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PROOF OF THEOREM 1—SUFFICIENCY: To prove sufficiency, we explicitly
construct an orientation d that satisfies for all (1, w) and (m,, w,), if x;; >0
and X220 > 0, then

(Sl) dmlaw27wldw2’mlam2 = O and dm21wl7w2dwl’m2’ml = 0'

We then show that there is a rationalizing preference profile.

We first deal with the case where all vertices in X are connected and there
is at most one minimal cycle. By decomposing an arbitrary X into connected
components, we later generalize the argument. If there is no cycle in X, choose
a singleton vertex and treat it as the “cycle” in the sequel.

Let C be the submatrix that has the indices in the minimal cycle. If ¢ =
((m, w),) is the minimal cycle, let M, = J,{m,} and W, = |, {w,}. Then C is
the matrix (X, u ) (m,w)em, xw; - Thus C contains the minimal cycle.

We rearrange the indices of X to obtain a matrix of the form

|(Wh) (W) (Wa)
Mp[ ¢ X, 0 -
M| Y, O X, -
Mp| O Y, O

where O represents submatrices consisting of only zeros.
We define the submatrices X, and Y, by induction. For n > 1, let

M, = {mgé UMk:EIwe UWk such that (m, w) € V},
1 1

W= {wgéUWk:ElmeUMk such that (m, w)eV}.
1 1

Now, let X, be the matrix (X, w)om wyem,xw,,, and let Y, be the matrix
(X ) (! whem,,, <, - Finally, relabel the indices such that if m; € M,,, my € M,
and n < ', then i < i’. The numbering of indexes in M, is otherwise arbitrary.

Relabel w’s in a similar fashion.
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For every m € M,, there is a k < n and w € W, such that (m,w) € VV, and,
similarly, for every w € W, there is a k < n and m € M, such that (m,w) € V.
Thus, for m € M, there is a sequence

(ma wk0)7 (mk1> wk0)7 L) (mk]\u wkNr)

with N =N"+1 or N'=N — 1, which defines a path connecting (m, wy,) to
the cycle c. Similarly, if w € W, there is a path connecting (m,,, w) to c.
The observation in the previous paragraph has two consequences:

CLAMSL: Ifme M, and we W, (n>1),then (m,w) ¢V.

Claim S1 is true because otherwise there would be two different paths con-
necting (m, w) to ¢, one having (m, wy,) and the other having (m,,, w) as its
second element. Then we would have a distinct second cycle.

CLAIM S2: Let m; € M,, (n > 1), and let there be two distinct w; and w; (j' >
J) such that (m;, w;), (m;,w;) € V. Then (m;, w;) € V implies that my € M,,
with n' > n.

Claim S2 is true because otherwise we would again have two different paths
connecting (m;, wy) to c¢; one path with (m;, w;) and one with (m;, w;) as its
second element.

Define the orientation d as follows. We simply use d;; ; for d,, v, and
dj,i,i’ for dwi’mi’mi, .

DEFINITION 1: (i) If (m;, w;) € ¢ and (m;, w;) € c, then define d;; ; to be 1
if (m;, w;) comes immediately after (m;, w;) in c; thatis, d; ; = 1 if there isn
such that

(m;, wy) = (m;, w;), and (m;, w;) = (M;, ;)1

(if) If (m;, w;) € ¢ and (my, w;) € ¢, then define d;;; to be 1 if (m;, w;)
comes immediately after (m;, w;) in c.

(iii) If (m;, w;) ¢ c and (m;, wy) € ¢, then define d, ; ; to be 1.

(iv) If (m;, w;) ¢ c and (m;, w;) € c, then define d;; » to be 1.
(v) If (m;, w;) ¢ c and (m;, w;) ¢ c, then define d,; ; to be 1 if and only if
J>7.
(vi) If (m;, w;) ¢ c and (m;, w;) ¢ c, then define d;; to be 1 if and only if
i>1.

Let d;; ; = 0 when (i)—(vi) imply that d;;;, = 1; similarly, d;,;, = 0 when
(1)—(V1) lmply that dj,,',,'/ =1.

LEMMA S1: If (m;, w;) is a vertex in c, then there is at most one wj such that
j # Jand (m;, wy) € c; in addition, (m;, w;) and (m;, w;) are adjacent in c.
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Similarly, there is at most one i’ # i such that (m;, w;) € c; in addition, (m;, w;)
and (m;, w;) are adjacent in c.

PROOF: We let the index of ¢ range over all the integers by denoting
(m, w)nmod(N) by (m’ w)n-

Let (m,w) be a vertex in ¢ and let n > 0 be such that (m, w) = (m, w),.
Suppose there is w’ such that w’' # w and (m, w') € c. If it does not exist, we
are done. Since now N > 2, (m, w) is in the minimal path connecting (m, w),_;
and (m, w),,;. By the second fact stated in the beginning of Appendix A.1,
either m,_; = m or m,,; = m, and exactly one of these is true. In the first case,
we can set w' = w,_; and in the second case, we can set w' = w,;. Suppose,
without loss of generality, that w' = w,,;.

We show that there is not a w” # w, w’ with (m, w”) € c. Suppose that there
issuch a w”. Let (m, w”) = (m, w),. By the second fact stated in the beginning
of Appendix A.1, we have either/ <n—1or/ > n+1. When ! > n+1, the path
{((m, w),_1, ..., (m,w),) is not minimal because {(m, w),_, (M, w),, (M, w),,)
is a proper subset connecting (m, w),_; and (m, w),,. When ! < n— 1, the path
((m, w),,, (M, w),, (M, w),,) is not minimal because (m, w),, and (m, w),
are directly connected. Thus ¢ is not a minimal cycle—a contradiction.

QO.E.D.

LEMMA S2: Let (m, w) be a vertexin c. If (m, w') € V is not a vertex in c, then
forall m' #+m, (m', w') ¢ c. Similarly, if (m', w) € V is not a vertex in c, then for
all w #w, (m',w') ¢ c.

PROOF: Suppose, for contradiction, that (m,w) € ¢, (m', w') € ¢ with m #
m',w#w, and (m,w') ¢ c. Since (m, w), (m', w') € c, there is a minimal path
((m,w),:n=0,..., N)connecting (m’, w') to (m, w). Then, since (m, w') ¢ c,
the minimal cycle

<(m7 w)07 ceey (m7 w)N7 (ma w/)7 (m/a w/)>

is distinct from ¢ and connected to c. O.E.D.

LEMMA S3: (1) If di,j,j’ =1and di,j’,j” = 1, then di,j,j” =1.
(11) If dj,i,i’ =1and dj,i’,i” = 1, then dj,i,i” =1.

PROOF: We prove only the first statement. The second statement can be
proved in similar fashion to the following first three cases.

First, we can rule out that d,; ; = 1 because (m;, w;) € ¢, (m;, w;) € ¢, and
(m;, w;) comes immediately after (m;, w;) in c (case (i), Definition 1). To see
this, note that d, ; = 1 would imply that (m;, w;») € ¢, which is not possible
by Lemma S1.
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Second, suppose that d;;; = 1 is from the fact that (m;, w;) ¢ ¢ and
(m;,wy) € c. Then d, » =1 implies that (m;, w;) € c. Thus d,;;» =1 by
case (iii) in Definition 1.

Third, suppose that d, ; ; = 1 is from the fact that (m;, w;) ¢ ¢, (m;, w;) ¢ c,
and j > j. If d;; ,, = 1 because (m;, w;) ¢ c and j' > j”, then d,;;» = 1 by
case (v) in Definition 1 and the transitivity of P. On the other hand, if d; ; » =1
because (m;, w;») € ¢, then d; ; » =1 (case (iii), Definition 1) as well. Q.E.D.

LEMMA S4: The orientation d satisfies (S1).

PROOF: Let ((m;, w;), (m;, w;)) be an antiedge: so (m;, w;), (my, w;) €V,
j#j and i # 1. Suppose that d; ; ; = 1. We prove that d; ; , = 0.

Suppose first that d;;; = 1 because of case (i) in Definition 1. Then
(m;, wy) € c. So, if (m;, w;) ¢ ¢, we obtain that d; ; » = 0 by case (iii) in Defini-
tion 1. On the other hand, if (m;, w;) € c, then the edges ((m;, w;), (m;, w;))
and ((m;, wy), (m;y, w;y)) are in c. In fact, these edges must be consecutive or
(m;, wy) will appear twice in c¢. Then d,; ; = 1 because case (i) implies that
(m;, wy) comes immediately after (m;, w;) in c; the edge ((m;, wy), (my, w;))
comes after ((m;, w;), (m;, w;)) in ¢, so we obtain that d; ; » = 0 by case (i) in
Definition 1.

Suppose second that d,;; = 1 because of case (iii) in Definition 1. So
(m;, w;) € cand (m;, wy) ¢ c. Then m; € M, because m, is an index for a vertex
in the minimal cycle c. Now, by Lemma S2, there is no m; with (m;, w;) € c.
Since (m;,w;) € V, we must have m; € M, for n > 1. By the labeling we
adopted, then, i < i'. Hence, d; ; ; = 1 by case (vi) in Definition 1.

Third, suppose that d; ; ; = 1 because of case (v) in Definition 1. If m; e M,
there exists w;» such that (m;, w;) € c and d, ; ;» = 1 because of case (iii) in
Definition 1, and d; ; ; = 1 by the previous result. If m; e M, (n > 1), then we
have shown in Claim S2 that (m;, w;) € V' implies that m, € M, with k > n.
Hence d; ; ; = 1 because of case (v) in Definition 1. Q.E.D.

Given the orientation d we have constructed, define two collections of par-
tial orders, (P,,:m € M) and (ﬁw :w € W), where we say that wP,w when
dpmww =1 and that mP,w when dy.mmw = 1. By Lemma S3, these are well
defined strict partial orders.

Now define the preference of man type m to be some complete strict exten-
sion of P,, to W and similarly for the women. By Lemma S4, these preferences
rationalize the matching X.

The previous construction assumes that X has one minimal cycle. If X has
more than one minimal cycle, these must not be connected in the graph. There-
fore, if we partition the graph into connected components, there will be at most
one minimal cycle in each.
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In particular, we can partition the set of vertices JV of X tobe V=1 U--- U
Vy and V,, NV, = @. All vertices in each V, are connected, but no pair of ver-
tices in different sets is connected. The partition corresponds to the connected
components of the graph.

Now relabel the indices of types such that matching X is a diagonal block
matrix:

X, O o

0O X, o
X = .

O O --- Xy

All vertices in V,, are positive elements in X,,, and vice versa.

Let M, (W,) be the set of types m (w) of men (women) who have a positive
elements x,, ,, in X,,. The previous construction, applied to each X, separately,
yields a rationalizing preference profile of each X,,, which we denote by P. For
each m € M,,, we define a partial order P,, on W to agree with P,, by adding
relations that any w € W, is preferred to every w € W \ W,. We similarly define
partial orders for the other types of men and types of women. Subsequently,
we define m’s preferences over W to be a complete extension of P,. Women
types’ preferences are defined analogously.

The resulting profile of preferences rationalizes X because if (v, v’) is an
antiedge with v, v’ € V,, for some n, then (S1) is satisfied by the previous con-
struction of preferences, and if v and v’ are in different components of the
partition of I/, then (S1) is satisfied because any agent ranks an index in their
component over an index in a separate component. Q.E.D.
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