Incentive Problems with Unidimensional Hidden Characteristics: A Unified Approach - Corrigendum

Martin F. Hellwig
Max Planck Institute for Research on Collective Goods
Kurt-Schumacher-Str. 10, D - 53113 Bonn, Germany
hellwig@coll.mpg.de

February 26, 2011

Sergei Vieira Silva, from the Instituto Nacional de Matematica Pura e Aplicada in Rio de Janeiro, has alerted me to an error in my article "Incentive Problems with Unidimensional Hidden Characteristics: A Unified Approach", Econometrica 78 (2010), 1201 – 1237. Fortunately, the error does not affect the validity of the analysis.

The analysis of the paper rests on replacing the notion of a type \(t \) in the usual sense by the notion of a pseudo-type \(x \) constructed so that the distribution \(G \) of pseudo-types has a density even though the distribution \(F \) of types does not. Absolute continuity of \(G \) is asserted in Lemma 3.1, p. 1215. For the given definition of \(G \), however, this assertion is false; for it to be true, the definition must be modified.

The definition of \(G \) in the paper takes the map \(t \rightarrow \xi(t) = t + F(t) \), from types to pseudo-types, and sets \(G := F \circ \xi^{-1} \). With this definition, however, \(G \) is discontinuous whenever \(F \) is discontinuous. In the proof of Lemma 3.1, the assertion that equation (3.9) holds for all \(x \) is incorrect. I apologize for the error and thank Sergei Vieira for pointing it out.

To correct the error, replace the given definition of \(G \) by one that starts from equation (3.9), i.e., define \(G \) so that

\[
G(x) = x - \tau(x)
\]

for all \(x \), where \(\tau(x) := \sup_s \{ s | \xi(s) \leq x \} \). With this definition, absolute continuity of \(G \) follows from the observation that \(\tau \) is nondecreasing and Lipschitz with constant 1. Moreover, it is still true that \(F = G \circ \tau^{-1} \), which provides the basis for the subsequent analysis.