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PROOF OF THEOREM 1—SUFFICIENCY: To prove sufficiency, we explicitly
construct an orientation d that satisfies for all (m1�w1) and (m2�w2), if x1�1 > 0
and x2�2 > 0, then

dm1�w2�w1dw2�m1�m2 = 0 and dm2�w1�w2dw1�m2�m1 = 0�(S1)

We then show that there is a rationalizing preference profile.
We first deal with the case where all vertices in X are connected and there

is at most one minimal cycle. By decomposing an arbitrary X into connected
components, we later generalize the argument. If there is no cycle in X , choose
a singleton vertex and treat it as the “cycle” in the sequel.

Let C be the submatrix that has the indices in the minimal cycle. If c =
〈(m�w)n〉 is the minimal cycle, let M1 = ⋃

n{mn} and W1 = ⋃
n{wn}. Then C is

the matrix (xm′�w′)(m′�w′)∈M1×W1 . Thus C contains the minimal cycle.
We rearrange the indices of X to obtain a matrix of the form

(W1) (W2) (W3)

(M1) C X1 O · · ·
(M2) Y1 O X2 · · ·
(M3) O Y2 O · · ·

���
���

���

where O represents submatrices consisting of only zeros.
We define the submatrices Xn and Yn by induction. For n ≥ 1, let

Mn+1 =
{
m /∈

n⋃
1

Mk :∃w ∈
n⋃
1

Wk such that (m�w) ∈ V

}
�

Wn+1 =
{
w /∈

n⋃
1

Wk :∃m ∈
n⋃
1

Mk such that (m�w) ∈ V

}
�

Now, let Xn be the matrix (xm′�w′)(m′�w′)∈Mn×Wn+1 and let Yn be the matrix
(xm′�w′)(m′�w′)∈Mn+1×Wn . Finally, relabel the indices such that if mi ∈ Mn, mi′ ∈ Mn′ ,
and n < n′, then i < i′. The numbering of indexes in Mn is otherwise arbitrary.
Relabel w’s in a similar fashion.
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For every m ∈ Mn, there is a k < n and w ∈ Wk such that (m�w) ∈ V , and,
similarly, for every w ∈ Wn, there is a k < n and m ∈ Mk such that (m�w) ∈ V .
Thus, for m ∈Mn, there is a sequence

(m�wk0)� (mk1�wk0)� � � � � (mkN �wkN′ )

with N = N ′ + 1 or N ′ = N − 1, which defines a path connecting (m�wk0) to
the cycle c. Similarly, if w ∈ Wn, there is a path connecting (mk0�w) to c.

The observation in the previous paragraph has two consequences:

CLAIM S1: If m ∈ Mn and w ∈ Wn (n > 1), then (m�w) /∈ V .

Claim S1 is true because otherwise there would be two different paths con-
necting (m�w) to c, one having (m�wk0) and the other having (mk0�w) as its
second element. Then we would have a distinct second cycle.

CLAIM S2: Let mi ∈ Mn (n > 1), and let there be two distinct wj and wj′ (j′ >
j) such that (mi�wj)� (mi�wj′) ∈ V . Then (mi′�wj′) ∈ V implies that mi′ ∈ Mn′
with n′ > n.

Claim S2 is true because otherwise we would again have two different paths
connecting (mi�wj′) to c; one path with (mi�wj) and one with (mi′�wj′) as its
second element.

Define the orientation d as follows. We simply use di�j�j′ for dmi�wj�wj′ , and
dj�i�i′ for dwj�mi�mi′ .

DEFINITION 1: (i) If (mi�wj) ∈ c and (mi�wj′) ∈ c, then define di�j�j′ to be 1
if (mi�wj) comes immediately after (mi�wj′) in c; that is, di�j�j′ = 1 if there is n
such that

(mi�wj′)= (mi�wj)n and (mi�wj)= (mi�wj)n+1�

(ii) If (mi�wj) ∈ c and (mi′�wj) ∈ c, then define dj�i�i′ to be 1 if (mi�wj)
comes immediately after (mi′�wj) in c.

(iii) If (mi�wj) /∈ c and (mi�wj′) ∈ c, then define di�j�j′ to be 1.
(iv) If (mi�wj) /∈ c and (mi′�wj) ∈ c, then define dj�i�i′ to be 1.
(v) If (mi�wj) /∈ c and (mi�wj′) /∈ c, then define di�j�j′ to be 1 if and only if

j > j′.
(vi) If (mi�wj) /∈ c and (mi′�wj) /∈ c, then define dj�i�i′ to be 1 if and only if

i > i′.
Let di�j′�j = 0 when (i)–(vi) imply that di�j�j′ = 1; similarly, dj�i′�i = 0 when

(i)–(vi) imply that dj�i�i′ = 1.

