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APPENDIX B: SUFFICIENCY AND SHARP IDENTIFICATION

CONDITIONS 1 AND 2 ARE SUFFICIENT (as well as necessary) for the existence of a pairwise
stable network under further restrictions on preferences, which may be reasonable in
some applications. The main restriction is that the marginal utility from adding a link
to a distant individual (> 2D) must be greater than that from adding a link to a nearby
individual (≤ 2D) of the same type. Also, a form of separability is required in the utility
function, as defined below. Then, because Conditions 1 and 2 are necessary and sufficient
for equilibrium, we can use them to recover exactly the set of preference parameters that
are compatible with the observed type shares (i.e., the sharp identified set).

To state the main restriction, we need to denote the type(s) that an individual of
type t could become if he or she were to add a link to an individual of type s who
is within distance 2D. So, abstractly, we define the correspondence Ψ(t� s) to col-
lect all such types.31 For example, in Figure 4, t̂ ∈ Ψ(t� s) and ŝ ∈ Ψ(s� t) (note the
arguments are reversed). In general, these sets could be constructed via enumera-
tion: first check each alter node in type t to see whether an individual of type s
could be located there, then determine what type the individual of type t would be-
come if a link were added to an individual of type s at that location. To define the
separability requirement, we refer to separate components in the network type when
the ego is removed. These components consist of subsets of alters that are connected
with each other (i.e., paths exist among them) but not with other alters in the net-
work type, if the ego is removed. We require additive separability of the utility func-
tion across such subsets of alters. Bringing these together, the assumption is as fol-
lows.

ASSUMPTION 3: For an individual of type t, let t̄ be the network type that would be obtained
by linking to an individual of type s who is at a distance greater than 2D, and let Ψ(t� s) collect
the type(s) that could be obtained by linking to an individual of type s who is at a distance of
2D or less. Assume the following:
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31There can be multiple types in Ψ(t� s) if it is feasible to have alters of type s located at multiple nodes in
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(a) u(t̄;ε)≥ u(t̂;ε)�∀t̂ ∈Ψ(t� s).
(b) For any type t, the utility function is additively separable across sets of edges and vertices

that belong to different components of the graph obtained when the ego is removed from the
network type.

The first part of this assumption is plainly at odds with the clustering observed in many
networks, because it does not encourage links among individuals who already share con-
nections. Nevertheless, it is valid for certain preference structures that have received at-
tention in the literature. It is trivially satisfied in models where only direct connections
matter (e.g., Currarini, Jackson, and Pin (2009)), because the resulting types yield the
same utility (i.e., u(t̄;ε) = u(t̂;ε)). It is also satisfied in some models with indirect con-
nections, such as the connections model in Jackson and Wolinsky (1996). The key point is
that Assumption 3(a) is more a statement about marginal utility than about total utility.32

It is possible for network types with more nearby alters to provide greater total utility,
while adding links to more distant nodes yields greater marginal utility. This holds in the
connections model because the marginal utility of adding a link to some node is reduced
by the current value of the indirect connection to that node, which decreases in distance.33

More generally, it seems that this would be the case when one’s closeness (or distance)
to other nodes in the network matters more than the clustering among one’s alters. In
our example utility specification (1), which values both closeness and clustering in some
sense, Assumption 3(a) is satisfied in a subset of the parameter space where the value of
mutual friendships (ω) is bounded relative to the value of friends of friends (ν). (This is
shown in Corollary 1 after the theorem.)

The second part of Assumption 3 makes the utility function additive across links going
to separate subsets of alters (i.e., in separate components of the graph without the ego, as
defined above). For example, the utility of type t̄ in Figure 3 must be the sum of the payoffs
obtained from having each of the two links. (Removing the ego from this type leaves two
components, each consisting of a W linked to a B, so the assumption is binding.) On
the other hand, the alters in type t̂ in Figure 4 remain connected without the ego, so
the utility of this type does not need to be separable across the ego’s two links. Utility
specification (1) indeed satisfies Assumption 3(b) for any values of the parameters, while
allowing for important complementarities across links such as with mutual friendships
(see Corollary 1). However, the assumption is restrictive in general, for example, ruling
out convex costs in the number of links. (Having convex costs might be natural in many
applications, but in most specifications in the econometric literature on networks, they
are not included.)

With this assumption, we then state the result as follows.34

THEOREM 3: For models satisfying Assumption 3, given a probability distribution of pref-
erence classes {PH|v1}, there exists a network that is pairwise stable (except possibly for a set

32Note that Assumption 3(a) is equivalent to u(t̄;ε)− u(t;ε)≥ u(t̂;ε)− u(t;ε).
33In the connections model, adding a link to a node currently at distance d yields wij(δ

1 − δd)− cij (where
wij ≥ 0 is the benefit of being connected to node j, 0 < δ < 1 discounts that benefit by the distance between
i and j, and cij is the cost of a direct link with node j). The marginal utility of adding link ij also depends on
changes in the distances to other nodes reached via node j, and those marginal benefits are similarly reduced
by the current distance to j.

34Because Conditions 1 and 2 assess the measures of sets of agents, they cannot guarantee pairwise stability
for sets with zero measure. This issue does not arise in Theorem 1 because it does not affect the necessity of
the conditions.
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of agents with zero measure) where the proportion of agents of type t is equal to πt for each
t ∈ T if and only if there exists a vector of allocation parameters α satisfying Conditions 1
and 2 such that πt = 1

μ

∑
H μv1(t)PH|v1(t)αH(t) for every t ∈ T .

The necessity of Conditions 1 and 2 was established by Theorem 1. The proof of their
sufficiency below uses a contrapositive argument. It shows that if there is no pairwise sta-
ble network with the given type shares, then allocation parameters cannot be found satis-
fying the two conditions. The key point is that if positive measures of nearby individuals
mutually desire to add links, then, under Assumption 3(a), these individuals must also
desire to add links with distant individuals of the same types, which violates Condition 2.

PROOF OF THEOREM 3: To start, fix a vector of preference parameters and, hence, a
distribution of preference classes, as well as the observed proportions of network types.
Suppose that under these preferences, any network with these type shares is unstable.
Therefore, for any such network, there must be a positive measure of pairs of individuals
for whom the presence or absence of a link between them is unstable. To translate this into
our conditions, first note that for any network among a set of players N , there is a unique
vector of allocation parameters that expresses the allocation of the individuals from each
preference class to each network type. This is because each individual is associated with
one and only one preference class, and one and only one network type.

