((w_s, f_j)\) qualify for Medicaid if they incur the NH shock. Thus, it depends on the specific combinations of the \(\kappa \) shock and the private type \(i \in \{g, b\} \) that imply that an individual qualifies for Medicaid. Because of the non-convexities introduced by Medicaid, the Kuhn–Tucker conditions of the insurer’s problem are not sufficient. However, if one first assumes a distribution of individuals across Medicaid, then a contract satisfying the Kuhn–Tucker conditions is sufficient. So we solve for the optimal contract for all feasible combinations of individuals with different \(\kappa \)’s and \(i \)’s receiving Medicaid. The number of cases that has to be considered is large, but it can reduced by noting that, for a given value of \(\kappa \), if a bad type is on Medicaid, the good type is also on Medicaid by the single-crossing property, and that if a type \(i \) qualifies for Medicaid for a value of \(\kappa \), he will also qualify for Medicaid for all larger values of \(\kappa \).

To solve for the optimal contracts for each Medicaid distribution, first we solve for the optimal pooling contract. Second, we check to see if an optimal separating menu exists. The contract of type \(g \) under the optimal separating menu is the same as the optimal pooling contract. So we fix the good type’s contract at the optimal pooling one and solve for the optimal separating contract of the bad type (if it exists).\(^3\) The optimal contract for observable type \((w_s, f_j)\) under the current guess for savings, \(\hat{a}_{f_j, w_s} \), is then the one that maximizes the insurer’s profits. Finally, we iterate over savings until we find the value of savings that maximizes expected lifetime utility.

S4. ADDITIONAL CALIBRATION DETAILS

Table SVI lists the values of many of the model parameters. The survival probabilities of each frailty and PE quintile in the quantitative model are shown in the left panel of Figure S-2. The right panel shows the mean lifetime NH entry probability conditional on surviving for each frailty/PE quintile combination in the model. These NH entry probabilities in the model match those in the data because we parameterized the model to reproduce the survival probabilities in the left panel and the unconditional NH entry probabilities in Figure 4 in the paper.

Determination of Nursing Home Cost \(m \)

We estimate the average medical and nursing expense component of NH costs as follows. First, we use data from the work of Von Mosch, Jebens-Singh, and Frankamp (1997) which provides a breakdown of skilled nursing facility (SNF) and residential care com-
TABLE SVI
MODEL PARAMETERS

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk aversion coefficient</td>
<td>σ</td>
<td>2</td>
</tr>
<tr>
<td>Preference discount factor</td>
<td>β</td>
<td>0.94</td>
</tr>
<tr>
<td>Retirement preference discount factor</td>
<td>α</td>
<td>0.20</td>
</tr>
<tr>
<td>Interest rate (annualized)</td>
<td>r</td>
<td>0.00</td>
</tr>
<tr>
<td>Frailty distribution</td>
<td>f</td>
<td>BETA(1.54, 6.30)</td>
</tr>
<tr>
<td>Young endowment distribution</td>
<td>w_y</td>
<td>$\ln(w_y) \sim \mathcal{N}(-0.32, 0.64)$</td>
</tr>
<tr>
<td>Copula parameter</td>
<td>ρ_{f,w_y}</td>
<td>-0.29</td>
</tr>
<tr>
<td>Demand shock distribution</td>
<td>κ</td>
<td>$1 - \kappa \sim$ truncated log-normal</td>
</tr>
<tr>
<td>Demand shock mean</td>
<td>μ_{κ}</td>
<td>0.6</td>
</tr>
<tr>
<td>Demand shock standard deviation</td>
<td>σ_{κ}</td>
<td>0.071</td>
</tr>
<tr>
<td>Fraction of good types</td>
<td>ψ</td>
<td>0.709</td>
</tr>
<tr>
<td>Nursing home cost</td>
<td>m</td>
<td>0.0931</td>
</tr>
<tr>
<td>Insurer’s variable cost of paying claims</td>
<td>λ</td>
<td>1.195</td>
</tr>
<tr>
<td>Insurer’s fixed cost of paying claims</td>
<td>γ</td>
<td>0.019</td>
</tr>
<tr>
<td>Medicaid consumption floor</td>
<td>c_{NH}</td>
<td>0.01855</td>
</tr>
<tr>
<td>Welfare consumption floor</td>
<td>c_o</td>
<td>0.01855</td>
</tr>
</tbody>
</table>

munity (RCC) costs for five midwest states in 1994. We adjust each cost in the breakdown using either the CPI or the medical CPI to create a cost breakdown for the year 2000. Then we calculate the share of costs due to medical and nursing expenses and the share due to room and board for each state and average them across states using state population weights. The population weights are taken from the 2000 U.S. Census. We find that, on average, 76% of SNF and RCC costs are due to medical and nursing expenses and 24% are room and board. Next, we obtain estimates of the average annual total costs of SNF and RCC stays in the United States in 2000 of $60,000 and $28,099, respectively, from Stewart, Grabowski, and Lakdawalla (2009). Using these estimates and the shares, we calculate the average annual cost of the medical and nursing expense component of each type of stay. Finally, we average the annual cost of the medical and nursing expense component of each type of stay. Finally, we average the annual cost of the medical and nursing expense component of each type of stay.

