SUPPLEMENT TO “REPEATED GAMES WHERE THE PAYOFFS AND MONITORING STRUCTURE ARE UNKNOWN”
(Econometrica, Vol. 78, No. 5, September 2010, 1673–1710)
BY DREW FUDENBERG AND YUICHI YAMAMOTO

S.1. PROOF OF THEOREM 1

THEOREM 1: If a subset \(W \) of \(\mathbb{R}^I \times |\Omega| \) is bounded and ex post self-generating with respect to \(\delta \), then \(W \subseteq E(\delta) \).

PROOF: Let \(v \in W \). We will construct a PPXE that yields \(v \). Since \(v \in B(\delta, \text{or} W) \), there exist a profile \(\alpha \) and a function \(w: Y \rightarrow W \) such that \((\alpha, v) \) is ex post enforced by \(w \). Set the action profile in period one to be \(s_{h0} = \alpha \) and for each \(h_1 \in Y \), set \(v_{h1} = w(h_1) \in W \). The play in later periods is determined recursively, using \(v_{ht} \) as a state variable. Specifically, for each \(t \geq 2 \) and for each \(h^{t-1} = (y^{\tau})_{\tau=1}^{t-1} \in H^{t-1} \), given a \(v_{ht-1} \in W \), let \(\alpha_{ht-1} \) and \(w_{ht-1}: Y \rightarrow W \) be such that \((\alpha_{ht-1}, v_{ht-1}) \) is ex post enforced by \(w_{ht-1} \). Then set the action profile after history \(h^{t-1} \) to be \(s_{ht-1} = \alpha_{ht-1} \) and for each \(y^{t} \in Y \), set \(v_{ht} = (h^{t-1} / \text{or} y^{t}) = w_{ht-1}(y^{t}) \in W \).

Because \(W \) is bounded and \(\delta \in (0, 1) \), payoffs are continuous at infinity, so finite approximations show that the specified strategy profile \(s \in S \) generates \(v \) as an average payoff, and its continuation strategy \(s_{ht} \) yields \(v_{ht} \) for each \(h^t \in H^t \). Also, by construction, nobody wants to deviate at any moment of time, given any state \(\omega \in \Omega \). Because payoffs are continuous at infinity, the one-shot deviation principle applies, and we conclude that \(s \) is a PPXE, as desired. Q.E.D.

S.2. PROOF OF THEOREM 2

THEOREM 2: If a subset \(W \) of \(\mathbb{R}^I \times |\Omega| \) is compact, convex, and locally ex post generating, then there is \(\delta \in (0, 1) \) such that \(W \subseteq E(\delta) \) for all \(\delta \in (\delta, 1) \).

PROOF: Suppose that \(W \) is locally ex post generating. Since \(\{U_y\}_{y \in W} \) is an open cover of the compact set \(W \), there is a subcover \(\{U_{y_m}\}_m \) of \(W \). Let \(\delta = \max_m \delta_{y_m} \). Choose \(u \in W \) arbitrarily and let \(U_{y_m} \) be such that \(u \in U_{y_m} \). Since \(W \cap U_{y_m} \subseteq B(\delta_{y_m}, W) \), there exist \(\alpha_u \) and \(w_u: Y \rightarrow W \) such that \((\alpha_u, u) \) is ex post enforced by \(w_u \) for \(\delta_{y_m} \). Given a \(\delta \in (\delta, 1) \), let

\[
 w(y) = \frac{\delta - \delta_u}{\delta(1 - \delta_u)} u + \frac{\delta_u(1 - \delta)}{\delta(1 - \delta_u)} w_u(y)
\]

for all \(y \in Y \). Then it is straightforward that \((\alpha_u, u) \) is enforced by \((w(y))_{y \in Y} \) for \(\delta \). Also, \(w(y) \in W \) for all \(y \in Y \), since \(u \) and \(w(y) \) are in \(W \) and \(W \) is convex. Therefore, \(u \in B(\delta, W) \), meaning that \(W \subseteq B(\delta, W) \) for all \(\delta \in (\delta, 1) \). (Recall

© 2010 The Econometric Society DOI: 10.3982/ECTA8565
that u and δ are arbitrarily chosen from W and $(\delta, 1)$. Then, from Theorem 1, $W \subseteq E(\delta)$ for $\delta \in (\delta, 1)$, as desired.

Q.E.D.

S.3. PROOF OF LEMMA 2

LEMMA 2: For every $\delta \in (0, 1)$, $E(\delta) \subseteq E^*(\delta) \subseteq Q$, where $E^*(\delta)$ is the convex hull of $E(\delta)$.

PROOF: It is obvious that $E(\delta) \subseteq E^*(\delta)$. Suppose $E^*(\delta) \not\subseteq Q$. Then, since the score is a linear function, there is $v \in E(\delta)$ and λ such that $\lambda \cdot v > k^*(\lambda)$. In particular, since $E(\delta)$ is compact, there exist $v^* \in E(\delta)$ and λ such that $\lambda \cdot v^* > k^*(\lambda)$ and $\lambda \cdot v^* \geq \lambda \cdot \tilde{v}$ for all $\tilde{v} \in E^*(\delta)$. By definition, v^* is enforced by $(w(y))_{y \in Y}$ such that $w(y) \in E(\delta) \subseteq E^*(\delta) \subseteq H(\lambda, \lambda \cdot v^*)$ for all $y \in Y$. But this implies that $k^*(\lambda)$ is not the maximum score for direction λ, a contradiction. **Q.E.D.**

S.4. PROOF OF LEMMA 3

LEMMA 3: For any smooth set W in the interior of Q, there is $\tilde{\delta} \in (0, 1)$ such that $W \subseteq E(\delta)$ for $\delta \in (\tilde{\delta}, 1)$.

PROOF: Since W is bounded, it suffices to show that it is also locally ex post generating, that is, for each $v \in W$, there exist $\delta_v \in (0, 1)$ and an open neighborhood U_v of v such that $W \cap U_v \subseteq B(\delta_v, W)$.

First, consider $v \in \text{bd } W$. Let λ be normal to W at v and let $k = \lambda \cdot v$. Since $W \subseteq Q \subseteq H^*(\lambda)$, there exist α, \tilde{v}, and $(\tilde{w}(y))_{y \in Y}$ such that $\lambda \cdot \tilde{v} > \lambda \cdot v = k$, (α, \tilde{v}) is enforced using continuation payoffs $(\tilde{w}(y))_{y \in Y}$ for some $\tilde{\delta} \in (0, 1)$, and $\tilde{w}(y) \in H(\lambda, \lambda \cdot \tilde{v})$ for all $y \in Y$. For each $\delta \in (\tilde{\delta}, 1)$ and $y \in Y$, let

$$w(y, \delta) = \frac{\delta - \tilde{\delta}}{\delta(1 - \tilde{\delta})} v + \frac{\tilde{\delta}(1 - \delta)}{\delta(1 - \tilde{\delta})} \left(\tilde{w}(y) + \frac{v - \tilde{v}}{\tilde{\delta}} \right).$$

By construction, (α, v) is enforced by $(w(y, \delta))_{y \in Y}$ for δ, and there is $\kappa > 0$ such that $|w(y, \delta) - v| < \kappa(1 - \delta)$. Also, since $\lambda \cdot \tilde{v} > \lambda \cdot v = k$ and $\tilde{w}(y) \in H(\lambda, \lambda \cdot \tilde{v})$ for all $y \in Y$, there is $\varepsilon > 0$ such that $\tilde{w}(y) - \frac{v - \tilde{v}}{\tilde{\delta}}$ is in $H(\lambda, k - \varepsilon)$ for all $y \in Y$, thereby

$$w(y, \delta) \in H\left(\lambda, k - \frac{\tilde{\delta}(1 - \delta)}{\delta(1 - \tilde{\delta})} \varepsilon \right)$$

for all $y \in Y$. Then, as in the proof of FL’s Theorem 3.1, it follows from the smoothness of W that $w(y, \delta) \in \text{int } W$ for sufficiently large δ, that is, (α, v) is enforced with respect to $\text{int } W$. To enforce u in the neighborhood of v, use α and a translate of $(w(y, \delta))_{y \in Y}$.

Next, consider \(v \in \text{int} W \). Choose \(\lambda \) arbitrarily, and let \(\alpha \) and \((w(y, \delta))_{y \in Y}\) be as in the above argument. By construction, \((\alpha, v)\) is enforced by \((w(y, \delta))_{y \in Y}\). Also, \(w(y, \delta) \in \text{int} W \) for sufficiently large \(\delta \), since \(|w(y, \delta) - v| < \kappa(1 - \delta) \) for some \(\kappa > 0 \) and \(v \in \text{int} W \). Thus, \((\alpha, v)\) is enforced with respect to \(\text{int} W \) when \(\delta \) is close to 1. To enforce \(u \) in the neighborhood of \(v \), use \(\alpha \) and a translate of \((w(y, \delta))_{y \in Y}\), as before. Q.E.D.

S.5. ALTERNATE PROOF OF LEMMA 6

LEMMA 6: Suppose that a profile \(\alpha \) has statewise full rank for \((i, \omega)\) and \((j, \tilde{\omega})\) satisfying \(\omega \neq \tilde{\omega} \), and that \(\alpha \) has individual full rank for all players and states. Then \(k^\ast(\alpha, \lambda) = \infty \) for direction \(\lambda \) such that \(\lambda_i^\omega \neq 0 \) and \(\lambda_j^{\tilde{\omega}} \neq 0 \).

PROOF: Let \((i, \omega)\) and \((j, \tilde{\omega})\) be such that \(\lambda_i^\omega \neq 0 \), \(\lambda_j^{\tilde{\omega}} \neq 0 \), and \(\tilde{\omega} \neq \omega \). Let \(\alpha \) be a profile that has statewise full rank for all \((i, \omega)\) and \((j, \tilde{\omega})\) satisfying \(\omega \neq \tilde{\omega} \).

First, we claim that for every \(K > 0 \), there exist \(z_i^\omega = (z_i^\omega(y))_{y \in Y} \) and \(z_j^{\tilde{\omega}} = (z_j^{\tilde{\omega}}(y))_{y \in Y} \) such that

\[
\pi^\omega(a_i, \alpha_{-i}) \cdot z_i^\omega = \frac{K}{\delta \lambda_i^\omega}
\]

for all \(a_i \in A_i \),

\[
\pi^\omega(a_j, \alpha_{-j}) \cdot z_j^{\tilde{\omega}} = 0
\]

for all \(a_j \in A_j \), and

\[
\lambda_i^\omega z_i^\omega(y) + \lambda_j^{\tilde{\omega}} z_j^{\tilde{\omega}}(y) = 0
\]

for all \(y \in Y \). To prove that this system of equations indeed has a solution, eliminate (S3) by solving for \(z_j^{\tilde{\omega}}(y) \). Then there remain \(|A_i| + |A_j|\) linear equations, and its coefficient matrix is \(\Pi_{(i, \omega)(j, \tilde{\omega})}(\alpha) \). Since statewise full rank implies that this coefficient matrix has rank \(|A_i| + |A_j|\), we can solve the system.

Next, for each \((l, \overline{\omega}) \in I \times \Omega\), we choose \((\tilde{w}_l^\omega(y))_{y \in Y}\) so that

\[
(1 - \delta)g_l^\overline{\omega}(a_l, \alpha_{-i}) + \delta \pi^\overline{\omega}(a_l, \alpha_{-i}) \cdot \tilde{w}_l^\overline{\omega} = 0
\]

for all \(a_l \in A_l \). Note that this system has a solution, since \(\alpha \) has individual full rank. Intuitively, continuation payoffs \(\tilde{w}_l^\overline{\omega} \) are chosen so that players are indifferent over all actions and their payoffs are zero.

Let \(K > \max_{y \in Y} \lambda \cdot \tilde{w}(y) \), and choose \((z_i^\omega(y))_{y \in Y}\) and \((z_j^{\tilde{\omega}}(y))_{y \in Y}\) to satisfy (S1)–(S3). Then let

\[
\tilde{w}_l^\overline{\omega}(y) = \begin{cases}
\tilde{w}_l^\omega(y) + z_i^\omega(y), & \text{if } (l, \overline{\omega}) = (i, \omega), \\
\tilde{w}_l^{\tilde{\omega}}(y) + z_j^{\tilde{\omega}}(y), & \text{if } (l, \overline{\omega}) = (j, \tilde{\omega}), \\
\tilde{w}_l^\overline{\omega}(y), & \text{otherwise}
\end{cases}
\]
for each $y \in Y$. Also, let

$$v_l = \begin{cases} \frac{K}{\lambda^i_l}, & \text{if } (l, \omega) = (i, \omega), \\ 0, & \text{otherwise}. \end{cases}$$

We claim that this (v, w) satisfies constraints (i) through (iii) in LP Average. It follows from (S4) that constraints (i) and (ii) are satisfied for all $(l, \omega) \in (I \times \Omega) \setminus \{(i, \omega), (j, \tilde{\omega})\}$. Also, using (S1) and (S4), we obtain

$$\left(1 - \delta\right) g_i^\omega(a_i, \alpha_{-i}) + \delta \pi^\omega(a_i, \alpha_{-i}) \cdot w_i^\omega = \left(1 - \delta\right) g_i^\omega(a_i, \alpha_{-i}) + \delta \pi^\omega(a_i, \alpha_{-i}) \cdot (\tilde{w}_i^\omega + z_i^\omega)$$

for all $a_i \in A_i$. This shows that (v, w) satisfies constraints (i) and (ii) for (i, ω). Likewise, from (S2) and (S4), (v, w) satisfies constraints (i) and (ii) for $(j, \tilde{\omega})$. Furthermore, using (S3) and $K > \max_{y \in Y} \lambda \cdot \tilde{w}(y)$,

$$\lambda \cdot w(y) = \lambda \cdot \tilde{w}(y) + \lambda^\omega_iz_i^\omega(y) + \lambda^\omega_jz_j^\omega(y) = \lambda \cdot \tilde{w}(y) < K = \lambda \cdot v$$

for all $y \in Y$, and hence constraint (iii) holds.

Therefore, $k^*(\alpha, \lambda) \geq \lambda \cdot v = K$. Since K can be arbitrarily large, we conclude $k^*(\alpha, \lambda) = \infty$. \[Q.E.D.]\n
Dept. of Economics, Harvard University, Cambridge, MA 02138, U.S.A.; dfudenberg@harvard.edu

and

Dept. of Economics, Harvard University, Cambridge, MA 02138, U.S.A.; yamamot@fas.harvard.edu.

Manuscript received May, 2009; final revision received May, 2010.