First, we consider existing links (G(i� j) = 1). If there is a positive measure of pairs
of individuals who are linked but one or both of them would prefer to drop the link,
then there must be some preference class H where a positive measure of individuals with
preferences in this class is some network type that is not in H. Therefore, αH(t) > 0 for
some t /∈ H and so Condition 1 would be violated.

If all existing links are stable, there must be nonexisting links (G(i� j) = 0) that are
unstable (i.e., both i and j would prefer to add the link). We first consider nonexisting links
between individuals who are distant from each other in the network (i.e., d(i� j;G)> 2D).
If there is a positive measure of such pairs of individuals who would prefer to be linked
with each other, then there is at least one pair of network types (t� s) such that positive
measures of individuals of these two types would prefer to add links with each other.
A link between two individuals of types t and s who are distant from each other would
transform them to types t̄ and s̄, respectively, and this tuple of types, (t� s) and (t̄� s̄),
pertains to one of the equations in Condition 2.

We now use Assumption 3(b) to show that t̄ and s̄ are in the respective preference
classes of these individuals of types t and s, which leads to a violation of Condition 2.
Consider t̄. This type contains the same subnetwork of alters as type t, plus an addi-
tional subnetwork from the link to an individual of type s. If the ego is removed from
type t̄, the additional subnetwork is a separate component in the graph (there are no
other paths from the ego in t̄ to the alter formerly of type s, because that alter was pre-
viously beyond 2D). The utility of type t̄ is therefore additively separable between the
subnetwork from type t and the additional subnetwork. Denote the links in type t as
l = 1� 
 
 
 � lt , the additional link in type t̄ as lt + 1, and the representations of these types
as (At� vt) and (At̄� vt̄), respectively. (For simplicity, suppose that the alters from type t
appear in the same rows of At̄ as they do in At .) Given the additive separability, if type t
is in an individual’s preference class (i.e., u(At� vt;ε) ≥ u(At�−l� vt;ε), l = 1� 
 
 
 � lt), then
the corresponding links in type t̄ are preferred as well (i.e., u(At̄� vt̄;ε) ≥ u(At̄�−l� vt̄;ε),
l = 1� 
 
 
 � lt). This indeed holds for the relevant individuals of type t, because here we
are supposing that all existing links are stable (otherwise Condition 1 is violated). These
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individuals also prefer type t̄ over type t, so the additional link in t̄ is preferred as well
(i.e., u(At̄� vt̄;ε) ≥ u(At̄�−(lt+1)� vt̄;ε)). Therefore, all the links in type t̄ satisfy the pref-
erence inequalities needed for this type to be in the preference classes of these indi-
viduals. Hence, the expression μv1(t)

∑
H̃∈H PH̃|v1(t)

αH̃(t)1t̄∈H̃ is strictly positive. The same
argument applies for type s̄ and the relevant individuals of type s. Hence, the expres-
sion μv1(s)

∑
Ȟ∈H PȞ|v1(s)

αȞ(s)1s̄∈Ȟ is strictly positive as well. Therefore, the product of the
measures given by these expressions is strictly positive, which violates Condition 2.

Last, we consider nonexisting links between individuals who are 2D or less from each
other in the network. If there is a positive measure of such pairs of individuals who would
prefer to be directly linked, then there is some pair of network types (t� s) and some dis-
tance d ≤ 2D such that positive measures of individuals of these two types who are at
distance d from each other would prefer to add links with each other. A link between two
such individuals would transform them to some types t̂ ∈ Ψ(t� s) and ŝ ∈ Ψ(s� t), respec-
tively. These individuals prefer t̂ over t and ŝ over s, respectively. By Assumption 3(a),
they weakly prefer t̄ over t̂ and s̄ over ŝ, respectively (where, as before, the types t̄ and
s̄ would result from a link being added between distant individuals of types t and s).
Hence, they prefer t̄ over t and s̄ over s, respectively. Then the same argument applies
as for nonexisting links between distant individuals. For these individuals, all the links in
type t (respectively, s) are preferred, as is the additional link in type t̄ (s̄); hence, t̄ (s̄) is in
their preference classes. Therefore, as above, the expressions μv1(t)

∑
H̃∈H PH̃|v1(t)

αH̃(t)1t̄∈H̃
and μv1(s)

∑
Ȟ∈H PȞ|v1(s)

αȞ(s)1s̄∈Ȟ are strictly positive, and so Condition 2 would be vio-
lated. Q.E.D.

Thus, in cases where Assumption 3 is appropriate, Conditions 1 and 2 can be used to
characterize the identified set precisely. We next show how this applies to specification (1).

COROLLARY 1: In utility specification (1), if ν ≥ 0 and ω ≤ L
L−1ν, then there exists a net-

work that is pairwise stable (except possibly for a set of agents with zero measure) where the
proportion of agents of type t is equal to πt for each t ∈ T if and only if there exists a vector of
allocation parameters α satisfying Conditions 1 and 2 such that πt = 1

μ

∑
H μv1(t)PH|v1(t)αH(t)

for every t ∈ T .

PROOF: It suffices to show that specification (1) satisfies Assumption 3 when ν and
ω are in the stated region. To establish Assumption 3(a), we compare the utility from
adding a link to a distant individual of some type against the utilities from adding a link
to individuals of the same type at each distance ≤ 2D (supposing this is feasible).

Without loss of generality, consider the possible changes in utility for an individual i
of type t if a link is added to some individual k of type s. If d(i�k;G) > 2D, then type t̄
is obtained. The change in utility is f (Xi�Xk) + εil(Xk) + |N(k)|ν, where N(k) are k’s
existing friends (i.e., in type s). There is no intersection between N(k) and i’s existing
friends of friends in type t; hence, there are |N(k)| additional friends of friends in type t̄.
If d(i�k;G) = 2D = 4, then some type in Ψ(t� s) is obtained. This type yields the same
utility as t̄, because again there is no intersection between N(k) and the existing friends
of friends in type t (otherwise i and k would be at distance 3). If d(i�k;G) = 3, then k’s
friends and i’s friends of friends must intersect (this is how i and k are at distance 3).
An example of this was shown in Figure 4. Hence, there are fewer than |N(k)| additional
friends of friends in the resulting type, and so the change in utility is less than for type t̄
(given ν ≥ 0).
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Finally, suppose that d(i�k;G)= 2. In this case, the change in utility from adding a link
to k would include the value of mutual friendship (ω). Specifically, the marginal utility
would include a term

∑
j∈N(i) G(j�k)ω for the value of the new mutual friendships that

are created by adding this link (where N(i) are i’s existing friends in type t).35 However,
for each new mutual friendship, there would also be one fewer new friend of a friend,
compared with the result of adding a link to a distant individual of type s. (Note that k’s
neighbors would be either a mutual friend or a friend of a friend to i in the resulting type,
but not both.) In addition, individual k would no longer be a friend of a friend to i. So
there would be

∑
j∈N(i) G(j�k) + 1 fewer friends of friends in the resulting type, call it t̂,

compared with type t̄. Hence, the difference between the utilities of these types is

u(t̂;ε)− u(t̄;ε)=
∑
j∈N(i)

G(j�k)(ω− ν)− ν


The maximum possible number of new mutual friendships is L − 1 (because type t must
have at least one link to spare), so having ω ≤ L

L−1ν ensures that this difference is weakly
negative: (L− 1)(ω− ν)− ν ≤ 0.

