
Appendix C to Hellwig and Schmidt:
Discrete-Time Approximations of the Holmström-Milgrom

Brownian-Motion Model of Intertemporal Incentive Provision

(not to be published)

In this appendix, we provide a detailed proof of Proposition 4. We begin with a few

remarks on the mathematical structure underlying the analysis. As before, we let CN

be the space of continuous functions from [0, 1] into IRN , endowed with the topology of

uniform convergence, and for a given set K̂ ⊂ IRN , we let CN
K̂

be the subspace of those

functions F ∈ CN that have a Radon-Nikodym derivative fF taking values in K̂, so the

representation

F (t) =
∫ t

0
fF (t′)dt′ (C.1)

is valid for some function fF ∈ L1([0, 1], K̂), where L1([0, 1], K̂) is the space of (equivalence

classes of almost everywhere equal) measurable functions from the time interval [0, 1] into

the set K̂, endowed with the usual L1- norm.

Heuristically, the function fF (·) in (C.1) is the time path of controls fF (t) ∈ K̂ which

generates the cumulative control path F (·). Thus, (C.1) establishes a one-to-one relation

between control paths and cumulative control paths, between L1([0, 1], K̂) and CN
K̂

. Given

this relation, the cumulative total effort cost associated with a cumulative control path

F (·) is defined as

Γ(F ) =
∫ 1

0
ĉ(fF (t))dt. (C.2)

In terms of economic substance, it does not make any difference whether we study

the agent’s problem in terms of control paths or in terms of cumulative control paths.

In terms of mathematics, the following lemma shows that if K̂ is compact and convex,

then CN
K̂

is compact and the function Γ : CN
K̂
→ IR is lower semi-continuous. In contrast,

L1([0, 1], K̂) is not compact, but cumulative total effort cost is continuous on L1([0, 1], K̂).

The net effect of these two considerations will be that it is easier to work with cumulative

control paths rather than control paths, i.e., with the space CN
K̂

rather than L1([0, 1], K̂).
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Lemma C.1 Let K̂ be a compact and convex subset of IRN . Then CN
K̂

is compact and

the function Γ : CN
K̂
→ IR that is defined by (C.2) is lower semi-continuous.

Proof: Let ‖.‖ denote the Euclidean norm on IRN , and let k̄ := maxµ∈K̂ ‖µ‖ . For any

f ∈ CN
K̂

, one obviously has ‖F (t′)− F (t′′)‖ ≤ k̄ |t′ − t′′| for all t′ and t′′. Since (C.1)

implies F (0) = 0, one also has ‖F (t)‖ ≤ k̄ for all t. By the Arzelà-Ascoli theorem

(Billingsley, 1968, p.221), it follows that the closure of CN
K̂

is compact. To establish

compactness, it is therefore sufficient to show that CN
K̂

is closed.

For this purpose, we show that any function F ∈ CN that is a limit of a sequence

{F n} of elements of CN
K̂

must itself be an element of CN
K̂

. As a limit of Lipschitz functions

with the common Lipschitz constant k̄, F must itself be Lipschitzian and hence absolutely

continuous. By the Radon-Nikodym theorem, it follows that F satisfies (C.1) for some

function fF : [0, 1] → IRN . To prove that F ∈ CN
K̂

it suffices to show that fF (t) ∈ K̂ for

almost all t.

By Lebesgue’s theorem on the differentiation of a function of bounded variation, for

almost all t ∈ [0, 1], we have

fF (t) = lim
h→0

F (t + h)− F (t− h)

2h
.

By the specification of F as a limit of the sequence {F n}, it follows that for almost all

t ∈ [0, 1],

fF (t) = lim
h→0

lim
n→∞

F n(t + h)− F n(t− h)

2h
= lim

h→0
lim

n→∞
qn(t + h, t− h),

where

qn(t + h, t− h) :=

∫ t+h
t−h fF n(t′)dt′

2h
.

Given that K̂ is convex and qn(t + h, t− h) is an average of fF n(t′) for t′ ∈ [t + h, t− h],

we have qn(t + h, t− h) ∈ K̂. Given that K̂ is also compact, it follows that fF (t) ∈ K̂ for

almost all t, and hence that F ∈ CN
K̂

.

To prove that the function Γ(.) is lower semi-continuous, let {F n} be any sequence

in CN
K̂

that converges to a limit F, and consider the associated sequence {Γ(F n)}. For any

n and h = 1, 1
2
, ..., (C.2) yields

Γ(F n) =
1/h∑
i=1

h

∫ ih
(i−1)h ĉ(fF n(t))dt

h
≥

1/h∑
i=1

h ĉ

∫ ih
(i−1)h fF n(t)dt

h


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=
1/h∑
i=1

h ĉ

(
F n(ih)− F n((i− 1)h)

h

)
,

where we use the fact that ĉ(.) is a convex function. Given the convergence of F n(ih) and

F n((i− 1)h) to F (ih) and F ((i− 1)h), it follows that

lim
n̄→∞

inf
n≥n̄

Γ(F n) ≥ sup
h

1/h∑
i=1

h ĉ

(
F (ih)− F ((i− 1)h)

h

)

≥ lim
h→0

1/h∑
i=1

h ĉ

(
F (ih)− F ((i− 1)h)

h

)

=
∫ 1

0
ĉ(fF (t))dt = Γ(F ),

where we again use the fact that for almost all t, fF (t) = limh→0[F ([t/h]h + h) −
F ([t/h]h)]/h. Q.E.D.

Any control processes µ∆(.), µ(.) in the discrete-time models and the continuous-

time model can be thought of as random variables on some underlying probability space

(Ω,F , ν) with values in L1([0, 1], K̂). The associated cumulative control processes M∆(.)

and M(.) can be thought of as random variables on (Ω,F , ν) with values in CN
K̂

. Finally, as

discussed in Appendix B, the associated processes X∆(.) and X(.) of cumulative deviations

from the means are treated as random variables on (Ω,F , ν) with values in CN .

The control processes µ∆(.), µ(.) in the discrete-time models and the continuous-

time model are determined by the agent’s control strategies and the cumulative-deviations

processes in these models. As discussed in Appendix B, a control strategy in the discrete-

time model with period length ∆ corresponds to a sequence {µ̂∆,τ}m
τ=1 such that for any

τ, µ̂∆,τ (.) is a function that indicates how the control chosen in period τ depends on the

profit levels π̃∆,1, ..., π̃∆,τ−1 in periods τ ′ prior to τ. Given that there is a one-to-one relation

between the profit level π̃∆,τ in any period τ and the vector X̃∆,τ = (X̃∆,τ
1 , ..., X̃∆,τ

N ) of

increments of the cumulative-deviations process from period τ − 1 to period τ, we can

equivalently think of a control strategy in the discrete-time model with period length ∆

as a sequence {µ̆∆,τ}m
τ=1 of functions µ̆∆,τ of X̃∆,1, ..., X̃∆,τ−1. Given such a sequence, the

corresponding cumulative-control strategy is a sequence {M̆∆,τ}m
τ=1 of functions M̆∆,τ of

X̃∆,1, ..., X̃∆,τ−1 such that for any ∆ and τ = 2, ...m,

M̆∆,τ (X̃∆,1, ..., X̃∆,τ−1) =
τ−1∑
τ ′=1

µ̆∆,τ ′
(X̃∆,1, ..., X̃∆,τ ′−1). (C.3)
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In terms of continuous-time representations of control processes and cumulative-control

processes as well as cumulative-deviations processes, control strategies in the discrete-time

models then correspond to suitably measurable functions from CN into L1([0, 1], K̂), and

cumulative-control strategies correspond to suitably measurable functions from CN into

CN
K̂

.

The following result, which is fundamental for the entire analysis, exploits the com-

pactness of the space CN
K̂

.

Proposition C.1 For m = 1, 2, . . . , and ∆ = 1
m

, let {M̆∆,τ}m
τ=1 be a cumulative-control

strategy for the discrete-time model with period length ∆, and let {(M∆(·), X∆(·)} be the

induced process of cumulative controls and cumulative deviations from the means. Any

subsequence of this sequence has a further subsequence which converges in distribution to

a process (M(·), X(·)) such that X(·) is the Gaussian process with initial value X(0) = 0,

zero drift, and covariance matrix Σ, and, moreover, for any t ∈ [0, 1), the continua-

tion {X(t′)}t′>t of the process X(·) and the history {(M(τ), X(τ)}τ≤t are conditionally

independent given X(t).