![Figure S-2](image-url)

FIGURE S-2.—The probability of surviving to age 80 or until experiencing a NH stay (left panel) and the probability that a 65-year-old will enter a NH conditional on surviving to age 80 (right panel) by frailty and PE quintile. The probabilities are based on our auxiliary simulation model which is estimated using HRS data. NH entry probabilities are for a NH stay of at least 100 days.
component across SNF and RCC stays using data from Spillman and Black (2005) on the fraction of individuals in residential care who are in RCC’s versus SNF’s. We obtain an average medical and nursing expense component of residential LTC costs of $32,844 per annum in year 2000. Braun, Kopecky, and Koreshkova (2017) estimated that the average duration of NH stays that exceed 90 days is 3.25 years. Medicare provides NH benefits for up to the first 100 days. To account for this, we subtract 100 days, resulting in an average benefit period of 2.976 years. Multiplying the annual cost by the average benefit period yields total medical and nursing costs of a NH stay of $97,743 or a value of $m = 0.0931 when scaled by average lifetime earnings.

S5. ADDITIONAL RESULTS

S5.1. Pricing and Coverage in Baseline and Other Economies

Figures S-3 and S-4 show how Medicaid and adverse selection influence pricing and coverage at alternative frailty and PE levels. Removing private information increases the coverage of both types relative to coverage in the Baseline and reduces the variation in loads. Reducing the scale of Medicaid also increases the level of coverage for both private information types at each frailty quintile. However, the loads are also higher. Notice also that coverage increases monotonically in frailty in the No Medicaid economy.

Figure S-4 reports how coverage and loads vary by PE quintile for the same three scenarios. In the Full Information economy, bad risks in PE quintiles 1–4 do not get positive private insurance. Coverage of good risks is increasing in PE and higher than in the Baseline. Loads on good risks are lower than in Baseline and humped-shape in PE. In the No Medicaid economy, as PE increases, bad and good risk types experience lower coverage and slightly declining loads. Reducing the Medicaid NH benefit floor has a very big impact on the poor. Their demand for LTCI is inelastic and, as a result, they now face the highest loads but also receive the most coverage.

Figure S-3.—Insurance coverage and loads by frailty quintile. The left panel reports LTCI indemnities relative to medical costs of a NH stay and the right panel reports loads for the two private information types: good risks (solid lines) and bad risks (dashed lines). Three economies are reported: Baseline, Full Information, and No Medicaid.
FIGURE S-4.—Insurance coverage and loads by PE quintile. The left panel reports indemnities relative to the medical cost of a NH stay and the right panel reports loads for the two private information types: good risks (solid lines) and bad risks (dashed lines). Three economies are reported: Baseline, Full Information, and No Medicaid.

S5.2. Robustness Analysis

Size of the Medicaid Consumption Floor

Our Baseline parameterization of the model uses the same Medicaid consumption floor as Brown and Finkelstein (2008). They noted that their results are sensitive to the size of this parameter, and other empirical work has sometimes used higher consumption floors. To assess the robustness of our conclusions to the scale of Medicaid, we recalibrated the model positing a Medicaid consumption floor that is 1.76 times larger than the value in the Baseline economy. This value is at the high end of previous estimates (see Kopecky and Koreshkova (2014) for a summary of consumption floor values). Table SVII indicates that Medicaid now has a bigger impact on producing denials among affluent households. Denial rates are only 18% in wealth quintile 5 if Medicaid is removed. However, adminis-

<table>
<thead>
<tr>
<th>Scenario Description</th>
<th>No Admin. Costs $\lambda = 1, \gamma = 0$</th>
<th>No Medicaid $c_{nh} = 0.001$</th>
<th>Full Information $\theta_{f,w}$ Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>90.1</td>
<td>39.0</td>
<td>9.9</td>
</tr>
<tr>
<td>By PE quintile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
<td>15.4</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>83.3</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>82.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>86.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>75.8</td>
<td>0.0</td>
<td>0.18</td>
</tr>
<tr>
<td>By receiving Medicaid NH benefits conditional on surviving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Would</td>
<td>44.1</td>
<td>35.7</td>
<td>3.1</td>
</tr>
<tr>
<td>Would not</td>
<td>44.9</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Denial rates are percentage of individuals who are only offered a single contract of $(0, 0)$ by the insurer. Note that, for PE quintiles, the figures are expressed as a percentage of individuals in that quintile. However, the bottom two rows of the table are a decomposition of the average denial rate for that economy.
trative costs and private information continue to be very important among more affluent individuals. Removing either friction still has a very large impact on denial rates in PE quintiles 3–5. Denial rates fall to zero in these groups if administrative costs are removed and they fall by 50% or more if private information is removed. In addition, administrative costs and private information continue to be responsible for the large fraction of individuals who pay for NH expenses out-of-pocket in the Baseline.

