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BY GABRIEL Y. WEINTRAUB, C. LANIER BENKARD, AND B. VAN Roy

A. PROOFS AND MATHEMATICAL ARGUMENTS FOR SECTION 4: LONG-RUN
BEHAVIOR AND THE INVARIANT INDUSTRY DISTRIBUTION

LEMMA A.3: Let Assumptions 3.2 and 3.3 hold. Assume that firms follow a

common oblivious strategy u € M, the expected entry rate is A € A, and the ex-
pected time that each firm spends in the industry is finite. Let {Z,:x € N} be a
sequence of independent Poisson random variables with means {5, ,(x):x € N},
and let Z be a Poisson random variable with mean ) .5, ,(x). Then:

(a) {s,:t = 0} is an irreducible, aperiodic, and positive recurrent Markov
process;

(b) the invariant distribution of s, is a product form of Poisson random vari-
ables;

(c) forall x,s,(x) = Z,;

(d) n,= Z.

PROOF: If every firm uses a strategy u € M and entry is according to an
entry rate function A € A, then A = {s,:¢ > 0} is clearly an irreducible Markov
process. All states reach the state @ = {0, 0, ...} with positive probability and
all states can be reached from @ as well. Moreover, state & is aperiodic; hence,
A is aperiodic. Finally, A is positive recurrent because the expected time to
come back from state @ to itself is finite (Kleinrock (1975)).

Now, let us write

t Wr
S 5= Lk,

=0 i=1

where W, are i.i.d. Poisson random variables with mean A, the first sum is taken
over all periods previous to (and including) ¢, the second sum is taken over the
firms that entered the industry in each period, and for each 7, X;, , are ran-
dom variables that represent the state of firm i after ¢+ — 7 periods inside the
industry when using strategy w. Since firms use oblivious strategy u € M and
shocks are idiosyncratic, their state evolutions are independent, so 1ix,,  —y
are ii.d. across i. It follows that Y/ 1, X.,_,—x 18 a filtered Poisson random
variable, so it is a Poisson random variable. Thus s,(x), as a sum of indepen-
dent Poisson random variables, is also Poisson. Given that the expected time
a firm spends inside the industry is finite, using characteristic functions it is
straightforward to show that s,(x) = Z, Vx € N. To show that {Z,:x € N} is a
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sequence of independent random variables, note that by the filtering property
of Poisson random variables, for all #, {s,(x):x € N} is a sequence of indepen-
dent random variables (Durrett (1996)). By summing over x € N, we can show
that n, = Z. O.E.D.

LEMMA A.4: Let Assumptions 3.2 and 3.3 hold. Assume that firms follow a

common oblivious strategy . € M, the expected entry rate is \ € A, and the ex-
pected time that each firm spends in the industry is finite. Let {Y,:n € N} be a
sequence of integer-valued i.i.d. random variables, each distributed according to
Sun()/ Y cnSun(x). Then, for all n € N,

(Xys e vos Xupule =n) = (Y1, ..., Y,).

PROOF: The proof relies on a well known result for Poisson processes; con-
ditional on n arrivals on an interval [0, T'], the unordered arrival times have
the same distribution as # i.i.d. uniform random variables in [0, T].

Let us condition on n, = n. {x(;;:j =1, ..., n} are the random variables that
represent the state of each of the » firms in the industry when they are sam-
pled randomly. The expected time a firm spends inside the industry is finite,
so the time a firm spends inside the industry is finite with probability 1. A firm
can increase its quality level by at most w states each period. Therefore, for
all € > 0, there exists a state z, such that, for all j € {1,..., n} and for all ¢,
Plx( > z] < £. Hence, P[UJ;_,{x( > z}|n, = n] < &, for allt so the sequence
of random vectors {(Xtyes « - s Xupelne = 1) 1t = 0} is tight. By Theorem 9.1 in
Durrett (1996) and tightness to prove the lemma it is enough to show that for
all n, for all (zy, ..., z,),

lim Pl =z, j=1,....nln =nl=[ ] p(z),

j=1

where p(-) is the probability mass function (pmf) 5, ,(-)/ 3, 5. (x). Let T;

be the entry time period for firm (j) and let 7; = ¢ — T} be its age. Then we can
write

(52) P[X(j)t:Zj, j:l,...,n|n[:n]
Z Plxgi=z, j=1,....,nTy=t,,...,T,=t,,n,=nl

0<t;<o0,...,
0<ty <00

x PlTi=¢t,...,T,=t,\n, =nj

= Z 1_[ Plxgy = z|T; = t)]

0<t; <o0,..., j=1
0<ty<oo
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X P[T] =H,yeen, Tn = tn|flt :I’l].

The last equation follows because the evolution of firms is independent across
firms. Note that if any ¢, has a value greater than ¢, then P[T, =¢4,..., T, =
t,|n, = n] =0. We can write

=z T =t
(S.3) P[x(j)tzzﬂTj:zj]:P[x(”’ zp, 1i=14]

PIT; =t]
PIT; =1, X, =2zl
T PIL=4]
PIT; = (1P1X;,; = z)]
~ P =)
= P[X.f,tj =z,

where X, is a random variable that represents a firm’s state after ¢; periods,
conditional on having stayed in the industry. Note that for all k, {X;,:j > 1}
are i.i.d. The second to last equation follows because the evolution of a firm is
independent of its entry time.

Now we show that

m P(T =1,..., T, = tn,=n] =] July]

j=1

for some pmf u. We derive this equation by invoking the relationship between
n, and a Poisson process.
Similarly to equation (S.1), we can write

t Wr
n; = E § Ai,tfw

=0 i=1

where A;, . are i.i.d. Bernoulli random variables that equal one if the firm is
still in the industry after  — 7 periods when using strategy u and zero otherwise.
Since A;,_, are ii.d., n,, = Z,.W;l A;,_, is a filtered Poisson random variable
and is therefore Poisson. Let us denote its mean by «, ,. It follows that n, is
a sum of independent Poisson random variables, so it is Poisson with mean
Zizo X,z

Consider {N(¢): ¢ > 0}, a homogeneous Poisson process on the real line with
rate 1. Note that N(¢) and #n, are equivalent in the sense that we can construct
n, using the process {N(s):0 <s < Z;:o a,.}. For each 0 < 7 < ¢, with some
abuse of notation, let N(«, .1, @, .1 + @, .) be the total number of events of
the Poisson process in the interval [« ,_1, @, ._1 + @, .], where «, _; =0. Then
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we can construct n, = Z::O n, . by defining n, , = N(o, ,1, @1 + e, ) forall
T.

Now, conditional on the event N (Z[T:O a, ) = n, the unordered arrival times
of N(t) have the same distribution as #» i.i.d. uniform random variables in
[0, >, @..] (Durrett (1996)). By the equivalence argument described above,
conditional on n, = n, the unordered arrival times of the » firms are i.i.d. dis-
crete random variables with pmf:

at,T
1 ’
Zj:() Qyj

Recall that ¢, . is the expected number of firms that entered at time 7 and are
still inside the industry at time ¢. Since the entry rate is oblivious, all firms use
the same oblivious strategy and shocks are idiosyncratic, «, , = &,_,, where &, _,
is the expected number of firms that entered the industry at time s, for any s,
and are still inside the industry at time s + ¢ — 7. This suggests making a change
of variable and defining

v (1) = O<t<t.

523
Z;:O 5‘1’ ’
u,(k) is the probability a random sampled firm from the industry at time ¢

entered k periods ago, conditional on n, = n. Taking the limit as ¢ tends to
infinity, we get that

u,(k)= O<k<t.

a
Zjoio &j ’

provided that lim, ., E[n,] = Z;’ia a; < oo, which is true because the expected
time that each firm spends in the industry is finite. u(k) is the probability a
random sampled firm, while the industry state is distributed according to its in-
variant distribution, entered k periods before the sampling period. Therefore,

tlim u,(k)=u(k) = 0<k <oo,

im PITy = t,..., T, = taln, = n] = ] T ult;].
j=1

Replacing the previous equation together with equation (S.3) into equa-

tion (S.2) we obtain

lim Pl =z, j=1,....nln=nl=[] > PIX;, = zlu(@0),

j=1 0<t<co

where the interchange between the infinite sum and the limit follows by the
dominated convergence theorem. The sum yields the pmf p(-). The previ-
ous equation proves that, foralln e N, (x), ..., Xy elt: =n) = (Y1, ..., Yy),
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where Y7, ..., Y, are i.i.d. random variables with pmf p(-) which does not de-
pend on #.

To finish, consider a very large time period. Formally, suppose that s, is
sampled from the invariant distribution of {s,:¢ > 0} (which is well defined by
Lemma A.3). In this case, s, is a stationary process; s, is distributed according
to the invariant distribution for all # > 0:

sp,/\(x) = E[St(x)] = E|:Z l(x(m—x)j| .
j=1

Conditioning on 7, and considering that we already proved that {x,:j =
1,...,n} are iid. with pmf p(-), we conclude that p(-) = 5,.()/
2 ren Sua (). Q.E.D.
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