
Econometrica Supplementary Material

SUPPLEMENT TO “ALTRUISM IN NETWORKS”
(Econometrica, Vol. 85, No. 2, March 2017, 675–689)
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THIS SUPPLEMENT contains proofs and additional results that complement the paper “Al-
truism in Networks.” The first section studies the transfer cost minimization problem that
underlies the potential maximization problem of the main paper, and uses it to derive ad-
ditional properties of equilibrium transfers, and provide different proofs of some results.
The generic uniqueness of equilibrium transfers is a consequence of this analysis. We
also use this section to explain the connections between our altruistic transfer game and
two classical transportation problems: the minimum-cost flow problem, and the Monge–
Kantorovich optimal transportation problem. In the second section, we show convergence
of best-response dynamics in the transfer game. In the third section, we look at conditions
for the presence or absence of transfer intermediaries, and provide a proof of Theorem 2
of the paper. Finally, in the fourth section, we consider comparative statics with respect
to initial income profiles and altruism. We prove the genericity result used in the proofs
of the paper, and provide some additional comparative statics results.

APPENDIX A: THE COST MINIMIZATION APPROACH

In this section, we analyze in detail the cost minimization problem and use it to draw
connection with classical linear programming problems, and to prove generic uniqueness
of equilibrium transfers. We also exhibit some additional properties of optimal transfer
networks such as cyclical monotonicity. The presentation of the first results borrows from
Galichon (2011). For an overview of the use of optimal transport methods in economics,
see Galichon (2016).

Recall that the maximization of the potential is related to the cost minimization prob-
lem

c
(
y0� y

) = min
T∈S(y)

∑
(i�j)∈A

cijtij� (MCF)

where A= {(i� j) : αij > 0} is the set of arcs of the altruistic network α, and S(y) = {T ∈ S :
∀i� yi = y0

i −∑
j tij +

∑
j tji} is a closed convex polytope since it is defined by a finite number

of weak inequalities. Note that S(y) is unbounded if the altruism network α admits a
directed cycle, since one can then indefinitely increase the transfers of any T ∈ S(y) along
the cycle while still reaching y from y0. This problem is a classical linear programming
problem known as the Minimum Cost Flow problem. Indeed, if each cij is interpreted
as the marginal transportation cost between i and j, this problem consists of minimizing
transportation cost over the network of agents with the constraint of reaching distribution
y from distribution y0.

In network flow problems, a transfer profile T is called a flow, and we will sometimes
use this terminology. A first useful result from the network flow literature (see Galichon
(2011)) says that any flow can be decomposed into paths and cycles. Before we do that,
we partition the set of agents into three sets: the set of net givers IG = {i : yi < y0

i } (or
sources), the set of net receivers IR = {i : yi > y0

i } (or sinks), and the remaining agents. We
let Pij be the set of paths between i and j in the altruism network, P = ⋃

(i�j)∈IG×IR
Pij , be

the set of paths from net givers to net receivers, and C be the set of cycles in the network.
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For any ρ ∈ P , let hρ be the intensity of the flow along ρ, and for each γ ∈ C, let gγ be
the intensity of the flow along γ. A flow on a path is called a path flow, and a flow on a
cycle is called a cycle flow. Together, the vectors h and g define a feasible transfer profile
T through the equation

tij =
∑
ρ∈P

hρ1(i�j)∈ρ +
∑
γ∈C

gγ1(i�j)∈γ� (A.1)

If in addition,

∀i ∈ IG�
∑
j∈IR

∑
ρ∈Pij

hρ = y0
i − yi� (A.2)

and

∀j ∈ IR�
∑
i∈IG

∑
ρ∈Pij

hρ = yj − y0
j � (A.3)

then T ∈ S(y). The following proposition shows that every transfer profile can be decom-
posed in such a way. However, it is easy to see that this decomposition is not necessarily
unique. The proof we provide here is adapted from Galichon (2011).

PROPOSITION A.1—Flow Decomposition: Any transfer plan T ∈ S(y) can be decom-
posed into path flows and cycle flows of intensities h and g according to (A.1), and such that
h satisfies (A.2) and (A.3). Conversely, any distribution of path flows and cycle flows of in-
tensities h and g such that h satisfies (A.2) and (A.3) defines a transfer plan T ∈ S(y) through
(A.1).

PROOF: The second part of the proposition is immediate. For the first part, let T ∈ S(y),
and consider the following maximization problem:

max
h�g

∑
ρ∈P

hρ +
∑
γ∈C

gγ (P)

s.t.
∑
ρ∈P

hρ1(i�j)∈ρ +
∑
γ∈C

gγ1(i�j)∈γ ≤ ti�j� ∀(i� j) ∈ A�

Because this is a linear program over a bounded set, it has a solution (h�g). Consider the
flow T′, defined by

t ′ij =
∑
ρ∈P

hρ1(i�j)∈ρ +
∑
γ∈C

gγ1(i�j)∈γ ≤ tij�

Suppose that this inequality holds strictly. If (i� j) ∈ IG × IR, then one can increase the
flow going through the path ρ = (i� j) ∈ P by tij − t ′ij while still satisfying the constraint
in (P). Since that would strictly improve the objective function of the program (P), that
would lead to a contradiction. Suppose, for example, that j /∈ IR. Then there must exist an
agent j′ such that t ′jj′ < tjj′ , for otherwise the conservation equation at j would be violated
by T′. Similarly, if i /∈ IG, then there exists an agent i′ such that t ′i′i < ti′i. Extending t ′ij to
the left and the right in this way, it must be the case that we end up with a path ρ ∈ P
that goes through (i� j), or a cycle μ ∈ C that does not necessarily go through (i� j), and
such that for each (��k) that belongs to ρ or μ, t ′�k < t�k. Then there is some leeway to
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increase the intensity hρ or gμ, and thus strictly improve the objective of the maximization
problem (P), while still satisfying its constraint: a contradiction. Q.E.D.

Note that if T has a cycle, it may admit a flow decomposition that puts 0 intensity on
all cycles. However, there must be a decomposition with a cycle, as the following result
shows.

LEMMA A.1: T has a cycle if and only if it admits a flow decomposition that puts positive
intensity on a cycle.

PROOF: Let γ = (i0� � � � � i�) be a cycle of T, and let τ = min(i�j)∈γ tij > 0. Then let g
be the cyclic flow that puts intensity gγ = τ on the cycle γ, and let T′ = T − g. T′ is a
feasible transfer plan that achieves the same distribution as T, and therefore it has a flow
decomposition (h′�g′). Then (h′�g′ + +g) is a flow decomposition of T that puts positive
weight on a cycle. The other implication is trivial. Q.E.D.

We now introduce a different cost minimization problem, known as the Monge–
Kantorovich optimal transportation problem, and show how it is related to the initial
problem. In the process, we also prove several important properties of the solutions to
(MCF). We start by defining the reduced cost vector ĉ with elements

ĉij = min
ρ∈Pij

∑
(��k)∈ρ

c�k�

for every (i� j). This reduced cost vector is the cost vector associated with the transitive
closure α̂ of the altruism network. The cost ĉij is the lowest cost path between i and j. We
call such paths shortest paths. They correspond to highest altruism paths. Let P̂ij be the set
of shortest paths between i and j.

For every i ∈ IG, let Gi = y0
i − yi be the amount of money that needs to be transferred

away from i, and for every j ∈ IR, let Rj = yj −y0
j be the amount of money that needs to be

transferred to j. By construction,
∑

i∈IG Gi = ∑
j∈IR Ri. We can view our problem as that

of transferring the amount
∑

i∈IG Gi from IG to IR in the least costly way. It is natural to
express the cost of transportation between i ∈ IG and j ∈ IR as ĉij . Formally,

min
τ∈RIG×IR+

∑
(i�j)∈IG×IR

ĉijτij (MK)

s.t.
∑
j∈IR

τij =Gi� ∀i ∈ IG

∑
i∈IG

τij =Rj� ∀j ∈ IR�

This program is a Monge–Kantorovich optimal transportation problem with discrete
source and target distributions. The two problems are related in the following way. Here
again, our presentation borrows from Galichon (2011).

THEOREM A.1: If T solves (MCF), then it has no cycles, and all the paths with positive
intensity in its flow decomposition are shortest paths. Furthermore, the set of solutions to
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(MCF) is a nonempty, compact, and convex polytope. The value c(y� y0) of the cost mini-
mization problem is equal to the value function of (MK). The solutions of (MCF) can be
obtained from the solutions of (MK) by distributing each τij across the paths in P̂ij , the short-
est paths from i to j. The solutions of (MK) can be obtained from the solutions of (MCF) by
setting τij equal to the sum of the intensities over paths in Pij in the flow decomposition of a
solution T.

PROOF: Using the flow decomposition theorem, we can rewrite (MCF) as

min
h�g

∑
ρ∈P

hρcρ +
∑
γ∈C

gγcγ

s.t.
∑
j∈IR

∑
ρ∈Pij

hρ =Gi� ∀i ∈ IG

∑
i∈IG

∑
ρ∈Pij

hρ =Rj� ∀j ∈ IR�

where cρ = ∑
(i�j)∈ρ cij and cγ = ∑

(i�j)∈γ cij .
Since cycles cannot help satisfying the constraints, it is optimal to set gγ = 0 for every

γ ∈ C. Hence optimal transfer networks have no cycle in their flow decomposition, and are
therefore acyclic by Lemma A.1. It is also clear that only shortest paths can have strictly
positive intensity. Indeed, if there exists a path ρ ∈ Pij such that hρ > 0, and ρ is not a
shortest path, then reassigning intensity hρ to another path ρ′ ∈ P̂ij would lead to a cost
reduction of (cρ − ĉij)hρ > 0.

Having proved that the set of solutions to (MCF) is acyclic, we can solve the minimiza-
tion problem over the set of acyclic transfer plans. Contrary to the set of transfer plans, it
is bounded, as no transfer tij can exceed the total amount of money available

∑
i y

0
i . It is

easy to show that it is also a closed set; therefore, the minimization problem minimizes a
continuous function over a compact set, implying the existence of a solution. Since (MCF)
is a linear problem, we know that the solution set is a closed convex polytope, and since
all solutions are acyclic, it is also bounded and hence compact.

Since optimal transfers only use shortest paths, we can rewrite the objective function of
the transformed program as∑

(i�j)∈IG×IR

∑
ρ∈P̂ij

hρcρ =
∑

(i�j)∈IG×IR

ĉij
∑
ρ∈P̂ij

hρ�

Letting τij = ∑
ρ∈P̂ij

hρ, the transformed program becomes (MCF). This shows that the
two programs have the same value function, and how to obtain the solutions of (MCF)
and (MK) from one another. Q.E.D.

To get a better understanding of the structure of the set of solutions to (MCF), we
start by describing the structure of the set S(y). We know that it is a possibly unbounded
convex polytope. Therefore, it can be expressed as the convex hull of a finite set of points
and directions. We will now characterize its set of extreme points and directions. The
directions will be given by the cycles of A. For every cycle γ ∈ C, let Tγ be the flow defined
by tγij = 1(i�j)∈γ . To describe the set of extreme points, we need some additional notations.
Let T ∈ S(y) be an acyclic transfer network, so that any flow decomposition of T is given
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by a vector h. Pick any such decomposition h. Suppose in addition that, for every (i� j) ∈
IG × IR, there exists at most one path ρ ∈ Pij such that hρ > 0 (if it is the case for one
decomposition of T, it has to be the case for all of them). Then we define a matching μ
of T as any collection of pairs (i1� j1)� � � � � (ik� jk) such that: k ≥ 2; i� �= i�′ and j� �= j�′ ,
for every � �= �′; (i�� j�) ∈ IG × IR for every �; and, for every �, there exists a (necessarily
unique) path ρi�j� ∈ Pi�j� such that hρi�j� > 0. In this case, we say that the support of μ,
denoted by suppμ, is the list of pairs involved in the paths ρi�j� , for �= 1� � � � �k.

Then let Sex(y) be the set of transfer plans in S(y) such that: (i) T has no cycles; (ii) for
any flow decomposition h of T, and every (i� j) ∈ IG × IR, there exists at most one path
ρ ∈ Pij such that hρ > 0; (iii) for every matching μ = (i1� j1)� � � � � (ik� jk) of T, either μ′ =
(i1� j2)� � � � � (ik−1� jk)(ik� j1) is not a matching of T, or μ and μ′ have the same support.

Then we have the following result.

PROPOSITION A.2: The set {Tγ}γ∈C is the set of directions of S(y), and Sex(y) is its set of
extreme points. In particular, Sex(y) is a finite set {T1� � � � �Tk}, and for every matrix T ∈ S(y),
there exist nonnegative scalars λ1� � � � � λk such that λ1 +· · ·+λk = 1, and nonnegative scalars
λγ for each γ ∈ C such that

T =
k∑

�=1

λ�T� +
∑
γ∈C

λγTγ�

PROOF: To see that {Tγ}γ∈C is the set of directions of S(y), just note that if T ∈ S(y),
then, for any γ ∈ C and any λ > 0, the transfer plan T + λTγ is also in S(y). Furthermore,
any flow that is not a cycle, or a combination of cycles, cannot be added to T without
modifying the achieved distribution.

For extreme points, we start by showing that any T ∈ S(y) � Sex(y) can be written as
a convex combination of two transfer plans in S(y), and therefore cannot be an extreme
point.

First, suppose that T has a cycle γ, and let τ = min(i�j)∈γ tij , T′ = T − τTγ , and T′′ =
T + τTγ . It is easy to see that T′ and T′′ are both in S(y), and that T = 1

2 T′ + 1
2 T′′. Hence

we can assume that T is acyclic. Suppose now that there exists a pair (i� j) ∈ IG × IR with
at least two paths ρ and ρ′ in Pij such that t�k > 0 for every (��k) ∈ ρ and every (��k) ∈ ρ′.
Then let Tρ and Tρ′ be the flows respectively defined by tρ�k = 1(��k)∈ρ and tρ

′
�k = 1(��k)∈ρ′ , and

let τ = min(��k)∈ρ t�k > 0 and τ′ = min(��k)∈ρ′ t�k > 0. We define the new transfer plans

T1 = T − τTρ + τTρ′
�

and

T2 = T − τ′Tρ′ + τ′Tρ�

It is easy to see that they both achieve y since they are obtained by reassigning to ρ′ some
of the money that flows from i to j through ρ, or reciprocally. Furthermore, we have

T = 1/τ
1/τ + 1/τ′ T1 + 1/τ′

1/τ + 1/τ′ T2�

Now suppose that T satisfies properties (i) and (ii) but not (iii) in the definition of
Sex(y). Let μ= (i1� j1)� � � � � (ik� jk) and μ′ = (i1� j2)� � � � � (ik−1� jk)(ik� j1) be two matchings
of T with different supports. Then let Tμ and Tμ′ be the flows defined respectively by tμij =
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1(i�j)∈suppμ, and tμ
′

ij = 1(i�j)∈suppμ′ . Because μ and μ′ have different supports, we have Tμ �=
Tμ′ . Let τ = min(i�j)∈suppμ tij > 0 and τ′ = min(i�j)∈suppμ′ tij > 0. Consider the new transfer
plans

T1 = T − τTμ + τTμ′
�

and

T2 = T − τ′Tμ′ + τ′Tμ�

It is easy to see that they both achieve y since they are only obtained by reassigning to μ′

some of the money that flows from sources i1� � � � � ik to the sinks j1� � � � � jk through μ, and
in this reassignment, each sink gains τ from one source and loses τ from another, while
each source gives an additional τ to one sink, and reduces its transfer to another source
by τ (or reciprocally for T2). Furthermore, we have

T = 1/τ
1/τ + 1/τ′ T1 + 1/τ′

1/τ + 1/τ′ T2�

Therefore, all extreme points are in Sex(y). Now, let T ∈ Sex(y), and suppose that it is
not an extreme point. Because all extreme points are in Sex(y), we can write T as a convex
combination of extreme points T1� � � � �Tk, all in Sex(y) (we do not need cycles because T is
acyclic). Let λ� > 0 be the weight of each T� in this decomposition. For each �= 1� � � � �k,
and each pair (i� j) ∈ IG × IR, let ρij

� ∈Pij be the unique path between i and j with positive
flow in T�. There may be no such path for some �, but if ρij

� and ρ
ij

�′ both exist, then we
must have ρ

ij
� = ρ

ij

�′ , for otherwise T would put a positive flow on both paths, which is
impossible.

We pick two of these transfer plans T1 and T2, and corresponding flow decompositions
h1 and h2. For every pair (i� j) ∈ IG × IR, let ρij be the unique path between i and j with a
positive flow from at least one of the two transfer plans. Let τ1

ij = h1
ρij

and τ2
ij = h2

ρij
be the

flows of T1 and T2 over this path. If a transfer plan has no flow between i and j, we set the
corresponding τij to 0. We will say that (i� j) is a blue pair if τ1

ij > τ2
ij , and a green pair if

τ1
ij < τ2

ij . Next, consider the following procedure.
First, pick a blue pair (i1� j1). There must exist such a pair, for otherwise T1 = T2. Be-

cause i1 is sending more money over the corresponding path in T1 than in T2, there must
exist an agent j2 ∈ IR to whom i1 is sending more money through the path ρi2j2 in T2 than
in T1. That is, (i1� j2) is a green pair. For obvious reasons, j1 �= j2. But then, j2 is receiving
more money from i1 in T2 than in T1. Hence, there must exist an agent i2 ∈ IG such that j2

receives more money from i2 in T1 than in T2. That is, (i2� j2) is a blue pair. At this point,
we can build a new green pair (i2� j3), but it could be the case that j3 = j1. If this is the
case, we stop the construction, and otherwise we continue in this way. Because there is a
finite number of agents, we must end up creating a new pair such that one of the agents
involved was already part of a previous pair. The construction stops the first time this
happens.