How Well Can a Model Do That Abstracts From Private Information?

We have found that the Full Information economy has very high LTCI takeup rates among higher wealth quintiles and produces an incorrect pattern of takeup rates by frailty in wealth quintiles 4 and 5. Is there a way to remedy these issues with the Full Information economy by recalibrating it? To explore this possibility, we recalibrated the Full Information economy so that it reproduces the average LTCI takeup rate by increasing fixed and variable administrative costs in a proportionate fashion. The resulting magnitude of the administrative costs increased from 32.6% of premium to 49% of premium. The Full Information economy with higher administrative costs continues to have problems reproducing the pattern of LTCI takeup rates by wealth and frailty quintile. For instance, LTCI takeup rates in wealth quintile 5 are now zero. From the perspective of this group, these administrative costs are so high that they prefer to self-insure NH risk. LTCI takeup rates in wealth quintile 4 are positive. However, they are not declining in frailty as occurs in our HRS data (see Table II in the paper). We also explored lowering the LTCI takeup rates in this economy by varying the θ’s. However, we could not generate enough variation in the θ’s to reproduce the average level of LTCI takeup we see in the data nor did varying the θ’s help us reproduce the empirical pattern of LTCI takeup rates by frailty in the top two wealth quintiles.

How Well Can a Model Do That Abstracts From Administrative Costs?

We have also investigated whether a version of the model with no administrative costs could hit our calibration targets. It is also a challenge for the model to reproduce low LTCI takeup rates in high wealth quintiles when administrative costs are zero. Consider, for instance, the group in wealth and frailty quintile 5. When administrative costs are set to zero, the LTCI takeup rate for this group increases from 0.118 to 0.99. If the nursing home entry rate for bad risks is increased to 1 ($\theta^b = 1$), the LTCI takeup rate falls to 0.96. This model also predicts a high LTCI takeup rate for this group if we assume that one half of all individuals are bad risks $\psi = 0.5$ and have NH entry probabilities of 1. The model now produces a LTCI takeup rate of 0.44 while the LTCI takeup rate for this group in our data set is only 0.104.

Taken together, these results suggest that both private information and administrative costs are required if the model is to produce LTCI takeup rates that have the same magnitude and pattern across different wealth and frailty quintiles as our data.

Insurers Do Pay out at the Other End

One reason that has been offered for low LTCI takeup rates is that people are concerned that insurers will come up with reasons for not paying out at the time the NH event occurs (see, for instance, Duhigg (2005)). However, survey evidence suggests that most individuals are happy with the claims filing experience. A survey conducted in 2015–2016 by LifePlans Inc., a service provider for insurers, found that 78 percent of claimants found it
easy to file a claim. Only 6% had a disagreement with their company about coverage, and disagreements in a majority of cases were resolved in favor of the policy holder. Taken together, they found that only 2% of claims filers find themselves in a situation where they disagree with their insurer and the problem is not resolved to their satisfaction. Another survey commissioned by the U.S. Department of Health and Human Services in 2007 produced similar results (see Cohen, Miller, and Shi (2007)). It found that benefits were approved for 95.7% of respondents filing claims and that, of those initially denied benefits, more than half subsequently received benefits in the ensuing 12-month period.

Multiple Sources of Private Information and Heterogeneous Preference Discount Rates

We have found that our model with a single source of private information can account for a broad range of empirical regularities in the U.S. LTCI market including the correlation puzzle. This is not to say that insurers in this market do not have to contend with private preference heterogeneity in risk or discount rates. Our analysis, however, does suggest that these considerations may not be of first-order importance to insurers given the institutional features in the U.S. market that we have modeled.

To provide a specific example of why multiple sources of private information may not be of central importance here, consider private differences in preference discount rates. Higher preference discount rates among frail individuals could possibly help account for denials among poorer individuals, but, Medicaid is already very effective in producing denials among poorer and even middle class individuals. So it is not clear that there is a need to appeal to private differences in discount rates to produce denials in these groups. It is also not clear that modeling a positive correlation between frailty and privately observed preference discount rates would help us in accounting for denials among wealthy frail individuals. The first-order implication of a high preference discount rate is to save less and consume more and one would thus expect that frail individuals in high wealth quintiles are reasonably patient.

REFERENCES

4See Lifeplans (2016).

Co-editor Liran Einav handled this manuscript.

Manuscript received 27 April, 2017; final version accepted 28 January, 2019; available online 13 February, 2019.