LEMMA S1: If (mi�wj) is a vertex in c, then there is at most one wj′ such that
j′ �= j and (mi�wj′) ∈ c; in addition, (mi�wj) and (mi�wj′) are adjacent in c.
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Similarly, there is at most one i′ �= i such that (mi′�wj) ∈ c; in addition, (mi�wj)
and (mi′�wj) are adjacent in c.

PROOF: We let the index of c range over all the integers by denoting
(m�w)nmod (N) by (m�w)n.

Let (m�w) be a vertex in c and let n > 0 be such that (m�w) = (m�w)n.
Suppose there is w′ such that w′ �= w and (m�w′) ∈ c. If it does not exist, we
are done. Since now N ≥ 2, (m�w) is in the minimal path connecting (m�w)n−1

and (m�w)n+1. By the second fact stated in the beginning of Appendix A.1,
either mn−1 = m or mn+1 = m, and exactly one of these is true. In the first case,
we can set w′ = wn−1 and in the second case, we can set w′ = wn+1. Suppose,
without loss of generality, that w′ =wn+1.

We show that there is not a w′′ �= w�w′ with (m�w′′) ∈ c. Suppose that there
is such a w′′. Let (m�w′′)= (m�w)l. By the second fact stated in the beginning
of Appendix A.1, we have either l < n−1 or l > n+1. When l > n+1, the path
〈(m�w)n−1� � � � � (m�w)l〉 is not minimal because 〈(m�w)n−1� (m�w)n� (m�w)m〉
is a proper subset connecting (m�w)n−1 and (m�w)m. When l < n− 1, the path
〈(m�w)m� (m�w)n� (m�w)n+1〉 is not minimal because (m�w)m and (m�w)n+1

are directly connected. Thus c is not a minimal cycle—a contradiction.
Q.E.D.

LEMMA S2: Let (m�w) be a vertex in c. If (m�w′) ∈ V is not a vertex in c, then
for all m′ �= m, (m′�w′) /∈ c. Similarly, if (m′�w) ∈ V is not a vertex in c, then for
all w′ �=w, (m′�w′) /∈ c.

PROOF: Suppose, for contradiction, that (m�w) ∈ c, (m′�w′) ∈ c with m �=
m′, w �= w′, and (m�w′) /∈ c. Since (m�w)� (m′�w′) ∈ c, there is a minimal path
〈(m�w)n :n= 0� � � � �N〉 connecting (m′�w′) to (m�w). Then, since (m�w′) /∈ c,
the minimal cycle〈

(m�w)0� � � � � (m�w)N�
(
m�w′)� (m′�w′)〉

is distinct from c and connected to c. Q.E.D.

LEMMA S3: (i) If di�j�j′ = 1 and di�j′�j′′ = 1, then di�j�j′′ = 1.
(ii) If dj�i�i′ = 1 and dj�i′�i′′ = 1, then dj�i�i′′ = 1.

PROOF: We prove only the first statement. The second statement can be
proved in similar fashion to the following first three cases.

First, we can rule out that di�j�j′ = 1 because (mi�wj) ∈ c, (mi�wj′) ∈ c, and
(mi�wj) comes immediately after (mi�wj′) in c (case (i), Definition 1). To see
this, note that di�j′�j′′ = 1 would imply that (mi�wj′′) ∈ c, which is not possible
by Lemma S1.
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Second, suppose that di�j�j′ = 1 is from the fact that (mi�wj) /∈ c and
(mi�wj′) ∈ c. Then di�j′�j′′ = 1 implies that (mi�wj′′) ∈ c. Thus di�j�j′′ = 1 by
case (iii) in Definition 1.

Third, suppose that di�j�j′ = 1 is from the fact that (mi�wj) /∈ c, (mi�wj′) /∈ c,
and j > j′. If di�j′�j′′ = 1 because (mi�wj′′) /∈ c and j′ > j′′, then di�j�j′′ = 1 by
case (v) in Definition 1 and the transitivity of P . On the other hand, if di�j′�j′′ = 1
because (mi�wj′′) ∈ c, then di�j�j′′ = 1 (case (iii), Definition 1) as well. Q.E.D.

LEMMA S4: The orientation d satisfies (S1).

PROOF: Let ((mi�wj)� (mi′�wj′)) be an antiedge: so (mi�wj)� (mi′�wj′) ∈ V ,
j �= j′ and i �= i′. Suppose that di�j′�j = 1. We prove that dj′�i�i′ = 0.

Suppose first that di�j′�j = 1 because of case (i) in Definition 1. Then
(mi�wj′) ∈ c. So, if (mi′�wj′) /∈ c, we obtain that dj′�i�i′ = 0 by case (iii) in Defini-
tion 1. On the other hand, if (mi′�wj′) ∈ c, then the edges ((mi�wj)� (mi�wj′))
and ((mi�wj′)� (mi′�wj′)) are in c. In fact, these edges must be consecutive or
(mi�wj′) will appear twice in c. Then di�j′�j = 1 because case (i) implies that
(mi�wj′) comes immediately after (mi�wj) in c; the edge ((mi�wj′)� (mi′�wj′))
comes after ((mi�wj)� (mi�wj′)) in c, so we obtain that dj′�i�i′ = 0 by case (i) in
Definition 1.

Suppose second that di�j′�j = 1 because of case (iii) in Definition 1. So
(mi�wj) ∈ c and (mi�wj′) /∈ c. Then mi ∈M1 because mi is an index for a vertex
in the minimal cycle c. Now, by Lemma S2, there is no m̃i with (m̃i�wj′) ∈ c.
Since (mi′�wj′) ∈ V , we must have mi′ ∈ Mn for n > 1. By the labeling we
adopted, then, i < i′. Hence, dj′�i′�i = 1 by case (vi) in Definition 1.

Third, suppose that di�j′�j = 1 because of case (v) in Definition 1. If mi ∈ M1,
there exists wj′′ such that (mi�wj′′) ∈ c and di�j′�j′′ = 1 because of case (iii) in
Definition 1, and dj′�i′�i = 1 by the previous result. If mi ∈ Mn (n > 1), then we
have shown in Claim S2 that (mi′�wj′) ∈ V implies that mi′ ∈ Mk with k > n.
Hence dj′�i′�i = 1 because of case (v) in Definition 1. Q.E.D.

Given the orientation d we have constructed, define two collections of par-
tial orders, (P̃m :m ∈ M) and (P̃w :w ∈ W ), where we say that wP̃mw

′ when
dm�w�w′ = 1 and that mP̃ww

′ when dw�m�m′ = 1. By Lemma S3, these are well
defined strict partial orders.

Now define the preference of man type m to be some complete strict exten-
sion of P̃m to W and similarly for the women. By Lemma S4, these preferences
rationalize the matching X .

The previous construction assumes that X has one minimal cycle. If X has
more than one minimal cycle, these must not be connected in the graph. There-
fore, if we partition the graph into connected components, there will be at most
one minimal cycle in each.
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In particular, we can partition the set of vertices V of X to be V = V1 ∪ · · · ∪
VN and Vm ∩ Vn = ∅. All vertices in each Vn are connected, but no pair of ver-
tices in different sets is connected. The partition corresponds to the connected
components of the graph.

Now relabel the indices of types such that matching X is a diagonal block
matrix:

X =

⎛
⎜⎜⎝
X1 O · · · O
O X2 · · · O
���

��� · · · ���
O O · · · XN

⎞
⎟⎟⎠ �

All vertices in Vn are positive elements in Xn, and vice versa.
Let M̃n (W̃n) be the set of types m (w) of men (women) who have a positive

elements xm�w in Xn. The previous construction, applied to each Xn separately,
yields a rationalizing preference profile of each Xn, which we denote by P̃ . For
each m ∈ M̃n, we define a partial order Pm on W to agree with P̃m by adding
relations that any w ∈ W̃n is preferred to every w ∈W \ W̃n. We similarly define
partial orders for the other types of men and types of women. Subsequently,
we define m’s preferences over W to be a complete extension of Pm. Women
types’ preferences are defined analogously.

The resulting profile of preferences rationalizes X because if (v� v′) is an
antiedge with v� v′ ∈ Vn for some n, then (S1) is satisfied by the previous con-
struction of preferences, and if v and v′ are in different components of the
partition of V , then (S1) is satisfied because any agent ranks an index in their
component over an index in a separate component. Q.E.D.
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