SUPPLEMENT TO “COMMITMENT, FLEXIBILITY, AND OPTIMAL SCREENING OF TIME INCONSISTENCY”
(Econometrica, Vol. 83, No. 4, July 2015, 1425–1465)

BY SIMONE GALPERTI

Appendix B contains all omitted proofs of the main paper. Appendix C contains the calculations for the illustrative example. Appendix D discusses the case of outside options with type-dependent values. Appendix E discusses the case of finitely many states.

APPENDIX B: OMITTED PROOFS

B.1. Proof of Proposition 3.1 and Corollary 3.1

If \(\sigma > 0 \), (IR) MUST BIND; if \(\sigma = 0 \), assume w.l.o.g. that (IR) holds with equality. The problem becomes

\[
\max_{\alpha} \left\{ \int_{\tilde{s}}^{s} \left[u_1(\alpha'(s); s) - c(\alpha'(s)) \right] dF \right\} \quad \text{s.t. (IC)}.
\]

Ignoring (IC), this problem has a unique solution (up to \(\{\tilde{s}, \bar{s}\} \)): \(\alpha' \equiv e \). Since \(e \) is increasing and \(t > 0 \), by standard arguments, there is \(\pi'_e \) such that \((e, \pi'_e) \) satisfies (IC). Specifically, for every \(s \),

\[
\pi'_e(s) = u_2(e(s); s, t) - \int_{\tilde{s}}^{s} t b(e(y)) dy - k,
\]

where \(k \in \mathbb{R} \). Since \(e \) is differentiable,

\[
\frac{d\pi'_e(s)}{ds} = \frac{\partial u_2(e(s); s, t)}{\partial a} \frac{de(s)}{ds},
\]

which equals \(e'(s) \frac{de(s)}{ds} \) if and only if \(t = 1 \) by the definition of \(e \) and Assumption 2.1. The expression of \(\frac{de}{ds} \) follows from the definition of \(u_1 \) and \(u_2 \).

B.2. Proof of Corollary 4.2

Being increasing, \(a'_{sh} \) is differentiable a.e. on \([v, \bar{v}] \). If \(\frac{da'_{sh}}{dv} > 0 \) at \(v \), then using condition (E),

\[
\frac{dp'_{sh}/dv}{da'_{sh}/dv} = vb'(a'_{sh}(v)) - 1 \quad \text{and} \quad \frac{dp'_{fb}/dv}{da'_{fb}/dv} = vb'(a'_{fb}(v)) - 1.
\]

The result follows from \(b'' < 0 \) and Theorem 4.1(a).
(Continuity in x). Suppose r^C. For $x \in (0, 1) \setminus \{x^n\}$, z is continuous, so $Z(x) = z(x)$. If $\Omega(x) < Z(x)$, by definition, $\omega(\cdot)$ is constant in a neighborhood of x. Suppose $\Omega(x) = Z(x)$. Since Ω is convex and $\Omega \leq Z$, their right and left derivatives satisfy $\Omega^+(x) \leq Z^+(x)$ and $\Omega^-(x) \geq Z^-(x)$. Since $\Omega^-(x) \leq \Omega^+(x)$ and Z is differentiable at x, $\Omega^-(x) = \Omega^+(x)$; so ω is continuous at x. Finally, consider x_m^n. If $v^n = \overline{w}^\dagger$, then $x_m^n = 1$ and we are done. For $x_m^n \in (0, 1)$, ω is continuous if $\Omega(x_m^n) < Z(x_m^n)$ when z jumps at x_m^n. Recall that $z(x_m^n) - \lim_{r \downarrow x_m^n} w^d(v; r^C)$ and $z(x_m^n+) = z(x_m^n) - \lim_{r \uparrow x_m^n} w^d(v; r^C)$. By expression (A.8), z can only jump down at x_m^n, so $z(x_m^n -) < Z(x_m^n)$. Suppose $\Omega(x_m^n) = Z(x_m^n)$. By the previous argument, $\Omega^+(x_m^n) \leq Z^+(x_m^n) = z(x_m^n)$. By convexity, $\omega(x) \leq \Omega^-(x_m^n)$ for $x \leq x_m^n$. So, for x close to x_m^n from the left, we get the following contradiction:

$$\Omega(x) = \Omega(x_m^n) - \int_x^{x_m^n} \omega(y) dy > Z(x_m^n) - \int_x^{x_m^n} z(y) dy = Z(x).$$

(Continuity in r^C). Given x, $Z(x; r^C)$ is continuous in r^C. So Ω is continuous if $x \in [0, 1]$, since $\Omega(0; r^C) = Z(0; r^C)$ and $\Omega(1; r^C) = Z(1; r^C)$. Consider $x \in (0, 1)$. For $r^C \geq 0$, by definition, $\Omega(x; r^C) = \min \{\tau Z(x_1; r^C) + (1 - \tau) Z(x_2; r^C)\}$ over all $\tau, x_1, x_2 \in [0, 1]$ such that $x = \tau x_1 + (1 - \tau) x_2$. By continuity of $Z(x; r^C)$ and the Maximum Theorem, $\Omega(x, \cdot)$ is continuous in r^C for every x. Moreover, $\Omega(\cdot; r^C)$ is differentiable in x with derivative $\omega(\cdot; r^C)$. Fix $x \in (0, 1)$ and any sequence $\{r^n\}$ with $r^n \to r^C$. Since $\Omega(x; r^n) \to \Omega(x; r^C)$, Theorem 25.7, p. 248, of Rockafellar (1970) implies $\omega(x; r^n) \to \omega(x; r^C)$.

B.4. Proof of Lemma A.6

Recall that $\overline{w}^d(\overline{w}^\dagger) = \omega(0)$ and $w^d(\overline{w}^\dagger) = z(0)$. If $\omega(0) > z(0)$, since z is continuous on $[0, x_m^n]$ and ω is increasing, there is $x > 0$ such that $\omega(y) > z(y)$ for $y \leq x$. Since $Z(0) = 0$, we get the contradiction

$$Z(x) = Z(0) + \int_0^x z(y) dy < \Omega(0) + \int_0^x \omega(y) dy = \Omega(x).$$

If $\omega(0) < z(0)$, let $\hat{x} = \sup \{x \mid \forall x' < x, \omega(x') < z(x')\}$. By continuity, $\hat{x} > 0$. Then, for $0 < x < \hat{x}$,

$$Z(x) = Z(0) + \int_0^x z(y) dy > \Omega(0) + \int_0^x \omega(y) dy = \Omega(x).$$

It follows that $v_0 < (F^\dagger)^{-1}(\hat{x}) > v'$.

2 SIMONE GALPERTI
Let $t^C = 1$. Since F is uniform, $F'(v) = v - v'$. Using (A.7),

$$w^d(v; r^C) = \begin{cases}
\frac{(v/t')(1 + r^C(1 - 2t')) + r^C v'}{1 + r^C(t' - 1)^2}, & \text{if } v \in [v', v^C], \\
\frac{(v/t')(1 + r^C(t' - 1)^2)}{1 + r^C(t' - 1)^2}, & \text{if } v \in [v^C, v'].
\end{cases}$$

The function w^d is continuous at v^C. It is strictly increasing and greater than v/t' on $[v^C, v']$, as $r^C > 0$ and $t' < 1$; w^d is strictly increasing on $[v', v^C]$ if and only if $t' \leq 1/2$ or $r^C < (2t' - 1)^{-1} = \bar{r}^C$.

Consider first v^b and v_b, when $v^b > v_b$. If $t' \leq 1/2$ or $r^C < \bar{r}^C$, then w^d is strictly increasing and equals \bar{w} (see the proof of Theorem 4.1); so \bar{v}' (see (A.9)) is strictly increasing on $[v^b, v']$, and $v_b = v'$. Otherwise, $v_b \geq v^C > v^b$ and v_b is characterized by (A.16):

$$\int_{v^b}^{v^C} [w^d(y; r^C) - w^d(v^b; r^C)] dy = -\bar{w}'(v^b) r^C \int_{v^b}^{v^C} g^C(y) dy.$$

The derivative of the right-hand side of (B.3) with respect to v^b is $-w^d(v^b; r^C) \times (\bar{v}' - v^b) < 0$. So, for $r^C > 0$, there is a unique $v^b > v_b$ that satisfies (B.3). Letting $K = \int_{v^b}^{v^C} g^C(y) dy < 0$, (B.3) becomes

$$r^C \left[2t' (\bar{v}' - v^b) K \right] = (1 + r^C(t' - 1)^2)(\bar{v}' - v^b)^2$$

if $v^b \geq v^C$, and

$$r^C \left[2t' (\bar{v}' - v^b) K \right] = r^C (t')^2 (\bar{v}' - v^C)^2 + (1 + r^C(1 - 2t'))(\bar{v}' - v^b)^2$$

if $v^b < v^C$. So, if $t' > 1/2$, the function $v_b(r^C)$ is constant at v^b for $r^C < \bar{r}^C$, and at \bar{r}^C, it jumps from v^b to v^C. Monotonicity for $r^C > \bar{r}^C$ follows by applying the Implicit Function Theorem to (B.2):

$$\frac{dv_b}{dr^C} = \frac{1}{2} \left[\frac{t'}{1 + r^C(t' - 1)^2} \right]^2 \frac{(v^C - v^b)^2}{(v_b - v^b)} > 0.$$
Similarly,

$$\frac{dv^b}{dr^C} = \begin{cases}
- \frac{v^b - v^b}{2r^C[1 + r^C(t^l - 1)^2]} & \text{if } v^b \geq v^b, \\
- \frac{v^b - v^b}{2r^C(1 + r^C(1 - 2t^l))} & \text{if } v^b < v^b;
\end{cases}$$

for the second inequality, recall that $v_b < v^b < v^b$ if and only if $t^l \leq 1/2$ or $r^C < \bar{r}^C$.

Consider now the behavior of $b'(r^C) = b(a', b)$, which matches that of a_{sb}' for any r^C. By Theorem 4.1 and Assumption 2.1, $b'(v; r^C) \in (b(a), b(\bar{a}))$. Also, $b'(v; r^C)$ solves $\max_{y \in [b(a), b(\bar{a})]} \{y b'(v; r^C) + \xi(y)\}$. By strict concavity of $\xi(y)$, it is enough to study how $\overline{w}(r^C)$ relates to v/t^l. The function $\overline{w}(r^C)$ crosses v/t^l only once at $v^* \in (\overline{v'}, \overline{v'})$. Also, $\overline{w}(v; r^C) = w'(v; r^C)$ on $[v_b, v^b]$. So, it is enough to show that, as r^C rises, $w'(v^b(r^C); r^C)$ falls and $w'(v_b(r^C); r^C)$ rises.

Lemma B.1: *Suppose v^b and v_b are characterized by (A.15) and (A.16). If $w'_e(v_b; r^C) > 0$ and $w'_e(v_b; r^C) > 0$, then $\frac{dv}{dr} w'(v^b(r^C); r^C) < 0$ and $\frac{dv}{dr} w'(v_b(r^C); r^C) > 0$.*

Proof: It follows by applying the Implicit Function Theorem to (A.15) and (A.16). Q.E.D.

Consider $w'(v_b(r^C); r^C)$. If $t^l \leq 1/2$ or $r^C < \bar{r}^C$, then $v_b(r^C) = v^*$ and $w'_e(v^*; r^C) = (1 - t^l)(v^*/t^l) > 0$. If $t^l > 1/2$, then $w'(v^*; r^C) \uparrow w'(v^*/\bar{r}^C) = w'(v^*/\bar{r}^C, \bar{r}^C)$ as $r^C \uparrow \bar{r}^C$. By Lemma B.1, $w'(v_b(r^C); r^C)$ increases in r^C, for $r^C > \bar{r}^C$, because $w'_e(v_b(r^C); r^C) = 0$ when $v_b = \overline{v'}$. Similarly, $w'(v^b(r^C); r^C)$ decreases in r^C, because $w'_e(v^b(r^C); r^C) = 0$ when $v^b = v_b$.

B.6. Proof of Corollary 4.4

Fix a_{sb}' and recall that it minimizes $R^C(a')$ among all increasing a' equal to a_{sb}' on $[v', \overline{v'}]$. Using (A.18) and a_{sb}', from Proposition 4.3, condition (R) becomes

$$\frac{[b(a) - b(a_{fb}(v^b))] \int_{v'}^v g'(v) dv}{c}$$

$$\geq R^C(a_{sb}') + \int_{v'}^{c} b(a_{fb}(v)) G^C(v) dF^C$$

$$- b(a_{fb}(v^b)) \int_{v'}^v g'(v) dv.$$
Since \(a'_{j|b}\) and \(a'_{sb}\) are infeasible, the right-hand side is positive. \(R^c(a'_{sb})\) has been minimized. The result follows, since \(\int_{\bar{u}} g'(v) \, dv < 0\).

B.7. Proof of Lemma A.8

The proof uses \(b \in B\) (see the proof of Lemma A.1). Suppose \(r' > 0\). Using \(\tilde{R}'(b) = R'(b^{-1}(b))\) in (A.18), write \(\tilde{W}^C(b) - r'\tilde{R}'(b)\) as

\[
VS^C(b^{-1}(b), r') = \int_{\bar{v}} \left[b(v)u^C(v, r') + \xi(b(v)) \right] dF^C
\]

\[
+ r' \int_{\bar{v}} b(v)g'(v) \, dv,
\]

where \(u^C(v, r') = v/r^C - r'G^C(v)\). Note that \(u^C\) is continuous in \(v\), except possibly at \(\bar{v}'\) if \(\bar{v}' \geq \bar{v}\), where it can jump up. Using the method in the proof of Theorem 4.1, let \(\bar{w}^C(v; r')\) be the generalized version of \(u^C\). By the argument in Lemma A.2, \(\bar{w}^C(v; r')\) is continuous in \(v\) over \([\bar{v}'^C, \bar{v}']\) — except possibly at \(\bar{v}'\), where we can assume right- or left-continuity w.l.o.g. — and in \(r'\). Now, on \([\bar{v}'^C, \bar{v}']\), let \(\phi(y, v; r') = y\bar{w}^C(v; r') + \xi(y)\) and

\[
\bar{b}^C(v; r') = \arg \max_{y \in [b(a), b(\pi)]} \phi(y, v; r').
\]

Since \(\bar{w}^C\) is increasing by construction, \(\bar{b}^C\) is increasing on \([\bar{v}'^C, \bar{v}']\) and continuous in \(r'\). On \([\bar{v}', \bar{v}']\), let \(\bar{b}^C\) be the pointwise maximizer of the second integral in \(VS^C\). By Proposition 4.3’s proof, \(\bar{b}^C(v; r')\) equals \(b(a)\) on \([\bar{v}'^C, \bar{v}']\) and \(b(\pi)\) on \([\bar{v}'^C, \bar{v}']\).

Suppose \([\bar{v}'^C, \bar{v}']\) is \(\emptyset\). Then \(\bar{b}^C\) is increasing and an argument similar to that in Lemma A.4 establishes that \(\bar{b}^C\) maximizes \(VS^C\). Since such a \(\bar{b}^C\) is pointwise continuous in \(r'\), so is \(VS^C(b^{-1}(\bar{b}^C(r'))), r'\).

Suppose \([\bar{v}', \bar{v}']\) is \(\emptyset\). Let \(v_m = \max(\bar{v}', \bar{v}')\). By an argument similar to that in Lemma A.3, any optimal \(b^C \in B\) can take only three forms on \([\bar{v}', \bar{v}']\): (1) it is constant at \(\bar{b}^C(v^d)\) on \([\bar{v}', \bar{v}']\), where \(v^d \in (\bar{v}'^C, v_m) \cup (v_m, \bar{v}']\) and equals \(\bar{b}^C\) otherwise; (2) it is constant at \(\bar{y} \in [\bar{b}^C(v_m-), \bar{b}^C(v_m+)]\) on \([\bar{v}', v^d]\) with \(v^d = v_m\) and equals \(\bar{b}^C\) otherwise; (3) it is constant on \([\bar{v}', \bar{v}']\). We can first find an optimal \(b^C\) within each class and then pick an overall maximizer. Note that in both case (1) and (2), \(b^C\) has to maximize

\[
(b.5) \quad b^C(v^d)H(v^d, r') + \xi(b^C(v^d))F^C(v^d) + \int_{v^d} \phi(b^C(v), v; r') \, dF^C,
\]
where
\[
H(v^d, r') = r' \int_{v_a}^{v^d} g^I(v) \, dv + \int_{v^d}^{v^C} \overline{w}^C(v, r') \, dF^C.
\]

Note that, since \(\overline{w}^C(v, r')\) is continuous in \(r'\), so is (B.5).

Case 1: Let \(\overline{b}^C(v_m) = \overline{b}^C(v_m-)\), so that \(\overline{b}^C\) is continuous on \([v^C, v_m]\). Then, (B.5) is continuous in \(v^d\) for \(v^d \in [v^C, v_m]\). Hence, there is an optimal \(v^d\). By an argument similar to that in Lemma A.4, there is a unique optimal \(b^*_1\) within this case. Let \(\Phi(b^*_1; r')\) be the value of (B.5) at \(b^*_1\), which is continuous in \(r'\).

Case 2: Let \(\overline{b}^C(v_m) = \overline{b}^C(v_m+)\), so that \(\overline{b}^C\) is continuous on \([v_m, \overline{v}^C]\). Then, (B.5) is continuous in \(v^d\) for \(v^d \in [v_m, \overline{v}^C]\). As before, there is an optimal \(v^d\) and a unique optimal \(b^*_2\) within this case. Let \(\Phi(b^*_2; r')\) be the value of (B.5) at \(b^*_2\), which is continuous in \(r'\).

Case 3: Let \(v^d = v_m\). Then, there is a unique \(b^C(v^d) \in [\overline{b}^C(v_m-), \overline{b}^C(v_m+)\]
which maximizes (B.5). This identifies a function \(b^*_3\) and value \(\Phi(b^*_3; r')\). Since \(\overline{b}^C(v_m-; r')\) and \(\overline{b}^C(v_m+; r')\) are continuous in \(r'\), so is \(\Phi(b^*_3; r')\).

Case 4: \(b^C\) is constant at \(\overline{y}\) on \([v^a, \overline{v}^C]\). Then \(\overline{y} \in [b(\overline{a}), b(\overline{a})]\) has to maximize
\[
\overline{y} \left[r' \int_{v_a}^{v^d} g^I(v) \, dv + \int_{v^d}^{v^C} \overline{w}^C(v, r') \, dF^C \right] + \xi(\overline{y}).
\]

The unique solution to this problem identifies a unique constant \(b^*_4\) and value \(\Phi(b^*_4; r')\), which is again continuous in \(r'\).

Now, let \(\hat{b}^C\) be the function that solves \(\max_{j=1,2,3,4} \Phi(b^*_j; r')\). An argument similar to that in Lemma A.5 establishes that
\[
\max_{b \in B} VSC(b^{-1}(b), r') = \Phi(\hat{b}^C; r') + b(a)r' \int_{v_a}^{v^d} g^I(v) \, dv,
\]
which is therefore continuous in \(r'\).

Now, let \(b^*_u = b(a^u)\) and let \(B^*\) be the set of \(b^C \in B\) that equal \(b^*_u\) on \([v^C, \overline{v}^C]\). By construction, \(VSC(b^{-1}(b^*_u), r') = \max_{b \in B^*} VSC(b^{-1}(b), r')\). I claim that there is \(b^C \in B^*\) such that \(VSC(b^{-1}(b^C), r') > VSC(b^{-1}(b^*_u), r')\). Focus on \([v_m, \overline{v}^C]\) and recall that (w.l.o.g.) \(\overline{w}^C\) is continuous on \([v_m, \overline{v}^C]\). Since \(r' > 0\), \(G^C\) implies \(w^C(v, r') > v/t^C\) for \(v \in [v_m, \overline{v}^C]\). I claim that \(\overline{w}^C(v_m, r') > v_m/t^C\). By the logic in Lemma A.6, \(\overline{w}^C(v_m, r') \leq w^C(v_m, r')\). If \(\overline{w}^C(v_m, r') = w^C(v_m, r')\), the claim follows. If \(\overline{w}^C(v_m, r') < w^C(v_m, r')\), then there is \(v_0 > v_m\) such that \(\overline{w}^C(v, r') = w^C(v, r')\) on \([v_m, v_0]\); so, \(\overline{w}^C(v_m, r') = w^C(v_0, r') \geq v_0/t^C > v_m/t^C\). Since \(\overline{w}^C\) is continuous and increasing, in either case there is
\[v_1 > v_m \text{ such that } \mathcal{W}^C(v, r') > v/t^C \text{ on } [v_m, v_1]. \]

Construct \(\hat{b}^C \) by letting \(\hat{b}^C(v) = \arg\max_{y \in [b(a), b(m)]} \phi(y, v; r') \) if \(v \in [v_m, \bar{v}] \), and \(b^C_{un}(v) \) if \(v \in [v', v_m) \). Then, \(\hat{b}^C \in \mathcal{B} \), but \(\hat{b}^C(v) > b^C_{un}(v) \) on \([v_m, v_1] \); so \(\hat{b}^C \notin \mathcal{B}^* \). Finally, \(VSC(b - 1(\hat{b}^C)/r') - VSC(b - 1(b^C_{un})/r') \) equals

\[
\int_{v_m}^{v_1} \left\{ [\hat{b}^C(v)w^C(v, r') + \xi(\hat{b}^C(v))] - [b^C_{un}(v)w^C(v, r') + \xi(b^C_{un}(v))] \right\} dF^C > 0.
\]

B.8. Proof of Proposition 4.5

Recall that, by (E), the \(j \)-device is fully defined by \(a^j \) up to \(k^j \). Given \(a^j \), define \(h^j = U^j(a^j, p^j) \). Then, \(IC^{ji}_i \) becomes \(h^j \geq h^i + R^i(a^i) \) and \((IR^j) \) becomes \(h^j \geq 0 \). Since \(\Pi^j(a^j, p^j) = W^j(a^j) - U^j(a^j, p^j) \), the provider solves

\[
\mathcal{P}^N = \left\{ \max_{(a^j, h^j)} \sum_{j=1}^{N} \gamma^j W^j(a^j) + \sigma \sum_{j=1}^{N} \gamma^j [W^j(a^j) - h^j] \right\}
\]

s.t. \(a^j \) increasing, \(h^j \geq h^i + R^i(a^i) \), and \(h^j \geq 0 \), for all \(j, i \).

As in the proof of Lemma A.1 and Theorem 4.1, it is convenient to work with the functions \(b \in \mathcal{B} \). Recall that \(\tilde{W}^j(b^i) = W^j(b^{-1}(b^i)) \) and \(\tilde{R}^j(b^i) = R^j(b^{-1}(b^i)) \).

Step 1: There is \(b(a) \) low enough so that unused options suffice to satisfy \(IC^{ji}_i \) for \(j > i \). If \(j > i \), \(\bar{v}' < \bar{v} \) and

\[
\tilde{R}^j(b^i) = - \int_{\bar{v}'}^{v^j} b^i(v)g^i(v) \, dv - \int_{v^j}^{\bar{v}'} b^i(v)G^ji(v) \, dF^j,
\]

where

\[
g^i(v) = \frac{t^i - 1}{t^i}vf^i(v) - (1 - F^i(v)) \quad \text{and}
\]

\[
G^ji(v) = q^i(v) - \frac{f^i(v)}{f^j(v)}q^j(v);
\]

if \(i > j \), \(\bar{v}' < \bar{v} \) and

\[
\tilde{R}^j(b^i) = - \int_{\bar{v}'}^{v^i} b^i(v)\bar{g}^i(v) \, dv + \int_{\bar{v}'}^{v^i} b^i(v)\bar{G}^ji(v) \, dF^j,
\]
where

\[
\tilde{g}^i(v) = \frac{t^i - 1}{t^i} v f^i(v) + F^i(v),
\]

\[
\tilde{G}^{ji}(v) = \frac{t^j - 1}{t^j} v - \frac{1 - F^j(v)}{f^j(v)} - \frac{f^j(v)}{f^j(v)} \left[\frac{t^i - 1}{t^i} v - \frac{1 - F^i(v)}{f^i(v)} \right].
\]

Take \(j > i \). Suppose IC\(_{ji}^j\) is violated (and all other constraints hold): \(h^j < h^i + \tilde{R}^j(b') \). Fix \(b' \) for \(v \geq v^j \), and let \(b'(v) = b(a) \) for \(v < v^j \). Then,

\[
R^j(b') = -b(a) \int_{v^j}^{v^i} \tilde{g}^i(v) \, dv + \int_{v^i}^{v^j} b'(v) \tilde{G}^{ji}(v) \, dF^j.
\]

Lemma B.2: \(\int_{v^i}^{v^j} \tilde{g}^i(v) \, dv < 0 \).

Proof: Integrating by parts,

\[
\int_{v^i}^{v^j} \tilde{g}^i(v) \, dv = -\int_{v^i}^{v^j} (v/t^i) f^i(v) \, dv + F^j(v^i) v^i
\]

\[
= \int_{v^i}^{v^j} (v^j - (v/t^i)) f^i(v) \, dv.
\]

Note that \(v^i \leq s \leq v/t^i \), with strict inequality for \(v \in (v^i, v^j) \).

Q.E.D.

So there is \(b(a) \) small enough so that the \(\tilde{b}' \) just constructed satisfies \(h^j \geq h^i + \tilde{R}^j(b') \). We need to check the other constraints. For \(j' < i \), the values \(b' \) takes for \(v < v^j \) are irrelevant; so, IC\(_{ji}^{j'}\) are unchanged. For \(j > i \) and \(j \neq j' \), it could be that \(R^j(\tilde{b}') > R^j(b') \), and \(\tilde{b}' \) may violate IC\(_{ji}^j\) while \(b' \) did not. But since Lemma B.2 holds for every \(j > i \) and \(N \) is finite, there is \(b(a) \) small enough so that IC\(_{ji}^j\) for all \(j > i \).

Step 2: As usual, (IR\(^N\)) and IC\(_{j}^{jN}\) imply (IR\(^j\)) for \(j < N \). Let \(\mathcal{Y} = (B \times \mathbb{R})^N \) be the subspace of \((\mathcal{X} \times \mathbb{R})^N\), where \(\mathcal{X} = \{ b \mid b : [v, \overline{v}] \to \mathbb{R} \} \). Now, let \(\widetilde{\Pi}(B, h) = \sum_{j=1}^{N} \gamma^j [\tilde{W}^j(b^j) - h^j] \) and \(\tilde{W}(B) = \sum_{j=1}^{N} \gamma^j \tilde{W}^j(b^j) \). \(\mathcal{P}^N \) is equivalent to

\[
\widetilde{\mathcal{P}}^N = \left\{ \left. \max_{(B,h) \in \mathcal{Y}} (1 - \sigma) \tilde{W}(B) + \sigma \tilde{\Pi}(B, h) \right| \Gamma(B, h) \leq 0 \right\},
\]

where \(\Gamma : (\mathcal{X} \times \mathbb{R})^N \to \mathbb{R}^r \) (\(r = 1 + \frac{N(N-1)}{2} \)) is given by \(\Gamma^j(B, h) = -h^N \) and, for \(j = 2, \ldots, r \), \(\Gamma^j(B, h) = \tilde{R}^j(b') + h^j - h^i \) for \(i < j \).

Step 3: Existence of interior points.
LEMMA B.3: In $\tilde{\mathcal{P}}^N$, there is $\{B, h\} \in \mathcal{Y}$ such that $\Gamma(B, h) < 0$.

PROOF: $\Gamma(B, h) < 0$ if and only if $h^N > 0$ and $h^i > h^i + \tilde{R}^i(b^i)$ for $i < j$. For $i = 1, \ldots, N$, let $b^i = b^i_{f_b} = b(a^i_{f_b})$ on $[v^i, \bar{v}]$ and possibly extend it on $[v^i, \bar{v}']$ to include appropriate unused options. Note that these extensions are irrelevant for $\tilde{R}^i(b^i)$ if $j < i$. Recall that $\tilde{R}^i(b^i) \geq 0$ for $j < i$, and it can be easily shown that $\tilde{R}^i(b^i) \geq \tilde{R}^i(b^i)$ for $1 < j < i$. Thus, let $h^N = 1$, and for $i < N$, let $h^i = h^{i+1} + \tilde{R}^i(b^{i+1}) + 1$. Now, fix $i < N$ and consider any $j > i$. We have

$$h^i = h^i + \sum_{n=1}^{j-i} \tilde{R}^i(b^{i+n}) + (j - i) \geq h^i + \tilde{R}^i(b^i) + (j - i) > h^i + \tilde{R}^i(b^i).$$

Since $\tilde{R}^i(b^i)$ are bounded and N is finite, the vector h so constructed is well defined. \(Q.E.D.\)

Step 4: We can now use Corollary 1, p. 219, and Theorem 2, p. 221, of Luenberger (1969) to characterize solutions of $\tilde{\mathcal{P}}^N$. Note that $(X \times \mathbb{R})^N$ is a linear vector space and \mathcal{Y} is a convex subset of it. By Lemma B.3, Γ has interior points. Since \tilde{I} and \tilde{W} are concave ($b'' < 0$ and $c'' \geq 0$), the objective is concave and $\Gamma(B, h)$ is convex. For $\lambda \in \mathbb{R}_+$, define $L(B, h; \lambda)$ as

$$(1 - \sigma)\tilde{W}(B) + \sigma\tilde{I}(B, h) + \lambda^N h^N - \sum_{i=1}^N \sum_{j<i} \lambda^{ji} [\tilde{R}^i(b^i) + h^i - h^j]$$

$$= \sum_{i=1}^N \gamma^i \left[\tilde{W}^i(b^i) - \sum_{j<i} \frac{\lambda^{ji}}{\gamma^i} \tilde{R}^i(b^i) \right] + \sum_{i=1}^N h^i \mu^i(\lambda, \gamma, \sigma),$$

where

$$\mu^i(\lambda, \gamma, \sigma) = \begin{cases} \sum_{j>i} \lambda^{ji} - \sum_{j<i} \lambda^{ji} - \sigma \gamma^i, & \text{if } i < N, \\ \lambda^N - \sum_{j<N} \lambda^{jN} - \sigma \gamma_N, & \text{if } i = N. \end{cases}$$

Then, $\{B, h\}$ solves $\tilde{\mathcal{P}}^N$ if and only if there is $\lambda \geq 0$ such that $L(B, h; \lambda) \geq L(B', h'; \lambda)$ and $L(B, h; \lambda') \geq L(B, h; \lambda)$ for all $\{B', h'\} \in \mathcal{Y}$, $\lambda' \geq 0$. The first inequality is equivalent to

$$b^i \in \arg \max_{b \in B} \tilde{W}^i(b) - \sum_{j<i} \frac{\lambda^{ji}}{\gamma^i} \tilde{R}^i(b)$$

(B.6)
and

\[(B.7) \quad h^i \in \arg \max_{h \in \mathbb{R}} \mu'(\lambda, \gamma, \sigma)h.\]

The second is equivalent to

\[(B.8) \quad -h^N \leq 0 \quad \text{and} \quad \lambda^N h^N = 0,\]

and, for \(j > i,\)

\[(B.9) \quad \tilde{R}(b^i) + h^i - h^i \leq 0 \quad \text{and} \quad \lambda^i [R^i(b^i) + h^i - h^i] = 0.\]

Lemma B.4: If \((B, h, \lambda)\) satisfies (B.6)–(B.9), then \(\mu'(\lambda, \gamma, \sigma) = 0\) for all \(i.\)

Proof: By (IR\(^N\)) and IC\(^i\), \(h^i \geq 0\) for all \(i;\) so, \(\mu'(\lambda, \gamma, \sigma) \geq 0\) for all \(i.\) Since \((1 - \sigma)\tilde{W}(B) + \sigma\tilde{H}(B, h)\) is bounded below by \(E(u_1(a^{nt}; s)) - c(a^{nt}) > 0,\) then \(\mu'(\lambda, \gamma, \sigma) \leq 0\) for all \(i.\)

Corollary B.5: If \(\sigma = 0,\) then \(\lambda = 0.\) If \(\sigma > 0,\) IR\(^N\) binds and, for every \(i < N,\) there is \(j > i\) such that IC\(^j\) binds.

Proof: Lemma B.4 implies the second part. For the first part, since \(\mu'(\lambda, \gamma, \sigma) = 0\) for all \(i,\)

\[
0 = \sum_{i=1}^{N} \mu'(\lambda, \gamma, \sigma) = \sum_{i=1}^{N-1} \left[\sum_{j>i} \lambda^{ij} - \sum_{j<i} \lambda^{ji} \right] + \lambda^N - \sum_{j=N} \lambda^{jn} - \sigma = \lambda^N - \sigma.
\]

So, if \(\sigma = 0 = \lambda^N,\) then \(\mu^N(\lambda, \gamma, \sigma) = 0\) implies \(\sum_{j<N} \lambda^{jn} = 0.\) Hence, \(\lambda^{jn} = 0\) for \(j < N.\) Suppose for all \(j \geq i + 1, \lambda^{ij} = 0\) for all \(n < j.\) Then, \(\mu'(\lambda, \gamma, \sigma) = 0\) implies \(\sum_{j<i} \lambda^{ji} = \sum_{j>i} \lambda^{ij} = 0.\) Hence, \(\lambda^{ij} = 0\) for all \(j < i.\)

So, although by \(\mu'(\lambda, \gamma, \sigma) = 0\) any \(h^i \in \mathbb{R}\) solves (B.7), the upward binding constraints pin down \(h,\) once \(B\) has been chosen.

Thus, \(\tilde{P}^N\) has a solution if there is \((B, \lambda)\) so that, for every \(i, b^i\) solves (B.6), \(\mu'(\lambda, \gamma, \sigma) = 0,\) and (B.8) and (B.9) hold. By the arguments in the proof of Theorem 4.1 (see Step 5 below), for \(\lambda \geq 0,\) a solution \(b^i\) to (B.6) always exists and is unique on \((\nu^i, \nu')\) and is pointwise continuous in \(\lambda.\) Moreover, if \(\lambda^i \to +\infty\) for some \(j < i,\) then \(b^i \to b(a^{nt})\) on \((\nu^i, \nu'),\) and \(\tilde{R}^i(b^i) \to 0.\) And since \(\mu'(\lambda, \gamma, \sigma) = 0, \lambda^{ij} \to +\infty\) for some \(j' > i,\) so that \(\tilde{R}(b^i) \to 0\) and
\(h^i \to 0 \) (using the binding IC_{i-1}^{ij}). So there is \(\lambda^{ii} \) large enough to make (B.9) hold. Finally, (B.8) always holds with \(h^N = 0 \).

Step 5: Fix \(i > 1 \). Using (B.6), the expression of \(\tilde{R}^n(b') \), and \(\xi(\cdot) = -b^{-1}(\cdot) - c(b^{-1}(\cdot)) \), \(b' \) must maximize within \(B \)

\[
VS'(b'; \lambda^i) = \sum_{n=1}^{i-1} \lambda^{ni} \int_{v_{n}}^{v_{n+1}} b'(v)g^n(v) \, dv \\
+ \int_{v_{i}}^{v_{i+1}} \left[b'(v)w'(v, \lambda^i) + \xi(b'(v)) \right] \, dF^i,
\]

where \(\lambda^i \in \mathbb{R}_+^{i-1} \) and

\[
w'(v; \lambda^i) = \frac{v}{t^i} + \sum_{n=1}^{i-1} \lambda^{ni} q^n(v) - \sum_{n=1}^{i-1} \lambda^{ni} \frac{f^n(v)}{f^i(v)} q^n(v).
\]

We can apply to \(VS'(b'; \lambda^i) \) the method used in the two-type case to characterize \(b' \) (Theorem 4.1). If \(\lambda^i = 0 \), \(VS'(b'; 0) = \tilde{\nu}^i(b') \) and \(b' = b_{j\lambda} = b(a_{j\lambda}) \) on \((v', \tilde{v}') \). For \(v > \tilde{v}' \), let \(b'(v) = b'(\tilde{v}') \). For \(v < \tilde{v}' \), \(b'(v) \) may be strictly smaller than \(b'(\tilde{v}') \) to satisfy IC_i^{ij} for \(j > i \).

Suppose \(\lambda^n_i > 0 \) for some \(n < i \). Apply the Myerson–Toikka ironing method on \((v', \tilde{v}') \), by letting \(z'(x; \lambda^i) = w^i((F^i)^{-1}(x); \lambda^i) \) and \(Z'(x; \lambda^i) = \int_0^x z'(y; \lambda^i) \, dy \). Let \(\Omega'(x; \lambda^i) = \text{conv}(Z'(x; \lambda^i)) \), and \(\omega'(x; \lambda^i) = \Omega'(x; \lambda^i) \) wherever defined. Extend \(\omega' \) by right-continuity, and at 1 by left-continuity. For \(\omega' \) to be continuous, it is enough to show that, if \(z' \) is discontinuous at \(x \), then \(z' \) jumps down at \(x \). To see this, note that \(w' \) can be discontinuous only at points like \(\psi_j \) for \(j < i \) and such that \(\psi_j \in (\psi', \tilde{\psi}') \). At such a point, let \(w'(\psi_j^+; \lambda^i) = \lim_{\psi_j \to \psi^+} w'(\psi; \lambda^i) \) and \(w'(\psi_j^-; \lambda^i) = \lim_{\psi_j \to \psi^-} w'(\psi; \lambda^i) \). For \(n < j \), \(\psi^n > \psi \) and hence \(f^n(\psi) = 0 \). So

\[
w'(\psi^+_j; \lambda^i) = \frac{\psi_j}{t^i} + \sum_{n=1}^{i-1} \lambda^{ni} q^n(\psi) - \sum_{n=1}^{i-1} \lambda^{ni} \frac{f^n(\psi)}{f^i(\psi)} q^n(\psi),
\]

\[
w'(\psi^-_j; \lambda^i) = \frac{\psi_j}{t^i} + \sum_{n=1}^{i-1} \lambda^{ni} q^n(\psi) - \sum_{n=j+1}^{i-1} \lambda^{ni} \frac{f^n(\psi)}{f^i(\psi)} q^n(\psi).
\]

Then,

\[
w'(\psi^-_j; \lambda^i) - w'(\psi^+_j; \lambda^i) = \lambda^{ij} \frac{f^i(\psi)}{f^i(\psi)} q'(\psi) \geq 0,
\]
since \(q'(v') = (1 - t')(v'/t') \geq 0 \). Letting \(\overline{w'}(v; \lambda') = \omega'(F'(v); \lambda') \) for \(v \in (v', \overline{v'}) \), construct \(\overline{VS}' \) as in the proof of Theorem 4.1.

Note that \(g''(v) < 0 \) for \(v \in (\overline{v'}, \overline{v''}) \). So, since \(\lambda'^{ni} > 0 \) for some \(n < i \), the first term in \(VS' \) is strictly negative. Letting \(w(v; \lambda i) = \omega(F(v); \lambda i) \) for \(v \in (v_i, v_{ni}) \), construct \(VS_i \) as in the proof of Theorem 4.1. Note that \(g''(v) < 0 \) for \(v \in (v_i, v_{ni}) \). So, since \(\lambda ni > 0 \) for some \(n < i \), the first term in \(VS_i \) is strictly negative. Let \(n = \min\{n : \lambda ni > 0\} \). Then, on \((v_i, v_{ni}) \), the characterization of Lemma A.3 extends to \(VS_i \). So \(b_i \) must be constant at \(v_i(b) \) on \((v_i, v_{ni}) \), where \(v_i(b) \leq v_i \) and \(v_i(b) = b_i(v) \) for \(v \in [v', v_{ni}] \). Moreover, \(b_i(v) = \overline{b}(v) \) if \(v_{ni} > v' \); and \(b_i(v) = b_i(v) \) for \(v \in [v', v_{ni}] \). The argument in Lemma A.4 yields that there is a (unique) maximizer of \(VS_i \). The argument in Lemma A.5 implies that the (unique) maximizer of \(VS_i \) is also the (unique) maximizer of \(VS' \).

Step 6: Properties of the solutions to (B.6). Suppose \(\lambda ni > 0 \) for some \(n < i \) and define \(n \) as before. The analog of the ironing condition for \(v_{ni} \) applies to \(v_{ni} \):

\[
\int_{v_{ni}}^{v'} \left[w_i(y; \lambda i) - w_i(v_{ni}; \lambda i) \right] dF_i = - \sum_{n=0}^{i-1} \lambda ni \int_{v_{ni}}^{v'} g''(v) \ dv.
\]

Since the sum is negative, \(v_{ni} < \overline{v'} \). This condition can be written as

\[
\int_{v_{ni}}^{v'} \left[w(v_{ni}; \lambda i) - (v/t') \right] dF_i = - \sum_{n=0}^{i-1} \lambda ni \left[\int_{v_{ni}}^{v'} G''(v) dF_i + \int_{v_{ni}}^{v'} g''(v) \ dv \right].
\]

To prove that \(w_i(v_{ni}; \lambda i) < \overline{v'} / t' \), it is enough to observe that the right-hand side is negative by (A.14). So, \(b_i \) exhibits bunching on \([v_{ni}, \overline{v''}] \) at value \(y_{ni} < b_i(v) \).

Now consider the bottom of \([v', \overline{v''}] \). By the logic in Lemma A.6, \(\overline{w}(v'; \lambda') \leq w_i(v'; \lambda i) \), with strict inequality if \(v'_{ni} > v' \). Moreover, for \(v < v'_{ni} \), \(w_i(v, \lambda') = v/t' + \sum_{n=1}^{i-1} \lambda ni q_i(v) \) and \(w_i(v'; \lambda i) = (v'/t')(1 + (1 - t') \sum_{n=1}^{i-1} \lambda ni) > v'/t' \). So, if \(\overline{w}(v'; \lambda') = w_i(v'; \lambda i) \), then \(b_i(v'; \lambda') > b_{ni}(v') \). Otherwise, ironing occurs on \([v', v'_{ni}] \neq \emptyset \) and

\[
\int_{v'}^{v_{ni}} \left[w_i(y; \lambda i) - \overline{w}(v_{ni}; \lambda i) \right] dF_i = 0,
\]

which corresponds to

\[
\int_{v'}^{v_{ni}} \left[y/t' - \overline{w}(v_{ni}; \lambda i) \right] dF_i = - \sum_{n=1}^{i-1} \lambda ni \int_{v'}^{v_{ni}} G''(y) \ dv.
\]
Now, for $n < i$,
\[
\int_{v_i^n}^{v_i^b} G^{n}(y) \, dF^n = \int_{v_i^n}^{v_i^b} q^{n}(y) \, dF^n - \int_{v_i^n}^{v_i^b} q^{n}(y) \, dF^n
\]
\[
= \int_{v_i^n/t_i}^{v_i^n/t_n} (s - v_i^b) \, dF > 0.
\]

So $\tilde{w'}(v_i^n; \lambda^i) > v_i^n/t_i$, and $b^i(v_i^n; \lambda^i) > b_i(v_i^n)$.

Finally, note that for $v < v' < v_i^{t_i-1}$,
\[
w^i(v'; \lambda^i) - w^i(v; \lambda^i) = \frac{v' - v}{t_i} \left[1 + \sum_{n=1}^{i-1} \lambda^n (1 - t_i^n) \right]
\]
\[
+ \sum_{n=1}^{i-1} \lambda^n \left[\frac{F^i(v') - F^i(v)}{f^i(v')} - \frac{f^i(v)}{f^i(v')} \right].
\]

So, $w^i(\cdot; \lambda^i)$ will be decreasing in a neighborhood of v_i^n if, for $s' > s$ in $[s, s_i]$, ...

Hence, bunching at the bottom is more likely if t_i^n is closer to 1 and $\sum_{n=1}^{i-1} \lambda^n$ is large, that is, if the provider assigns large shadow value to not increasing the rents of types below i.

APPENDIX C: ILLUSTRATIVE EXAMPLE’S CALCULATIONS

Let $s = 10$, $\tilde{s} = 15$, and $t = 0.9$. We first characterize the first-best C- and I-device. By Corollary 3.1, p_{C}^e must be constant; by Proposition 3.1, it must extract the entire surplus that C derives from the C-device, thereby leaving C with expected utility m. With regard to the I-device, again by Corollary 3.1, for $a \in [100, 225]$ we have $p_{I}^e(a) = p_{C}^e + q^I(a)$ such that $q^I(e(s)) = q^{0.9}(s)$ for every $s \in [s, \tilde{s}]$. Therefore, using the formula in Corollary 3.1,
\[
dq^I(a)/da = dq^{0.9}(s)/ds = -0.1.
\]

So $q^I(a) = k - 0.1a$, where k is set so that I expects to pay p_{C}^e (Proposition 3.1).

Consider now the difference between C’s and I’s expected utility from the efficient I-device (i.e., $R^C(a_{fb}^I)$). Recall that $p_{I}^e(a) = +\infty$ for $a \notin [100, 225]$. ...
Under this I-device, at time 2 type C chooses $\alpha_C(s) = \frac{s^2}{t^2}$ for $s < \frac{3}{t}$ and $\alpha_C(s) = \bar{s}$ otherwise. Thus

$$R_C(a_{f_b}^C) = m - p_C^e - k + \int_t^\bar{s} \left[2s\sqrt{\alpha_C(s) - t\alpha_C(s)} \right] \frac{ds}{\bar{s} - s}$$

$$- \left\{ m - p_C^e - k + \int_t^\bar{s} \left[2s\sqrt{\varepsilon(s) - t\varepsilon(s)} \right] \frac{ds}{\bar{s} - s} \right\}$$

$$= \frac{1 - t}{3t(\bar{s} - s)} \left[\bar{s}^3(3 - t)t - (1 + t)s^3 \right].$$

Substituting the values of s, \bar{s}, and t, we get $R_C(a_{f_b}^C) \approx 33.18$.

To compute the difference between I’s and C’s expected utilities from the efficient C-device (i.e., $R^C(a_{f_b}^C)$), recall that $p_C^e(a) = +\infty$ for $a \notin [100, 225]$. Given this, at time 2 type I chooses $\alpha_I(s) = t^2s^2$ for $s > \frac{3}{t}$ and $\alpha_I(s) = \bar{s}$ otherwise. Thus

$$R^I(a_{f_b}^C) = m - p_C^e + \int_t^\bar{s} \left[2s\sqrt{\alpha_I(s) - \alpha_I(s)} \right] \frac{ds}{\bar{s} - s}$$

$$- \left\{ m - p_C^e + \int_t^\bar{s} \left[2s\sqrt{\varepsilon(s) - \varepsilon(s)} \right] \frac{ds}{\bar{s} - s} \right\}$$

$$= \frac{(1 - t)^2}{3(\bar{s} - s)} \left[\bar{s}^3t^2 - \bar{s}^3 \right].$$

Substituting s, \bar{s}, and t, we get $R^I(a_{f_b}^C) \approx -1.43$.

The properties of the screening I-device follow from the argument in the proof of Corollary 4.3 above. The thresholds s_b and s^b can be computed using formulas (B.2) and (B.4) for v_b and v^b. Regarding the range $[a_b, a^b]$, we have that $a_b = [w'(v_b; r_C)^2$ and $a^b = [w'(v^b; r_C)^2$, where $w'(v; r)$ is given in (B.1). These formulas depend on $r_C = \frac{\gamma}{1 - \gamma} + \frac{\mu}{1 - \gamma}$, but in this example $\mu = 0$ because unused options are always enough to deter I from taking the C-device (see below). Varying $\gamma \in (0, 1)$ delivers the values in Figure 1 of the main text. By Proposition 4.2, when the provider completely removes flexibility from the I-device, she induces I to choose the ex ante efficient action $a_{\text{ef}} = (\frac{\gamma + \mu}{2})^2 = 156.25$.

The most deterring unused option for the C-device depends on v_u in Proposition 4.3. As shown in its proof, $v_u = \sup\{v \in [v^C, v^C] | g^I(v) < 0\}$ where

$$g^I(v) = \frac{t - 1}{t} v f^I(v) + F_I(v) = \frac{1}{t(\bar{s} - s)} \left[(2t - 1)s - \frac{s^3}{t} \right],$$

which is strictly increasing since $t > 1/2$. Since $v_C = \bar{s}$ and $g^I(\bar{s}) = \frac{2t - 1}{t(\bar{s} - s)} \bar{s} < 0$, we have $v_u = \bar{s}$. That is, the most deterring C-device induces I to choose the
unused option with \(a = 0 \) whenever \(s < \frac{a}{t} \). The associated payment must render \(I \) indifferent at time 2 between saving \(\alpha_I(s/t) = \frac{s^2}{t} \) and zero in state \(\frac{s}{t} \):

\[
m - p^C(0) = m - p^C \left(\frac{s^2}{t} \right) - \frac{s^2}{t} + 2t \left(\frac{s}{t} \right) \sqrt{\frac{s}{t}}.
\]

Substituting and rearranging, we get \(p^C(0) = p^C(100) - 100 \).

We can now compute the difference in \(I \)'s expected utility between the \(C \)-device with and without the unused option. This depends only on \(I \)'s different choices for states in \([s, s/t]\), and hence it equals

\[
\int_{\frac{s}{t}}^{\frac{s}{t}} [-p^C(0)] \frac{ds}{s - \frac{s}{t}} - \int_{\frac{s}{t}}^{\frac{s}{t}} [-p^C(s) - \frac{s^2}{t} + 2s \sqrt{\frac{s}{t}}] \frac{ds}{s - \frac{s}{t}} = \frac{s^3(1 - t^2)}{t^2(s - \frac{s}{t})}.
\]

Using the parameters’ values, this difference is \(-46.91 \). Since it exceeds \(R^C(a')_b \approx 33.18 \), \(I \) would never choose the \(C \)-device that contains unused option \((0, p^C(0)) \).

APPENDIX D: OUTSIDE OPTION WITH TYPE-DEPENDENT VALUES

After rejecting all the provider’s devices at time 1, the agent will make certain state-contingent choices at time 2, which can be described with \((a_0, p_0)\) using the formalism of Section 4.1. For simplicity, consider the two-type model. By Proposition 4.1, \(U^C(a_0, p_0) \geq U^J(a_0, p_0) \) with equality if and only if \(a_0 \) is constant over \((v, \overline{v})\). So \(C \) and \(I \) value the outside option differently, unless they always end up making the same choice.

When \(U^C(a_0, p_0) > U^J(a_0, p_0) \), the analysis in Section 4 can be adjusted without changing its thrust. The constraints (IR\(_C\)) and (IC\(_C\)) set two lower bounds on \(C \)'s payoff from the \(C \)-device: one endogenous (i.e., \(U^C(a', p') = U^J(a', p') + R^C(a', p') \)) and one exogenous (i.e., \(U^C(a_0, p_0) = U^J(a_0, p_0) + R^C(a_0) \)). The question is which binds first. In Section 4, (IC\(_C\)) always binds first, for (IR\(_C\)) and (IC\(_C\)) imply (IR\(_C\)). Now this is no longer true. Intuitively, if (IC\(_C\)) binds first, then we are in a situation similar to Section 4; so the provider will distort the \(I \)-device as shown in Section 4.2.\(^1\) If (IR\(_C\)) binds first, then obviously the provider has no reason to distort the \(I \)-device. For example, she will never distort the \(I \)-device, if the outside option sustains the efficient outcome with \(I \)—that is, \(a_0 = a'_I \) over \([v', \overline{v'}]\). In this case, she must grant \(C \) at least the rent \(R^C(a_0) \), which already exceeds \(R^C(a'_I) \). Finally, if (IC\(_I\)) binds, then the provider will design the \(C \)-device as shown in Section 4.3.\(^2\)

\(^1\)This case is more likely when the outside option involves little flexibility, so that \(R^C(a_0) \) is small.

\(^2\)We can extend this argument to settings in which, at time 1, the agent has access to other devices if he rejects the provider’s ones. In these settings, \((a_0, p_0)\) can be type-dependent.
APPENDIX E: FINITELY MANY STATES AND IRRELEVANCE OF ASYMMETRIC INFORMATION

This section shows that if the set of states S is finite, then the provider may be able to always sustain the efficient outcome e, even if she cannot observe the agent's degree of inconsistency. To see the intuition, consider a two-state case with $s_2 > s_1$. If the provider can observe t, she sustains $\alpha^*_2 = e(s_2) > e(s_1) = \alpha^*_1$, with payments $\pi_1 = \pi^t(s_1)$ and $\pi_2 = \pi^t(s_2)$ that satisfy

$$(E.1) \quad u_2(\alpha^*_2; s_2, t) - u_2(\alpha^*_1; s_2, t) \geq \pi_2 - \pi_1 \geq u_2(\alpha^*_2; s_1, t) - u_2(\alpha^*_1; s_1, t),$$

which follows from (IC). Since $u_2(a; s, t)$ has strictly increasing differences in (a, s), having a discrete S creates some slack in (IC) at e: For any t, (E.1) does not pin down π_1 and π_2 uniquely. Suppose t^I is close to t^C. Intuitively, to sustain e with each type, the provider should be able to use incentive schemes that are sufficiently alike; also, since discrete states leave some leeway in the payments, she may be able to find one scheme that works for both types. If instead t^I is far from t^C, the provider must use different schemes to sustain e with each type. Since $t^I < t^C$, I is tempted to pick α^*_1 also in s_2, and the more so, the lower is t^I. So, for I not to choose α^*_1 in s_2, α^*_1 must be sufficiently more expensive than α^*_2, and this gap must rise as t^I falls. At some point, this gap must exceed C's willingness to pay for switching from α^*_2 to α^*_1 in s_1.

Proposition E.1 formalizes this intuition. Consider a finite set T of types, which may include both $t > 1$ and $t < 1$; let $\bar{t} = \max T$.

PROPOSITION E.1: Suppose S is finite and $s_N > s_{N-1} > \cdots > s_1$. There is a single commitment device that sustains e with each $t \in T$ if and only if $\bar{t}/t \leq \min, s_{i+1}/s_i$.

PROOF: With N states, (IC) becomes

$$u_2(\alpha_i; s_i, t) - \pi_i \geq u_2(\alpha_j; s_i, t) - \pi_j$$

for all i, j, where $\alpha_i = \alpha(s_i)$ and $\pi_i = \pi(s_i)$. By standard arguments, it is enough to focus on adjacent constraints. For $i = 2, \ldots, N$, let $\Delta_i = \pi_i - \pi_{i-1}$. If $\alpha^* = e$ for all i, then $\alpha^*_N > \alpha^*_{N-1} > \cdots > \alpha^*_1$ (Assumption 2.1). To sustain e with t, Δ_i must satisfy

$$(CIC_{i, i-1}) \quad u_2(\alpha^*_i; s_i, t) - u_2(\alpha^*_{i-1}; s_i, t) \geq \Delta_i \geq u_2(\alpha^*_i; s_{i-1}, t) - u_2(\alpha^*_{i-1}; s_{i-1}, t),$$

for $i = 2, \ldots, N$. For any s and t, $u_2(a'; s, t) - u_2(a; s, t) = ts(b(a') - b(a)) - a' + a$. Let $s_k/s_{k-1} = \min_{s_i/s_{i-1}}, \min_{s_i/s_{i-1}}$, and suppose $\tilde{s}_{k-1} > s_k t$. Then,

$$u_2(\alpha^*_k; s_{k-1}, \tilde{t}) - u_2(\alpha^*_{k-1}; s_{k-1}, \tilde{t}) > u_2(\alpha^*_k; s_k, t) - u_2(\alpha^*_{k-1}; s_k, t),$$
and no Δ_k satisfies (CIC$_{k,k-1}$) for both t and \bar{t}. If instead $t_{s_i} \geq \bar{t}_{s_{i-1}}$ for $i = 2, \ldots, N$, then for every t and i,
\[
 u_2(\alpha^*_i; s_i, t) - u_2(\alpha^*_{i-1}; s_i, t) \geq u_2(\alpha^*_i; s_{i-1}, \bar{t}) - u_2(\alpha^*_{i-1}; s_{i-1}, \bar{t})
\geq u_2(\alpha^*_i; s_{i-1}, \bar{t}) - u_2(\alpha^*_{i-1}; s_{i-1}, \bar{t}).
\]
Set $\Delta^*_i = u_2(\alpha^*_i; s_{i-1}, \bar{t}) - u_2(\alpha^*_{i-1}; s_{i-1}, \bar{t})$. Then $\{\Delta^*_i\}_{i=2}^N$ satisfies all (CIC$_{i-1,i}$) for every t. The payment rule $\pi^*_i = \pi^*_i + \sum_{j=i}^{N} \Delta^*_j$—with π^*_i small to satisfy (IR)—sustains \mathbf{e} with each t.

So, if the heterogeneity across types (measured by \bar{t}/t) is small, the provider may sustain \mathbf{e} without worrying about time-1 incentive constraints.

The condition in Proposition E.1, however, is not necessary for the unobservability of t to be irrelevant when sustaining \mathbf{e}. Even if \bar{t}/t is large, the provider may be able to design different devices such that each sustains \mathbf{e} with one t, and each t chooses the device for himself (‘t-device’). To see why, consider an example with two types, $t^h > t^l$, and two states, $s_2 > s_1$. Suppose $t^h > 1 > t^l$, $t^h s_1 > t^l s_2$, but $s_2 > s_1 t^h$ and $s_2 t^l > s_1$. Consider all (π^*_1, π^*_2) that satisfy (E.1) and (IR) with equality:

\[
(1 - f)\pi^*_2 + f \pi^*_1 = (1 - f)u_1(\alpha^*_2; s_2) + fu_1(\alpha^*_1; s_1),
\]
where $f = F(s_1)$. Finally, choose (π^*_1, π^*_2) so that h’s self-1 strictly prefers α^*_2 in s_2—i.e., $u_1(\alpha^*_2; s_2) - \pi^*_2 > u_1(\alpha^*_1; s_2) - \pi^*_1$—and (π^*_1, π^*_2) so that l’s self-1 strictly prefers α^*_1 in s_1—that is, $u_1(\alpha^*_1; s_1) - \pi^*_1 > u_1(\alpha^*_2; s_1) - \pi^*_2$. Then, the l-device (respectively, h-device) sustains \mathbf{e} and gives zero expected payoffs to the agent if and only if l (or h) chooses it. Moreover, l strictly prefers the l-device and h the h-device. To see this, note that if self-l of either type had to choose at time 2, under either device he would strictly prefer to implement \mathbf{e}. So, by choosing the ‘wrong’ device, either type can only lower his payoff below zero.

Proposition E.2 gives a necessary condition for the unobservability of t to be irrelevant when sustaining \mathbf{e}. Let $T^1 = T \cap [0, 1]$ and $T^2 = T \cap [1, +\infty)$. For $k = 1, 2$, let $\bar{t}^k = \max T^k$ and $t^k = \min T^k$.

PROPOSITION E.2: Suppose S is finite and $s_N > s_{N-1} > \cdots > s_1$. If $\max(\bar{t}^1/t^1, \bar{t}^2/t^2) > \min s_{i+1}/s_i$, then there is no set of devices, each designed for a $t \in T$, such that (i) t chooses the t-device, (ii) the t-device sustains \mathbf{e} with t, and (iii) all t get the same expected payoff.

PROOF: Suppose $\max(\bar{t}^1/t^1, \bar{t}^2/t^2) = \bar{t}^1/t^1$—the other case is similar—and that there exist devices that satisfy (i)–(iii). Let U be each t’s expected pay-off and \mathbf{p} be the payment rule in the t^1-device. Given \mathbf{p}, let $a^*_i(t)$ be an optimal choice of $t \in T^1$ in s_i. For t^1, $a^*_i(t^1) = \alpha^*_i$ for every i. Let $\bar{S} = \{i : s_{i+1}/s_i <
Then, (a) for every \(i \), \(t^1_i s_i > t^1_i s_i \) and hence \(g_i(t^1_i) \geq \alpha_i^* \); (b) for \(i \in S \), \(t^1_i s_i > t^1_i s_{i+1} \), and so \(g_i(t^1_i) \geq \alpha_{i+1}^* > \alpha_i^* \). Since \(t \leq 1 \), (a) and (b) imply

\[
\mathbf{p}(a_i(t^1_i)) - \mathbf{p}(\alpha_i^*) \leq u_2(g_i(t^1_i); s_i, t^1_i) - u_2(\alpha_i^*; s_i, t^1_i) \\
\leq u_1(a_i(t^1_i); s_i) - u_1(\alpha_i^*; s_i),
\]

where the first inequality is strict for \(i \in S \). The expected payoff of \(t^1 \) from \(\mathbf{p} \) is then

\[
\sum_{i=1}^{N} [u_1(a_i(t^1_i); s_i) - \mathbf{p}(\alpha_i^*)] f_i > \sum_{i=1}^{N} [u_1(\alpha_i^*; s_i) - \mathbf{p}(\alpha_i^*)] f_i = U,
\]

where \(f_i = F(s_i) - F(s_{i-1}) \) for \(i = 2, \ldots, N \) and \(f_1 = F(s_1) \). \(Q.E.D. \)

So, if \(T^1 \setminus \{1\} = \emptyset \) or \(T^2 \setminus \{1\} = \emptyset \), the condition in Proposition E.1 is also necessary for the provider to be able to sustain \(\mathbf{e} \), even if she cannot observe \(t \).

REFERENCES

Dept. of Economics, UCSD, La Jolla, CA 92093, U.S.A.; sgalperti@ucsd.edu.

Manuscript received August, 2013; final revision received March, 2015.