This procedure creates an undirected cycle of alternate blue and green pairs. It may
be the case that some pairs in the construction are not part of the cycle; in this case, we
keep only the cycle. We relabel the blue pairs in the cycle (i1� j1)� (i2� j2)� � � � � (ik� jk). Then
the green pairs are (i1� j2)� � � � � (ik−1� jk)� (ik� j1). The blue pairs form a matching μ for T.
Indeed, since T puts a positive weight λ1 on T1, and T1 has a positive flow over each path
corresponding to a blue pair, T must also have a positive flow over these pairs. But the
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green pairs form a matching μ′ for T as well, since T2 has a positive flow over each path
corresponding to a green pair, and T puts a positive weight on T2.

If μ and μ′ have the same support, then we can drop the pairs involved in the cycle and
do the construction above again with the remaining pairs. At some point, we must end
up with two matchings μ and μ′ with different support, for otherwise T1 and T2 would be
equal. But then, T violates condition (iii) in the definition of Sex(y).

The remainder of the proposition is just the classical decomposition of elements of a
convex polytope. (See, e.g., Rockafellar (1972), Section 19). Q.E.D.

We now uncover some properties of the set S∗(y) of solutions to (MCF). We start by
introducing the notion of cyclical monotonicity. For intuition, suppose that you are cur-
rently transferring one dollar from agent i1 to agent j1 at a cost ĉi1j1 (hence you are using
the shortest path between these two agents), and another dollar from i2 to j2 at a cost
ĉi2j2 . The total cost of this redistribution is therefore ĉi1j1 + ĉi2j2 . Another way to achieve
the same redistribution, however, would be to transfer one dollar from i1 to j2, and one
dollar from i2 to j1. If it is the case that

ĉi1j2 + ĉi2j1 < ĉi1j1 + ĉi2j2�

then, clearly, the first plan is not optimal.

DEFINITION 1—Cyclical Monotonicity: We say that a subset 
 ⊆ IG × IR is ĉ-cyclically
monotone if, for every sequence (i1� j1)� � � � � (ik� jk) of points in 
 such that all sources
and all sinks are distinct, we have

k∑
�=1

ĉi�j� ≤
k∑

�=1

ĉi�j�+1

with the convention jk+1 = j1.

Now, let 
 be the subset of IG × IR such that a pair (i� j) belongs to 
 if there exists an
optimal transfer plan T ∈ S∗(y), a flow decomposition h of T (we know that T is acyclic),
and a shortest path ρ from i to j such that hρ > 0 (we know that all positive path flows of
T are on shortest paths).

PROPOSITION A.3: 
 is ĉ-cyclically monotone.

PROOF: Suppose otherwise, and let (i1� j1)� � � � � (ik� jk) be a collection of points over
which the monotonicity condition fails. For each of the pairs � = 1� � � � �k, let T� be an
optimal transfer plan with flow decomposition h� that is positive on a shortest path from i�
to j�. Then T = 1

k
T1 +· · ·+ 1

k
Tk is also an optimal transfer plan whose flow decomposition

h = 1
k

∑k

�=1 h� has a positive flow between all these pairs. Let h be the minimum flow
intensity across all pairs. Now consider reassigning h from each pair (i�� j�) to the pair
(i�� j�+1). This reassignment does not change the final distribution and it leads to a cost
reduction of

h×
(

k∑
�=1

ĉi�j�+1 −
k∑

�=1

ĉi�j�

)
> 0�

a contradiction to the optimality of T. Q.E.D.
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A natural corollary of this result is the following.

COROLLARY A.1: Let (i1� j1)� � � � � (ik� jk) be a sequence of points in 
, and suppose that,
for every �= 1� � � � �k, (i�� j�+1) is also in 
 (with the convention jk+1 = j1). Then

k∑
�=1

ĉi�j� =
k∑

�=1

ĉi�j�+1 �

PROOF: By the cyclical monotonicity inequality, the left-hand side is smaller than the
right-hand side. But by rearranging the order of the pairs, we can also obtain the reverse
inequality as a cyclical monotonicity inequality. Q.E.D.

Equipped with this set of results, we can state a sufficient condition for the uniqueness
of the cost minimizing transfer plan.

PROPOSITION A.4—Uniqueness: Suppose that the cost vector c and the target distribution
y satisfy the following properties: (a) for every (i� j) ∈ IG × IR, there is a unique shortest path
in Pij ; and (b) for every sequence (i1� j1)� � � � � (ik� jk) of points in 
 such that all sources and
all sinks are distinct, we have either

∑k

�=1 ĉi�j� <
∑k

�=1 ĉi�j�+1 , or the list of arcs in the shortest
paths ρi1�j1� � � � � ρik�jk and the list of arcs in the shortest paths ρi1�j2� � � � � ρik�j1 are the same.
Then S∗(y) is a singleton.

PROOF: Suppose that S∗(y) is not a singleton. Then there exists a transfer plan T in
S∗(y) that is not in Sex(y). Since T must be acyclic, it must fail property (ii) or (iii) of
the definition of Sex(y). Suppose first that it fails property (ii). Then there must exist a
pair (i� j) ∈ IG × IR and a flow decomposition h of T with positive flows on two distinct
paths ρ �= ρ′ of Pij . By Theorem A.1, both of these paths must be shortest paths, but
that contradicts (a). Suppose now that it satisfies property (ii) but fails (iii). Then let
μ = (i1� j1)� � � � � (ik� jk) and μ′ = (i1� j2)� � � � � (ik� j1) be two matchings of T with different
support such that a flow decomposition h of T puts positive flows on μ and μ′. Then, by
Corollary A.1, we must have

∑k

�=1 ĉi�j� = ∑k

�=1 ĉi�j�+1 , which contradicts (b). Q.E.D.

This allows us to prove the following generic uniqueness result.

PROPOSITION A.5—Generic Uniqueness: Generically in c, the cost minimizing transfer
plan is unique for every y0 and every feasible y.

PROOF: Consider the set of cost vectors C̃ such that: (i) for every pair of agents
(i� j), and every pair of distinct paths ρ �= ρ′ in Pij , cρ �= cρ′ ; and (ii) for every sequence
(i1� j1)� � � � � (ik� jk) of arcs in A such that (i�� j�+1) ∈ A for each �, and every choice of
paths ρ� ∈ Pi�j� , and ρ′

� ∈ Pi�j�+1 , such that the lists of arcs in the paths (ρ)�=1�����k and
(ρ′)�=1�����k are distinct, then

∑k

�=1 cρ� �= ∑k

�=1 cρ′
�
.

Note that we need to assume that the lists of arcs in ρ and ρ′ are distinct, for otherwise
the two sums are necessarily equal. It is easy that any cost vector in C̃ satisfies properties
(a) and (b) of Proposition A.4 for any y ∈ Y . But the set of cost vectors c that do not
belong to C̃ is a finite reunion of hyperplanes defined by a linear inequality; therefore, C̃
is generic in the set of possible cost vectors. Q.E.D.
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Before going back to the original problem, we provide some results on the value func-
tion of the cost minimization problem. As usual in linear programming, the minimization
program has a dual maximization program. In this case, it can be written as a program
over a vector of “prices” φ in R

N . For any feasible y,

c
(
y� y0

) = max
φ

N∑
i=1

φi

(
yi − y0

i

)
s.t. φj −φi ≤ cij ∀i �= j�

As a consequence, we have the following result.

PROPOSITION A.6: The cost function c(y� y0) is convex in y and y0, supermodular in y−y0,
concave in c, and continuous in all variables. Furthermore, it depends on c only through ĉ.
S∗(y) is upper hemicontinuous in y, y0, and c.

PROOF: In the original problem, we are minimizing an objective function that is lin-
ear in ĉ over a convex set. In the dual problem, we are maximizing an objective function
that is linear in y and y0 over a convex set. The dual formulation of the problem maxi-
mizes a supermodular function in (y − y0�φ) over a lattice; therefore, its value function
is supermodular. The continuity properties can be derived by applying the maximum the-
orem (see, e.g., Aliprantis and Border (2006)) to the minimization problem after having
reduced the space over which the function is minimized to the compact set of acyclic
transfers that achieve y. The fact that the value function depends only on ĉ is a direct
consequence of Theorem A.1. Q.E.D.

Going back to the original problem, we can now rewrite the problem of maximizing the
potential, as maxy∈Y

∑n

i=1 Ui(yi)−c(y� y0), where Ui(yi)= ∫ yi
1 ln(u′

i(x))dx, and summarize
our results in the following theorem.

THEOREM A.2: There is a unique equilibrium distribution y∗. It is continuous as a function
of y0 and c, and depends on c only through ĉ. The set of Nash equilibria of the transfer game
is a nonempty, compact, and convex polytope given by

S∗ = arg min
T

∑
1≤i�j≤N

cijtij s.t.
∑
i �=j

(tji − tij)= y∗
i − y0

i ∀i�

It is generically a singleton. Furthermore, every transfer network in S∗ is acyclic, and all its
positive flows are on shortest paths. As a correspondence, S∗ is upper hemicontinuous in
(y0� c), and depends on c only through ĉ.

PROOF: Most points are direct consequences of our results on the cost minimization
problem. The only point that needs proof is the existence, uniqueness, and continuity of
the solution to the first program. Note first that Y is closed, and bounded since no agent
can get more than

∑
i y

0
i . The objective function is continuous, by assumption for the first

term, and as a consequence of convexity for the cost term. That gives us existence. The
program is strictly concave in y, by strict concavity of the Ui(·) functions, and convexity
of c(·� y0); therefore, the solution is unique. Furthermore, the maximum theorem implies
that the solution to the problem is continuous in y0 and c. Q.E.D.
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APPENDIX B: BEST-RESPONSE DYNAMICS

In this section, we use the potential to show convergence of best-response dynamics. As
a preliminary, we show a few lemmas.

LEMMA B.1: For every scalar λ, the set �λ = {T : ϕ(T)≥ λ} is compact.

PROOF: We know that ϕ(·) attains its maximum over the set of transfers. Let ϕ de-
note the value of this maximum. The set �λ is the reciprocal image of the interval [λ�ϕ]
by the continuous function ϕ(·), hence it is closed (if λ > ϕ, then �λ is empty, and the
lemma holds vacuously). Suppose, by contradiction, that it is unbounded, and let {Tn} be
an unbounded sequence of transfers in �λ, so that ‖Tn‖ → ∞. Fix a scalar K ≥ 0. We can
assume that, for every n, ‖T∗ − Tn‖ ≥K. Let T∗ be a maximizer of ϕ(·). Clearly, T ∗ ∈ �λ.
Consider the sequence T̃n defined by

T̃n = K∥∥T∗ − Tn
∥∥Tn +

∥∥T∗ − Tn
∥∥ −K∥∥T∗ − Tn

∥∥ T∗�

Note that, for every n, ‖T̃n − T∗‖ =K. By concavity of ϕ, we have

ϕ ≥ ϕ
(
T̃n

) ≥ K∥∥T∗ − Tn
∥∥ϕ(

Tn
) +

∥∥T∗ − Tn
∥∥ −K∥∥T∗ − Tn

∥∥ ϕ
(
T∗)

≥ K∥∥T∗ − Tn
∥∥λ+

∥∥T∗ − Tn
∥∥ −K∥∥T∗ − Tn

∥∥ ϕ
n→∞−−→ ϕ�

Hence the sequence ϕ(T̃n) converges to ϕ. Since the sequence T̃n lies in the compact set
of points at distance K of T∗, it has a converging subsequence. Let T̃∞ denote the limit of
this subsequence. It is at distance K of T∗. By continuity of ϕ, we must have ϕ(T̃∞) = ϕ.
Therefore, we have found a maximizer of ϕ at distance K of T∗. Since we can do so for
every K, this implies that the set S∗ is unbounded, a contradiction since it is compact by
Theorem A.2. Q.E.D.

For a player i, and a transfer profile T, let BRi(T) be the set of pairs (T′
i�T−i) such that

T′
i is a best-response to T−i. For any ordering (a permutation) σ of players, let

BRσ(T)= BRσ(n) ◦BRσ(n−1) ◦ · · · ◦BRσ(1)(T)�

LEMMA B.2: For any ordering σ , the best-response correspondence BRσ is nonempty,
compact-valued, and upper hemicontinuous. Furthermore, the set of fixed points of BRσ is
exactly the set S∗ of Nash equilibria of the transfer game.

PROOF: First consider BRi(·). For every T′ ∈ BRi(T), we have T′
−i = T−i, hence the

correspondence is continuous in all dimensions j �= i. On dimension i, we have, by the
best-response potential property,

T′
i ∈ arg max

T̂i∈Rn−1+
ϕ(T̂i�T−i)�
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When solving this program, we can fix a transfer plan T0
i for player i, and restrict the

program above to transfers in the set

S(T−i)= {
T̂i : (T̂i�T−i) ∈�ϕ(T0

i �T−i)

}
�

which is compact by Lemma B.1. It is also easy to see that the correspondence S(·) is
continuous. By continuity of ϕ(·), we can apply the maximum theorem to conclude that
the maximizer correspondence of this program is nonempty, compact-valued, and upper
hemicontinuous. This implies that BRi(·) is nonempty, compact-valued, and upper hemi-
continuous, for every i, and therefore that BRσ(·) satisfies these properties as well.

If T is a Nash equilibrium of the transfer game, it is clearly a fixed point of BRσ . Suppose
that T ∈ BRσ(T); then ϕ remains constant along the sequence of best-replies that lead to
BRσ(T). This implies that, at each step i of this sequence, T is among the best-replies of
player i. Therefore, T is a Nash equilibrium of the transfer game. Q.E.D.

We say that {Tk} is a best-response dynamics sequence if, for every k,

Tk ∈ BRσ ◦ · · · ◦BRσ︸ ︷︷ ︸
k times

(
T0

)
�

PROPOSITION B.1: The limit set of any best-response dynamics sequence is a subset of
the set of Nash equilibria S∗. For any best-response dynamics sequence {Tk}, the sequence of
corresponding consumption profiles {yk} converges to the unique equilibrium distribution y.

PROOF: Pick any best-response dynamics sequence {Tk}. First note that the sequence
ϕ(Tk) is increasing and bounded above by ϕ, and therefore converges. We denote its limit
by ϕ∞. Since, for every k, ϕ(Tk) ≥ ϕ(T0), the sequence Tk lies in the compact set �ϕ(T0).
Hence {Tk} admits a converging subsequence. Let {Tg(k)} be such a subsequence, and
Tg(∞) its limit. By continuity of ϕ, we have ϕ(Tg(∞))= ϕ∞.

Consider the subsequence Tg(k)+1. Since it lies in a compact set, we can extract a con-
verging subsequence from this new sequence. Assume, without loss of generality for the
argument to follow, that Tg(k)+1 is itself convergent, and denote its limit by T̃. Since
Tg(k)+1 ∈ BRσ(Tg(k)), we have by upper hemicontinuity of BRσ , that T̃ ∈ BRσ(Tg(∞)). Since
Tg(k)+1 is also a converging subsequence of Tk, we have ϕ(T̃) = ϕ∞ = ϕ(Tg(∞)). This im-
plies that Tg(∞) is also in BRσ(Tg(∞)), and is therefore in S∗. This must hold for any limit
of a converging subsequence of Tk, so the limit set of Tk is a subset of S∗.

Next, consider the sequence of consumption profiles yk. Since {Tk} lies in the compact
set �ϕ(T0), and since the function that maps a transfer profile to the corresponding distri-
bution is continuous, it is uniformly continuous on �ϕ(T0). Pick ε > 0, and δ > 0, such that
for every T and T′ in �ϕ(T0), ‖y − y′‖< δ. By definition of the limit set, we can pick K such
that, for every k>K, Tk is within distance δ of the limit set S∗ of the sequence. Then, for
every k>K, yk is within distance ε of the distribution y associated with some T ∈ S∗, that
is, ‖yk − y‖< ε. Hence yk converges to the unique equilibrium distribution y. Q.E.D.

Clearly, if the equilibrium transfer network is unique, as is generically true, then best-
response dynamics converges to the unique equilibrium.
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APPENDIX C: TRANSFER INTERMEDIARIES

In this section, we prove Theorem 2 of the paper, and then we provide an example
showing how transitivity may be satisfied by an altruism network that is inconsistent with
deferential caring.

PROOF OF THEOREM 2: For the first point, suppose first that α is transitive and con-
sider an equilibrium T with a transfer chain ti1i2 > 0, . . . , ti�−1i� > 0 with �≥ 3. Let τ be the
smallest transfer in the chain. Consider the alternative profile T′, where t ′is is+1

= tisis+1 − τ,
t ′i1il = ti1il + τ, and t ′ij = tij for the other pairs. In T′, transfer τ is redirected to flow directly
from i1 to i� rather than indirectly through the chain. This removes one link in the transfer
chain. Note that consumption is unchanged. In addition, the difference in costs between
the original and the modified profiles is equal to ci1i� −

∑�−1
s=1 cisis+1 . By Theorem 1, i1, . . . , i�

is a least path of α, which means that ĉi1i� = ∑�−1
s=1 cisis+1 . Since α = α̂, T′ has the same cost

as T. By Theorem 1, this is also a Nash equilibrium. Thus, for any Nash equilibrium with
a transfer chain, we can construct another equilibrium with one less link in the transfer
chain. Repeating the operation eventually leads to an equilibrium without transfer chains.

Next, suppose that α is not transitive. Then, there exists some pair i� j such that αij < α̂ij .
Set y0

i = Y and y0
k = 0 ∀k �= i. By Theorem 3, yi is increasing in Y . Suppose that yi is

bounded. Then, yi tends to some y . Since
∑

j yj = Y , there is some k such that yk tends
to ∞. Here all the money originates in i, so money must flow somehow from i to k. Thus,
u′
i(yi) = α̂iku

′
k(yk). In the limit, this yields u′

i(y) = 0, which is a contradiction. Therefore,
yi becomes arbitrarily large as Y increases. From conditions (5) in the main paper, we
know that u′

i(yi) ≥ α̂iju
′
j(yj). Since yi tends to ∞ and α̂ij > 0, u′

j(yj) tends to 0 and hence
yj > 0 if Y is large enough. Money flows, somehow, from i to j. By Theorem 1, it flows
through a least-cost path which, by assumption, cannot be the direct link.

For the second point, suppose that α is consistent with deferential caring and let B be
the matrix of weights that agents put on others’ social utilities. Let M = (I − B)−1 such
that αij = mij/mii as in Section II. We can easily show that α is transitive iff ∀i� j�k�αik ≥
αijαjk. This is equivalent to: ∀i� j�k�mikmjj ≥ mijmjk. These inequalities are called the
“path product conditions,” and are known to hold if M is the inverse of an M-matrix; see
Johnson and Smith (2007). This is the case here. Q.E.D.

Next, we provide an example of a transitive altruism network that is inconsistent with
deferential caring. For this, we adapt the example of Johnson and Smith (2011, p. 963).
Consider the following altruistic network connecting four agents:

α=
⎛
⎜⎝

0 0�1 0�4 0�3
0�4 0 0�4 0�65
0�1 0�2 0 0�6
0�15 0�3 0�6 0

⎞
⎟⎠ �

which is transitive since ∀i� j�k distinct, αij ≥ αikαkj . Suppose that α is consistent with
deferential caring. Then there exists B ≥ 0 such that bii = 0, λmax(B) < 1, and αij = mij/mii

with M = (I − B)−1. Let D be the diagonal matrix such that dii = 1/mii. Then, I + α =
D(I − B)−1 ⇒ B = I − (I + α)−1D. Since bii = 0, we must have dii = 1/[(I + α)−1]ii. This



ALTRUISM IN NETWORKS 13

implies that

B ≈
⎛
⎜⎝

0 0�003 0�231 0�054
0�376 0 −0�074 0�425
0�004 0�031 0 0�510
0�035 0�281 0�588 0

⎞
⎟⎠ �

which is impossible since b23 < 0. This provides an example of a transitive altruism net-
work that is not consistent with deferential caring. By contrast, Theorem 3.2 of Johnson
and Smith (1999, p. 183) implies that, for n = 2 or 3, any transitive altruism network is
consistent with deferential caring.

APPENDIX D: COMPARATIVE STATICS

We start this section by proving a technical lemma showing that, generically, the in-
equalities in equilibrium conditions (5) of the paper hold strictly. This result is important
for the proofs of the comparative statics results in the paper. Then we extend Exam-
ple 3 of the main paper, by showing that if society consists of two separate communities
with distinct aggregate incomes, an inequality-reducing income redistribution from rich
individuals in the poorest community to poor individuals in the richest community in-
creases consumption inequality whenever the income gap between the two communities
is sufficiently large. Finally, we conclude the section by illustrating the comparative statics
result of Theorem 4 with an example that shows the evolution of the transfer network
and equilibrium consumption as altruism increases between two agents in the network. In
particular, we exhibit non-monotonic consumption changes for some agents.

(a) Genericity Result.

First, we show the genericity result in the sense of measure, which is the one adapted in
the paper.

LEMMA D.1: Generically in (α� y0), the unique equilibrium transfer network T satisfies
tij = 0 ⇒ u′

i(yi) > αiju
′
j(yj).

PROOF: Consider the set A of altruism networks with no zeros (i.e., αij > 0 for all i �= j),
and the set of initial income distributions Y . Note that the set of altruistic networks with
some zeros has measure 0, but our proof would work if we restricted ourselves to a set
of altruism networks with zeros on some given arcs. Let G be the set of oriented acyclic
graphs whose vertices are the agents of our model. For a graph g ∈ G, we let gij = 1 if
(i� j) is an arc of g, and gij = 0 otherwise. For every pair (i� j), let Gij be the set of graphs
in G such that i and j are not path-connected.

Next, we pick a pair (i� j) and a graph g ∈ Gij . Denote by Cg
i and Cg

j the connected
components of i and j. For any k ∈ Cg

i , there is a unique undirected path connecting i
to k. For every arc (��m) on this path, let β�m = α

gm�−g�m
�m , and let βik be the product of the

β�m along this path. Then we can define the functions

hg
k(x) = [

u′
k

]−1(
βiku

′
i(x)

)
�

and hg
i (x) = x. Note that these functions are strictly increasing in x and continuous in

x and α. Then the sum
∑

k∈Cg
i
hg
k(x) is also strictly increasing and continuous in x, and
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continuous in α, and so is its inverse which we denote by Hg
i (x). We define similarly the

strictly increasing and continuous function Hg
j (x) for j.

Now consider the set E g
ij of initial income profiles y0 and altruism networks α that sat-

isfy Hg
i (y

0(Cg
i )) = Hg

j (y
0(Cg

j )). Because the two functions Hg
i (·) and Hg

j (·) are strictly
increasing, one can write y0

i as a continuous function of (y0
−i�α). Therefore, the set E g

ij has
Lebesgue measure 0 in A×Y as the graph of a continuous function (see, e.g., Zorich and
Cooke (2004)). But then the set

E =
⋃
(i�j)

⋃
g∈Gij

E g
ij

also has measure 0 in the set of initial income profiles, as a finite union of measure 0 sets.
Note that the set of (α� y0) such that α has some zeros has measure 0, and that the

set of (α� y0) such that α does not satisfy the generic uniqueness conditions also has
measure 0. To conclude the proof, we show that the set of remaining (α� y0) that do not
satisfy the property of the lemma is a subset of E , and therefore has measure 0. To see
that, suppose that in the unique equilibrium, there exists a pair (i� j) such that tij = 0 and
u′
i(yi) = αiju

′
j(yj). First, note that i and j cannot be connected in the equilibrium transfer

network T. Otherwise, one could transfer a sufficiently small amount ε over the arc (i� j),
subtract ε from all transfers along the undirected path that connects i to j and go in the
opposite direction as (i� j) and add ε to all such transfers that go in the same direction as
(i� j), and still satisfy the equilibrium conditions. This would violate equilibrium unique-
ness. But then if we let g be the graph of the unique equilibrium transfer network, we
have g ∈ Gij . And equilibrium conditions (5) from the paper imply that (α� y0) must be in
E g
ij . Q.E.D.

Note that it is also possible to prove genericity in a topological sense: the set of (α� y0)
such that tij = 0 ⇒ u′

i(yi) > αiju
′
j(yj) is open and dense in the product set of altruism

networks and initial income profiles.

(b) Inequality Increasing Redistribution.

Consider an altruism network formed of two communities C1 and C2. Communities are
separate but strongly connected within. Formally, ∀i ∈ C1� j ∈ C2�αij = αji = 0 and ∀i� j ∈
C1 (or C2)� α̂ij > 0. Assume that y0(C2) > y0(C1) so that C2 is richer, overall, than C1. We
can show the following result.

PROPOSITION D.1: Consider an income inequality reducing redistribution from C1 to C2.
For any value of y0(C1), there exists Y2 such that if y0(C2) ≥ Y2, consumption inequality
increases in terms of second-order stochastic dominance.

PROOF: To prove this result, we first bound each agent’s consumption by functions of
aggregate income. Consider community C2. From the equilibrium conditions, we have:
∀i� j�u′

i(yi)≤ α̂iju
′
j(yj)⇒ (u′

j)
−1( 1

α̂ij
u′
i(yi))≥ yj . Let fi(yi)= ∑

j(u
′
j)

−1( 1
α̂ij
u′
i(yi)). Summing

over j yields fi(yi)≥ ∑
j yj = ∑

j y
0
j = y0(C2). In addition, fi is increasing. As yi tends to ∞,

1
α̂ij
u′
i(yi) tends to 0 and hence (u′

j)
−1( 1

α̂ij
u′
i(yi)) tends to ∞. Therefore, yi ≥ f−1

i (y0(C2)),

where f−1
i is increasing and satisfies limy→∞ f−1

i (y) = ∞. This implies that consumption
of every agent becomes arbitrarily large as the aggregate community income becomes
arbitrarily large.
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Conversely, consider community C1. ∀j� i�u′
j(yj) ≤ α̂jiu

′
i(yi) ⇒ yj ≥ (u′

j)
−1(α̂jiu

′
i(yi)).

Let gi(yi) = ∑
j(u

′
j)

−1(α̂jiu
′
i(yi)) and sum over j. We obtain y0(C1) ≥ gi(yi), where gi sat-

isfies similar properties as fi. This implies that yi ≤ g−1
i (y0(C1)), where g−1

i is increasing.
By Theorem 3, the redistribution decreases weakly the consumption of every agent

in C1 and increases weakly the consumption of every agent in C2. This increases in-
equality for second-order stochastic dominance if the initial income profile satisfies
maxi∈C1 yi ≤ mini∈C2 yi, in other words, if the richest agent in terms of consumption in the
poor community is poorer than the poorest agent in the rich community. This is satisfied
if maxi∈C1 g

−1
i (y0(C1))≤ miniC2 f

−1
i (y0(C2)). The fact that limy→∞ f−1

i (y)= ∞ then proves
the result. Q.E.D.

(c) Increasing Altruism, An Example

In this section, we illustrate global comparative statics with respect to altruism levels by
an example. In the example, all agents have identical CARA utilities ui(yi) = −e−yi . The
altruism network is given in Figure S.1. We vary the altruism level α36 = e−c . As shown
in Theorem 4 of the paper, the transfer network is locally stable for generic values of c,

FIGURE S.1.—Changing altruism—an example. The top-left panel shows altruism levels as given by the
“transfer cost” − lnαij ; the comparative statics brings altruism level of agent 3 to agent 6 from 0 (c = ∞) to
1 (c = 0). The red figures are initial incomes. The top-right panel shows the evolution of consumption for all
agents. The lower panels show the graphs of the transfer network in the different regions. In the green zones
are agents connected to 6, whose consumption increases; in the red zones are agents connected to 3, whose
consumption decreases; and in the blue zones are agents connected to neither, whose consumption is stable.
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and agents who are connected to 3 consume less, while agents connected to 6 consume
more. Globally, agents may be connected to 3 at some point, and 6 at another (agents 2
and 5 in the example), and their consumption is non-monotonic. Note that the connected
components of both agents 3 and 6 shrink and expand at times as we vary c. The values of
c for which the graph of the transfer network changes correspond to non-generic altruism
networks at which there are multiple equilibrium transfer networks. For example, at the
transition between transfer graphs A and B, at c = 24�5, there are multiple equilibria
which correspond to the convex combinations of the left and right limit transfer networks.
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