We have thus established that for each distance d ≤ 2D, the utility of adding a link to
someone of type s at that distance (if feasible) is weakly less than the utility of adding a
link to someone of type s beyond 2D. Therefore, Assumption 3(a) is satisfied.

Now we show that Assumption 3(b) is satisfied in specification (1) in any region of
the parameter space. The first line of (1) is always additively separable, whether or not
the direct friends are in separate components of the graph without the ego. The second
line is separable because there is no intersection among the friends of friends in separate
components of the graph without the ego. To see how this delivers the required additive
separability, let J and K contain the direct friends in two different components of the
graph without the ego. Then(⋃

j∈J
N(j)−N(i)− {i}

)
∩

(⋃
k∈K

N(k)−N(i)− {i}
)

= ∅�

and so∣∣∣∣ ⋃
ĵ∈J∪K

N(ĵ)−N(i)− {i}
∣∣∣∣ν =

∣∣∣∣⋃
j∈J

N(j)−N(i)− {i}
∣∣∣∣ν +

∣∣∣∣⋃
k∈K

N(k)−N(i)− {i}
∣∣∣∣ν


The third line of (1) is additively separable because G(j�k) = 0 for any pair of direct
alters j ∈ J and k ∈ K (with J and K defined as above). Hence,∑

ĵ∈J∪K

∑
ĵ′>ĵ

ĵ′∈J∪K

G
(
ĵ� ĵ′)ω =

∑
j∈J

∑
j′>j

j′∈J

G
(
j� j′)ω+

∑
k∈K

∑
k′>k
k′∈K

G
(
k�k′)ω


Therefore, Assumption 3(b) is satisfied as well. Q.E.D.

This result applies in both simulation exercises in Section 7, given the parameterizations
that are used. In the first we have ω = ν = 0 and in the second we have ω = ν = 0
2.
Hence, in both cases we recover the sharp identified set.

35There could be multiple paths of length 2 from i to k, so there could be multiple new mutual friendships.
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APPENDIX C: STATISTICAL INFERENCE

We take a sampling approach to inference whereby the target population is a single,
large network (e.g., a school) and the statistical randomness (to be summarized through
standard errors) comes from the i.i.d. sampling assumption (think here of choosing a set
of students at random from the school). Naturally, a different sampling procedure from
the large network would lead to a different characterization of the statistical uncertainty,
and here we illustrate our ideas with simple random sampling. See Kolaczyk (2009) for
various sampling procedures in networks.

PROOF OF PROPOSITION 1: Let π be a scalar constant which represents the propor-
tion of interest. (Here, we show the pf for the scalar case for simplicity.) The sampling
approach to inference36 maintains that we have a realization of the random process that
generates a single, large network. Conditional on this population network, a simple ran-
dom sample without replacement is drawn from the network.37 Observations in this sam-
ple are by definition i.i.d. conditional on the network, and the only randomness in this
second stage is coming from the act of sampling conditional on the realization of the large
network from the random process. We take the population of interest to be a network of
size Np (unobserved) where we maintain that this population is large (but countable).
Here, we restrict ourselves to a finite population for simplicity, but similar results would
hold for a more complex population. We subscript N with a p to indicate the population.
Let there be a sampled network of size Ns from the population network where an obser-
vation in this sample is chosen using simple random sampling. This means that we choose
a sample of size Ns from the population of size Np conditional on the target (population)
network. We enumerate the population by T′

p = (T1� 
 
 
 � TNp) and the observed sample
as T′

s = (T s
1 � 
 
 
 � T

s
Ns
), where the sample is a subset from Tp. We can take the T ’s to be,

for example, whether a given individual has any black friends. The sampling process is
conditional on the outcomes (the T ’s) and so the probability of choosing a sample of size
Ns from Np is 1/

(
Np

Ns

)
. Now define a sequence of binary indicator variables (Wi)

Np

i=1. These
are random variables such that Wi = 1 if observation i in the population is observed in

the sample. We have E[Wi|Tp] = P(Wi = 1|Tp) = (Np−1
Ns−1)
(Np
Ns
)

= Ns

Np
. Also, the W ’s are corre-

lated with correlation E[WiWj|Tp] = Ns

Np

Ns−1
Np−1 for i 
= j (the event that i is in the sample is

not independent from whether j 
= i is in the sample since the sample must always be of
size Ns). Here, note that the expectation and the probability are conditional on the T ’s
and so this randomness is purely from the simple random sampling process where Tp is
taken as a vector of constants (i.e., the T ’s can be arbitrarily correlated). So, our estimator
for π is

π̂ = 1
Ns

Ns∑
i=1

T s
i = 1

Np

Np∑
i=1

Wi

Ns

Np

Ti


36Here, we follow the general sampling approach of Cochran (1977) and more recently of Imbens and Rubin
(2015) (in the context of inference on causal effects).

37This is simpler but not essential as the difference between sampling with replacement is small especially
in cases where the sample is much smaller than the population.
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First, it is simple to see that π̂ is unbiased for π:

E[π̂] = 1
Np

Np∑
i=1

E[Wi|Tp]
Ns

Np

Ti = 1
Np

Np∑
i=1

Ti = π


Now, for the variance, let σ2
p be the population variance: 1

Np

∑Np

i=1(Ti −π)2:

Var(π̂) = σ2
p

Ns

− σ2
p

Np

− 1
N2

p

Np∑
i 
=j�i�j=1

(Ti −π)(Tj −π)

∼ σ2
p

Ns

�

where the second line holds if indeed Np is much larger than Ns and so the last two terms
are negligible. Note here that the estimator is unbiased and its variance is proportional
to 1

Ns
, the inverse of the sample size. So, as Ns increases, the variance approaches zero.

