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Appendix A: Proofs of main results

A.1 Notation

We introduce additional notation. We consider statistics that replace some (not all) esti-
mated components in the statistics defined in the main text with population quantities.
Let

Di(h) =

T∑
t=1

dit
(
g0
i , h
)
/
√
T√

�i(h, h)

and

H̃ij
(
h, h′)= 1

T

T∑
t=|j|+1

(
di,t+min(0,j)

(
g0
i , h
)− d̄i(g0

i , h
))(
di,t−max(0,j)

(
g0
i , h′)− d̄i(g0

i , h′)),
where d̄i(g0

i , h) =∑T
t=1 dit(g

0, h)/T . Let

�̃i
(
h, h′)= T−1∑

j=−T+1

K

(
j

κN

)
H̃ij
(
h, h′).

Let

D̃i(h) =

T∑
t=1

dit
(
g0
i , h
)
/
√
T√

�̃i(h, h)
,
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and let �̃i(g0
i ) denote the (G− 1) × (G− 1) matrix with entries

(
�̃i
(
g0
i

))
j,j′ = �̃i

(
h, h′)√

�̃i(h, h)�̃i
(
h′, h′) .

We write dit(h) = dit(g0
i , h).

A.2 Proofs

Proof of Theorem 1. The result follows directly from Lemma A.1.

Proof of Theorem 2. Write kα,N (�) for the 1 − α/N-quantile of a N(0,�) random
variable. Abbreviate �i =�i(g0

i ) and �̂i = �̂i(g0
i ).

Let ζN denote a diverging sequence, ζN → ∞. For ᾱN = α(1 + 2CA.3
√
εN log(N/α))

and CA.3 the constant from Lemma A.3, we first establish the following chain of inequal-
ities:

kᾱN ,N (�i ) ≤ kα,N
(
ρ(�̂i, εN )

)≤ cα,N
(
ρ(�̂i, εN )

)
. (A.1)

To prove the second inequality, let tT−1(·) denote the cumulative distribution function
of a t-distributed random variable with (T − 1)-degrees of freedom and let X denote
a (G − 1) random vector distributed according to centered multivariate t-distribution
with T − 1 degrees of freedom and scale matrix ρ(�̂i, εN ). The marginal distribution of
the first component ofX , denoted byX1, isX1 ∼ tT−1. Let dN = t−1

T−1(1 −α/N ) and note
that dN → ∞. Moreover,

α/N = P(X1 > dN ) ≤ P
(

max
h∈1, 			,G−1

Xh > dN

)
.

Therefore, cα,N (ρ(�̂i, εN )) ≥√T/(T − 1)dN and forN0 and T0 independent of ρ(�̂i(g0
i ),

εN ) and t∗, the constant defined in Lemma A.2 we can take

cα,N
(
ρ(�̂i, εN )

)
> t∗,

for all N ≥ N0, T ≥ T0. Therefore, the assumptions of Lemma A.2 are satisfied for t =
cα,N (ρ(�̂i, εN )) andN , T large enough and Lemma A.2 implies


max,ρ(�̂i ,εN )

(
kα,N
(
ρ(�̂i, εN )

))
= 1 − α/N
= tmax,ρ(�̂i ,εN ),T−1

(√
(T − 1)/Tcα,N

(
ρ(�̂i, εN )

))
≤
max,ρ(�̂i ,εN )

(
cα,N
(
ρ(�̂i, εN )

))
and, therefore, kα,N (ρ(�̂i, εN )) ≤ cα,N (ρ(�̂i, εN )). We now establish the first inequality
in (A.1). Note that

αN ≡ α(1 +CA.3cα,N
(
ρ(�̂i, εN )

))≤ α(1 + 2CA.3
√

log(N/α)
)
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by Lemma A.10 and that kα,N is decreasing in α. Therefore, it suffices to establish

kαN ,N (�i ) ≤ kα,N
(
ρ(�̂i, εN )

)
. (A.2)

It can be established by applying Lemma A.3. Lemma A.4 yields

‖�̂i −�i‖max ≤ ζN
(

rθ,N

ιN min
1≤i≤N

σi
+ T−c1 (logN )c2 + T−ρ

)
≡ δN ,

on an event whose probability approaches one. On this set, Lemma A.10 states that
we can take kα,N (ρ(�̂i, εN )) >

√
log(N/α) >

√
2 for N large enough. We now show that

δN/εN → 0. Since ζN can be taken to diverge at an arbitrarily slow rate, it suffices to show
that, for π > 0,

rθ,N/
(
ιN min

1≤i≤N
σi

)
≤ εNT−π ,

T−c1 (logN )c2 ≤ εNT−π ,

T−ρ ≤ εNT−π .

Since rθ,N
√
T logN = o(ιN min1≤i≤N σi ) and εN ≥ (logN )−k2 , the first condition is met

provided

T−1+2π(logN )−1+2k2 =O(1).

Under the assumed rate conditionN ≤ o(1)Tδ2 , this holds for any 0<π < 1
2 . The second

and third conditions can be checked similarly. Now that we have established δN/εN → 0
we can take 4δN ≤ εN , satisfying one of the conditions of Lemma A.3. The condition
εN ≤ 4cω/3 is assumed. This argument verifies all conditions of Lemma A.3 and yields
inequality (A.2) and, therefore, (A.1).

Our assumptions,

rθ,N
√
T logN/

(
ιN min

1≤i≤N
σi

)
→ 0

and N ≤ o(1)Tδ2 guarantee that (
√
T ∨ logN )rθ,N/(ιN min1≤i≤N σi ) and T−c1 (logN )c2

vanish. Therefore,

bLV∗
N = (

√
T ∨ logN )rθ,N

ιN min
1≤i≤N

σi
+ T−c1 (logN )c2 + T−ρ

vanishes and Lemma A.14 can be applied and yields

P
(

max
1≤i≤N

max
h∈G\{g0

i }

∣∣D̂i(h) −Di(h)
∣∣> ζNbLV∗

N

)
= o(1). (A.3)
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We now prepare to apply the high-dimensional CLT in Lemma A.13. Let δi(h) = θg0
i
− θh

and

Xit(h) = dit(h)√√√√T−1
T∑
t=1

T∑
s=1

Ep
[
dit(h)dis(h)

] = −x
′
it

(
δi(h)/

∥∥δi(h)
∥∥)vit

ξi(h)/
(
σi
∥∥δi(h)

∥∥) ,

where

ξi(h) =
√√√√ 1
T

T∑
t=1

T∑
s=1

E
[
dit(h)dis(h)

]=
√√√√δi(h)′

(
1
T

T∑
t=1

T∑
s=1

EP
[
xitx

′
isuituis

])
δi(h).

Define the vector

Xt =
((
X1t(h)

)
h∈G\{g0

1 }, 	 	 	 ,
(
XNt(h)

)
h∈G\{g0

N }

)′
.

This vector has length J = N(G − 1). Let � denote the long-run variance of the time
seriesXt defined as the J × J matrix with entry (j, k) given by

cov

(
1√
T

T∑
t=1

Xt,j ,
1√
T

T∑
t=1

Xt,k

)
.

Let G denote a centered normal vector with variance matrix �. Clearly, Xi is a normal
random vector with covariance matrix �i. Taking complements, we have

sup
(r1, 			,rN )∈RN++

∣∣∣P( max
1≤i≤N

(
max

h∈G\{g0
i }
Di(h) − ri

)
> 0
)

− P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − ri

)
> 0
)∣∣∣

= sup
(r1, 			,rN )∈RN++

∣∣P(Di(h) ≤ ri for all h ∈G \ {g0
i } and i= 1, 	 	 	 ,N

)
− P(Xi,h ≤ ri for all h= 1, 	 	 	 ,G− 1 and i= 1, 	 	 	 ,N )

∣∣
≤ sup
a∈R(G−1)N

∣∣∣∣∣P
(

1√
T

T∑
t=1

Zt ≤ a
)

− P(X ≤ a)

∣∣∣∣∣
≤ C
(

(logN )(1+2d1 )/(3d1 )

T 1/9 + (logN )7/6

T 1/9

)
= o(1). (A.4)

Here, the last inequality holds by Lemma A.13 and the asymptotic order follows from
N ≤ o(1)Tδ2 . Now, we have

P
(∃i ∈ 1, 	 	 	 ,N such that T̂i

(
g0
i

)
> cα,N (�̂i )

)
≤ P(∃i ∈ 1, 	 	 	 ,N such that T̂i

(
g0
i

)
> kᾱN ,N (�i )

)
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≤ P
(

max
1≤i≤N

max
h∈G\{g0

i }

(
Di(h) − kᾱN ,N (�i ) + ζNbLV∗

N

)
> 0
)

+ o(1).

≤ P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kᾱN ,N (�i ) + ζNbLV∗

N

)
> 0
)

+ sup
(r1, 			,rN )∈RN++

∣∣∣P( max
1≤i≤N

(
max

h∈G\{g0
i }
Di(h) − ri

)
> 0
)

− P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − ri

)
> 0
)∣∣∣+ o(1)

≤ P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kᾱN ,N (�i ) + ζNbLV∗

N

)
> 0
)

+ o(1), (A.5)

where the first inequality follows by (A.1), the second inequality follows by (A.3), the third
inequality holds because the sup bounds deviations for all choices of ri and, therefore,
in particular ri = kᾱN ,N (�i ) − ζNbLV∗

N , and the fourth inequality follows by (A.4).
Next, applying an anticoncentration argument eliminates the ζNbLV∗

N term on the
right-hand side of the previous display. To this end, let a > 0 and write kN ,i = kᾱN ,N (�i ).
Then

P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kN ,i

)
+ a > 0

)
− P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kN ,i

)
> 0
)

= P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kN ,i

)
≤ 0
)

− P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kN ,i

)
≤ −a
)

= P(X ≤ x+ a) − P(X ≤ x),

where

x= (kN ,1 − a, 	 	 	 , kN ,1 − a︸ ︷︷ ︸
G− 1 times

, kN ,2 − a, 	 	 	 , kN ,2 − a︸ ︷︷ ︸
G− 1 times

, 	 	 	 , kN ,N − a, 	 	 	 , kN ,N − a︸ ︷︷ ︸
G− 1 times

)

The Nasarov-type inequality from Lemma A.1 in Chernozhukov, Chetverikov, and Kato
(2017) applies with b= 1 and p= (G− 1)N and yields

P(X ≤ x+ a) − P(X ≤ x) ≤ CNasarova
√

log
(
N(G− 1)

)≤O(1)a logN .

Therefore,

P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kN ,i

)
+ a > 0

)
≤ P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kN ,i

)
> 0
)

+O(1)a
√

logN

Now, combining this inequality with (A.5) by putting a= ζNbLV∗
N yields

P
(

max
1≤i≤N

max
h∈G\{g0

i }
Di(h) − kᾱN ,N (�i ) + ζNbLV∗

N > 0
)

≤ P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kᾱN ,N (�i )

)
+ ζNbLV∗

N > 0
)

+ o(1)
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≤ P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − kᾱN ,N (�i )

)
> 0
)

+O(1)ζNb
LV∗
N

√
logN + o(1)

≤
∑

1≤i≤N
P
(

max
1≤h≤G−1

Xi,h − kᾱN ,N (�i )> 0
)

+ o(1)

= ᾱN + o(1)

= α+ 2CA.3
√
εN log(N/α) + o(1) → α.

Proof of Theorem 3. Since the marginal distributions of a multivariate t-distribution
with ν degrees of freedom are Student-t with ν degrees of freedom, it holds that

(tmax,ρ(�̂i(g0
i ),εN ),T−1 )−1

(
1 − α

N

)
≤ t−1

T−1

(
1 − α

(G− 1)N

)
by the union bound. Thus, replacing our critical value with the SNS critical values yields
a more conservative test. Now, inspection of the proof of Theorem 2 shows that Assump-
tion 1.9 is only used to argue that �̂i(g0

i ) in the definition of the critical value can be
replaced by the population quantity �i(g0

i ). Since we are replacing the critical value
that depends on �̂i(g0

i ) by a critical value that is independent of �̂i(g0
i ), this step is not

needed. Similarly, the SNS critical value is independent of the regularization sequence,
and the assumptions on εN are therefore unnecessary.

Proof of Theorem 4. The proof is similar to the proof of Theorem 2, replacing the
application of Lemma A.4 and Lemma A.14 by and application of Lemma A.16.

Proof of Theorem 5. Let

dUit (g, h) = (yit −w′
itθ

w − x′
itθg
)2 − (yit −w′

itθ
w − x′

itθh
)2

and dUi (h) = dUit (g0
i , h), d̂Ui (h) = d̂Ui (g0

i , h), d̄Ui (h) = N−1∑T
t=1 d

U
it (h), and ¯̂

dUi (h) =
N−1∑T

t=1 d̂
U
it (h). We note that the hypothesis selection part of the procedure does not

affect the theoretical analysis. This is because, here, we focus on size, and thus need to
consider only the behavior of the test statistics under {g0

i }Ni=1.
In the following, o(1) is understood such that a= o(1) if lim supN ,T→∞ |a| = 0.
Let J = {(i, h) | i ∈ {1, 	 	 	 ,N }, h ∈G\{g0

i }} and

J1 =
{

(i, h) | i ∈ {1, 	 	 	 ,N }, h ∈G\{g0
i

}
,

√
TEP
(
d̄Ui (h)

)
sUi,T (h)

>−cSNS
β,N

}
,

where (sUi (h))2 =∑T
t=1 var(dUit (h))/T = var(dUit (h)) (the equality follows by stationarity).

Roughly speaking, J1 is the set of pairs of units and groups that are difficult to distinguish
from the true group membership.
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Step 1 We first prove that infP∈PN P(max(i,h)∈Jc1
¯̂
dUi (h) ≤ 0)> 1−β−N−1 −CT−c−aθ,N .

Note that ¯̂
dUi (h)> 0 for some (i, h) ∈ Jc1 implies that

max
(i,h)∈J

√
T
( ¯̂
dUi (h) −EP

(
d̄Ui (h)

))
sUi,T (h)

> cSNS
β,N .

We observe that

sup
P∈PN

P

(
max

(i,h)∈J

√
T
( ¯̂
dUi (h) −EP

(
d̄Ui (h)

))
sUi (h)

> cSNS
β,N

)

≤ sup
P∈PN

P

(
max

(i,h)∈J

√
T
(
d̄Ui (h) −EP

(
d̄Ui (h)

))
sUi (h)

> cSNS
β,N − eUN ,1

)

+ sup
P∈PN

P

(
max

(i,h)∈J

∣∣∣∣
√
T
( ¯̂
dUi (h) − d̄Ui (h)

)
sUi (h)

∣∣∣∣> eUN ,1

)
,

where

eUN ,1 = C rθ,N

ιN + min
1≤i≤N

σi
.

The second term on the right-hand side converges to zero by (A.19) in Lemma A.19. Let
βN solve cSNS

βN ,N = cSNS
β,N − eUN ,1. To see that βN is well-defined, note that since cSNS

β,N → ∞
and eUN ,1 → 0, the right-hand side of the equation is diverging and, therefore, posi-

tive for large N . Moreover, cSNS
p,N ↓ 0 as p ↑ N/2. We thus establish the existence of βN .

Uniqueness follows from the strict monotonicity of the distribution function of the t-
distribution. Thus, we have

sup
P∈PN

P

(
max

(i,h)∈J

√
T
( ¯̂
dUi (h)

)−EP
(
d̄Ui (h)

)
)

sUi (h)
> cSNS

β,N

)

≤ sup
P∈PN

P

(
max

(i,h)∈J

√
T
(
d̄Ui (h)

)−EP
(
d̄Ui (h)

)
)

sUi (h)
> cSNS

βN ,N

)
+ o(1)

≤ 1 − (G− 1)N

(
cSNS
βN ,N

)+ o(1)

≤ βN + o(1)

= β+ o(1),

where the second inequality follows by Lemma A.13 and the Bonferroni inequality,
the third inequality holds because cSNS

βN ,N becomes sufficiently large as N → ∞ and
the tail of the t-distribution is heavier than that of the standard normal distribu-
tion (Lemma A.2 under the unidimensional case), and the last inequality follows by
the fact that |βN − β| ≤ CeUN ,1

√
log((G− 1)N/β) → 0. We now show that |βN − β| ≤
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CeUN ,1

√
log((G− 1)N/β). Let FT denote the distribution function of a t-distributed ran-

dom variable with T − 1 degrees of freedom, and let fT denote its density function. Let
c(β) = t−1

T−1(1−β/((G−1)N )) and eU∗
N ,1 =√(T − 1)/TeUN ,1. By the mean-value theorem,

βN

(G− 1)N
− β

(G− 1)N
= FT
(
c(β)
)− FT (c(βN )

)
= FT
(
c(β)
)− FT (c(β) − eUN ,1

)= fT (c∗)eU∗
N ,1,

where c∗ is a value between c(βN ) and c(β). Noting that c(βN ) < c(β) and that fT is
decreasing on the positive axis, rearranging this equality yields

|βN −β| ≤ fT
(
c(βN )

)
(G− 1)NeU∗

N ,1

≤ 2c(βN )(1 − FT
(
c(βN )

)
(G− 1)NeU∗

N ,1

≤ 4eU∗
N ,1βN

√
log
(
(G− 1)N/βN

)
≤ 4eUN ,1β

√
log
(
(G− 1)N/β

)+ 4eUN ,1|βN −β|
√

log
(
(G− 1)N/β

)
≤ 4eUN ,1

√
log
(
(G− 1)N/β

)+ o(|βN −β|),
where the second inequality follows from Lemma A.18, the third inequality follows from
Lemma A.17 (with εN = 1), the fourth inequality follows from eUN ,1 =√T/(T − 1)eU∗

N ,1 ≥
eU∗
N ,1 and βN ≥ β, the fifth inequality follows from eUN ,1

√
logN → 0. This recursion im-

plies

|βN −β| ≤ 5eUN ,1

√
log
(
(G− 1)N/β

)
forN large enough.

An implication of Step 1 is as follows. Let

N=
{
i ∈ {1, 	 	 	 ,N }

∣∣∣∣ max
h∈G\{g0

i }

√
TEP
(
d̄Ui (h)

)
sUi (h)

>−cSNS
β,N

}
.

Then

inf
P∈PN

P
(

max
i∈Nc

max
h∈G\{g0

i }

¯̂
dUi (h) ≤ 0

)
≥ 1 −β+ o(1).

Step 2 Next, we prove that infP∈PN P(
∏N
i=1 M̂i(g0

i ) ⊇ J1 ) ≥ 1 −β+ o(1), where
∏N
i=1 de-

notes theN-fold Cartesian product over the sets indexed by i. Here, we drop the g argu-
ment for simplicity of notation when arguments are g0

i and h.
We note that

sup
P∈PN

P

(
N∏
i=1

M̂i

(
g0
i

)
� J1

)

= sup
P∈PN

P

(
∃(i, h); D̂Ui (h) ≤ −2cSNS

βN ,N and

√
TEP
(
d̄Ui (h)

)
sUi (h)

>−cSNS
β,N

)
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≤ sup
P∈PN

P

(
∃(i, h);DUi (h) ≤ −2cSNS

β,N + eUN ,2 and

√
TEP
(
d̄Ui (h)

)
sUi (h)

>−cSNS
β,N

)
+ sup
P∈PN

P
(

max
1≤i≤N

max
h∈G\{g0

i }

∣∣D̂Ui (h) −DUi (h)
∣∣> eUN ,2

)
,

where

eUN ,2 = C rθ,N (
√
T +√logN )

ιN ∧ min
1≤i≤N

σi
.

By (A.20) in Lemma A.19, it holds that

sup
P∈PN

P
(

max
1≤i≤N

max
h∈G\{g0

i }

∣∣D̂Ui (h) − D̃Ui (h)
∣∣> eUN ,2

)
= o(1).

We observe

sup
P∈PN

P

(
∃(i, h);DUi (h) ≤ −2cSNS

β,N + eUN ,2 and

√
TEP
(
d̄Ui (h)

)
sUi (h)

>−cSNS
β,N

)

≤ sup
P∈PN

P

(
max

1≤i≤N
max

h∈G\{g0
i }

√
T (EP
(
d̄Ui (h) − d̄Ui (h)

)
sUi,T (h)

>
2s̃Ui (h) − sUi (h)

sUi (h)
cSNS
β,N − s̃Ui (h)

sUi (h)
eUN ,2

)
.

Note that s̃Ui (h)sUi (h)> 1 − r/2 is equivalent to

2s̃Ui (h) − sUi (h)

sUi (h)
> 1 − r.

Thus, we have

sup
P∈PN

P

(
max

1≤i≤N
max

h∈G\{g0
i }

√
T (EP
(
d̄Ui (h) − d̄Ui (h)

)
sUi,T (h)

>
2s̃Ui (h) − sUi (h)

sUi (h)
cSNS
β,N − s̃Ui (h)

sUi (h)
eUN ,2

)

≤ sup
P∈PN

P( max
1≤i≤N

max
h∈G\{g0

i }

√
T
(
EP
(
d̄Ui (h) − d̄Ui (h)

)
sUi,T (h)

> (1 − r )cSNS
β,N −AeUN ,2

)
+ sup
P∈PN

P

(∣∣∣∣ s̃Ui (h)

sUi (h)
− 1

∣∣∣∣> r/2
)

+ sup
P∈PN

P

(
max

1≤i≤N
max

h∈G\{g0
i }

∣∣∣∣ s̃Ui (h)

sUi (h)

∣∣∣∣>A),
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whereA> 1 is a fixed number. We now note that

s̃Ui (h)2 − sUi (h)2

= 1
T

T∑
t=1

{(
dUit (h)

)2 −EP
[(
dUit (h)

)2
)
]− (d̄Ui (h) −EP

[
dUit (h)

])
(d̄Ui (h) +EP

[
dUit (h)

]}
.

By Lemma A.15 and (A.24), it holds that

sup
P∈P

(
max

1≤i≤N

∣∣∣∣ s̃Ui (h)2 − sUi (h)2

σ2
i

∥∥δi(h)
∥∥2

∣∣∣∣≥ CT−1/2 logN
)

= o(1). (A.6)

Because sUi (h)> si(h) and si(h)/(σi‖δi(h)‖)) is bounded from above and from below by
Assumption 1.4, it holds that

sup
P∈P

(
max

1≤i≤N

∣∣∣∣ s̃Ui (h)

sUi (h)
− 1

∣∣∣∣≥ CT−1/4
√

logN
)

= o(1). (A.7)

We take r = T−1/4
√

logN . We then have

sup
P∈PN

P

(∣∣∣∣ s̃Ui (h)

sUi (h)
− 1

∣∣∣∣> r/2
)

+ sup
P∈PN

P

(
max

1≤i≤N
max

h∈G\{g0
i }

∣∣∣∣ s̃Ui (h)

sUi (h)

∣∣∣∣>A)= o(1).

Let β′
N be such that cSNS

β′
N ,N = (1 − r )cSNS

β,N −AeUN ,2. We then examine

sup
P∈PN

P( max
1≤i≤N

max
h∈G\{g0

i }

√
T
(
EP
(
d̄Ui (h) − d̄Ui (h)

)
sUi,T (h)

> (1 − r )cSNS
β,N −AeUN ,2

)
= sup
P∈PN

P( max
1≤i≤N

max
h∈G\{g0

i }

√
T
(
EP
(
d̄Ui (h) − d̄Ui (h)

)
sUi,T (h)

> cSNS
β′
N ,N

)
≤ 1 − (G− 1)N


(
cSNS
β′
N ,N

)+ o(1)

≤ β′
N + o(1)

= β+ o(1),

where the first inequality follows by Lemma A.13 and the Bonferroni inequality, the sec-
ond inequality holds because cSNS

β′
N ,N becomes sufficiently large as N → ∞ and the tail

of the t-distribution is heavier than that of the standard normal distribution (Lemma
A.2 under the unidimensional case), and the last inequality follows by the fact that
|β′
N −β| ≤ CeUN ,2

√
log((G− 1)N/β) → 0 shown in Step 1.

Summing up, we have

sup
P∈PN

P

(
N∏
i=1

M̂i

(
g0
i

)
� J1

)
≤ β+ o(1).
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An implication of Step 2 is as follows. Let

N̂ = {i ∈ {1, 	 	 	 ,N } |Mi

(
g0
i

) �= ∅}.
Then

inf
P∈PN

P(N̂ ⊇N) ≥ 1 −β+ o(1).

Step 3 First, consider the case in which J1 = ∅. In this case, the argument in Step 1
yields that

inf
P∈PN

P
(
ĝi = g0

i , ∀i)= inf
P∈PN

P
(

max
1≤i≤N

max
h∈G\{g0

i }
D̂Ui (h) ≤ 0

)
≥ 1 −β+ o(1).

The equality in the above display follows because ĝi minimizes the squared loss in the
two-step procedure (see (11) in the main text). Because {ĝi}Ni=1 is always included in the
confidence set, the limiting probability of the confidence set not including {g0

i }Ni=1 is less
than β< α.

Next, consider the case in which |J1| ≥ 1. Observe that

sup
P∈PN

P
({
g0
i

}N
i=1 /∈ Ĉsel,α,β

)
= sup
P∈PN

P

(
N⋃
i=1

({
T̂i
(
g0
i

)
> ĉα−2β,N̂ ,i

(
g0
i

)}∩ { max
h∈G\{g0

i }
D̂Ui (h)> 0

}))

≤ sup
P∈PN

P

(⋃
i∈N

{
T̂i
(
g0
i

)
> ĉα−2β,N̂ ,i

(
g0
i

)}∪ ⋃
i∈Nc

{
max

h∈G\{g0
i }
D̂Ui (h)> 0

})

≤ sup
P∈PN

P

(⋃
i∈N

{
T̂i
(
g0
i

)
> ĉα−2β,N̂ ,i

(
g0
i

)})+ sup
P∈PN

P

(⋃
i∈Nc

{
max

h∈G\{g0
i }
D̂Ui (h)> 0

})
.

By Step 1, we have

sup
P∈PN

P

(⋃
i∈Nc

{
max

h∈G\{g0
i }
D̂Ui (h)> 0

})
≤ β+ o(1).

By Step 2, we have

sup
P∈PN

P

(⋃
i∈N

{
T̂i
(
g0
i

)
> ĉα−2β,N̂ ,i

(
g0
i

)})

≤ sup
P∈PN

P

(
{N̂ ⊇ N} ∩

⋃
i∈N

{
T̂i
(
g0
i

)
> ĉα−2β,N̂ ,i

(
g0
i

)})+ sup
P∈PN

P
(
{N̂ � N}

)
≤ sup
P∈PN

P

(⋃
i∈N

{
T̂i
(
g0
i

)
> ĉα−2β,|N|

(
g0
i

)})+β+ o(1).
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Thus, we have

sup
P∈PN

P
({
g0
i

}N
i=1 /∈ Ĉsel,α,β

)≤ sup
P∈PN

P

(⋃
i∈N

{
T̂i
(
g0
i

)
> ĉα−2β,|N|,i

(
g0
i

)})+ 2β+ o(1).

Theorem 2 implies

lim sup
N ,T→∞

sup
P∈PN

P
({
g0
i

}N
i=1 /∈ Ĉsel,α,β

)≤ α.

A.3 Supporting lemmas

Lemma A.1. Let (φi )ni=1 denote a collection of independent, nonrandomized tests, and
suppose that

αi = nP(φi > 0)

with αmax := maxi=1, 			,n αi < 1. Then

αmin − α2
min
2

≤ P
(

max
i=1, 			,n

φi > 0
)

≤ αmax − α2
max
2

(
1 − αmax

3
+ 1
n

(
1 − αmax

n

)−2)
,

where αmin := mini=1, 			,n αi.

Proof. For fixed 0< x< 1, let x̄ denote a generic intermediate value between zero and
x. By a Taylor expansion around x= 0,

exp(−x) = 1 − x+ 1
2
x2 − 1

6
exp(−x̄)x3 ≥ 1 − x+ x2

(
1
2

− x

6

)
. (A.8)

Moreover,

log(1 − x) = 0 − x− x2

2(1 − x̄)2 ≥ −x− x2

2(1 − x)2 . (A.9)

Now, for 0<α< 1,(
1 − α

n

)n
= exp

(
n log
(

1 − α

n

))

≥ exp(−α) exp
(

−α
2

2n

(
1 − α

n

)−2)

≥
(

1 − α+ α2
(

1
2

− α

6

))(
1 − α2

2n

(
1 − α

n

)−2)

≥ 1 − α+ α2

2

(
1 − α

3

)
− α2

2n

(
1 − α

n

)−2

,
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where the first inequality uses (A.9), the second inequality uses (A.8) and the last in-
equality uses

1 − α+ α2
(

1
2

− α

6

)
≤ 1.

We conclude that

P
(

max
i=1, 			,n

φi > 0
)

= 1 − P
(

max
i=1, 			,n

φi = 0
)

≤ 1 −
(

1 − αmax

n

)n
≤ αmax − α2

max
2

(
1 − αmax

3

)
+ α2

max
2n

(
1 − αmax

n

)−2

.

Next, note that (
1 − α

n

)n
≤ exp(−α) ≤ 1 − α+ α2

2

and, therefore,

P
(

max
i=1, 			,n

φi > 0
)

= 1 − P
(

max
i=1, 			,n

φi = 0
)

≥ 1 −
(

1 − αmin

n

)n
≥ αmin − α2

min
2

.

Lemma A.2. Let V denote a correlation matrix, which is possibly singular, and let 
max,V

denote the distribution function of the maximum element of a multivariate normal ran-
dom vector with covariance matrix V . There is t∗ ∈ R independent of T and V such that
for all t > t∗,

tmax,V ,T−1

(√
T − 1
T

t

)
≤
max,V (t ).

Proof. Let x be a vector of random variables such that x ∼N(0, V ). By the definitions
of 
max,V and tmax,V ,T−1, we have


max,V (t ) = P(x ≤ t )
and

tmax,V ,T−1

(√
T − 1
T

t

)
= P
(

1√
z/(T − 1)

x ≤
√
T − 1
T

t

)
,

where an inequality such as x ≤ t is understood in an elementwise way, and z is a χ2

random variable with (T − 1) degrees of freedom that is independent of x.
Let r be the rank of V . We have the following eigendecomposition of V :

V =U�U ′,

where � is a diagonal matrix with nonnegative elements and U is a unitary matrix. We
arrange the elements ofU and � such that the first r diagonal elements of � are nonzero
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and its other diagonal elements are zero. Let �r be the r × r upper-left block of �. Let

x∗ =U ′x.

By construction, x∗ ∼ N(0, �). Because � is diagonal and only the first r diagonal ele-
ments are nonzero, the first r elements of x∗ can be nonzero, and its other elements are
zero. Let xr be the vector of the first r elements of x∗. Note that by the definition of �r ,
x∗ ∼N(0, �r ). This observation implies that

x =Ux∗ =Urxr ,
where Ur is the matrix that consists of the first r columns of U .

We can then write


max,V (t ) =
∫

x≤t
φ�r (xr )dxr

and

tmax,V ,T−1

(√
T − 1
T

t

)
=
∫

x≤
√
T−1
T t
f t�r ,T−1(xr )dxr =

∫
x≤t
f t,∗
�r ,T−1(xr )dxr ,

where

φ�r (xr ) = (2π )−r/2(det(�r )
)−1/2 exp

(
−1

2
x′
r�

−1
r xr

)
,

and

f t�r ,T−1(xr ) = (π(T − 1)
)−r/2(det(�r )

)−1/2
�

(
T + r − 1

2

)(
�

(
T − 1

2

))−1

×
(

1 + 1
T − 1

x′
r�

−1
r xr

)−(T+r−1)/2

is the density of the multivariate t distribution with scale matrix V and (T − 1) degrees
of freedom, and

f t,∗
�r ,T−1(xr ) = (πT )−r/2(det(�r )

)−1/2
�

(
T + r − 1

2

)(
�

(
T − 1

2

))−1

×
(

1 + 1
T

x′
r�

−1
r xr

)−(T+r−1)/2

.

We now identify a region in which f t,∗
�r ,T−1(xr )>φ�r (xr ). We have

log f�r ,T−1(xr ) − logφ�r (xr ) =AT − T + r − 1
2

log
(

1 + 1
T

x′
r�

−1
r xr

)
+ 1

2
x′
r�

−1
r xr ,

where

AT = − r
2

log(T ) + log�
(
T + r − 1

2

)
− log�

(
T − 1

2

)
+ r

2
log(2).
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By the property of the logarithm function and the linear function, there is a unique
value, denoted by x∗

T , such that f t,∗
�r ,T−1(xr ) ≤ φ�r (xr ) implies x′

r�
−1
r xr ≤ x∗

T . To see this,
we consider the two functions log(1 + y ) and ay + b, where a = T/(T + r − 1) and
b = 2AT/(T + r − 1). We want to find a value of y, say y ′, such that if y ≥ y ′ then
log(1 + y ) ≤ ay + b. Because log(1 + y ) is increasing and concave and a > 0 there are two
possibilities: (1) ay+b≥ log(1+y ) for any y and ay+b > log(1+y ) almost always; (2) the
curves log(1 + y ) and ay + b intersect with each other at two points, say y1 and y2 such
that log(1+y )< ay+b for y < y1, log(1+y ) ≥ ay+b for y1 ≤ y ≤ y2, and log(1+y )< ay+b
for y > y2. The first case does not apply to our situation because if this was the case, then
f t,∗
�r ,T−1(xr )>φ�r (xr ) almost always, contradicting the fact that both curves integrate to

one. Thus, the second case applies. The values of y1 and y2 can be obtained by solving
log(1 + y ) = ay + b. It holds y2 > 0 because the slope of log(1 + y ) at y2 must be smaller
than a and 0< a< 1.

Choose t large enough such that x′
r�

−1
r xr ≤ x∗

T implies x ≤ t. This choice of t depends
on T only through x∗

T . In particular, if x∗
T =O(1) then t can be chosen independently of

T . To prove this set, t =√x∗
T dim(x). Since V is a correlation matrix, its largest eigenvalue

is bounded by r and x′
r�

−1
r xr ≥ ‖xr‖2/r. Because x∗ is a vector whose first r elements are

those of xr and whose other elements are zero, ‖xr‖2 = ‖x∗‖2. By the definition of x∗, it
holds that ‖x∗‖2 = ‖U ′x‖2 = ‖x‖2, where the last equality uses the fact thatU is a unitary
matrix. Observe that if x � t so that an element of x exceeds t, then ‖x‖2 > t2 ≥ x∗

T r. This
implies that x′

r�
−1
r xr ≥ ‖x‖2/r > x∗

T r/r = x∗
T .

We have


max,�r (t ) − tmax,�r ,T−1

(√
T − 1
T

t

)
=
∫

x≤t
(
φ�r (xr ) − f t,∗

�r ,T−1(xr )
)
dxr

=
∫

x′
r�

−1
r xr≤x∗

T

(
φ�r (xr ) − f t,∗

�r ,T−1(xr )
)
dxr

+
∫

x≤t,x′
r�

−1
r xr>x∗

T

(
φ�r (xr ) − f t,∗V ,T−1(xr )

)
dxr ,

where the first integral on the right-hand side of the equation is taken over x′
r�

−1
r xr ≤ a

because {xr : x′
r�

−1
r xr ≤ x∗

T , x ≤ t} = {xr : x′
r�

−1
r xr ≤ x∗

T } by our choice of t. Because both
φ�r (xr ) and f t,∗

�r ,T−1(xr ) are densities and integrate to one, we have∫
x′
r�

−1
r xr≤x∗

T

(
φ�r (xr ) − f t,∗

�r ,T−1(xr )
)
dxr = −

∫
x′
r�

−1
r xr>x∗

T

(
φ�r (xr ) − f t,∗

�r ,T−1(xr )
)
dxr ,

Thus, for t large enough such that x′V −1x ≤ x∗
T implies x ≤ t, we have


max,�r (t ) − tmax,�r ,T−1

(√
T − 1
T

t

)
= −
∫

x′
r�

−1
r xr>x∗

T

(
φ�r (xr ) − f t,∗

�r ,T−1(xr )
)
dxr
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+
∫

x≤t,x′
r�

−1
r xr>x∗

T

(
φ�r (xr ) − f t,∗V ,T−1(xr )

)
dxr

=
∫

x�t,x′
r�

−1
r xr>x∗

T

(
φ�r (xr ) − f t,∗V ,T−1(xr )

)
dxr ≥ 0,

where the last inequality follows because x′
r�

−1
r xr > x∗

T implies φ�r (xr )> f t,∗V ,T−1(xr ).
Next, we evaluate the order of x∗

T . Note that x∗
T solves

1
2
x∗
T +AT = T + r − 1

2
log
(

1 + 1
T
x∗
T

)
.

We first show that AT = O(1) where the order is taken with respect to T . We separately
examine the cases of odd and even G. Suppose that r is even (we may assume r ≥ 2).
Then the recurrent relation of the Gamma function implies that

AT = − r

2
log(T ) +

r/2−1∑
j=0

log
(
T − 1

2
+ j
)

+ r

2
log(2)

= − r

2
log(T ) +

r/2−1∑
j=0

log(T − 1 + 2j) − r

2
log(2) + r

2
log(2)

=
r/2−1∑
j=0

log
(
T − 1 + 2j

T

)
=O(1)

as T → ∞. Next, we consider cases in which r is odd. For r = 1,AT =O(1) follows from

√
T

2

�

(
T − 1

2

)
�

(
T

2

) → 1. (A.10)

For r ≥ 3, by the recurrent relation of the Gamma function, we have

AT = − r

2
log(T ) +

r/2−1∑
j=0

log
(
T

2
+ j
)

+ log�
(
T

2

)
− log�

(
T − 1

2

)
+ r

2
log(2)

=
(r−1)/2−1∑

j=0

log
(
T + 2j
T

)
+ 1

2
log
(

2
T

)
+ log�

(
T

2

)
− log�

(
T − 1

2

)
.

By (A.10),

log�
(
T

2

)
− log
(
�

(
T − 1

2

)(
T

2

)1/2)
=O(1).

We have established that AT = O(1) for all r ≥ 1. To prove the lemma, it now suf-
fices to prove x∗

T = O(1). Suppose the opposite is true. Then there is a subsequence
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T1, 	 	 	 , Tk, 	 	 	 such that x∗
Tk

monotonically diverges to infinity. By the definition of x∗
T ,

we have

x∗
T +AT = (T + r − 1) log

(
1 + 1

T
x∗
T

)
.

For sufficiently large y, y/2> log(1 + y ). Therefore, for sufficiently large k, we have

x∗
Tk

+AT < T + r − 1
2T

x∗
Tk

Rearranging terms yields

T − r + 1
2T

x∗
Tk

+AT < 0,

contradicting thatAT =O(1) and x∗
Tk

diverging to infinity can both be true. This proves
x∗
T =O(1).

Lemma A.3 (Comparison bound for critical values with regularization). Let� and �̂ de-
note p × p correlation matrices and let ε, δ, and cω denote positive constants such that
4δ≤ ε≤ 4cω/3. Suppose that �ij >−1 + cω for all i, j = 1, 	 	 	 , p, and

‖�̂−�‖max ≤ δ.

Let X ∼N(0,�) and X̂ε ∼N(0, ρ(�̂, ε)). Then there is a universal constant C such that
for all a >

√
2,

P
(

max
j=1, 			,p

Xj > a
)

P
(

max
j=1, 			,p

X̂ε
j > a
) − 1 ≤ Ca√ε.

In particular, suppose that ĉα,N is the 1 − α/N quantile of maxj=1, 			,p X̂
ε
j and let cαN ,N

denote the 1 − αN/N quantile of maxj=1, 			,pXj , where

αN = α(1 + ĉα,NC
√
ε).

If ĉα,N >
√

2, then ĉα,N ≥ cαN ,N .

Proof. Write ε̂ = ε∗(�̂, ε). By the Cholesky decomposition, there is a lower-triangular
matrix L (possibly with some diagonal elements equal to zero) such that �̂ = LL′. �̂
can be interpreted as the covariance matrix of the random vector LW , where W is a
random vector in Rp with expectation zero and covariance matrix Ip. V = �̂+ ε̂Ip can
be interpreted as the covariance matrix of the random vector that is generated by adding
independent, component-specific noise Ei to the ith components of LW , where Ei has
mean zero and variance ε̂. Then ρ(�̂, ε̂) transforms V into a correlation matrix. Since
ρ(�̂, ε) and �̂ are both correlation matrices, ρ(�̂, ε)ii = �̂ii = 1, for all i= 1, 	 	 	 , p. Let �i
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denote the ith row of L. For i �= j, �̂ij is equal to the covariance between �′iW and �′jW ,
that is,

�̂ij = cov
(
�′iW , �′jW

)= �′i cov(W )�j = �′i�j .

Vij is equal to the covariance between �′iW +Ei and �′jW +Ej , that is,

Vij = cov
(
�′iW +Ei, �′jW +Ej

)= �′i cov(W )�j = �′i�j = �̂ij .

For i= 1, 	 	 	 , p,

Vii = cov
(
�′iW +Ei, �′iW +Ei

)= �′i cov(W )�i + ε̂= �̂ii + ε̂= 1 + ε̂.

Therefore, for i �= j,

ρ(�̂, ε)ij = Vij√
ViiVjj

= �̂ij

1 + ε̂ .

We now derive a bound on

�ij = (arcsin
(
ρ(�̂, ε)ij

)− arcsin(�ij )
)+

.

Since arcsin(·) is strictly increasing on (0, 1), a necessary condition for �ij �= 0 is
ρ(�̂, ε)ij > �ij . This condition bounds ρ(�̂, ε)ij and �ij away from −1 and 1. In par-
ticular,

�̂/(1 + ε̂) = ρ(�̂, ε)ij > �ij

implies

�̂ij > (1 + ε̂)�ij .

Since we also have �̂ij ≤�ij + δ, an �̂ij fulfilling both conditions exists only if

(1 + ε̂)�ij < �ij + δ

or equivalently if ε̂�ij < δ. Suppose that�ij > 1 − ε/2. Then we have

ε̂≥ ε− (1 − �̂ij )

≥ ε+�ij − δ− 1> ε+ (1 − ε/2) − δ− 1 = ε/2 − δ.

Therefore, ε̂�ij < δ is only possible if

(ε/2 − δ)(1 − ε/2)< δ.

This inequality contradicts ε≥ 4δ, and hence we can take �ij ≤ 1 − ε/2. Moreover, since
ε≤ 2cω, �ij ≥ −1 − cω ≥ −1 − ε/2.
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For an upper bound on ρ(�̂, ε)ij , we have

ρ(�̂, ε)ij = �̂ij

1 + ε̂ ≤ �̂ij

1 + ε− (1 − �̂ij )

≤ �̂ij

�̂ij + ε ≤ 1
1 + ε ≤ 1 − ε/2.

For a lower bound on ρ(�̂, ε)ij , suppose that �̂ij < 0, in which case,

ρ(�̂, ε)ij = �̂ij

1 + ε̂ ≥ �̂ij =�ij + �̂ij −�ij ≥ −1 + cω − δ≥ −1 + ε/2,

provided that cω−ε/2−δ≥ 0. This condition is satisfied if ε≤ 4cω/3. Therefore, we have
the bounds

−1 + ε/2 ≤�ij ≤ 1 − ε/2

and

−1 + ε/2 ≤ ρ(�̂ij , ε) ≤ 1 − ε/2.

We also have

ρ(�̂, ε)ij −�ij = �̂ij/(1 + ε) −�ij ≤ δ+ ε≤ 5ε.

By the intermediate value theorem, there is an intermediate value ρ∗ between −1 + ε/2
and 1 − ε/2 such that, on ρ(�̂, ε)ij > �ij ,

�ij = ρ(�̂, ε)ij −�ij√
1 − (ρ∗)2 ≤ 5ε√

1 − (1 − ε/2)2
≤ 5ε√

ε(1 − ε/4)
≤ 10

√
ε√

3
.

Let 
 denote the cumulative distribution function of a standard normal random vari-
able, and let φ denote its probability density function. Gordon’s lower bound (see, e.g.,
Duembgen (2010)) states that

1 −
(a)>
φ(a)

a
(
1 − 1/a2)

for a > 0, and thus 1 −
(a)> 1
2φ(a)/a for a >

√
2. Therefore,

P
(

max
j=1, 			,p

X̂j > a
)

≥ P(X̂ε
1 > a
)=1 −
(a)>

φ(a)
2a

=
exp
(

−a
2

2

)
a
√

8π

By Theorem 2.1 in Li and Shao (2002),

P
(

max
j=1, 			,p

Xj > a
)

− P
(

max
j=1, 			,p

X̂ε
j > a
)

= P
(

max
j=1, 			,p

X̂ε
j ≤ a
)

− P
(

max
j=1, 			,p

Xj ≤ a
)
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≤ 1
2π

exp
(

−a
2

2

) ∑
1≤i<j≤p

�ij ≤ 5

π
√

3
exp
(

−a
2

2

)√
ε

We may assume P(maxj=1, 			,pXj > a)>P(maxj=1, 			,p X̂
ε
j > a) since the statement of the

theorem holds trivially otherwise. Then, combining the bounds derived above, yields

P
(

max
j=1, 			,p

Xj > a
)

− P
(

max
j=1, 			,p

X̂ε
j > a
)

P
(

max
j=1, 			,p

X̂ε
j > a
) <

10a
√
ε√

3
.

This proves the first claim of the lemma. To prove the second claim of the lemma, note
that the first claim of the lemma implies

P
(

max
j=1, 			,p

Xj > ĉα,N

)
=
P
(

max
j=1, 			,p

Xj > ĉα,N

)
P
(

max
j=1, 			,p

X̂j > ĉα,N

)α/N
≤ α/N(1 + ĉα,NC

√
ε) ≤ αN/N .

Lemma A.4 (Consistency of �̂). Let PN be the set of probability measures, which satisfy
Assumptions 1 with identical choices of a, b, d1, and d2. Assume Tδ1 ≤N for some univer-
sal constant δ1 > 0. Let Assumption 2 hold and κN � Tρ where 0< ρ< (ϑ− 1)/(3ϑ− 2).
Let

bLV
N = rθ,N

ιN min
1≤i≤N

σi
+ T−c1 (logN )c2 + T−ρ,

where c1 > 0 and c2 > 0 are two constants defined in Lemma A.5 with c1 depending only
on (ρ,ϑ) and c2 depending only on (d2,ϑ). Assume that bLV

N → 0. For any sequence ζN
such that ζN → ∞ asN , T → ∞,

sup
P∈PN

P
(

max
1≤i≤N

max
(h,h∗ )∈G2

∣∣(�̂i(g0
i

))
h,h∗ − (�i(g0

i

))
h,h∗
∣∣> ζNbLV

N

)
= o(1).

Proof. Throughout the proof, let C, C ′, and C ′′ denote generic constants that do not

depend on P ∈ P. Let ξi(h) =√�i(h, h) and ξ̂i(h) =
√
�̂i(h, h).

We observe the following decomposition:

(�̂i )h,h∗ − (�i )h,h∗

= �̂i
(
h, h∗)

ξ̂i(h)ξ̂i
(
h∗) − �i

(
h, h∗)

ξi(h)ξi
(
h∗)

=
[(
ξi(h)

ξ̂i(h)

)(
ξi
(
h∗)

ξ̂i
(
h∗)
)

− 1
](

�̂i
(
h, h∗)

ξi(h)ξi
(
h∗) − �i

(
h, h∗)

ξi(h)ξi
(
h∗))

+
[(
ξi(h)

ξ̂i(h)

)(
ξi
(
h∗)

ξ̂i
(
h∗)
)

− 1
]
�i
(
h, h∗)

ξi(h)ξi
(
h∗) +( �̂i

(
h, h∗)

ξi(h)ξi
(
h∗) − �i

(
h, h∗)

ξi(h)ξi
(
h∗)).
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Noting that

∣∣�i(h, h)
∣∣= ∣∣∣∣∣σ2

i δi(h)′
(

1
T

T∑
t=1

T∑
s=1

EP
[
vitvisxitx

′
is

])
δi(h)

∣∣∣∣∣,
Assumption 1.4 implies that ξi(h)/(σi )‖δ(h)‖ (and ξi(h∗ )/(σi )‖δ(h∗ )‖) is bounded away
from zero. The inequality |

√
a− 1| ≤ |a− 1| for a > 0 implies that∣∣∣∣( ξ̂i(h)
ξi(h)

)
− 1

∣∣∣∣≤ ∣∣∣∣( �̂i(h, h)
�i(h, h)

)
− 1

∣∣∣∣.
Thus, we have ∣∣∣∣(ξi(h)

ξ̂i(h)

)(
ξi
(
h∗)

ξ̂i
(
h∗)
)

− 1

∣∣∣∣
=
∣∣∣∣(ξi(h)

ξ̂i(h)
− 1 + 1

)(
ξi
(
h∗)

ξ̂i
(
h∗)
)

− 1

∣∣∣∣
=
∣∣∣∣(ξi(h)

ξ̂i(h)
− 1
)(

ξi
(
h∗)

ξ̂i
(
h∗)
)

+
(
ξi
(
h∗)

ξ̂i
(
h∗) − 1

)∣∣∣∣
=
∣∣∣∣(ξi(h)

ξ̂i(h)
− 1
)(

ξi
(
h∗)

ξ̂i
(
h∗)
)

+
(
ξi
(
h∗)

ξ̂i
(
h∗) − 1

)∣∣∣∣
≤
∣∣∣∣�i(h, h)

�̂i(h, h)
− 1

∣∣∣∣(�i
(
h∗, h∗)

�̂i
(
h∗, h∗)

)1/2

+
∣∣∣∣�i
(
h∗, h∗)

�̂i
(
h∗, h∗) − 1

∣∣∣∣.
Now, it holds that∣∣∣∣�i(h, h)

�̂i(h, h)
− 1

∣∣∣∣≤ ∣∣∣∣ �̂i(h, h) −�i(h, h)
�i(h, h)

+ 1

∣∣∣∣−1∣∣∣∣ �̂i(h, h) −�i(h, h)
�i(h, h)

∣∣∣∣.
Provided that bLV

N → 0, we have∣∣∣∣(ξi(h)

ξ̂i(h)

)(
ξi
(
h∗)

ξ̂i
(
h∗)
)

− 1

∣∣∣∣<CζNbLV
N

with probability approaching one by Lemma A.5. Therefore, by Lemma A.5, the desired
result holds.

Lemma A.5 (Consistency of long-run variance estimator). Let PN be the set of probability
measures, which satisfy Assumption 1 with identical choices of a, b, d1, and d2. Assume
Tδ1 ≤ N for some universal constant δ1 > 0. Let Assumption 2 hold and κN � Tρ where
0< ρ< (ϑ− 1)/(3ϑ− 2). Let

bLV
N = rθ,N

ιN min
1≤i≤N

σi
+ T−c1 (logN )c2 + T−ρ,
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and assume that bLV
N → 0. Then there exist two constants c1 > 0 depending only on (ρ,ϑ)

and c2 > 0 depending only on (d2,ϑ), such that, for any sequence ζN such that ζN → ∞
asN , T → ∞,

sup
P∈PN

P

(
max

1≤i≤N
max

(h,h′ )∈G2

∣∣∣∣ �̂i
(
h, h′)−�i(h, h′)

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣> ζNbLV
N

)
= o(1).

Proof. To conserve notation, we introduce the shorthand

K
(j)
N =K

(
j

κN

)
and

u
(+j)
it = ui,t+max(0,j), v

(+j)
it = vi,t+max(0,j),

u
(−j)
it = ui,t−max(0,j), v

(−j)
it = vi,t−max(0,j),

w
(+j)
it =wi,t+max(0,j), x

(+j)
it = xi,t+max(0,j),

w
(−j)
it =wi,t−max(0,j), x

(−j)
it = xi,t−max(0,j)

and

xixi = 1
T

T∑
u=1

xiux
′
iu, xiwi = 1

T

T∑
u=1

xiuw
′
iu,

uixi = 1
T

T∑
u=1

uiuxiu, vixi = 1
T

T∑
u=1

viuxiu.

By the triangular inequality, we have

∣∣∣∣ �̂i
(
h, h′)−�i(h, h′)

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣≤ ∣∣∣∣ �̂i
(
h, h′)− �̃i(h, h′)

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣+ ∣∣∣∣ �̃i
(
h, h′)−�i(h, h′)

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣.
We examine each of the two terms on the right-hand side. We first examine the second
term and then the first term. We note that

�̃i
(
h, h′)=σ2

i δi(h)′
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
v

(+j)
it x

(+j)
it − vixi

)(
v

(−j)
it x

(−j)
it − vixi

)′
δi
(
h′)

and

�i
(
h, h′)= σ2

i δi(h)′
(

1
T

T∑
t=1

T∑
s=1

EP
[
vitvisxitx

′
is

])
δi
(
h′).
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Lemma A.6 gives the bound of

sup
i,h,h′

∣∣∣∣∣
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
v

(+j)
it x

(+j)
it − vixi

)(
v

(−j)
it x

(−j)
it − vixi

)′

−
(

1
T

T∑
t=1

T∑
s=1

EP
[
vitvisxitx

′
is

])∣∣∣∣∣
∞

.

We thus have

sup
P∈PN

P

(
max

1≤i≤N
max

(h,h′ )∈G2

∣∣∣∣ �̃i
(
h, h′)−�i(h, h′)

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣> ζ1,N
(
T−c1 (logN )c2 + T−ρ))= o(1),

where ζ1,N → ∞. Next, we derive the bound of

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥∣∣�̂i(h, h′)− �̃i(h, h′)∣∣.

First, note that

dit(h) = −σivitx′
it(θg0

i
− θh ) = −σivitx′

itδi(h),

and

d̄i(h) = −σivixi′(θg0
i
− θh ) = −σivixi′δi(h).

Let

ûit = yit − x′
it θ̂g0

i
−w′

it θ̂
w,

so that

ûit − uit = −x′
it(θ̂g0

i
− θg0

i
) −w′

it

(
θ̂w − θw).

With this notation,

d̂it
(
g0
i , h
)= d̂it(h) = − ûitx′

it δ̂i(h).

Consider the decomposition(
d̂it
(
g0, h
)− ¯̂

di
(
g0, h
))(
d̂is
(
g0, h′)− ¯̂

di
(
g0, h′))

− (dit(g0, h
)− d̄i(g0, h

))(
dis
(
g0, h′)− d̄i(g0, h′))

= (δ̂i(h) − δi(h)
)′(
ûitxit − 1

T

T∑
u=1

ûiuxiu

)(
ûisxis − 1

T

T∑
u=1

ûiuxiu

)′(
δ̂i
(
h′)− δi(h′))

− (δ̂i(h) − δi(h)
)′(
uitxit − 1

T

T∑
u=1

uiuxiu

)(
uisxis − 1

T

T∑
u=1

uiuxiu

)′(
δ̂i
(
h′)− δi(h′))
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+ (δ̂i(h) − δi(h)
)′(
ûitxit − 1

T

T∑
u=1

ûiuxiu

)(
ûisxis − 1

T

T∑
u=1

ûiuxiu

)′
δi
(
h′)

− (δ̂i(h) − δi(h)
)′(
uitxit − 1

T

T∑
u=1

uiuxiu

)(
uisxis − 1

T

T∑
u=1

uiuxiu

)′
δi
(
h′)

+ δi(h)′
(
ûitxit − 1

T

T∑
u=1

ûiuxiu

)(
ûisxis − 1

T

T∑
u=1

ûiuxiu

)′(
δ̂i
(
h′)− δi(h′))

− δi(h)′
(
uitxit − 1

T

T∑
u=1

uiuxiu

)(
uisxis − 1

T

T∑
u=1

uiuxiu

)′(
δ̂i
(
h′)− δi(h′))

+ δi(h)′
(
ûitxit − 1

T

T∑
u=1

ûiuxiu

)(
ûisxis − 1

T

T∑
u=1

ûiuxiu

)′
δi
(
h′)

− δi(h)′
(
uitxit − 1

T

T∑
u=1

uiuxiu

)(
uisxis − 1

T

T∑
u=1

uiuxiu

)′
δi
(
h′)

+ (δ̂i(h) − δi(h)
)′(
uitxit − 1

T

T∑
u=1

uiuxiu

)(
uisxis − 1

T

T∑
u=1

uiuxiu

)′(
δ̂i
(
h′)− δi(h′))

+ (δ̂i(h) − δi(h)
)′(
uitxit − 1

T

T∑
u=1

uiuxiu

)(
uisxis − 1

T

T∑
u=1

uiuxiu

)′
δi
(
h′)

+ δi(h)′
(
uitxit − 1

T

T∑
u=1

uiuxiu

)(
uisxis − 1

T

T∑
u=1

uiuxiu

)′(
δ̂i
(
h′)− δi(h′)).

Next, we consider the following decomposition:

ûitxit − 1
T

T∑
u=1

ûiuxiu = uitxit − 1
T

T∑
u=1

uiuxiu − (xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)

− (xitw′
it − xiwi

)(
θ̂w − θw).

We thus have(
ûitxit − 1

T

T∑
u=1

ûiuxiu

)(
ûisxis − 1

T

T∑
u=1

ûiuxiu

)′

= (uitxit − uixi )(uisxis − uixi )′

− (uitxit − uixi )
((
xisx

′
is − xixi

)
(θ̂g0

i
− θg0

i
) + (xisw′

is − xiwi
)(
θ̂w − θw))′

− ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
) + (xitw′

it − xiwi
)(
θ̂w − θw))(uisxis − uixi )′

+ ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
) + (xitw′

it − xiwi
)(
θ̂w − θw))
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× ((xisx′
is − xixi

)
(θ̂g0

i
− θg0

i
) + (xisw′

is − xiwi
)(
θ̂w − θw))′

= (uitxit − uixi )(uisxis − uixi )′

− (uitxit − uixi )
((
xisx

′
is − xixi

)
(θ̂g0

i
− θg0

i
)
)′

− (uitxit − uixi )
((
xisw

′
is − xiwi

)(
θ̂w − θw))′

− ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)
(uisxis − uixi )′

− ((xitw′
it − xiwi

)(
θ̂w − θw))(uisxis − uixi )′

+ ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)((
xisx

′
is − xixi

)
(θ̂g0

i
− θg0

i
)
)′

+ ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)((
xisw

′
is − xiwi

)(
θ̂w − θw))′

+ ((xitw′
it − xiwi

)(
θ̂w − θw))((xisx′

is − xixi
)
(θ̂g0

i
− θg0

i
)
)′

+ ((xitw′
it − xiwi

)(
θ̂w − θw))((xisw′

is − xiwi
)(
θ̂w − θw))′.

Combining these two decomposition results, we have(
d̂it
(
g0, h
)− ¯̂

di
(
g0, h
))(
d̂is
(
g0, h′)− ¯̂

di
(
g0, h′))

− (dit(g0, h
)− d̄i(g0, h

))(
dis
(
g0, h′)− d̄i(g0, h′))

= (δ̂i(h) − δi(h)
)′(−(uitxit − uixi )

((
xisx

′
is − xixi

)
(θ̂g0

i
− θg0

i
)
)′

− (uitxit − uixi )
((
xisw

′
is − xiwi

)(
θ̂w − θw))′

− ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)
(uisxis − uixi )′

− ((xitw′
it − xiwi

)(
θ̂w − θw))(uisxis − uixi )′

+ ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)((
xisx

′
is − xixi

)
(θ̂g0

i
− θg0

i
)
)′

+ ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)((
xisw

′
is − xiwi

)(
θ̂w − θw))′

+ ((xitw′
it − xiwi

)(
θ̂w − θw))((xisx′

is − xixi
)
(θ̂g0

i
− θg0

i
)
)′

+ ((xitw′
it − xiwi

)(
θ̂w − θw))((xisw′

is − xiwi
)(
θ̂w − θw))′)(δ̂i(h′)− δi(h′))

+ (δ̂i(h) − δi(h)
)′(−(uitxit − uixi )

((
xisx

′
is − xixi

)
(θ̂g0

i
− θg0

i
)
)′

− (uitxit − uixi )
((
xisw

′
is − xiwi

)(
θ̂w − θw))′

− ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)
(uisxis − uixi )′

− ((xitw′
it − xiwi

)(
θ̂w − θw))(uisxis − uixi )′

+ ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)((
xisx

′
is − xixi

)
(θ̂g0

i
− θg0

i
)
)′

+ ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)((
xisw

′
is − xiwi

)(
θ̂w − θw))′
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+ ((xitw′
it − xiwi

)(
θ̂w − θw))((xisx′

is − xixi
)
(θ̂g0

i
− θg0

i
)
)′

+ ((xitw′
it − xiwi

)(
θ̂w − θw))((xisw′

is − xiwi
)(
θ̂w − θw))′)δi(h′)

+ δi(h)′
(−(uitxit − uixi )

((
xisx

′
is − xixi

)
(θ̂g0

i
− θg0

i
)
)′

− (uitxit − uixi )
((
xisw

′
is − xiwi

)(
θ̂w − θw))′

− ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)
(uisxis − uixi )′

− ((xitw′
it − xiwi

)(
θ̂w − θw))(uisxis − uixi )′

+ ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)((
xisx

′
is − xixi

)
(θ̂g0

i
− θg0

i
)
)′

+ ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)((
xisw

′
is − xiwi

)(
θ̂w − θw))′

+ ((xitw′
it − xiwi

)(
θ̂w − θw))((xisx′

is − xixi
)
(θ̂g0

i
− θg0

i
)
)′

+ ((xitw′
it − xiwi

)(
θ̂w − θw))((xisw′

is − xiwi
)(
θ̂w − θw))′)(δ̂i(h′)− δi(h′))

+ δi(h)′
(−(uitxit − uixi )

((
xisx

′
is − xixi

)
(θ̂g0

i
− θg0

i
)
)′

− (uitxit − uixi )
((
xisw

′
is − xiwi

)(
θ̂w − θw))′

− ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)
(uisxis − uixi )′

− ((xitw′
it − xiwi

)(
θ̂w − θw))(uisxis − uixi )′

+ ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)((
xisx

′
is − xixi

)
(θ̂g0

i
− θg0

i
)
)′

+ ((xitx′
it − xixi

)
(θ̂g0

i
− θg0

i
)
)((
xisw

′
is − xiwi

)(
θ̂w − θw))′

+ ((xitw′
it − xiwi

)(
θ̂w − θw))((xisx′

is − xixi
)
(θ̂g0

i
− θg0

i
)
)′

+ ((xitw′
it − xiwi

)(
θ̂w − θw))((xisw′

is − xiwi
)(
θ̂w − θw))′)δi(h′)

+ (δ̂i(h) − δi(h)
)′

(uitxit − uixi )(uisxis − uixi )′
(
δ̂i
(
h′)− δi(h′))

+ (δ̂i(h) − δi(h)
)′

(uitxit − uixi )(uisxis − uixi )′δi
(
h′)

+ δi(h)′(uitxit − uixi )(uisxis − uixi )′
(
δ̂i
(
h′)− δi(h′)).

It thus holds that

�̂i
(
h, h′)− �̃i(h, h′)
= −(δ̂i(h) − δi(h)

)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)
× ((x(−j)

it x
(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′(
δ̂i(h) − δi(h)

)



Supplementary Material Confidence set for group membership 27

− (δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)
× ((x(−j)

it w
(−j)
it

′ − xiwi
)(
θ̂w − θw))′(δ̂i(h) − δi(h)

)
− (δ̂i(h) − δi(h)

)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× (ui,t−max(0,j)x
(−j)
it − uixi

)′(
δ̂i(h) − δi(h)

)
− (δ̂i(h) − δi(h)

)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× (u(−j)
it x

(−j)
it − uixi

)′(
δ̂i(h) − δi(h)

)
+ (δ̂i(h) − δi(h)

)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′(
δ̂i(h) − δi(h)

)
+ (δ̂i(h) − δi(h)

)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′(δ̂i(h) − δi(h)

)
+ (δ̂i(h) − δi(h)

)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′(
δ̂i(h) − δi(h)

)
+ (δ̂i(h) − δi(h)

)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′ )(δ̂i(h′)− δi(h′))

− (δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)
× ((x(−j)

it x
(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′
δi(h)

− (δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)
× ((x(−j)

it w
(−j)
it

′ − xiwi
)(
θ̂w − θw))′δi(h)



28 Dzemski and Okui Supplementary Material

− (δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× (u(−j)
it x

(−j)
it − uixi

)′
δi(h)

− (δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× (u(−j)
it x

(−j)
it − uixi

)′
δi(h)

+ (δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′
δi(h)

+ (δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′δi(h)

+ (δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′
δi(h)

+ (δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′ )δi(h′)

− δi(h)′
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)
× ((x(−j)

it x
(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′(
δ̂i(h) − δi(h)

)
− δi(h)′

T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)
× ((x(−j)

it w
(−j)
it

′ − xiwi
)(
θ̂w − θw))′(δ̂i(h) − δi(h)

)
− δi(h)′

T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× (u(−j)
it x

(−j)
it − uixi

)′(
δ̂i(h) − δi(h)

)



Supplementary Material Confidence set for group membership 29

− δi(h)′
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× (u(−j)
it x

(−j)
it − uixi

)′(
δ̂i(h) − δi(h)

)
+ δi(h)′

T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′(
δ̂i(h) − δi(h)

)
+ δi(h)′

T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′(δ̂i(h) − δi(h)

)
+ δi(h)′

T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′(
δ̂i(h) − δi(h)

)
+ δi(h)′

T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′ )(δ̂i(h′)− δi(h′))

+ δi(h)′
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(−(u(+j)
it x

(+j)
it − uixi

)
× ((x(−j)

it x
(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′
δi(h)

− δi(h)′
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)
× ((x(−j)

it w
(−j)
it

′ − xiwi
)(
θ̂w − θw))′δi(h)

− δi(h)′
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× (u(−j)
it x

(−j)
it − uixi

)′
δi(h)

− δi(h)′
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× (u(−j)
it x

(−j)
it − uixi

)′
δi(h)



30 Dzemski and Okui Supplementary Material

+ δi(h)′
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′
δi(h)

+ δi(h)′
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′δi(h)

+ δi(h)′
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′
δi(h)

+ δi(h)′
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′ )δi(h′)

+ (δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)
× (u(−j)

it x
(−j)
it − uixi

)′(
δ̂i
(
h′)− δi(h′))

+ (δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)
× (u(−j)

it x
(−j)
it − uixi

)′
δi
(
h′)

+ δi(h)′
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)
× (u(−j)

it x
(−j)
it − uixi

)′(
δ̂i
(
h′)− δi(h′)).

We examine each term. For vector a, let ap denote the pth element of a. Let dx be the

dimension of xit . With probability at least aθ,N , it holds

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′(
δ̂i(h) − δi(h)

)∣∣∣∣∣



Supplementary Material Confidence set for group membership 31

≤Cr2
θ,Nι

−2
N

1
σi

∣∣∣∣∣
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
v

(j)
it x

(+j)
it − vixi

)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′∣∣∣∣∣

∞

≤Cr3
θ,Nι

−2
N

(
min

1≤i≤N
σi

)−1 dx∑
p=1

∣∣∣∣∣
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
v

(j)
it x

(+j)
it − vixi

)

×
(
xi,t−max(0,j),px

(−j)
it

′ − 1
T

T∑
u=1

xiu,px
′
iu

)∣∣∣∣∣
∞

≤Cr3
θ,Nι

−2
N

dx∑
p=1

(
min

1≤i≤N
σi

)−1
∣∣∣∣∣
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
v

(j)
it x

(+j)
it − vixi

)

×
(
xi,t−max(0,j),px

(−j)
it

′ − 1
T

T∑
u=1

xiu,px
′
iu

)

− 1
T

T∑
t=1

T∑
s=1

EP
[
vitxit
(
xis,pxis −Ep(xis,pxis )

)]∣∣∣∣∣
∞

+Cr3
θ,Nι

−2
N

(
min

1≤i≤N
σi

)−1 dx∑
p=1

∣∣∣∣∣ 1T
T∑
t=1

T∑
s=1

EP
[
vitxit
(
xis,pxis −Ep(xis,pxis )

)]∣∣∣∣∣
∞

Applying Lemma A.6 to∣∣∣∣∣
T−1∑

j=−T+1

K
(j)
N

1
T

T∑
t=|j|+1

(
v

(j)
it x

(+j)
it − vixi

)(
xi,t−max(0,j),px

(−j)
it

′ − 1
T

T∑
u=1

xiu,px
′
iu

)

− 1
T

T∑
t=1

T∑
s=1

EP
[
vitxit
(
xis,pxis −Ep(xis,pxis )

)]∣∣∣∣∣
∞

and Lemma A.11 to

1
T

T∑
t=1

T∑
s=1

EP
[
vitxit
(
xis,pxis −Ep(xis,pxis )

)]
we obtain

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥ |

(
δ̂i(h) − δi(h)

)′ T−1∑
j=−T+1

K
(j)
N

1
T

{
T∑

t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′(
δ̂i(h) − δi(h)

)
|

}



32 Dzemski and Okui Supplementary Material

�P r3
θ,Nι

−2
N T

−c1
(
log
(
N(G− 1)

))c2
(

min
1≤i≤N

σi

)−1

+ r3
θ,Nι

−2
N T

−ρ( min
1≤i≤N

σi

)−1

+ r3
θ,Nι

−2
N

(
min

1≤i≤N
σi

)−1

�P r3
θ,Nι

−2
N

(
min

1≤i≤N
σi

)−1
,

where �P signifies that for AN and BN , AN �P BN if supP∈PN P(AN > BNζN ) = o(1)

for any ζN → ∞, and the last �P follows by bLV
N → 0. Following the same argument, we

have

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

1
T

{
T∑

t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′(δ̂i(h) − δi(h)

)}∣∣∣∣∣
�P r3

θ,Nι
−2
N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

{((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× (u(−j)
it x

(−j)
it − uixi

)′(
δ̂i(h) − δi(h)

)}∣∣∣∣∣
�P r3

θ,Nι
−2
N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× (u(−j)
it x

(−j)
it − uixi

)′(
δ̂i(h) − δi(h)

)∣∣∣∣∣
�P r3

θ,Nι
−2
N

(
min

1≤i≤N
σi

)−1
,



Supplementary Material Confidence set for group membership 33

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′(
δ̂i(h) − δi(h)

)∣∣∣∣∣
�P r4

θ,Nι
−2
N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′(δ̂i(h) − δi(h)

)∣∣∣∣∣
�P r4

θ,Nι
−2
N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′(
δ̂i(h) − δi(h)

)∣∣∣∣∣
�P r4

θ,Nι
−2
N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′ )(δ̂i(h′)− δi(h′))∣∣∣∣∣



34 Dzemski and Okui Supplementary Material

�P r4
θ,Nι

−2
N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′
δi(h)

∣∣∣∣∣
�P r2

θ,Nι
−1
N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′δi(h)

∣∣∣∣∣
�P r2

θ,Nι
−1
N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× (u(−j)
it x

(−j)
it − uixi

)′
δi(h)

∣∣∣∣∣
�P r2

θ,Nι
−1
N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))



Supplementary Material Confidence set for group membership 35

× (u(−j)
it x

(−j)
it − uixi

)′
δi(h)

∣∣∣∣∣
�P r2

θ,Nι
−1
N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′
δi(h)

∣∣∣∣∣
�P r3

θ,Nι
−1
N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′δi(h)

∣∣∣∣∣
�P r3

θ,Nι
−1
N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′
δi(h)

∣∣∣∣∣
�P r3

θ,Nι
−1
N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N



36 Dzemski and Okui Supplementary Material

× 1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′ )δi(h′)∣∣∣∣∣

�P r3
θ,Nι

−1
N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − 1

T

T∑
u=1

uiuxiu

)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′(
δ̂i(h) − δi(h)

)∣∣∣∣∣
�P r2

θ,Nι
−1
N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − 1

T

T∑
u=1

uiuxiu

)

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′(δ̂i(h) − δi(h)

)∣∣∣∣∣
�P r2

θ,Nι
−1
N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

×
(
u

(−j)
it x

(−j)
it − 1

T

T∑
u=1

uiuxiu

)′(
δ̂i(h) − δi(h)

)∣∣∣∣∣
�P r2

θ,Nι
−1
N

(
min

1≤i≤N
σi

)−1
,



Supplementary Material Confidence set for group membership 37

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

×
(
u

(−j)
it x

(−j)
it − 1

T

T∑
u=1

uiuxiu

)′(
δ̂i(h) − δi(h)

)∣∣∣∣∣
�P r2

θ,Nι
−1
N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′(
δ̂i(h) − δi(h)

)∣∣∣∣∣
�P r3

θ,Nι
−1
N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′(δ̂i(h) − δi(h)

)∣∣∣∣∣
�P r3

θ,Nι
−1
N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′(
δ̂i(h) − δi(h)

)∣∣∣∣∣



38 Dzemski and Okui Supplementary Material

�P r3
θ,Nι

−1
N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′ )(δ̂i(h′)− δi(h′))∣∣∣∣∣

�P r3
θ,Nι

−1
N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥ |δi(h)′

T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

(−
(
u

(+j)
it x

(+j)
it − 1

T

T∑
u=1

uiuxiu

)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′
δi(h)|

�P rθ,N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − 1

T

T∑
u=1

uiuxiu

)

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′δi(h)

∣∣∣∣∣
�P rθ,N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

×
(
u

(−j)
it x

(−j)
it − 1

T

T∑
u=1

uiuxiu

)′
δi(h)

∣∣∣∣∣



Supplementary Material Confidence set for group membership 39

�P rθ,N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

×
(
u

(−j)
it x

(−j)
it − 1

T

T∑
u=1

uiuxiu

)′
δi(h)

∣∣∣∣∣
�P rθ,N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′
δi(h)

∣∣∣∣∣
�P r2

θ,N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it x

(+j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′δi(h)

∣∣∣∣∣
�P r2

θ,N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))



40 Dzemski and Okui Supplementary Material

× ((x(−j)
it x

(−j)
it

′ − xixi
)
(θ̂g0

i
− θg0

i
)
)′
δi(h)

∣∣∣∣∣
�P r2

θ,N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

((
x

(+j)
it w

(+j)
it

′ − xiwi
)(
θ̂w − θw))

× ((x(−j)
it w

(−j)
it

′ − xiwi
)(
θ̂w − θw))′ )δi(h′)∣∣∣∣∣

�P r2
θ,N

(
min

1≤i≤N
σi

)−2
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)
× (u(−j)

it x
(−j)
it − uixi

)′(
δ̂i
(
h′)− δi(h′))∣∣∣∣∣

�P r2
θ,Nι

−2
N

(
min

1≤i≤N
σi

)−1
,

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣(δ̂i(h) − δi(h)
)′ T−1∑
j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)
× (u(−j)

it x
(−j)
it − uixi

)′
δi
(
h′)∣∣∣∣∣

�P rθ,Nι
−1
N

(
min

1≤i≤N
σi

)−1
,

and

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣δi(h)′
T−1∑

j=−T+1

K
(j)
N

× 1
T

T∑
t=|j|+1

(
u

(+j)
it x

(+j)
it − uixi

)
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× (u(−j)
it x

(−j)
it − uixi

)′(
δ̂i
(
h′)− δi(h′))∣∣∣∣∣

�P rθ,Nι
−1
N

(
min

1≤i≤N
σi

)−1
.

To sum up, we have

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥∣∣�̂i(h, h′)− �̃i(h, h′)∣∣

�P r3
θ,Nι

−2
N

(
min

1≤i≤N
σi

)−1 + r4
θ,Nι

−2
N

(
min

1≤i≤N
σi

)−2 + r2
θ,Nι

−1
N

(
min

1≤i≤N
σi

)−1

+ r3
θ,Nι

−1
N

(
min

1≤i≤N
σi

)−2 + rθ,N

(
min

1≤i≤N
σi

)−1 + r2
θ,N

(
min

1≤i≤N
σi

)−2

+ r2
θ,Nι

−2
N

(
min

1≤i≤N
σi

)−1 + rθ,Nι
−1
N

(
min

1≤i≤N
σi

)−1

�P rθ,Nι
−1
N

(
min

1≤i≤N
σi

)−1
,

where the last �P follows by bLV
N → 0. We conclude that we have

sup
i,h,h′

1

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥∣∣�̂i(h, h′)−�i(h, h′)∣∣

�P rθ,Nι
−1
N

(
min

1≤i≤N
σi

)−1 + T−c1 (logN )c2 + T−ρ.

Lemma A.6. Let ξit be a random vector consisting of distinct elements of vitxit , xitx′
it −

EP (xitx′
it ), and witx′

it −EP (witx′
it ). Let PN be the set of probability measures which satisfy

Assumption 1.6 and Assumption 1.7 with identical choices of a, b, d1, and d2. Let ζN be
a sequence satisfying ζN → ∞ as N → ∞. Assume Tδ1 ≤ N for some universal constant
δ1 > 0. Let Assumption 2 hold and κN � Tρ where 0< ρ < (ϑ− 1)/(3ϑ− 2). Then there
exist two constants c1 > 0 depending only on (ρ,ϑ) and c2 > 0 depending only on (d2,ϑ),
such that

sup
P∈PN

P

(
sup

1≤i≤N

∣∣∣∣∣
T−1∑

j=−T+1

K

(
j

κN

)

× 1
T

T∑
t=|j|+1

(
ξi,t+min(0,j) − 1

T

T∑
u=1

ξiu

)(
ξi,t−max(0,j) − 1

T

T∑
u=1

ξiu

)′

−
(

1
T

T∑
t=1

T∑
s=1

EP
[
ξitξ

′
is

])∣∣∣∣∣
∞

> ζN
(
T−c1 (logN )c2 + T−ρ))= o(1).
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Proof. We apply Theorem 11(i) of Chang, Chen, and Wu (2024). In their theorem, Bn
is the bound for the Orlicz norm. In our case, this bound depends only on K, a, and
d1 under Assumption 1.6 (by Lemma 8.1 in Kosorok (2008)) and Lemma A.7. Their γ1

is equal to one in our case by Assumption 1.6. By Lemma A.9, γ2 in Chang, Chen, and
Wu (2024) depends only on d2. The conditions for the kernel and the bandwidth are as-
sumed. Thus, Theorem 11(i) in Chang, Chen, and Wu (2024) can be applied. Note that
their results are stated in terms of stochastic order, but an inspection of their proof re-
veals that the constant terms hidden in the stochastic order depend only on the con-
stants in the assumptions.

Lemma A.7 (Tail bounds for functions). Suppose that two random variances X1 and X2

satisfy P(|Xa| > x) ≤ Ca exp(−baxda ) for a = 0, 1, then P(|X1X2| > x) ≤ C exp(−bxd ) for
some positive constants C, b, and d2, and P(|X1 + X2| > x) ≤ C ′ exp(−b′xd′

) for some
constants C ′, b′, and d′.

Proof. The first statement follows because

P
(|X1X2|> x

)≤ P(|X1|>
√
x
)+ P(|X2|>

√
x
)

≤ C1 exp
(−b1x

d1/2)+C2 exp
(−b2x

d2/2)
≤ 2 max(C1, C2 ) exp

(−min(b1, b2 )zmin(d1,d2 )/2).
For the second statement, we have

P
(|X1 +X2|> x

)≤ P(|X1|> x/2
)+ P(|X2|> x/2

)
≤ C1 exp

(−b1/2d1xd1
)+C2 exp

(−b2/2d2xd2
)

≤ 2 max(C1, C2 ) exp
(−min

(
b1/2d1 , b2/2d2

)
xmin(d1,d2 )).

Lemma A.8 (Tail bounds for norms). LetX1 andX2 denote two random vectors such that
there are constantsK, b, and d such that for any componentY ofX1 andX2, P(|Y |> x) ≤
C exp(−bxd ). Then there are constants C ′, b′, and d′ such that

P
(‖X1‖> x

)≤ C ′ exp
(−b′xd′)

,

P
(‖X1‖2 > x

)≤ C ′ exp
(−b′xd′)

,

P
(‖X1‖‖X2‖> x

)≤ C ′ exp
(−b′xd′)

.

Proof. The second statement follows from the first statement. The third statement fol-
lows from the second statement of this lemma and the first statement of Lemma A.7. It
remains to prove the first statement. Let X1 = (Y1, 	 	 	 , Yp ) and note that P(|Y 2

j |> x) ≤
C exp(−bxd/2 ) for j = 1, 	 	 	 , p. Now, the first statement follows from writing

‖X1‖2 = Y 2
1 + · · ·Y 2

p

and applying the second statement of Lemma A.7 repeatedly.
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Lemma A.9 (Functions of mixing sequences). Suppose that (xit , wit , vit ) is a strong mix-
ing sequence over t with mixing coefficients supi ai[t] ≤ C exp(−atd ) for constants C, a,
and d, then so is g(xit , wit , vit ) where g is a measurable function.

Proof. The proof follows the argument in the proof of Theorem 14.1 in Davidson
(1994).

Lemma A.10 (Large quantiles of the normal distribution). Let X denote a standard nor-
mal vector with p×p correlation matrix� and let 0 ≤ d < 2. Let cα,N denote the 1 −α/N
quantile of X . Then there is a constant N0 that depends only on α and d such that for
α≤ α≤ 1 andN ≥N0,√

d log(N/α) ≤ cα,N ≤√2 logp+√2 log(N/α).

Proof. The upper bound is given in Lemma D.4 in Chernozhukov, Chetverikov, and
Kato (2019). To prove the lower bound put aN =√d log(N/α). Let 
 denote the cumu-
lative distribution function of a standard normal random variable, and let φ denote its
probability density function. Gordon’s lower bound (see, e.g., Duembgen (2010)) states
that

1 −
(x)>
φ(x)

x
(
1 − 1/x2)

for x > 0, and thus 1 −
(x)> 1
2φ(x)/x for x >

√
2. Therefore,

P
(

max
j=1, 			,p

Xj > aN

)
≥ P(X1 > aN )

= 1 −
(aN )

>
φ(aN )

2aN
=

exp
(

−a
2
N

2

)
aN

√
8π

= (α/N )d/2

aN
√

8π
= α/N

(
(N/α)1−d/2

aN
√

8π

)

≥ α/N
(

N1−d/2√
8dπ log(N/α)

)
≥ α/N ,

where the last inequality holds for N ≥ N0 and N0 is chosen such that N ≥ N0

implies that N1−d/2/
√

8dπ log(N/α) ≥ 1. Such an N0 can be found since N1−d/2/√
8dπ log(N/α) → ