S1. PROOFS

Proof of Lemma 1: Consider any two firms with \(x > x' \in [0, 1] \) and so \(v(x, \cdot) > v(x', \cdot) > 0 \). If \(w' = w(x', \theta, G) \) solves (6) for firm \(x' \), then optimality implies

\[
S1) \quad w' + \lambda(\cdot)[1 - F(W(w'))]v(x', \cdot) \leq \omega + \lambda(\cdot)[1 - F(W(\omega, \cdot))]v(x', \cdot)
\]

for all \(\omega < w' \) satisfying \(W(\omega, \theta, G) \geq W(\omega', \theta, G) \). As this inequality implies \([1 - F(W(w'))] < [1 - F(W(\omega, \cdot))] \) for all such \(\omega \), then \(v(x', \cdot) < v(x, \cdot) \) and (S1) further imply

\[
w' + \lambda(\cdot)[1 - F(W(w'))]v(x, \cdot) < \omega + \lambda(\cdot)[1 - F(W(\omega, \cdot))]v(x, \theta, G)
\]

(with strict inequality) for all such \(\omega \). Thus if wage \(w' \) is optimal for firm \(x' \), firm \(x > x' \) sets a no lower wage. This completes the proof of Lemma 1. Q.E.D.

Proof of Lemma 2: We consider each part in turn.

(i) The distribution of posted wages is continuous (no mass points) and has connected support.

The proofs are by contradiction. Suppose there is a mass of firms that optimally post wage \(w'' \). Equation (6) implies a firm in this mass point is strictly better off by paying a marginally higher wage \(w' > w'' \), as this causes its quit rate to fall by a discrete amount. Wage \(w'' \) is therefore not optimal, which is the required contradiction.

Suppose the support is not connected; that is, there exist two equilibrium wages \(w', w'' \) with \(w' > w'' \), where no mass points imply \(F(W(w', \cdot), \cdot) = F(W(w'', \cdot), \cdot) \). Equation (6) implies that announcing \(w' \) is not optimal, which is the required contradiction.

(ii) Equilibrium wage strategies \(w(x, \theta, G) \) are strictly increasing in \(x \in [0, 1] \), where the lowest wage paid is \(w(0, \theta, G) = R(\theta, G) = b \).

Distribution function \(G(\cdot) \) must have a connected support (the startup entry distribution \(I_0 \) is uniform and so is connected). Hence equilibrium wage strategies must be strictly increasing in \(x \) because there can be no mass points.

We next prove \(w(0, \theta, G) = R(\theta, G) \) using a contradiction argument. First note that posting \(w(0, \theta, G) < R(\theta, G) \) cannot be optimal since all
workers quit into unemployment, which yields zero profit. Suppose instead \(w(0, \theta, G) > R(\theta, G) \). No mass points in \(F(\cdot) \) and (6) imply posting wage \(w' = R(\theta, G) \) strictly dominates posting wage \(w(0, \theta, G) > R(\theta, G) \), which contradicts \(w(0, \theta, G) \) an equilibrium wage offer.

We now show \(w(0, \theta, G) = b \). Let \(w(\theta, G) = w(0, \theta, G) \) denote the lowest wage paid in the market. As \(x = 0 \) is an absorbing state, then, conditional on survival, this firm forever posts wage \(w(\theta, G) \). Thus the value of being employed at firm \(x = 0 \), denoted \(W(\theta, G) \), is given by

\[
(S2) \quad rW(\theta, G) = w(\theta, G) + \delta(\theta)[V_u(\cdot) - W]
\]

\[
+ \lambda(\cdot) \int_{w}^{W} [W' - W] dF(W', \cdot)
\]

\[
+ \alpha \int_{\theta}^{\theta'} [W(\theta', \cdot) - W(\theta, \cdot)] dH(\theta' | \theta) + \frac{\partial W}{\partial t},
\]

where the term \(\partial W / \partial t \) describes the expected capital gain through the dynamic evolution of \(G \).

The flow value of being unemployed and choosing home production is given by

\[
(S3) \quad rV_u = b + \lambda(\cdot) \int_{W}^{W'} [W' - V_u(\cdot)] dF(W', \cdot)
\]

\[
+ \alpha \int_{\theta}^{\theta'} [V_u(\theta', \cdot) - V_u(\theta, \cdot)] dH(\theta' | \theta) + \frac{\partial V_u}{\partial t},
\]

while free entry into entrepreneurship implies \(V_u(\cdot) \) is also given by

\[
(S4) \quad E(\theta, G) = \frac{\mu}{b} \int_{0}^{1} [v(x, \theta, G) + W(w(x, \cdot), \theta, G) - V_u(\cdot)] dx + \frac{\partial V_u}{\partial t},
\]

where at rate \(\mu/E \), the entrepreneur creates a new startup company, which, with one employee, generates expected profit \(v(x, \theta, G) \) that is sold to outside investors for its value, and he/she becomes the first employee with value \(W(w', \theta, G) \) on equilibrium wage \(w' = w(x, \cdot) \). Thus free entry implies
where it is assumed that μ/b is sufficiently small that $E < U$ along the equilibrium path. As the definition of the reservation wage implies $W(\theta, G) = V_u(\theta, G)$, (S2) and (S3) now imply $w(\theta, G) = b$.

(iii) Given any job offer (w', θ, G), each employee believes $x = \hat{x}(w', \theta, G)$, where $\hat{x} \in [0, 1]$ solves

$$w(\hat{x}, \theta, G) = w' \quad \text{when} \quad w' \in [b, w(1, \theta, G)],$$

$$\hat{x} = 0 \quad \text{when} \quad w' < b,$$

$$\hat{x} = 1 \quad \text{when} \quad w' > w(1, \theta, G).$$

It follows directly, as wages are fully revealing, that beliefs must be consistent with Bayes rule and that beliefs are monotonic;

(iv) That any employee on wage $w' \geq b$ quits if and only if the outside offer $w'' \geq w'$ was established in the text.

(v) That any employee on wage $w' < b$ quits into unemployment follows since workers believe the firm’s state $\hat{x} = 0$ and that the firm will forever post wage $w = b$ in the future, and so given $w' < b$, it is better to be unemployed.

This completes the proof of Lemma 2. Q.E.D.

PROOF OF PROPOSITION 1: We first show that (12) is necessary. Equation (11) implies the firm’s optimal wage w satisfies the necessary first order condition

$$1 - v(x, \cdot) \frac{h(\hat{x}, \cdot)G'(\hat{x}) \partial \hat{x}}{G(\hat{x})} \frac{\partial \hat{x}}{\partial w} = 0,$$

where belief $\hat{x}(w, \cdot)$ solves $w = w(\hat{x}, \cdot)$. As Lemma 2 implies $\partial \hat{x}/\partial w = [1/\partial w/\partial x]$, (S5) implies that (12) is a necessary condition for equilibrium.

To show that (12) is sufficient, let $w(\cdot, \theta, G)$ denote the solution to the initial value problem defined in Proposition 1. As $G(0) = U > 0$, this solution is continuous and strictly increasing in x.

Now consider any firm $x \in (0, 1]$ and let

$$C(w, \theta, G) = w + v(x, \theta, G) \int_{\hat{x}(w, \theta, G)}^{1} \frac{h(z, \theta, G) dG(z)}{G(z)}$$

describe the minimand in (11). If the firm sets a lower wage $w' = w(x', \cdot) < w$ with $x' \in [0, x)$, its employees believe $\hat{x} = x' < x$. Hence

$$\frac{\partial C}{\partial w'}(w', \theta, G) = 1 - v(x, \theta, G) \frac{h(x', \theta, G) dG(x')}{G(x')} \frac{\partial \hat{x}}{\partial w'}$$

for such w'. But (S5) implies

$$1 - v(x', \cdot) \frac{h(x', \theta, G)G'(x') \partial \hat{x}}{G(x')} \frac{\partial \hat{x}}{\partial w'} = 0$$
at \(x' \) and combining yields
\[
\frac{\partial C}{\partial w'} = 1 - \frac{v(x, \theta, G)}{v(x', \theta, G)} < 0
\]
because values \(v(\cdot) \) are strictly increasing in \(x \). Thus for \(w' < w(x, \theta, G) \), an increase in \(w' \) strictly decreases \(C(\cdot) \). The same argument establishes that increasing \(w' \) when \(x' \in (x, 1] \) strictly increases \(C(\cdot) \). Finally note for wages \(w' > w(1, \theta, G) \), the worker's belief is fixed at \(\hat{\theta} = 1 \) and so higher wages strictly increase \(C, \) while wage \(w' < b \) does not satisfy the constraint \(W \geq V_u \). Hence given all other firms offer wages according to Proposition 1, the cost minimizing wage for any firm \(x \in [0, 1] \) is to offer \(w = w(x, \theta, G) \). This completes the proof of Proposition 1.

\[Q.E.D. \]

S2. A [PARTIALLY POOLING] STATIONARY BAYESIAN EQUILIBRIA WITH MASS POINTS AND NON-MONOTONE BELIEFS

We construct a steady state example with \(\alpha, \gamma = 0 \) (no shocks) and \(\mu < \delta \), and homogenous firms \(p(x) = p \). Equilibrium implies that all firms make the same profit \(v(x) = \bar{v} \) and so hire at the same rate \(\bar{h} \), where \(c'(\bar{h}) = \bar{v}/\bar{p} \). With monotone beliefs, Proposition 1 establishes the equilibrium wage equation
\[
w(x) = b + \bar{h}\bar{v}\log\left[\frac{G(x)}{U}\right].
\]

We construct a stationary Bayesian equilibrium with a mass point as follows. Fix an \(x^c \in (0, 1) \) and define \(\bar{w} \equiv w(x^c) = b + \bar{h}\bar{v}\log[\frac{G(x^c)}{U}] \). Consider the set of equilibrium wage strategies
\[
w^*(x) = w(x) \quad \text{for} \quad x \in [0, x^c),
\]
\[
w^*(x) = \bar{w} \quad \text{for} \quad x \in [x^c, 1];
\]
that is, mass \(1 - x^c \) of firms announce the same wage \(\bar{w} = w(x^c) \). Each firm’s steady state quit rate is then
\[
\hat{q}(x) = \int_x^{x^c} h(z, \theta, G) \frac{dG(z)}{G(z)} = -\bar{h}\log G(x) \quad \text{for} \quad x \in [0, x^c),
\]
\[
\hat{q}(x) = -\bar{h}\log G(x^c) \quad \text{for} \quad x \in [x^c, 1],
\]
since workers employed by firms in the mass point quit when indifferent. Steady state turnover arguments imply, for any \(x \leq x^c \), that \(G(x) \) must satisfy
\[
\delta[1 - G(x)] = \mu[1 - x] + \hat{q}(x)G(x)
\]
and so $G(x)$ is uniquely determined by the implicit function

\[(S6) \quad G(x) \left[\delta - \overline{h} \log G(x) \right] = \delta - \mu[1 - x] \quad \text{for} \quad x \leq x^c.\]

It is easy to show that $x < 1$ implies $G(x) < 1$. Putting $x = 0$ in (3) implies that $\overline{v} > 0$ satisfies

\[(r + \delta)\overline{v} = \overline{p} - b - \overline{p}c(\overline{h}) + \overline{h}\overline{v}[1 + \log U],\]

with steady state unemployment $U = G(0) > 0$ given by the implicit function

\[U[\delta - \overline{h} \log U] = \delta - \mu.\]

In any such equilibrium, all firms $x \in [0, 1]$ make the same profit \overline{v}, but all firms with $x \geq x^c$ post the same wage \overline{w} and have the same quit rate $\hat{q}(x^c) > 0$. This describes a stationary Bayesian equilibrium with the following beliefs:

Non-Monotone Beliefs: Given any job offer w', each employee believes $x = \hat{x}(w')$, where \hat{x} solves

\[
\begin{align*}
 w'(\hat{x}) &= w' \quad \text{when} \quad w' \in [b, \overline{w}), \\
 \hat{x} &\sim U[x^c, 1] \quad \text{when} \quad w' = \overline{w}, \\
 \hat{x} &= 0 \quad \text{when} \quad w' > \overline{w}, \\
 \hat{x} &= 0 \quad \text{when} \quad w' < b.
\end{align*}
\]

Should any firm in the mass point $x \in [x^c, 1]$ deviate to wage $w' > \overline{w}$, these beliefs imply workers expect wage $w = b$ in the entire future, which increases their quit rate to $\hat{q}(0) > \hat{q}(x^c)$. Equation (6) thus implies any such wage deviation is strictly profit reducing. As, by construction, all wages $w' \in [b, \overline{w}]$ generate equal value (while $w' < b$ generates zero profit because all quit into unemployment), a stationary Bayesian equilibrium exists with a mass point of firms offering \overline{w}.