Proof: For any ∆, let Φ∆ be the distribution of the joint process (M∆(·), X∆(·)). As

discussed in Appendix A, the cumulative control process M∆(·) takes values in the set

CN
K̂

; by Lemma C.1, this is a compact subset of CN . The process X∆(·) of cumulative

deviations from the means take values in CN . Thus Φ∆ is an element of the space

M(CN
K̂
×CN) of probability measures on CN

K̂
×CN . By Prohorov’s Theorem (Billingsley,

1968, p.240), the sequence {Φ∆} is sequentially compact if and only if it is tight, i.e., if

and only if for any η > 0, there exists a compact subset Kη ⊂ CN
K̂
×CN such that, for any

∆, Φ∆(Kη) ≥ 1 − η. Since CN
K̂

itself is a compact subset of CN , it suffices to show that

for any η > 0, there exists a compact subset K̄η ⊂ CN such that Φ∆(CN
K̂
× K̄η) ≥ 1 − η

for all ∆. For this purpose, consider the marginal distributions Ψ∆ of the cumulative-

deviations processes (X∆
1 (·), ..., X∆

N (·)). By Proposition B.1 in Appendix B, the sequence

{Ψ∆} converges to the distribution of the process X(·). By Prohorov’s Theorem, it follows

that the sequence {Ψ∆} is tight, so for any η > 0, there exists a compact subset K̄η ⊂ CN

such that, for any ∆, Ψ∆(K̄η) ≥ 1− η. Since Ψ∆(K̄η) = Φ∆(CN
K̂
× K̄η), this implies that

the sequence {Φ∆} is tight and, hence, sequentially compact.
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Let Φ be a limit point of the sequence {Φ∆}, and let (M(·), X(·)) have the distribution

Φ. If Ψ is the marginal distribution on CN that is induced by Φ, then by standard

arguments, Ψ coincides with the limit of the marginal distributions Ψ∆ of the processes

X∆(·). By Proposition B.1 in Appendix B, it follows that X(·) is Gaussian with initial

value X(0) = 0, zero drift, and covariance matrix Σ.

It remains to be shown that for any t ∈ [0, 1), the continuation {X(t′)}t′>t of the

process X(·) and the history {(M(τ), X(τ)}τ≤t are conditionally independent given X(t).

For this purpose we note that, by (C.3), formulae (B.7) - (B.12) in the proof of Proposition

B.1 in Appendix B remain valid if the symbol F∆
t in these formulae refers to the σ-algebra

that is generated by the random variables M̃∆,1, π̃∆,1, ..., M̃∆,[t/∆], π̃∆,[t/∆] rather than just

the σ-algebra generated by π̃∆,1, ..., π̃∆,[t/∆]. Appealing to Theorems 6 and 7 of Gihman

and Skorokhod (1979, p. 195) and using the equation X∆(.) = (Q′)−1X∆
Q , as before,

we may therefore conclude that the (regular) conditional distributions of the continu-

ations {X∆(t′)}t′∈(t,1] given M̃∆,1, π̃∆,1, ..., M̃∆,[t/∆], π̃∆,[t/∆] converge in distributionC-1 to

the conditional distribution of the continuation {X(t′)}t′∈(t,1] of the process X(·) given the

“initial” value X(t). By an argument given in Hellwig (1996, pp. 452 ff.), this convergence

property of conditional distributions is sufficient for the desired conditional-independence

property in the limit. Q.E.D.

Let {(M∆′
(·), X∆′

(·))} be the subsequence of joint cumulative-control and cumulative-

deviations processes which corresponds to the specified subsequence {s∆′
(·)} of incentive

schemes. Any subsequence of {(M∆′
(·), X∆′

(·))} has yet a further subsequence which

converges in distribution to a pair (M(·), X(·)) such that X(·) is the driftless Brown-

ian motion specified in Theorem 1, and moreover, for any t, the history of the process

(M(·), X(·)) up to t and the continuation of the process X(·) from t on are conditionally

independent given X(t). Convergence of the sequence {(M∆′
(·), X∆′

(·))} itself is assured

if all convergent subsequences have the same limit. For this it suffices to show that the

control process µ(·) which corresponds to the cumulative control process M(·) is actu-

ally an optimal control process for the agent in the continuous-time model with incentive

scheme s(·). This is so because, with a strictly convex cost function, by the results of

C-1Note that the conditional distributions themselves can be regarded as measure-valued random vari-
ables, i.e., functions from the appropriate spaces of histories into spaces of measures on continuations.
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Schättler and Sung (1993, Theorems 4.1 and 4.2), regardless of the incentive scheme, the

solution to the agent’s problem in the continuous-time model is unique in the sense that

any two optimal control processes must have the same values almost surely for almost all

t ∈ [0, 1].

In an abuse of notation, we also write {(M∆′
(·), X∆′

(·))} for any convergent sub-

sequence, and we show that if {(M∆′
(·), X∆′

(·))} converges in distribution to a pair

(M(·), X(·)), then the limiting cumulative control process M(·) must almost surely coin-

cide with the process M∗(·) which is optimal for the agent in the continuous-time model

with incentive scheme s(·). As discussed in the text, the argument proceeds in three

distinct steps. The first step involves showing that the agent’s expected payoff from

the limit pair (M(.), X(.)) in the continuous-time model with incentive scheme s(·) is

not significantly worse than his expected payoffs from the pairs {(M∆′
(.), X∆′

(.))} in the

discrete-time models with incentive schemes s∆′
when ∆′ is small.

Proposition C.2 Under the assumptions of Proposition 4, if {(M∆′
(·), X∆′

(·))} con-

verges in distribution to (M(·), X(·)), then

lim
∆̄→0

sup
∆′≤∆̄

[−E exp{−r[s∆′
(z∆′

)− Γ(M∆′
(.))]}]

≤ −E exp{−r[s

(
N∑

i=1

(Mi(1) + Xi(1))

)
− Γ(M(.))]}, (C.4)

where z∆′
=
∑N

i=1 Z∆′
i (1) =

∑N
i=1[M

∆′
i (1) + X∆′

i (1)].

Proof: By Skorokhod’s theorem (see, e.g., Hildenbrand (1974), pp. 50 f.), convergence

in distribution of {(M∆′
(.), X∆′

(.))} to (M(.), X(.)) implies the existence of a measure

space (A,A, α) and measurable functions (f∆′
M , f∆′

X ) and (fM , fX) of A into CN
K̂
×CN such

that, for any ∆′, the distribution of (M∆′
(.), X∆′

(.)) is α◦(f∆′
M , f∆′

X )−1, the distribution of

(M(.), X(.)) is α◦(fM , fX)−1, and moreover, for α-almost every a ∈ A, (f∆′
M (., a), f∆′

X (., a))

converges to (fM(., a), fX(., a) as ∆′ goes to zero. By the change-of-variables formula

(Hildenbrand (1974), p. 50), (C.4) is equivalent to the inequality

lim
∆̄→0

sup
∆′≤∆̄

[−
∫

exp{−r[s∆′
(

N∑
i=1

[f∆′

Mi
(1, a) + f∆′

Xi
(1, a)]

)
− Γ(f∆′

M (., a))]} dα(a)]

≤ −
∫

exp{−r[s

(
N∑

i=1

[fMi
(1, a) + fXi

(1, a)]

)
− Γ(fM(., a))]} dα(a). (C.5)
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By Fatou’s lemma, the left-hand side of (C.5) is no greater than

−
∫

exp{−r lim
∆̄→∞

sup
∆′≤∆̄

[s∆′
(

N∑
i=1

[f∆′

Mi
(1, a) + f∆′

Xi
(1, a)]

)
− Γ(f∆′

M (., a))]} dα(a)]. (C.6)

By construction of s(.), for any a ∈ A, for which (f∆′
M (., a), f∆′

X (., a)) converges to (fM(., a),

fX(., a)) ,

lim
∆̄→0

sup
∆′≤∆̄

s∆′
(

N∑
i=1

[f∆′

Mi
(1, a) + f∆′

Xi
(1, a)]

)
≤ s

(
lim

∆′→0

N∑
i=1

[f∆′

Mi
(1, a) + f∆′

Xi
(1, a)]

)

= s

(
N∑

i=1

[fMi
(1, a) + fXi

(1, a)]

)
. (C.7)

By Lemma C.1, for any such a ∈ A,

lim
∆̄→0

sup
∆′≤∆̄

[−Γ(f∆′

M (., a))] ≤ −Γ( lim
∆′→0

f∆′

M (., a)) = −Γ(fM(., a)). (C.8)

Therefore, (C.6) is no greater than the right-hand side of (C.5). This proves (C.5) and

hence (C.4). Q.E.D.

In the second step of the proof of Proposition 4, we show that the agent’s payoff

from the limit pair (M(.), X(.)) in the continuous-time model with incentive scheme s(.)

is no better than his maximal payoff in the continuous-time model with this incentive

scheme. For this purpose we will show that the pair (M(.), X(.)) can be interpreted as the

result of the agent’s choosing a mixed strategy, i.e., as the result of a prior randomization

over admissible pure strategies in the continuous-time model.

Proposition C.3 Let W ∈ M(CN) be the distribution of the Brownian motion X(.)

with zero drift, variance-covariance matrix Σ, and initial condition X(0) = 1, and let

F(CN , CN
K̂

) be the space of functions from CN to CN
K̂

that are adapted to the filtration on

CN that results from augmenting the filtration generated by the N-dimensional Brownian

motion by the addition of null sets. There exists a measure P ∈ M(F(CN , CN
K̂

)) such

that

Φ = (P ×W ) ◦ γ−1, (C.9)

where Φ ∈ M(CN
K̂
× CN) is the distribution of the limit (M(.), X(.)) in Proposition C.1

and γ : F(CN , CN
K̂

)× CN → CN
K̂
× CN is defined by the formula

γ(g,B) = (g(B), B). (C.10)
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Proposition C.3 is essentially a version of Kuhn’s Theorem for the continuous-time

agency problem. A measure Φ ∈M(CN
K̂
×CN) that exhibits the conditional-independence

property established in Proposition C.1 can be interpreted as a behaviour strategy in the

sense that it allows for distinct randomizations at different information sets. Specifically,

if we think of a pair (F, Y ) ∈ CN
K̂
× CN as a possible outcome resulting from the agent’s

behaviour, then Φ is a mixture over such outcomes; moreover, for any t, the conditional

distribution over continuations {(M(τ), X(τ)}τ>t given the history up to and including

t corresponds to a mixture over the possible outcomes of these continuations, and the

“sequence” of such conditional distributions that is inherent in the specification of the

measure Φ provides an analogue to the distinct randomizations at different informations

sets in the conventional specification of a behaviour strategy in a discrete-time model.

The proposition asserts that such a “behaviour strategy” can actually be interpreted as

the result of a prior randomization over pure strategies, where the latter are defined as

suitably measurable functions from the space CN of time paths of cumulative deviations

to the space CN
K̂

of time paths of cumulative controls.

Proof of Proposition C.3: Given the measure Φ ∈ M(CN
K̂
× CN), let Φ(.|.) be a regular

conditional distribution on CN
K̂

given {CN
K̂
} × B(CN). Formally, we treat Φ(. | .) as a

measurable function from CN into M(CN
K̂

). By Lusin’s Theorem (see, e.g., Halmos, P.

(1950), Measure Theory, Princeton: Van Nostrand, p. 243), for n = 1, 2, ..., there exists

a compact set CN
n ⊂ CN such that W (CN

n ) ≥ 1− 1
n

and, moreover, the restriction of the

function Φ(. | .) to the set CN
n is continuous.

For any n, let C(CN
n , CN

K̂
) be the space of continuous functions from CN

n into CN
K̂

,

adapted so that for any g ∈ C(CN
n , CN

K̂
), and any t ∈ [0, 1] and any B ∈ CN the value

of the image g(.) at t, g(t; .), satisfies g(t; B) = g(t; B̂) for all B and B̂ ∈ CN
n with

B(t′) = B̂(t′) for all t′ ≤ t. The space C(CN
n , CN

K̂
) will be endowed with the topology of

uniform convergence.

Given a countable dense set of points B1
n, B

2
n, ... in CN

n , consider the sequence of

subsets P1
n,P2

n, ... of M(C(CN
n , CN

K̂
)) such that

P1
n = {P ∈M(C(CN

n , CN
K̂

))| for any Borel set Y ∈ B(CN
K̂

),

Φ(Y | B1
n) = P ({g ∈ C(CN

n , CN
K̂

)| g(B1
n) ∈ Y })}, (C.11)
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and, for i = 2, 3, ...,

P i
n = {P ∈ P i−1

n | for any Borel set Y ∈ B(CN
K̂

)

Φ(Y | Bi
n) = P ({g ∈ C(CN

n , CN
K̂

)| g(Bi
n) ∈ Y })}. (C.12)

Clearly, for any i, the set P i
n is a nonempty and closed subset of M(C(CN

n , CN
K̂

)), and

one has P i+1
n ⊂ P i

n. It follows that the sequence {P i
n} has a limit Pn, which is again a

nonempty closed subset of M(C(CN
n , CN

K̂
)).

We claim that any measure P ∈ Pn satisfies

Φ(Y | B) = P ({g ∈ C(CN
n , CN

K̂
)| g(B) ∈ Y })} (C.13)

for all sets Y ∈ B(CN
K̂

) and all B ∈ CN
n . To verify this claim, fix Bn ∈ CN

n , and let {Bik

n }
be any subsequence of the sequence {Bi

n} such that Bn = limk→∞ Bik

n . Given that the

restriction of Φ(. | .) to CN
n is continuous, we have

lim
k→∞

∫
CN

K̂

f(M)dΦ(M | Bik

n ) =
∫

CN
K̂

f(M)dΦ(M | Bn) (C.14)

for any bounded continuous function f of CN
K̂

into IR. Given that P ∈ Pn = ∩∞i=1P i
n, the

measure P satisfies (C.13) for B = Bi1

n , Bi2

n , ... This implies that∫
CN

K̂

f(M)dΦ(M | Bik

n ) =
∫
C(CN

n ,CN
K̂

)
f(g(Bik

n ))dP (g) (C.15)

for all k. Given that the elements of C(CN
n , CN

K̂
) are continuous, convergence of Bik

n to Bn

implies convergence of f(g(Bik

n )) to f(g(Bn)) for any g ∈ C(CN
n , CN

K̂
) and any bounded

continuous f : CN
K̂
→ IR. By Lebesgue’s bounded-convergence theorem, it follows that

lim
k→∞

∫
C(CN

n ,CN
K̂

)
f(g(Bik

n ))dP (g) =
∫
C(CN

n ,CN
K̂

)
f(g(Bn))dP (g) (C.16)

for any bounded continuous function f on CN
K̂

. Upon combining (C.14), (C.15), and

(C.16), one concludes that∫
CN

K̂

f(M)dΦ(M | Bn) =
∫
C(CN

n ,CN
K̂

)
f(g(Bn))dP (g)

for any bounded continuous function f on CN
K̂

. The validity of (C.13) for B = Bn follows

immediately.
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Recalling that C(CN
n , CN

K̂
) is endowed with the topology of uniform convergence,

we can use the Borel σ-algebra B(C(CN
n , CN

K̂
) to specify on the underlying function

space F(CN , CN
K̂

) itself a σ-algebra An of cylinder sets taking the form A = {g ∈
F(CN , CN

K̂
)| (g|CN

n ) ∈ Y } for some Y ∈ B(C(CN
n , CN

K̂
); here (g|CN

n ) denotes the re-

striction of g to CN
n . The formula

Qn
P ({g ∈ F(CN , CN

K̂
)| (g|CN

n ) ∈ Y }) = P (Y ) (C.17)

etsablishes a natural bijection between measures P on (C(CN
n , CN

K̂
),B(C(CN

n , CN
K̂

)) and

measures Qn
P on (F(CN , CN

K̂
),An).

Now consider the class A = ∪∞n=1An of all cylinder subsets of F(CN , CN
K̂

), and let Q
be the set of countably additive set functions on (F(CN , CN

K̂
),A). For any n, we define

Qn as the set of measures Q ∈ Q such that the restriction of Q to An satisfies (C.17) for

some P ∈ Pn.

We may assume that the sequence {CN
n } of compact subsets of CN in the application

of Lusin’s Theorem is nondecreasing. This implies that the sequence {An} of σ-algebras

on F(CN , CN
K̂

) is nondecreasing, and in turn that the sequence {Qn} of sets of measures

on (F(CN , CN
K̂

),A) is nonincreasing. It follows that the limit Q∗ = ∩∞n=1Qn is a well

defined nonempty subset of Q.

Now let P be any element of Q∗. By Kolmogorov’s Extension Theorem (see, e.g.,

Gihman, I. and A.W. Skorokhod (1972), Theory of Stochastic Processes, Vol. I, Heidel-

berg: Springer, p.46), there exists a unique extension of P to the σ-algebra generated

by A. In an abuse of notation, we refer to this extension also as P. Extending the set

function P still further, we introduce the set

F0 = {g ∈ F(CN , CN
K̂

)|g(B) = 0 for all B ∈ [CN\ ∪∞n=1 CN
n ]}

of those functions in F(CN , CN
K̂

) that assign the null function to all B outside the sets

CN
1 , CN

2 , ..., and we define, for any A ∈ A,

P (A ∩ F0) = P (A)

and

P (A ∩ [F(CN , CN
K̂

)\F0]) = 0.
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With this specification of a measure P on F(CN , CN
K̂

), it is now easy to see that the

distribution of the pair (g(B), B) ∈ CN
K̂
× CN that is induced by the product measure

P ×W is exactly the same as the original measure Φ on CN
K̂
× CN . Q.E.D.

Corollary C.1 Let g∗ ∈ F(CN , CN
K̂

) be an optimal cumulative-control strategy of the

agent in the continuous-time model with incentive scheme s(.), and let (M∗(·), X∗(·))
be the associated cumulative-control and cumulative-deviations process. Then the limit

(M(.), X(.)) in Proposition C.1 satisfies

−E exp{−r[s

(
N∑

i=1

(Mi(1) + Xi(1))

)
− Γ(M(.))]}

≤ −E exp{−r[s

(
N∑

i=1

(M∗
i (1) + Xi(1))

)
− Γ(M∗(.))]}. (C.18)

Proof: By the definition of (M∗(·), X∗(·)) and g∗, we trivially have

−E exp{−r[s

(
N∑

i=1

(M∗
i (1) + Xi(1))

)
− Γ(M∗(.))]}

= −
∫

exp{−r[s

(
N∑

i=1

(g∗i (1, B) + Bi(1))

)
− Γ(g∗(., B))]} dW (B), (C.19)

where B ∈ CN is any realization and W ∈ M(CN) is the distribution of the Brownian

motion X(·).

The optimality of the strategy g∗ for the agent in the continuous-time model with

incentive scheme s(·) implies that

−
∫

exp{−r[s

(
N∑

i=1

(g∗i (1, B) + Bi(1))

)
− Γ(g∗(., B))]} dW (B)

≥ −
∫

exp{−r[s

(
N∑

i=1

(gi(1, B) + Bi(1))

)
− Γ(g(., B))]} dW (B) (C.20)

for g ∈ F(CN , CN
K̂

), i.e., for any admissible pure strategy of the agent in the continuous-

time model. From (C.20), we immediately obtain

−
∫

exp{−r[s

(
N∑

i=1

(g∗i (1, B) + Bi(1))

)
− Γ(g∗(., B))]} dW (B) (C.21)

≥ −
∫ ∫

exp{−r[s

(
N∑

i=1

(gi(1, B) + Bi(1))

)
− Γ(g(., B))]} d(P ×W )(g,B),
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where P ∈ M(F(CN , CN
K̂

)) is given by Proposition C.3. Since Proposition C.3 in turn

implies

−E exp{−r[s

(
N∑

i=1

(Mi(1) + Xi(1))

)
− Γ(M(.))]}

= −
∫ ∫

exp{−r[s

(
N∑

i=1

(gi(1, B) + Bi(1))

)
− Γ(g(., B))]} d(P ×W )(g,B),

the validity of (C.18) follows immediately. Q.E.D.