In this finite population, Ns becomes closer to Np, and the variance will be small. Note
that the notion of “consistency” still holds in the finite population setup in that, as Ns ap-
proaches Np, we learn the parameter of interest exactly since now (in a finite population)

1
Np

∑Np

i=1 Ti is the parameter of interest (rather than π) and here P(Wi = 1) approaches 1
as Ns approaches Np (i.e., as everyone gets sampled). This is exactly Cochran’s definition
of consistency in sampling whereby “the estimate becomes exactly equal to the population
value.” See Cochran (1977, p. 21).

An approximate (1 −α) two sided confidence interval for π can then be constructed as

[π̂ − 1
96
√

̂Var(π̂)� π̂ + 1
96
√

̂Var(π̂)].38 Q.E.D.

Asymptotic normality of sample means under simple random sampling from finite pop-
ulations was studied under the approximate setup whereby both Ns and Np approach

infinity and results can be used to show that N
− 1

2
s

∑Ns

i=1(T
s
i − π) →d N (0�π(1 − π)). For

example, Hájek (1960) provided necessary and sufficient conditions for the normal ap-
proximation to hold in sampling from finite populations when both Ns and Np approach
infinity. Essentially, he showed that a Lindberg-type condition must hold for the normal
approximation to be valid. Here, this condition holds trivially since the T ’s are binary. See
Cochran (1977) and Hájek (1960).

We now discuss how we can use the confidence intervals to map the uncertainty in
sampling to θ which is the vector that characterizes the payoff structure. The data are
informative only on the measure of network types, π ≡ (πt)t∈T —see Proposition 1 above.

Let there be a given vector π of observed type probabilities. Then, the identified set
Θ ⊂ Rk in a given (large) network can be defined as follows (without conditioning on X):

Θ ≡Θ(π) ={
θ ∈ Rk : F(θ�π) = 0

}
�

38Again, the coverage for this interval holds only approximately for large Np and Ns . In principle, one can
use better approximations to the sampling distribution of the sample mean, but this is given here for simplicity.
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where

F(θ;π) = min
{αH(θ)(t):t∈H(θ)}

α�Qα subject to:

∑
t∈H

αH(θ)(t)= 1� ∀H(θ)�

αH(θ)(t)≥ 0� ∀t�H(θ)�∑
H

PH(θ)αH(θ)(t)= πt� ∀t

(see Section 6 for more on the quadratic matrix Q). Again, the key here is that if we know
π, then constructing Θ becomes a family of quadratic programming problems, that is,
Θ collects all θ’s where F(θ�π) = 0. To obtain a confidence region for Θ, we can first
construct a confidence region for π and then, for every element πs in this confidence
region, solve for the corresponding Θs and take the union

⋃
s Θs. This heuristic relies

fundamentally on being able to construct a valid confidence region for π. A sampling
approach to inference delivers such a confidence region by sampling nodes independently
within one large network conditional on outcomes. In this approach, the target parameter
of interest and the objective of the analysis would be to learn about the population type
shares (and then using those to back out the structural parameters).

Take then as given that we have an approximation for the distribution of the vector of
type shares. The previous discussion provides a sampling approach that can be used to
obtain such an approximation.39 Given the (approximate) distribution of types, we use
standard methods to provide a confidence region for the identified set of the structural
parameters.

A sample analog of the measure of each type is

π̂(tk)= 1
n

∑
i

1[i ∈ tk]

for k = 1� 
 
 
 � |T | and where these types are mutually exclusive. Moreover, let π̂� =
(π̂(t1)� 
 
 
 � π̂(t|T |)), which is the vector of estimated type probabilities. We make the fol-
lowing assumption on the population choice probabilities and also maintain the approx-
imate asymptotic distribution for the type vector. This result can easily be derived under
standard assumptions (e.g., Theorem 17.2 in van der Vaart (1998)).

ASSUMPTION 4: Let the network type proportions be such that

π(tk) > 0� ∀k= 1� 
 
 
 � |T |;
|T |∑
k=1

π(tk)= 1


Also, assume that, as n→ ∞,

G(π̂�π) = n

|T |∑
k=1

(
π̂(tk)−π(tk)

)2

π̂(tk)
→d χ

2
|T |−1� (4)

where π� ≡ (π(t1)� 
 
 
 �π(t|T |)).

39Other approaches may be possible. For example, the Bayesian bootstrap can be used to approximate via
simple simulations the posterior for the vector of types using draws from gamma distributions.
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Again, the exact asymptotic distribution as stated in (4) is one way to characterize sam-
pling uncertainty and is not strictly required.

Given the above assumption, to build a (frequentist) confidence region for Θ, we “in-
vert” the above statistic for multinomial probabilities. In particular, define

CI1−α(π) = {
π ∈ S|T | :G(π̂�π)≤ c1−α

(
χ2

|T |−1

)}
� (5)

where S|T | is the unit simplex of size |T |, π̂(t) are the sample analogues of the type prob-
abilities, c1−α(χ

2
|T |) is the (1 − α) critical value of the χ2

|T | distribution. The confidence
region in (5) is standard and collects the set of network type probabilities that covers
the truth with probability (1 − α) (in repeated samples). It is also possible to consider a
Bayesian approach to inference here where obtaining a posterior for π(t) given standard
priors can be easily done also (using a Bayesian bootstrap, for example).

Now, for every π ∈ CI1−α(π), we can solve our model in terms of the set of θ’s using
the quadratic programming function F(θ�π) = 0. The collection of these sets would be a
confidence region for the identified set:

CI1−α(θ) = {
Θ(π) : F(

Θ(π)�π
) = 0 for π ∈ CI1−α(π)

}

 (6)

Here, the notation for Θ(π) in F(Θ(π)�π) = 0 implicitly means that Θ(π) is the set of
θ’s such that F(θ�π) = 0.

For other promising approaches to inference, see, for example, the results in Leung
(2015).

APPENDIX D: DETAILS OF SIMULATION PROCEDURES

D.1. Objective Matrix in First Exercise

The matrix Q for the first simulation exercise is shown here in Figure D.1. The
rows and columns correspond to the allocation parameters listed under the heading
“parameter.”

D.2. Simplification of the QP Problem in First Exercise

As noted in the text, the QP problem for this model can be simplified to the point that
it is trivial to verify whether the optimal value is zero. We use this result to confirm the
identified set obtained using the MCMC search procedure with the original QP prob-
lem, and to construct identified sets based on different observations (i.e., different type
shares).

The simplification is obtained as follows. There are 16 potentially nonzero allocation
parameters in the QP problem for this model (listed in Figure D.1), but 12 can be elimi-
nated with simple manipulations. (Specifically, the four allocation parameters with a posi-
tive diagonal element in their row of the matrix Q are set equal to zero, as this is necessary
for an optimal value of zero to be attainable, and eight other parameters are eliminated
using the constraint

∑
t∈H αH(t) = 1.) Expressions for the equilibrium type shares as a

function of the remaining four allocation parameters and the structural parameters are
listed in Table D.I. Unique values of these remaining allocation parameters can then be
recovered, given a vector of structural parameters and the vector of type shares. It is then
trivial to compute the objective function value and to assess whether these allocation pa-
rameters satisfy the constraint 0 ≤ αH(t)≤ 1.
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(Row) (Parameter)
1 α1(B�0)
2 α2(B�0)
3 α2(B�B)
4 α3(B�0)
5 α3(B�W )
6 α4(B�0)
7 α4(B�B)
8 α4(B�W )
9 α5(W �0)

10 α6(W �0)
11 α6(W �W )
12 α7(W �0)
13 α7(W �B)
14 α8(W �0)
15 α8(W �W )
16 α8(W �B)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FIGURE D.1.—Matrix Q for model with D= 1, L = 1, and X = {B�W }.

It is also possible to use the expressions in Table D.I to find all the equilibrium type
shares for a given vector of structural parameters. Rather than evaluate different param-
eter vectors given a fixed vector of type shares (to find the identified set), one can instead
evaluate different type shares given a fixed vector of structural parameters. Either way,
for any pair of vectors of type shares and structural parameters, one recovers the four
allocation parameters using the expressions in the table and verifies whether the objec-
tive function value is zero and the allocation parameters each fall within the unit interval.
Then, because Conditions 1 and 2 are necessary and sufficient for pairwise stability in
this model (because D = 1; see Appendix B), this guarantees that the type shares are
obtainable in equilibrium under the given values of the structural parameters. (There
is one additional restriction on the admissible vectors of type shares, which is that the
measure of blacks linked to whites must equal the measure of whites linked to blacks.)
Thus, to find the set of equilibria shown in Figure 5, we fix the structural parameters at
the stated values and evaluate a grid of points in the space of admissible vectors of type
shares.

TABLE D.I

EQUILIBRIUM TYPE SHARES IN THE FIRST SIMULATION

Type Proportion
v = (x� y) (conditional on race of the ego)

(B�0) π(B�0) = (1 − fBB)(1 − fBW )+ (1 − α3(B�W ))(1 − fBB)fBW

(B�B) π(B�B) = fBB(1 − fBW )+ (1 − α4(B�W ))fBBfBW

(B�W ) π(B�W ) = α3(B�W )(1 − fBB)fBW + α4(B�W )fBBfBW

(W �0) π(W �0) = (1 − fWW )(1 − fW B)+ (1 − α7(W �B))(1 − fWW )fW B

(W �W ) π(W �W ) = fWW (1 − fW B)+ (1 − α8(W �B))fW W fW B

(W �B) π(W �B) = α7(W �B)(1 − fWW )fW B + α8(W �B)fWW fW B
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FIGURE D.2.—Identified set from one finite network, using simplified QP problem. Notes: Diamonds indi-
cate true parameter values: fBB = 0
40, fBW = 0
20, fW B = 0
15, and fWW = 0
50.

D.3. Utility Specification in the Second Exercise

This exercise uses D = 2, L= 3, and X = {B�W }. Written in terms of the matrix-vector
pairs (A�v) that represent network types, the utility specification (1) is as follows:

u(A�v;ε)≡
L+1∑
l=2

a1l

(
fv1�vl + εl−1(vl)

)
(direct connections)

+ ν
∑

k>L+1

1

{
L+1∑
l=2

a1lalk > 0

}
(friends of friends)

+ω

L+1∑
l=2

L+1∑
k>l

a1lalk (mutual friends)

(8)

(recall that row 1 of A corresponds to the ego, rows 2 to L + 1 correspond to direct
connections, and rows k>L+ 1 correspond to friends of friends).
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FIGURE D.3.—Type shares in four randomly selected networks (A, B, C, D). Notes: Letters A, B, C, D
correspond to four vectors of type shares that were randomly selected from the full set of equilibrium type
shares in Figure 6. Positions of the letters indicate the values of the type shares.

The order of the direct alters in the first line above is somewhat arbitrary because it is
set by the convention we adopt to select a canonical representation for each network type
(see Appendix D.5.1). This raises a question of how to assign the shocks for the direct
connections. Rather than associate each shock with the same row of A and element of v
in every type, we instead use the highest valued shocks (within each race) to compute the
utility of each type. Then, for example, the utility of a type with one black friend and one
white friend does not depend on whether the black alter corresponds to row 2 of A and
the white alter corresponds to row 3, or vice versa. More generally, by assigning the shocks
in this way, the utility of each network type does depend on the particular convention used
to select the canonical representations.

D.4. Microsimulation Procedure

To simulate vectors of type shares to use as data, we generate equilibrium networks
from which the shares can be extracted. The description below of this microsimulation
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FIGURE D.4.—Identified sets from four separate networks: black preferences. Notes: Diamonds indicate
true parameter values: fBB = 0
40, fBW = 0
20.

procedure is focused on the second exercise, but the overall procedure is the same for
both.

Although only one network is needed for the type shares, we generate a number of
pairwise stable networks to illustrate the variation that can arise in these models. In the
second exercise, each network has n = 500 individuals, with nB = 100 blacks and nW = 400
whites. For each network, we first draw vectors of preference shocks for all the individuals.
Then, the procedure to find a pairwise stable network starts with a random initial graph.
These initial graphs are generated by independently establishing links with probability
1/(2n) and then removing links at random from individuals with more than L links. The
success rate of 1/(2n) is chosen to limit the number of individuals with greater than L
links in the initial draw while yielding a degree distribution that is somewhat similar to
the equilibrium distribution.
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FIGURE D.5.—Identified sets from four separate networks: white preferences. Notes: Diamonds indicate
true parameter values: fWW = 0
50, fW B = 0
15.

Given a random initial graph, the following sequential process is then used to find a
stable network:

(i) Draw a random sequence over all unordered pairs of players (i.e., a permutation
of the numbers 1 to n(n− 1)/2, which index the pairs).

(ii) For each pair (i� j) in the sequence, myopically update gij = gji based on the con-
ditions for pairwise stability, using the network as it has evolved up to that point.

(iii) If no links or non-links were updated in an entire sequence over all the pairs, stop:
the network is pairwise stable.

(iv) Otherwise, go through another random sequence of all pairs: repeat steps (i) to
(iii), up to #seqs times (#seqs was set to 100).
If the network does not converge after #seqs of such random sequences over all pairs,
a new random initial graph is used and steps (i) to (iv) are repeated. If the network still
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FIGURE D.6.—Identified set from four networks used jointly. Notes: Blocks illustrate the identified set ob-
tained using four vectors of type shares (shown in Figure D.3) that were randomly selected from the full set of
equilibrium type shares in Figure 5. A grid of parameter vectors with intervals of size 0.02 in each dimension
was evaluated, and the identified set consists of one vector in this grid: f̂BB = 0
40, f̂BW = 0
20, f̂W B = 0
16, and
f̂W W = 0
50. The true parameter values are: fBB = 0
40, fBW = 0
20, fW B = 0
15, and fWW = 0
50.

does not converge after this process is repeated with multiple initial graphs (up to seven),
we say we have failed to find an equilibrium for this set of preference shocks and move on
to draw a new set of shocks. Networks that do not converge are discarded.

We generated a total of 47 pairwise stable networks in this way (out of 50 attempts).
The degree distribution from these networks appears in Figure D.7, along with the de-
gree distribution of same-sex friendships from all schools in the Add Health data. Our
simulated networks have fewer isolates and more individuals with one link, but otherwise
the two distributions are broadly similar, and the average degree is the same at 1.05. Also,
it turns out that the shares of network types with any mutual friends are zero in most sim-
ulated networks (see Figure 7 in the article). This is a consequence of having ω = ν along
with the values of the other parameters that were chosen to generate a degree distribution
like that in Add Health. Under these parameter values, there is very low probability that
three randomly selected individuals would all desire to be connected with each other in a
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FIGURE D.7.—Degree distribution in second exercise compared with Add Health study.

triad, rather than at least one of them preferring to drop one link (thereby gaining ν while
losing ω and fxy + εl−1(y)).40

D.5. Network Types and Transformations of Types

Our approach requires an enumeration of all possible network types under a given
preference structure. In addition, we define two sets of transformations on the types: what
they become if one of their links is deleted, and what they become if a link is added to
some other type. These transformations are needed to generate preference classes and to
assess Conditions 1 and 2. None of these depend on a particular parameterization of the
model, so they can be constructed prior to the recovery of the identified set. Hence, any
computational burden here does not directly impact the time it takes to search through
the parameter space.

D.5.1. Enumeration of Network Types

Each network type is an equivalence class of isomorphic subnetworks (with a root node,
which is the ego). There can be multiple matrix-vector pairs (A�v) representing the same
type, which are related to each other by permutation of the rows and columns for the
alters.41 So for computational convenience, we adopt a convention to single out one (A�v)
pair from each class, which we refer to as the canonical representation of that network
type. The enumeration of network types is then a list of these canonical representations.

40Given ω = ν, the marginal payoff from dropping one link in a triad of players (with no other connections)
is −(fxy + εl(y)). The highest value of any fxy is fWW = −0
7, and with this value the probability that a white
individual would not want to drop such a link to the alter at position l is Pr(fWW + εl(W ) > 0) = 0
24. Among
three arbitrary whites, the probability that none of them would want to drop either one of their two links
in the triad is Pr(fWW + εl(W ) > 0)6 = 0
0002. This, therefore, is the probability that a triad (with no other
connections) would be pairwise stable among three randomly selected whites.

41In general, finding whether or not two graphs are isomorphic has an unknown computational complexity.
It is known to be in NP, but not whether it is in NP-complete or P.
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Our convention is as follows. After the first line (row/column of A or element of v),
which corresponds to the individual of interest (the ego), the next L lines correspond
to her direct connections (or direct alters). Then the subsequent L − 1 lines correspond
to the L − 1 additional possible direct connections of the first direct alter, and so on.
Should the ego have fewer than L links, we leave vacant lines at the end of her block. For
example, if the ego only has L− 1 links, the L+ 1 row and column of A and element of
v are zero. This also applies to the blocks for any alter who does not have his full set of
links. Second, if an indirect alter is reached through multiple direct alters, she appears in
the block corresponding to the direct alter with the most links. Finally, an ordering over
the set of characteristics X in the vector v fixes the permutation and selects the canonical
element from the equivalence class of (A�v) pairs for this type.

Then, given such a convention, it is useful to have an automated procedure to generate
the list of canonical representations. First, we generate all non-isomorphic adjacency ma-
trices A. This is similar to generating all unlabeled graphs with up to 1+L

∑D

d=1(L−1)d−1

nodes (10 nodes in the model with D = 2 and L = 3). Various algorithms for graph gen-
eration are available.42 However, for this model, given the limitation on the number of
links per node (L = 3), it was easiest to write our own simple procedure to generate the
non-isomorphic adjacency matrices. First we make all the tree structures (i.e., graphs with
no cycles), then all graphs with one mutual friendship, then all with two mutual friend-
ships, and finally the one graph with three mutual friendships. There are a total of 36
non-isomorphic adjacency matrices that are relevant under this preference structure.43

Finally, to construct the network types, we consider all possible combinations of charac-
teristics of the ego and the direct alters. (The characteristics of the alters at distance 2 are
not relevant under this preference structure, so they can be omitted from the vectors v.)
We then compare permutations of the alter characteristics and retain only those (A�v)
pairs that are unique, following our convention.44 This yields the list of canonical repre-
sentations of network types. In the model for the second exercise, there are 356 distinct
network types.

D.5.2. Link Deletion

The construction of preference classes involves comparing the utility of each type
against what would be obtained if a link were deleted. To facilitate these comparisons,
we make a list containing the results of link deletion from each type. Links are easily
deleted from a network type by setting the relevant elements of A to zero. We do not
then need to check which canonical representation is isomorphic to the result; only the
utility of the resulting type is needed. Utility in specification (1) is computed as a function
of the characteristics of the direct alters, the number of friends of friends, and the num-
ber of mutual friends. These are easily extracted from any (A�v) pair regardless of the
ordering of the rows and columns, and nodes that are not connected to the ego following
the deletion of a link can be ignored automatically. Accordingly, the list regarding link

42See, for example, http://www3.cs.stonybrook.edu/~algorith/files/generating-graphs.shtml for a list with
recommendations.

43This is considerably less than the number of unlabeled graphs among 10 nodes for three reasons. First,
here the nodes have at most three links. Second, we restrict to graphs with one connected component (which
contains the ego). Third, we do not consider links among nodes at distance 2 from the ego, as they are not
relevant for the ego’s utility.

44General algorithms to test for isomorphisms between graphs with node characteristics (i.e., “colors”) are
also available, for example, the nauty and Traces programs (http://pallini.di.uniroma1.it/).

http://www3.cs.stonybrook.edu/~algorith/files/generating-graphs.shtml
http://pallini.di.uniroma1.it/
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deletion contains only the characteristics of the direct alters and the numbers of indirect
and mutual friends in the resulting types. The number of elements in the list is the number
of types multiplied by the number of links. In the second exercise, this is 356 × 3 = 1,068.

D.5.3. Link Addition

In order to construct the objective matrix Q in our QP problem, we need a mapping
that gives the types which would result if individuals of two types, say t and s, were linked
(given an initial distance > 2D). This mapping can be stored as a matrix where each row
and each column corresponds to a type, and the entry at position [t� s] gives the type t̄
that would result for an individual of type t if a link were added to an individual of type s.
(The matrix is |T | × |T |.) For any cases where either t or s already has L links, this en-
try is blank, which makes the matrix sparse. Otherwise, the resulting type t̄ is found by:
(1) adding a link in the first unoccupied row and column for a direct alter in the adjacency
matrix for type t, At ; (2) inserting the characteristic of the ego from type s into the cor-
responding element of the vector of characteristics for type t, vt ; and (3) adding links to
indicate any direct alters in type s into the appropriate unoccupied rows for indirect alters
in At . This yields an adjacency matrix and vector of characteristics representing the new
type t̄. The resulting (A�v) pair may not be the canonical representation of that type,
however, so we apply an algorithm to test for graph isomorphisms to find the matching
element within the list of canonical representations. We wrote our own simple algorithm,
which considers certain permutations of A and v, but more general algorithms could be
used.45

D.6. Specification of the QP Problem

In order to accommodate error in the type shares estimated from a finite sample, we
modify QP problem (3) to allow the predicted type shares to be within fixed bands around
the observed shares. To do this, we define two slack variables for each type share, one for
a positive difference, β+(t), and one for a negative difference, β−(t). The constraints for
matching predicted shares to observed shares then become

1
μ

∑
H

μv1(t)PH|v1(t)(θ)αH(t)+β+(t)−β−(t)= πt� ∀t


The slacks above are additional variables in the modified QP problem (although the ob-
jective function is unchanged). Their magnitudes are limited based on functions of the
sample size n, denoted δ+(n) and δ−(n), by the following additional constraints:

0 ≤ β+(t)≤ δ+(n) and 0 ≤ β−(t)≤ δ−(n)� ∀t

Thus, the slacks define fixed bands around the observed type shares, allowing errors from
−δ−(n) to +δ+(n) for each type.

The slacks are not minimized in the modified QP problem (e.g., by including their sum
of squares in the objective function) because we found that doing so would add greatly

45See footnote 44 for references. We only need to consider a limited number of permutations of A and
v because the canonical representations always place the ego in the first row, the direct alters in the next L
rows, and the indirect alters in specific rows based on the direct alter through which they are reached. Only
permutations among blocks for direct alters and for indirect alters need to be checked.
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to the solution time. However, the sums of the slacks (
∑

t β
+(t) and

∑
t β

−(t)) are fur-
ther constrained with an upper bound. Without this, the total absolute error between the
predicted and observed type shares could be equal to δ+(n) or δ−(n) multiplied by the
number of types. Given the number of types in the second exercise, even small amounts
for these errors, like 0.01, could then result in a large total absolute error—greater than 1,
for example, which would be the total absolute error if we just predicted each type share
to be equal to zero. Hence, we include the constraints∑

t

β+(t)≤ Δ+ and
∑
t

β−(t)≤ Δ−


The Δ+ and Δ− above, along with the δ+(n) and δ−(n), can be thought of as tuning pa-
rameters. The specific values we choose are described in Appendix D.7.3.

The exact formulation of the QP problem used in our simulations is then as follows:

min
{αH(t):t∈H�H∈H(θ)}�β+�β− α

�Q(θ)α subject to:

1
μ

∑
H∈H(θ)

μv1(t)PH|v1(t)(θ)αH(t)+β+(t)−β−(t)= πt� ∀t� (9)

∑
t∈H

αH(t)= 1� ∀H ∈H(θ); 0 ≤ αH(t)≤ 1� (10)

0 ≤ β+(t)≤ δ+(n)� 0 ≤ β−(t)≤ δ−(n)� ∀t� (11)∑
t

β+(t)≤ Δ+�
∑
t

β−(t)≤ Δ−
 (12)

The dependence of the objective matrix and the set of preference classes on the struc-
tural parameter vector (i.e., Q(θ) and H(θ)) is a further aspect of our implementation,
discussed in the next section.

D.7. Evaluation of a Parameter Vector

Given a candidate vector of preference parameters θ, we wish to solve the QP problem
above to determine whether the optimal value is zero. There are three main steps in this
process: (1) finding the distribution of preference classes, (2) constructing the objective
matrix for the QP problem, and (3) solving the QP problem.

D.7.1. Distribution of Preference Classes

The probability distribution of preference classes is approximated by Monte Carlo inte-
gration with independent draws of the preference shock vectors (we used 10,000 draws).
For each draw εi, we find the preference class of a black individual and a white individ-
ual with those particular shocks. These are the two sets of types such that u(A�v;εi) ≥
u(A−l� v;εi), 1 ≤ l ≤ L, given v1 = B (a black ego) and given v1 = W (a white ego). The
number of times a particular preference class appears with different draws then approx-
imates its true probability. Thus, we have the preference class probabilities, PH|x(θ), and
the set of preference classes that have appeared in this procedure, H(θ). As the nota-
tion indicates, the contents of H(θ) can change with θ, because many preference classes
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have low probabilities of occurrence and so may not be realized even with 10,000 draws,
depending on the values of θ.

To give a sense of the magnitudes of these sets, at the true parameter values we generate
249 preference classes (i.e., |H(θ◦)| = 249). The number of potentially nonzero allocation
parameters (which are variables in the QP problem) is equal to the sum of the cardinalities
of these preference classes:

∑
H∈H(θ◦) |H| = 5�013. These are the results when we restrict

to network types that are either observed in the data or adjacent via addition or deletion
of a link (all other types can be ignored). If we do not remove the unobserved and non-
adjacent types (216 out of the 356 types in this model), we would generate 278 preference
classes with a total of 12,812 potentially nonzero allocation parameters.

D.7.2. Construction of the QP Objective Matrix

Section 6 gives an overview of the construction of the objective matrix Q. Here, we
provide some additional detail on the construction of the matrix S (the precursor to Q).
Each row in S corresponds to an allocation parameter, as does each column. The row for
parameter αH(t) indicates which allocation parameters (in the columns) correspond to
individuals of types that someone of type t with preferences in class H would like to add
a link to. More specifically, the entries of S are defined as S[αH(t)�αG(s)] = 1t̄(s)∈H , where type
t̄(s) is the type that an individual of type t (from αH(t), for the row) would become if they
added a link to someone of type s (from αG(s), for the column) at a distance greater than
2D.

To construct S, we first extract and store the sequence of types associated with all the
allocation parameters in the columns (e.g., the type s in αG(s)). In practical terms, this is
the concatenation of the contents of all the preference classes in H(θ). We then proceed
by row, as follows. Given the allocation parameter for the row, αH(t), we first use the
matrix defined in Section D.5.3 to find the type(s) s that someone of type t with prefer-
ences in class H would like to add a link to. As described in Section D.5.3, entry [t� s] in
that matrix indicates the type t̄ that an individual of type t would become after adding a
link to an individual of type s (or the entry is blank if either types t or s already have L
links). Accordingly, we take row t of the matrix from Section D.5.3 and identify any entry
whose value t̄ is contained in H. The column positions of these entries then indicate the
types s that someone of type t with preferences in class H would like to add a link to.
Thus, we have a list of desired alter types for these individuals of type t. This list is then
compared with the sequence of types from the allocation parameters in the columns (e.g.,
the s in αG(s)). In columns where there is a match, the entries of this row for allocation
parameter αH(t) are set to 1. Those columns correspond to allocation parameters αG(s)
such that t̄(s) ∈H. The other entries in this row are set to 0. This yields the desired result:
S[αH(t)�αG(s)] = 1t̄(s)∈H . The main advantage of this approach is that the match procedure
can be applied to the entire row at once, and it runs quickly even though the sequence of
types from the columns of S is large.

To save memory, S is stored as a sparse binary matrix. Also, because the contents of
H(θ) can change with θ (see Section D.7.1), the matrices S and Q are reconstructed for
each candidate parameter vector θ. While this adds a small amount of computational time
(relative to the time to solve the QP), it turns out to be much better for memory usage
compared with trying to maintain a fixed list of preference classes and a constant version
of the matrices. As noted earlier, many preference classes have very low probabilities and
do not appear in the list H(θ) that is generated from a particular vector θ. A fixed matrix
Q that could accommodate all preference classes found with any vector in the parameter
space would be vastly larger than the matrices Q(θ) that are constructed for particular
values of θ.
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D.7.3. Solution of the QP Problem

To speed the solution of the QP problem, we first use a linear programming (LP) prob-
lem to obtain starting values for the allocation parameters, which are those that minimize
the sum of absolute deviations between the observed and predicted type shares. The LP
problem for this is similar to the QP problem presented in Section D.6, except for the
objective function and an absence of upper bounds on the slack variables. It is specified
as follows:

min
{αH(t):t∈H�H∈H(θ)}�β+�β−

∑
t

(
β+(t)+β−(t)

)
subject to:

1
μ

∑
H∈H(θ)

μv1(t)PH|v1(t)(θ)αH(t)+β+(t)−β−(t)= πt� ∀t�
∑
t∈H

αH(t)= 1� ∀H ∈H(θ); 0 ≤ αH(t)≤ 1�

0 ≤ β+(t)�β−(t)� ∀t

The solution to this problem provides a vector of allocation parameters and slack vari-

ables that are used as starting values in the QP problem. Also, the sums of the slacks in the
solution here are used to define the limits Δ+ and Δ− in constraint (12) of the QP prob-
lem. Specifically, we set the values of Δ+ and Δ− equal to max{ 1

2

∑
t[b+(t)+ b−(t)]�6/n},

where b+(t) and b−(t) are the slacks in the solution to the LP problem. This limits the
sum of absolute errors in the QP problem to the (optimal) sum of absolute errors from
the LP problem, but with a floor of 6/n. The floor is required in order to maintain some
minimal size for the bands around the observed type shares. Last, for constraint (11) of
the QP problem, we set δ+(n)= 2/n and δ−(n)= 1/(2n). These are roughly the amounts
required in order for the solver to converge easily when we use the true parameter values
and the observed type shares from the one randomly selected network. These values and
the floor of 6/n in the formula for Δ+ and Δ− function as tuning parameters, which can
be adjusted based on the performance of the solver.

To solve the QP problem, we use the active set algorithm in the program KNITRO,
which is a variant of a sequential linear and quadratic programming optimization method
(Byrd, Gould, Nocedal, and Waltz (2003)). As detailed below, this routine performs well
on our problem. Over a range of values for the preference parameters, which yield on
the order of 2,000 to 10,000 allocation parameters, the solution time averages less than
25 seconds.

D.8. Construction of the Identified Set

In concept, the identified set is a level set in the space of structural parameters, where
the optimal value of the QP is zero and the predicted type shares match the observed
type shares. Our approach to find this level set involves the use of Markov Chain Monte
Carlo (MCMC) procedures. The results from the solution of the QP problem for a given
parameter vector are converted into a pseudo-density, which an MCMC algorithm can
then use to draw parameter vectors and move through the parameter space.46

46For the results shown here, we used both the Metropolis–Hastings and slice sampler algorithms in Matlab.
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We use a log pseudo-density that is proportional to −[α∗(θ)�Q(θ)α∗(θ) +
β∗(θ)�β∗(θ)], where (α∗(θ)�β∗(θ)) denotes a solution to the QP problem for θ.
This allows for small positive values of the objective function as well as the errors be-
tween observed and predicted type shares. We found this to be helpful to address issues
in computational precision, along with the sampling error in the observed type shares.
Structural parameter vectors where the value of this pseudo-density is at least 95% of
its maximum are then considered to be in the identified set and hence are shown in the
figures.47 For the results plotted in Figure 8 in the article, we generated a total of 7,090
such vectors.

D.9. Computational Performance

The above procedures to construct the identified set were run on machines with Intel�
Xeon� 5160 processors (3 GHz base frequency) and 16 GB of physical memory. Compu-
tations were not parallelized, except in the “embarrassingly” simple sense that multiple
Markov chains were run on different machines. The time required to evaluate a single
parameter vector θ consists mainly of three steps: generating the preference class distri-
bution, constructing the objective matrix, and solving the QP problem (relative to these,
the time to solve the preliminary LP problem is trivial). On average, the first two steps
each account for only 10% of the total compute time, so the majority of the computa-
tional burden comes from the solution of the QP (i.e., 80% of the compute time).

Based on evaluations of 15,000 structural parameter vectors in total, the average time
to evaluate a single parameter vector (i.e., to generate the pseudo-density for a given θ)
was 29.8 seconds. The number of allocation parameters in the QP problems for these
parameter vectors ranged roughly from 2,000 to 10,000, with an average of 5,955.3.
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