In the third step of the proof of Proposition 4, we argue that the agent’s maxi-

mal payoff in the continuous-time model with the incentive scheme s(.) is not significantly

better than his maximal payoffs in the discrete-time models with incentive schemes s∆′
(.)

when ∆′ is small. This is the point of

Proposition C.4 Under the assumptions of Proposition 4, if {(M∆′
(·), X∆′

(·))} con-

verges in distribution to (M(·), X(·)), then

lim
∆̄→0

inf
∆′≤∆̄

[−E exp{−r[s∆′
(z∆′

)− Γ(M∆′
(·))]}]

≥ −E exp{−r[s

(
N∑

i=1

(M∗
i (1) + Xi(1))

)
− Γ(M∗(·))]} (C.22)

where (M∗(·), X(·)) is the cumulative-control and cumulative-deviations process that is

generated by an optimal cumulative-control strategy g∗ ∈ F(CN , CN
K̂

) of the agent in the

continuous-time model with incentive scheme s(.).

To establish this result, we shall exhibit a sequence of cumulative-control strategies

for the discrete-time models whose payoffs for small period lengths are not significantly

worse than the payoff from choosing the optimal cumulative-control process g∗ at the

incentive scheme s(·) in the continuous-time model. Trivially, this will imply that for

small period lengths the payoffs of the optimal control processses in the different discrete-

time models are also not significantly worse than the agent’s payoff from choosing the

optimal control process µ∗(.) at the incentive scheme s(.) in the continuous-time model.
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The discrete-time cumulative-control strategies that we shall exhibit can be seen

as approximations to the optimal cumulative-control process g∗ at the incentive scheme

s(·) in the continuous-time model. Complications arise because, apart from the need to

adapt control processes to the time structures of the discrete-time models, we need to

take account of possible discontinuities of the cost function Γ(·) and the incentive scheme

s(.) as well as the strategy g∗. The discontinuities in Γ(·) and g∗ are taken care of by

the following preliminary lemmas. In (C.23) below, as in the text, Ē is the maximum

of
∑N

i=1 µi on the set K̂, and µ(Ē) is the vector in K̂ which minimizes ĉ(µ) under the

constraint
∑N

i=1 µi = Ē.

Lemma C.2 For any function g ∈ F(CN , CN
K̂

) and any h > 0, define a new function

function ĝ(h, g) so that for any B ∈ CN , ĝ(·, B; h, g) ∈ CN
K̂

is given as

ĝ(t, B; h, g) = µ(Ē) t if t ≤ h (C.23)

and

ĝ(t, B; h, g) = (1− h(
t

h
−
[
t

h

]
)g(h(

[
t

h

]
− 1), B)

+h(
t

h
−
[
t

h

]
)g(h

[
t

h

]
, B), if t > h, (C.24)

where
[

t
h

]
is the largest integer not exceeding t

h
. Then ĝ(h, g) ∈ F(CN , CN

K̂
), and, for any

B ∈ CN ,

lim
h→0

ĝ(·, B; h, g) = g(·, B), uniformly in B, (C.25)

and

lim
h→0

Γ(ĝ(·, B; h, g)) = Γ(g(B)). (C.26)

Proof: Since g(·, B) ∈ CN
K̂

for all B, (C.23) and (C.24) imply that for any h ∈ (0, 1] and

any B ∈ CN , the function ĝ(·, B; h, g) has a Radon-Nikodym derivative fĝ(·,B;hg) satisfying

fĝ(·,B;hg)(t) = µ(Ē), if t ≤ h, (C.27)

and

fĝ(·,B;h,g)(t) =
g(h

[
t
h

]
, B)− g(h(

[
t
h

]
− 1), B)

h

=
1

h

∫ h[ t
h ]

h([ t
h ]−1)

fg(·,B)(t
′) dt′, if t > h. (C.28)
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Since µ(Ē) ∈ K̂ and, for any t′, fg(·,B)(t
′) ∈ K̂, and K̂ is convex, it follows that

fĝ(·,B;hg)(t) ∈ K̂ for all t, and hence that ĝ(·, B; h, g) ∈ CN
K̂

. (C.23) and (C.24) also

imply that the map B → ĝ(·, B; h, g) has the same measurability properties as the map

B → g(·, B). Therefore ĝ(h, g) ∈ F(CN , CN
K̂

).

Since fg(·,B)(t
′) ∈ K̂ for all B, the difference g(h

[
t
h

]
, B) − g(h(

[
t
h

]
− 1), B) on the

right-hand side of (C.24) is bounded, uniformly in t, B, and h. For any t ∈ (0, 1] then,

(C.24) implies (C.25) because

lim
h→0

h(
[
t

h

]
− 1) = t

and the functions g(·, B) are equicontinuous. Finally, we note that (C.2), (C.27), and

(C.28) yield

Γ(ĝ(·, B; h, g)) =
∫ 1

0
ĉ(fĝ(·,B;hg)(t))dt

= ĉ(µ(Ē))h +

[ 1
h
]−1∑

i=1

hĉ

∫ ih
(i−1)h fg(·,B)(t) dt

h


for any h > 0 and any B ∈ CN . By the convexity of ĉ, it follows that

Γ(ĝ(·, B; h, g)) ≤ ĉ(µ(Ē))h +

[ 1
h
]−1∑

i=1

h
∫ ih

(i−1)h
ĉ(fg(·,B)(t)) dt

≤ ĉ(µ(Ē))h + Γ(g(·, B)) (C.29)

and hence that limh̄→0 suph≤h̄ Γ(ĝ(·, B; h, g)) ≤ Γ(g(·, B)). By Lemma C.1 and (C.25), we

also have limh̄→0 infh≤h̄ Γ(ĝ(·, B; h, g)) ≥ Γ(g(·, B)). (C.26) follows immediately. Q.E.D.

Lemma C.3 Let g ∈ F(CN , CN
K̂

) be such that the function

B → fg(·,B)(·) (C.30)

of CN into L1([0, 1], K̂) that is defined by the Radon-Nikodym derivatives of the images of

g is continuous. Then the functions B → g(·, B) of CN into CN
K̂

and B → Γ(g(·, B)) of

CN into IR are continuous, and the convergence in (C.26) is uniform over any compact

subset of CN .

Proof: Given the continuity of the function (C.30) and the boundedness of ĉ on K̂,

continuity of the functions B → g(·, B) and B → Γ(g(·, B)) follows from Lebesgue’s
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bounded-convergence theorem. To complete the proof, consider any sequences {hk}
converging to zero and {Bk} converging to B∗ ∈ CN . Then from (C.29), we have

Γ(ĝ(·, Bk; hk, g)) ≤ ĉ(µ(Ē))hk + Γ(g(·, Bk)) for all k, and hence

lim
k̄→∞

sup
k≥k̄

Γ(ĝ(·, Bk; hk, g)) ≤ lim
k̄→∞

sup
k≥k̄

Γ(g(·, Bk)) .

Given that Bk converges to B∗ and the map B → Γ(g(·, B)) is continuous, it follows

that limk̄→∞ supk≥k̄ Γ(ĝ(·, Bk; hk, g)) = Γ(g(·, B∗)). By Lemma C.1 and the continuity of

the map B → g(·, B), we also have limk̄→∞ infk≥k̄ Γ(ĝ(·, Bk; hk, g)) ≥ Γ(g(·, B∗)). Thus

limk→∞ Γ(ĝ(·, Bk; hk, g)) = Γ(g(·, B∗)), and the convergence in (C.26) must be uniform

over compacta. Q.E.D.

Lemma C.4 For any g ∈ F(CN , CN
K̂

) and k = 1, 2, ..., there exist functions gk(g) ∈
F(CN , CN

K̂
), such that (i) for W - almost every B ∈ CN , gk(·, B; g) and Γ(gk(·, B; g))

converge to g(·, B) and Γ(g(·, B)) as k goes out of bounds, and (ii) for any k, the function

B → fgk(·,B;g)(·) of CN into L1([0, 1], K̂) that is defined by the Radon-Nikodym derivatives

of the images of gk(g) is continuous.

Proof: Using Lemma C.2, for the given g ∈ F(CN , CN
K̂

) and k = 1, 2, . . ., let hk be such

that for all B ∈ C and all t ∈ [0, 1],

∣∣∣ĝ(t, B; hk, g)− g(t, B)
∣∣∣ ≤ 1

k
.

Note that for each k, the Radon-Nikodym derivatives fĝ(·,B;hk,g)(·) of ĝ(·, B; hk, g) take the

form

fĝ(·,B;hk,g)(t) = dk
[t/hk](B) ,

where dk
j , j = 0, 1, . . . , 1/hk − 1, are suitably adapted functions on CN . By Lusin’s Theo-

rem (see, e.g., Halmos, 1950, p.243), for each k and j, there exists a compact subset CN
kj of

CN , with W (CN
kj) ≥ 1− hk/2k, such that the restriction of the function dk

j to the set CN
kj

is continuous. By Tietze’s extension theorem, for each k and j, there exists a continuous

function d
k

j of CN into K̂ such that d
k

j (B) = dk
j (B) for all B ∈ CN

kj. Without loss of

generality, we may assume that for each k and j, d
k

j shares the measurability properties
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of dk
j so d

k

j (B) is independent of the behaviour of B(t) for t > jhk. If we define gk(g)

inductively by setting

gk(t, B; g) = td
k

0(B) if t ≤ hk

and

gk(t, B; g) = gk([t/hk]hk, B; g) + (t− hk[t/hk])d
k

[t/hk](B) if t ∈ (hk, 1] ,

we therefore have gk(g) ∈ F(CN , CN
K̂

). For any B ∈ C, the Radon-Nikodym derivative of

gk(B) satisfies:

fgk(·,B;g)(t) = d
k

[t/hk](B) ,

so that indeed the function B → fgk(·,B;g)(·) of CN into L1([0, 1], K̂) is continuous. If we

write CN
k :=

⋂[1/hk]−1
j=0 CN

kj, then for B ∈ CN
k , we also have

fgk(·,B;g)(t) = fĝ(·,B;hk,g)(t)

for all t, hence gk(·, B; g) = ĝ(·, B; hk, g).

For r = 1, 2, . . . , let CNr =
⋂

k≥r CN
k , and CN∗ = limr→∞ Cr. By elementary set

theory we have

CNr = CN \
⋃
k≥r

[CN \ CN
k ] and CN

k = CN \
[1/hk]−1⋃

j=0

[CN \ CN
kj] ,

hence,

W (CNr) ≥ 1−
∞∑

k=r

W (CN \ CN
k ) = 1−

∞∑
k=r

(1−W (CN
k ))

and

W (CN
k ) ≥ 1−

[1/hk]−1∑
j=0

W (CN \ CN
kj) ≥ 1−

[1/hk]−1∑
j=0

(1−W (CN
kj)) = 1− 1

2k

because W (CN
kj) ≥ 1− hk/2k for j = 0, . . . , [1/hk]− 1. It follows that for any r,

W (CNr) ≥ 1−
∞∑

k=r

(
1

2k

)
= 1− 1

2r−1
,

and hence that W (CN∗) = 1.

For any B ∈ CN∗ though, we have B ∈ CNr for some r, and hence B ∈ CN
k for any

sufficiently large k. But then B ∈ CN∗ implies ωk(B) = ωhk(B) for any sufficiently large
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k and hence, by Lemma C.2, limk→∞ gk(·, B; g) = g(·, B) and limk→∞ Γ(gk(·, B; g)) =

Γ(g(·, B)). The subset of CN for which gk(·, B; g) and Γ(gk(·, B; g)) converge to g(·, B)

and Γ(g(·, B)) contains CN∗ and hence has W -measure equal to one. Q.E.D.

We now turn to the specification of cumulative-control strategies for the discrete-time

models that will approximate the payoff from the optimal strategy g∗ at the incentive

scheme s(·) in the continuous-time model. Let gk(g∗), k = 1, 2, ..., be the continuous

approximations to the strategy g∗ that are given by Lemma C.4. For any k and any

ε > 0, define gkε(g∗) so that

gkε(t, B) = (1− ε)gk(t, B) + εtµ(Ē) (C.31)

for any t ∈ [0, 1] and any B ∈ CN . For any k, ε > 0, and ∆′ > 0, use Lemma C.2 to

define discrete-time approximations g∆′k = ĝ(∆′, gk(g∗)) and g∆′kε = ĝ(∆′, gkε(g∗)) of the

cumulative-control strategies gk(g∗) and gkε(g∗), and note that, trivially,

g∆′kε(t, B) = (1− ε)g∆′k(t, B) + εtµ(Ē) (C.32)

for all t ∈ [0, 1] and all B ∈ CN .

For any k, ε, and ∆′, g∆′kε is an admissible cumulative-control strategy for the

discrete-time model with period length ∆′. To see this, note that the Radon-Nikodym

derivative fg∆′kε(.,B)of g∆′kε(., B) satisfies

fg∆′kε(.,B)(t) = (1− ε)
gk((

[
t

∆′

]
∆′, B; g∗)− gk((

[
t

∆′

]
− 1)∆′, B; g∗)

∆′ + εµ(Ē)

for almost all t ∈ [0, 1]. For t ≤ ∆′, we have

fg∆′kε(.,B)(t) = µ(Ē);

and for τ = 1, 2, ..., 1
∆′ , and t ∈ (τ∆′, (τ + 1)∆′],

fg∆′kε(.,B)(t) = (1− ε)

∫ τ∆′

(τ−1)∆′ fgk(.,B;g∗)(t
′)dt′

∆′ + εµ(Ē), (C.33)

indicating that fg∆′kε(.,B)(t) is constant on (τ∆′, (τ + 1)∆′], that fg∆′kε(.,B)(t) is a convex

combination of elements of K̂ and hence itself an element of K̂, and that fg∆′kε(.,B)(t)
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depends on information about B only to the extent that such information is available as

of τ∆′ =
[

t
∆′

]
∆′.

Given the cumulative-control strategy g∆′kε(., .), an admissible control process µ∆′kε(·)
and associated process X∆′kε(·) of cumulative deviations from the mean are defined by

a recursion argument. For t ≤ ∆′, µ∆′kε(t) = µ(Ē), and, in accordance with (19) and

(20) in the main text, X∆′kε
i (t) = tki∆

′ 1
2 (Ã∆′,1

i − p∆′
i (µ(Ē))). For τ = 1, 2, ..., 1

∆′ , and

t ∈ (τ∆′, (τ + 1)∆′],

µ∆′kε(t) = fg∆′kε(.,.)(t), (C.34)

and

X∆′kε
i (t) = X∆′kε

i (
[

t

∆′

]
∆′) + (t−

[
t

∆′

]
∆′)ki∆

′ 1
2 (Ã∆′,1

i − p∆′

i (µ∆′kε(t))). (C.35)

If we write M∆′kε(·) for the associated cumulative-control process and Φ∆′kε for the

joint distribution of the pair (M∆′kε(·), X∆′kε(·)), we obtain the agent’s expected payoff

from choosing the control process µ∆′kε(·) in the discrete-time model with period length

∆′ and incentive scheme s∆′
(.) as

−
∫

CN
K̂
×CN

exp{−r[s∆′
(

N∑
i=1

(Mi(1) + Bi(1))

)
− Γ(M(·))]} dΦ∆′kε(M, B). (C.36)

To prove Proposition C.4, we will show that if ∆′ is small, then for suitably chosen k and

ε, this payoff is close to the expected payoff (C.19) from the optimal strategy g∗ in the

continuous-time model with incentive scheme s(.). Formally, we shall claim that for any

given η > 0 and any sufficiently small ∆′ > 0, there exist k and ε such that

−
∫

CN
K̂
×CN

exp{−r[s∆′
(

N∑
i=1

(Mi(1) + Bi(1))

)
− Γ(M(·))]} dΦ∆′kε(M, B) (C.37)

≥ −(1 + η)
∫

CN
K̂
×CN

exp{−r[s

(
N∑

i=1

(Mi(1) + Bi(1))

)
− Γ(M∗(·))]}dΦ∗(M, B),

where Φ∗ is the joint distribution of M∗(·) and X(·). Since η > 0 is arbitrary and, trivially,

for any ∆′

−E exp{−r[s∆′
(z∆′

)− Γ(M∆′
(.))]} (C.38)

≥ −
∫

CN
K̂
×CN

exp{−r[s∆′
(

N∑
i=1

(Mi(1) + Bi(1))

)
− Γ(M(.))]} dΦ∆′kε(M, B),
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this will be enough to establish (C.22) and prove Proposition C.4.

As a first step towards proving (C.37), we show that for any ε > 0 and any k, the

distributions Φ∆′kε converge to the distribution Φkε of the pair (gkε(B; g∗), B) that is

induced by the measure W on CN . Indeed, controlling also for the behaviour of Γ(M),

we obtain the following slightly stronger result:

Lemma C.5 For any ε > 0 and any k, as ∆′ converges to zero, the distributions Φ̄∆′kεof

the triples (M, Γ(M), B) that are induced by Φ∆′kε converge to the distribution Φ̄kε of the

triple (gkε(B; g∗), Γ(gkε(B; g∗)), B) that is induced by the measure W on CN .

Proof: We need to show that

lim
∆′→0

∫
h(M, Γ(M), B) dΦ∆′kε(M, B) =

∫
h(gkε(B; g∗), Γ(gkε(B; g∗)), B) dW (B) (C.39)

for all bounded, continuous functions h : CN
K̂
× IR × CN . By construction, for any ∆′, k,

and ε, we have∫
h(M, Γ(M), B) dΦ∆′kε(M, B) =

∫
h(g∆′kε(B; g∗), Γ(g∆′kε(B; g∗)), B) dΨ∆′kε(B),

(C.40)

where Ψ∆′kε is the distribution of the process X∆′kε(·), i.e., the marginal distribution

on CN that is induced by Φ∆′kε. By Proposition B.1 in Appendix B, as ∆′ converges

to zero, the distributions Ψ∆′kε converge to W. By Skorokhod’s Theorem (Hildenbrand,

1974, p. 50), it follows that there exists a measure space (A,A, α) and random variables

B̃∆′kε, B̃kε on (A,A, α) such that for any ∆′, k, and ε, Ψ∆′kε = α ◦ (B̃∆′kε(.))−1 and

W = α ◦ (B̃kε(.))−1, and moreover, as ∆′ converges to zero, B̃∆′kε(a) converges to B̃kε(a)

for α-almost all a ∈ A. Using the change-of-variables formula, we can write (C.40) in the

form ∫
h(M, Γ(M), B) dΦ∆′kε(M, B)

=
∫

h(g∆′kε(B̃∆′kε(a); g∗), Γ(g∆′kε(B̃∆′kε(a); g∗)), B̃∆′kε(a)) dα(a). (C.41)

Observe that for any ε > 0 and k, gkε(g∗) satisfies the conditions of Lemma C.3. By

Lemmas C.2 and C.3, it follows that the convergence of B̃∆′kε(a) to B̃kε(a) implies

the convergence of g∆′kε(B̃∆′kε(a); g∗) = ĝ(B̃∆′kε(a); ∆′, gkε(g∗)) to gkε(B̃kε(a); g∗) and
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of Γ(g∆′kε(B̃∆′kε(a); g∗)) = Γ(ĝ(B̃∆′kε(a); ∆′, gkε(g∗))) to Γ(gkε(B̃kε(a); g∗)). With h con-

tinuous and bounded, it follows that

lim
∆′→0

h(g∆′kε(B̃∆′kε(a); g∗), Γ(g∆′kε(B̃∆′kε(a); g∗)), B̃∆′kε(a))

= h(gkε(B̃kε(a); g∗), Γ(gkε(B̃kε(a); g∗)), B̃kε(a))

for α-almost all a ∈ A and hence, by Lebesgue’s bounded-convergence theorem, that

lim
∆′→0

∫
h(M, Γ(M), B) dΦ∆′kε(M, B)

= lim
∆′→0

∫
h(g∆′kε(B̃∆′kε(a); g∗), Γ(g∆′kε(B̃∆′kε(a); g∗)), B̃∆′kε(a)) dα(a)

=
∫

h(gkε(B̃kε(a); g∗), Γ(gkε(B̃kε(a); g∗)), B̃kε(a)) dα(a).

Given that W = α ◦ (B̃kε(.))−1, (C.39) follows by another application of the change-of-

variables formula. Q.E.D.

Whereas in Lemma C.5 the continuous approximations of the strategy g∗ were kept

fixed, the following lemma shows that in fact the conclusion of the lemma remains valid

even if we let k go out of bounds as ∆′ goes to zero. Notice that as k goes out of bounds,

the functions gkε(g∗) converge to the function g∗ε satisfying

g∗ε(t, B) = (1− ε)g∗(t, B) + εtµ(Ē) (C.42)

for any t ∈ [0, 1] and B ∈ CN .

Lemma C.6 For any ε > 0, there exists a sequence {k∆′} such that, as ∆′ converges

to zero, the distributions Φ̄∆′k∆′
ε of the triples (M, Γ(M), B) that are induced by Φ∆′k∆′

ε

converge to the distribution Φ̄ε of the triple (g∗ε(B), Γ(g∗ε(B)), B) that is induced by the

measure W on CN .

Proof: Let ρ denote the Prohorov metric on M(CN
K̂
× IR× CN). Lemma C.5 implies

lim
∆′→0

ρ(Φ̄∆′kε, Φ̄kε) = 0 (C.43)

for all k and ε. Also, Lemma C.4, in combination with Theorem 5.5, p.34, of Billlingsley

(1968), implies

lim
k→∞

ρ(Φ̄kε, Φ̄ε) = 0 (C.44)
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for all ε. Fix ε > 0. Then for each integer n, there exists kn such that ρ(Φ̄knε, Φ̄ε) ≤ 1
n
.

By (C.43), for each integer n, there also exists ∆′
n > 0 such that ρ(Φ̄∆′

nknε, Φ̄knε) ≤ 1
n
. For

any ∆′ > 0, define

n∗(∆′) := sup{n|∆′
n > ∆′},

and

k∆′
= kn∗(∆′).

Then, by construction,

ρ(Φ̄∆′k∆′
ε, Φ̄ε) ≤ ρ(Φ̄∆′kn∗(∆′)ε, Φ̄kn∗(∆′)ε) + ρ(Φ̄kn∗(∆′)ε, Φ̄ε) ≤ 2

n∗(∆′)
, (C.45)

so we have lim∆′→0 ρ(Φ̄∆′k∆′
ε, Φ̄ε) = 0 if lim∆′→0 n∗(∆′) = ∞. Suppose to the contrary

that lim∆′→0 n∗(∆′) 6= ∞. Since n∗(∆′) is obviously nondecreasing in ∆′, there exists n̄ =

lim∆′→0 n∗(∆′). Consider ∆′
n̄+1. Since n̄+1 > n∗(∆′) for all ∆′ > 0, we must have ∆′

n̄+1 =

0, contrary to the specification of ∆′
n̄+1. The assumption that lim∆′→0 n∗(∆′) 6= ∞ thus

leads to a contradiction and must be false. By (C.45), it follows that lim∆′→0 ρ(Φ̄∆′k∆′
ε, Φ̄ε) =

0. Q.E.D.

Using Lemma C.6, in (C.37) set k = k∆′
, and note that, by the definition of Φ̄∆′k∆′

ε,

−
∫

CN
K̂
×CN

exp{−r[s∆′
(

N∑
i=1

(Mi(1) + Bi(1))

)
− Γ(M(·))]} dΦ∆′kε(M, B) (C.46)

= −
∫

CN
K̂
×IR×CN

exp{−r[s∆′
(

N∑
i=1

(Mi(1) + Bi(1))

)
− Γ]} dΦ̄∆′kε(M, Γ, B).

By the definition of Φ∗, we also have

−(1 + η)
∫

CN
K̂
×CN

exp{−r[s

(
N∑

i=1

(Mi(1) + Bi(1))

)
− Γ(M∗(·))]}dΦ∗(M, B) (C.47)

= −(1 + η)
∫

exp{−r[s

(
N∑

i=1

(g∗i (1, B) + Bi(1))

)
− Γ(g∗(., B))]} dW (B),

so (C.37) is equivalent to the requirement that

−
∫

CN
K̂
×IR×CN

exp{−r[s∆′
(

N∑
i=1

(Mi(1) + Bi(1))

)
− Γ]} dΦ̄∆′k∆′

ε(M, Γ, B) (C.48)

≥ −(1 + η)
∫

exp{−r[s

(
N∑

i=1

(g∗i (1, B) + Bi(1))

)
− Γ(g∗(., B))]} dW (B).
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By another application of Skorokhod’s Theorem, there exists a measure space (A,A, α)

and random variables (M̃∆′ε, Γ̃∆′ε, B̃∆′ε), (M̃ ε, Γ̃ε, B̃ε), such that for any ∆′ and ε, Φ̄∆′k∆′
ε =

α ◦ (M̃∆′ε, Γ̃∆′ε, B̃∆′ε)−1 and Φ̄ε = α ◦ (M̃ ε, Γ̃ε, B̃ε)−1, and moreover,

lim
∆′→0

(M̃∆′ε(a), Γ̃∆′ε(a), B̃∆′ε(a)) = (M̃ ε(a), Γ̃ε(a), B̃ε(a)) (C.49)

for α-almost all a ∈ A. Another application of the change-of-variables formula yields

−
∫

CN
K̂
×IR×CN

exp{−r[s∆′
(

N∑
i=1

(Mi(1) + Bi(1))

)
− Γ]} dΦ̄∆′k∆′

ε(M, Γ, B) (C.50)

= −
∫

A
exp{−r[s∆′

(
N∑

i=1

(M̃∆′ε
i (1; a) + B̃∆′ε

i (1; a))

)
− Γ̃∆′ε(a)]} dα(a)

Lemma C.7 For α-almost every a ∈ A,

lim
∆̄→0

sup
∆′≤∆̄

exp{−r[s∆′
(

N∑
i=1

(M̃∆′ε
i (1; a) + B̃∆′ε

i (1; a))

)
− Γ̃∆′ε(a)]}

≤ exp{−r[s

(
N∑

i=1

(g∗i (1, B̃
ε(a)) + B̃ε

i (1; a))

)
− Γ̃ε(a)]}. (C.51)

Proof: To establish (C.51), we first note that (C.49), the definition of Φ̄ε = α◦(M̃ ε, Γ̃ε, B̃ε)−1,

and (C.42) imply

lim
∆′→0

N∑
i=1

(M̃∆′ε
i (1; a) + B̃∆′ε

i (1; a)) =
N∑

i=1

(M̃ ε
i (1; a)) + B̃ε

i (1; a)) (C.52)

=
N∑

i=1

g∗εi (1, B̃ε(a)) +
N∑

i=1

B̃ε
i (1; a)

= εĒ + (1− ε)
N∑

i=1

g∗i (1, B̃
ε(a)) +

N∑
i=1

B̃ε
i (1; a)

for α-almost every a ∈ A. By the definition of the incentive scheme s(.), it follows that

lim
∆′→0

s∆′
(

N∑
i=1

(M̃∆′ε
i (1; a) + B̃∆′ε

i (1; a))

)

= s

(
εĒ + (1− ε)

N∑
i=1

g∗i (1, B̃
ε(a)) +

N∑
i=1

B̃ε
i (1; a)

)
(C.53)

whenever εĒ + (1 − ε)
∑N

i=1 g∗i (1, B̃
ε(a)) +

∑N
i=1 B̃ε

i (1; a) is a continuity point of s(.). By

the definition of s(.) in combination with the monotonicity of s∆′
(.) and s(.), we also have

lim
∆̄→0

inf
∆′≤∆̄

s∆′
(

N∑
i=1

(M̃∆′ε
i (1; a) + B̃∆′ε

i (1; a))

)

≥ s

(
N∑

i=1

g∗i (1, B̃
ε(a)) +

N∑
i=1

B̃ε
i (1; a)

)
(C.54)
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whenever
∑N

i=1 g∗i (1, B̃
ε(a)) < Ē. Upon combining (C.53) and (C.54), we see that (C.54)

holds for any a ∈ A which satisfies (C.49) and for which Ē +
∑N

i=1 B̃ε
i (1; a) is a continuity

point of s(.). Since Φ̄ε = α ◦ (M̃ ε, Γ̃ε, B̃ε)−1 implies α ◦ (B̃ε)−1 = W, under the measure

α, Ē +
∑N

i=1 B̃ε
i (1; a) has a normal distribution; because this distribution assigns mesaure

zero to any countable set and because the monotone function s(.) has at most countably

many points of discontinuity, it follows that the set of a ∈ A for which (C.54) holds

is the intersection of two sets of full measure and must itself have full measure. Thus

(C.54) holds for α-almost all a ∈ A. Since (C.49) also implies lim∆′→0 Γ̃∆′ε(a) = Γ̃ε(a) for

α-almost all a ∈ A, the validity of (C.51) follows immediately. Q.E.D.

Lemma C.8 For any ε > 0 and any null sequence {∆′}, the corresponding sequence of

integrands in (C.50) is uniformly integrable.

Proof: By the definition of Φ̄∆′k∆′
ε, the integrals in (C.50) can also be written as

−
∫

CN
exp{−r[s∆′

(
N∑

i=1

(g∆′k∆′
ε

i (1, B) + Bi(1))

)
− Γ(g∆′k∆′

ε(B)]} dΨ∆′k∆′
ε(B),

where Ψ∆′k∆′
ε is the marginal distribution on CN that is induced by Φ̄∆′k∆′

ε. Given that

the integrands are nonnegative-valued, it suffices to show that there exist measurable

functions h∆′
(.) of CN into IR+ such that, for all ∆′,

exp{−r[s∆′
(

N∑
i=1

(g∆′k∆′
ε

i (1, B) + Bi(1))

)
− Γ(g∆′k∆′

ε(B)]} ≤ h∆′
(B) (C.55)

for almost all B ∈ CN , and moreover, the sequence {h∆′
(.)} is uniformly integrable. With

h∆′
(B) ≥ 0 for all ∆′ and all B, uniform integrability of the sequence {h∆′

(.)} is equivalent

to the requirements that, as ∆′ goes to zero, h∆′
(.) converge in distribution to h(.) and∫

CN h∆′
(B) dΨ∆′k∆′

ε(B) converge to
∫
CN h(B) dW (B) (Hildenbrand (1974), p. 52).

Construction of the majorizing functions h∆′
(.) involves three arguments. First, for

any y ∈ IR, standard analysis yields

exp(y) =
∞∑

u=0

yu

u!
≤

∞∑
v=0

y2v

(2v)!
+ y

∞∑
v=0

y2v

(2v)!
≤

∞∑
v=0

y2v

(2v)!
+ (1 + y2)

∞∑
v=0

y2v

(2v)!

≤ 2 +
∞∑

v=1

y2v

(2v)!
(2 + 2v − 1) = 2 + 2

∞∑
v=1

y2v

(2v − 1)!
. (C.56)
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Second, for any n, the cost term in (C.55) satisfies

Γ(g∆′k∆′
ε(1, B)) ≤ c̄, (C.57)

where c̄ := maxµ∈K̂ ĉ(µ). Third, for any ∆′, the incentive payment in (C.55) satisfies

s∆′
(

N∑
i=1

(g∆′k∆′
ε

i (1, B) + Bi(1))

)

≥ S +
1/∆′∑
τ=1

N∑
i=1

(Bi(τ∆′; a)−Bi((τ − 1)∆′; a)) ĉi(µ
∆′τ ) (C.58)

with probability one for some constant S; for any ∆′ the marginal-cost terms ĉi(µ
∆′τ ) in

(C.58) correspond to the control process µ∆′
(·) that the incentive scheme s∆′

(.) serves to

implement.

Before proving (C.58), we note that if we apply (C.56) - (C.58) jointly to (C.55), we

obtain

exp{−r[s∆′
(

N∑
i=1

(g∆′k∆′
ε

i (1, B) + Bi(1)

)
− Γ(g∆′k∆′

ε(1, B))]}

≤ 2e−r(A−c̄){1 +
∞∑

v=1

(∑N
i=1

∑1/∆′

τ=1 (Bi(τ∆′)−Bi((τ − 1)∆′) ĉi(µ
∆′τ )

)2v

(2v − 1)!
}

≤ h∆′
(B)

for Ψ∆′k∆′
ε-almost all B ∈ CN , where

h∆′
(B) := 2e−r(A−c̄){1+

∞∑
v=1

γ2v

(2v − 1)!

 N∑
i=1

1/∆′∑
τ=1

(Bi(τ∆′)−Bi((τ − 1)∆′)

2v

},

with γ := maxµ∈K̂ maxi ĉi(µ). If we define h(B) := 2e−r(A−c̄)(1 + γ2σ2), then Proposition

B.1 in Appendix B implies that h∆′
(.) converges in distribution to h(.) and

∫
CN h∆′

(B) dΨ∆′k∆′
ε(B)

converges to
∫
CN h(B) dW (B) and, hence, that the sequence {h∆′

(.)} is uniformly inte-

grable.

To establish (C.58), we recall that, by assumption, for any ∆′ > 0, the incentive

scheme s∆′
(.) serves to implement the control process µ∆′

(·) and, moreover, this process

takes values in the interior of K̂. By Theorem 4 of Holmström and Milgrom (1987) and
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(27) in the main text, this implies that if cumulative aggregate output is equal to

z∆′k∆′
ε =

N∑
i=1

Z∆′k∆′
ε

i (1) =
N∑

i=0

ki(∆
′)

1
2

1/∆′∑
τ=1

(Ã∆′k∆′
ετ

i − p̂i), (C.59)

then the incentive payment to the agent is equal to

s∆′
(z∆′k∆′

ε) =
N∑

i=1

1/∆′∑
τ=1

Ã∆′k∆′
ετ

i s∆′τ
i , (C.60)

where, for any τ and i = 1, 2, ..., N,

s∆′τ
i = ∆′ĉ(µ∆′τ )− 1

r
ln

1− rĉi(µ
∆′τ )ki(∆

′)
1
2 + r

N∑
j=1

p∆′

j (µ∆′τ )ĉj(µ
∆′τ )kj(∆

′)
1
2


≥ ∆′c

¯
+ĉi(µ

∆′τ )ki(∆
′)

1
2 −

N∑
j=1

p∆′

j (µ∆′τ )ĉj(µ
∆′τ )kj(∆

′)
1
2 , (C.61)

and therefore
N∑

i=1

Ã∆′k∆′
ετ

i s∆′τ
i ≥ ∆′c

¯
+

N∑
i=1

(Ã∆′k∆′
ετ

i − p∆′

i (µ∆′τ ))ĉi(µ
∆′τ )ki(∆

′)
1
2

= ∆′c
¯
+

N∑
i=1

(Z∆′k∆′
ετ

i − Z∆′k∆′
ε,τ−1

i )ĉi(µ
∆′τ ) +

N∑
i=1

(p̂i − p∆′

i (µ∆′τ )) ĉi(µ
∆′τ )ki(∆

′)
1
2

= ∆′c
¯
+

N∑
i=1

(X∆′k∆′
ετ

i −X∆′k∆′
ε,τ−1

i )ĉi(µ
∆′τ ) +

N∑
i=1

∆′(µ∆′k∆′
ετ

i − µ∆′τ
i ) ĉi(µ

∆′τ )

≥ ∆′A +
N∑

i=1

(X∆′k∆′
ετ

i −X∆′k∆′
ε,τ−1

i ) ĉi(µ
∆′τ ), (C.62)

where A =c
¯
+ minµ,µ′∈K̂

∑N
i=1(µ

′
i−µi) ĉi(µ). Given that under the control process µ∆′k∆′

ε(·)
the random variable z∆′k∆′

ε takes the form (C.59) with probability one, (C.60) and (C.61)

imply that the incentive payment s∆′
(z∆′k∆′

ε) must satisfy the inequality

s∆′
(z∆′k∆′

ε) ≥ A +
1/∆′∑
τ=1

N∑
i=1

(X∆′k∆′
ετ

i −X∆′k∆′
ε,τ−1

i )ĉi(µ
∆′τ ) (C.63)

with probability one. This means that (C.58) holds for any ∆′ and Ψ∆′k∆′
ε-almost all

B ∈ CN . Q.E.D.

Proof of Proposition C.4: Suppose that the Proposition is false. Then there exists η >

0, and there exists a null sequence {∆′} such that

−E exp{−r[s∆′
(z∆′

)− Γ(M∆′
(·))]}

≤ −(1 + 2η)E exp{−r[s

(
N∑

i=1

(M∗
i (1) + Xi(1))

)
− Γ(M∗(·))]} (C.64)
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for all ∆′ along the sequence. By the optimality the strategy µ∆′
(·) in the discrete-time

model with period length ∆′ and incentive scheme s∆′
(·), it follows that

−
∫

CN
K̂
×CN

exp{−r[s∆′
(

N∑
i=1

(Mi(1) + Bi(1))

)
− Γ(M(·))]} dΦ∆′k∆′

ε(M, B) (C.65)

= −
∫

CN
K̂
×IR×CN

exp{−r[s∆′
(

N∑
i=1

(Mi(1) + Bi(1))

)
− Γ]} dΦ̄∆′k∆′

ε(M, Γ, B)

≤ −(1 + 2η)
∫

CN
exp{−r[s

(
N∑

i=1

(g∗i (1, B) + Bi(1))

)
− Γ(g∗(., B))]}dW (B)

for any ε > 0 and associated sequence {k∆′} given by Lemma C.6. Then (C.50) yields

−
∫

A
exp{−r[s∆′

(
N∑

i=1

(M̃∆′ε
i (1; a) + B̃∆′ε

i (1; a))

)
− Γ̃∆′ε(a)]} dα(a) (C.66)

≤ −(1 + 2η)
∫

CN
exp{−r[s

(
N∑

i=1

(g∗i (1, B) + Bi(1))

)
− Γ(g∗(., B))]}dW (B)

for any ε > 0 and any ∆′ along the null sequence in question.

However, from Lemmas C.7 and C.8 in combination with the Generalized Lebesgue’s

Theorem (Hildenbrand (1974), p. 50), one also obtains

lim
∆̄→0

inf
∆′≤∆̄

−
∫

A
exp{−r[s∆′

(
N∑

i=1

(M̃∆′ε
i (1; a) + B̃∆′ε

i (1; a))

)
− Γ̃∆′ε(a)]} dα(a)

≥ −
∫

A
exp{−r[s

(
N∑

i=1

(g∗i (1, B̃
ε(a)) + B̃ε

i (1; a))

)
− Γ̃ε(a)]} dα(a) (C.67)

for any ε > 0. By the definition of Φ̄ε = α ◦ (M̃ ε, Γ̃ε, B̃ε)−1 and the change-of-variables

formula, (C.67) can be rewritten as

lim
∆̄→0

inf
∆′≤∆̄

−
∫

A
exp{−r[s∆′

(
N∑

i=1

(M̃∆′ε
i (1; a) + B̃∆′ε

i (1; a))

)
− Γ̃∆′ε(a)]} dα(a)

≥ −
∫

CN
exp{−r[s

(
N∑

i=1

(g∗εi (1, B) + Bi(1))

)
− Γ(g∗ε(., B))]}dW (B). (C.68)

By the definition (C.42) of g∗ε, in combination with the monotonicity of s(.) and the

convexity of Γ(.), it follows that

lim
∆̄→0

inf
∆′≤∆̄

−
∫

A
exp{−r[s∆′

(
N∑

i=1

(M̃∆′ε
i (1; a) + B̃∆′ε

i (1; a))

)
− Γ̃∆′ε(a)]} dα(a)

≥ −
∫

CN
exp{−r[s

(
N∑

i=1

(g∗i (1, B) + Bi(1))

)
− εĉ(µ(Ē))− (1− ε)Γ(g∗(., B))]}dW (B)
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for any ε > 0. If ε > 0 is chosen so that

exp{rε[ĉ(µ(Ē))−min
µ∈K̂

ĉ(µ)]} ≤ 1 + η,

it follows that

lim
∆̄→0

inf
∆′≤∆̄

−
∫

A
exp{−r[s∆′

(
N∑

i=1

(M̃∆′ε
i (1; a) + B̃∆′ε

i (1; a))

)
− Γ̃∆′ε(a)]} dα(a)

≥ −(1 + η)
∫

CN
exp{−r[s

(
N∑

i=1

(g∗i (1, B) + Bi(1))

)
− Γ(g∗(., B))]}dW (B),(C.69)

which contradicts (C.66). The assumption that Proposition C.4 is false has thus led to a

contradiction, which proves the proposition. Q.E.D.

Proof of Proposition 4: Given that

lim
∆̄→0

inf
∆′≤∆̄

[−E exp{−r[s∆′
(z∆′

)− Γ(M∆′
(.))]}]

≤ lim
∆̄→0

sup
∆′≤∆̄

[−E exp{−r[s∆′
(z∆′

)− Γ(M∆′
(.))]}], (C.70)

the three inequalities (C.4), (C.18), and (C.22) imply that

lim
∆′→0

−E exp{−r[s∆′
(z∆′

)− Γ(M∆′
(.))]}

= −E exp{−r[s

(
N∑

i=1

(Mi(1) + Xi(1))

)
− Γ(M(.))]} (C.71)

and

−E exp{−r[s

(
N∑

i=1

(Mi(1) + Xi(1))

)
− Γ(M(.))]}

= −E exp{−r[s

(
N∑

i=1

(M∗
i (1) + Xi(1))

)
− Γ(M∗(.))]}, (C.72)

i.e., that the limit pair (M(.), X(.)) provides the agent with the maximal payoff that

he can obtain in the continuous-time model with incentive scheme s(.). Given that, by

the results of Schättler and Sung (1993, Theorems 4.1 and 4.2), with strict convexity of

the cost function ĉ, the solution to the agent’s problem in the continuous-time model

is unique, this implies that the measure P in Proposition C.3 is degenerate and assigns

all mass to the strategy g∗. Any limit (M(.), X(.)) of (a subsequence) of the sequence
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{(M∆′
(·), X∆′

(·))} must therefore satisfy M(·) = M∗(·) almost surely. This implies that

the sequence {(M∆′
(·), X∆′

(·))} itself is converging to (M∗(·), X(·)).

To complete the proof, we note that, by (C.71), (C.5) can be rewritten as

lim
∆′→0

[−
∫

exp{−r[s∆′
(

N∑
i=1

[f∆′

Mi
(1, a) + f∆′

Xi
(1, a)]

)
− Γ(f∆′

M (., a))]} dα(a)]

= −
∫

exp{−r[s

(
N∑

i=1

[fMi
(1, a) + fXi

(1, a)]

)
− Γ(fM(., a))]} dα(a). (C.73)

Thus, all the inequalities in the proof of Proposition C.2 must in fact be equations, i.e.,

we must have

lim
∆′→0

[−
∫

exp{−r[s∆′
(

N∑
i=1

[f∆′

Mi
(1, a) + f∆′

Xi
(1, a)]

)
− Γ(f∆′

M (., a))]} dα(a)]

= −
∫

exp{−r lim
∆′→0

[s∆′
(

N∑
i=1

[f∆′

Mi
(1, a) + f∆′

Xi
(1, a)]

)
− Γ(f∆′

M (., a))]} dα(a)](C.74)

as well as

lim
∆′→0

s∆′
(

N∑
i=1

[f∆′

Mi
(1, a) + f∆′

Xi
(1, a)]

)
= s

(
N∑

i=1

[fMi
(1, a) + fXi

(1, a)]

)
(C.75)

and

lim
∆′→∞

[−Γ(f∆′

M (., a))] = −Γ(fM(., a)) (C.76)

for α-almost all a ∈ A.

In view of (C.75), convergence of expected incentive payments is guaranteed if the

sequence {s∆′
(∑N

i=1[f
∆′
Mi

(1, .) + f∆′
Xi

(1, .)]
)
} = {s∆′

(
z∆′

)
} is uniformly integrable. The

argument is similar to the one given in Lemma C.8: For any ∆′, s∆′
(.) satisfies

s∆′ (
z∆′)

=
N∑

i=0

1/∆′∑
τ=1

Ã∆′τ
i s∆′τ

i , (C.77)

where

z∆′
=

N∑
i=1

Z∆′

i (1) =
N∑

i=1

ki(∆
′)

1
2

1/∆′∑
τ=1

(Ã∆′τ
i − p̂i), (C.78)

and, for any τ and i = 1, 2, ..., N,

s∆′τ
i = ∆′ĉ(µ∆′τ )− 1

r
ln

1− rĉi(µ
∆′τ )ki(∆

′)
1
2 + r

N∑
j=1

p∆′

j (µ∆′τ )ĉj(µ
∆′τ )kj(∆

′)
1
2

 , (C.79)
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and

s∆′τ
0 = ∆′ĉ(µ∆′τ )− 1

r
ln

1 + r
N∑

j=1

p∆′

j (µ∆′τ )ĉj(µ
∆′τ )kj(∆

′)
1
2

 (C.80)

Upon using Taylor expansions, as before, we can write (C.77) as

s∆′ (
z∆′)

= ∆′
1/∆′∑
τ=1

ĉ(µ∆′τ ) +
N∑

i=1

1/∆′∑
τ=1

ĉi(µ
∆′τ )[X∆′

i (τ∆′)−X∆′

i ((τ − 1)∆′)]

+
r

2

N∑
i=1

1/∆′∑
τ=1

∆′Ã∆′τ
i

ĉi(µ
∆′τ )ki −

N∑
j=1

p̂j ĉj(µ
∆′τ )kj

2

+ O((∆′)
1
2 ),(C.81)

with higher-order terms being uniformly small. Uniform integrability follows immediately.

This completes the proof of Proposition 4. Q.E.D.
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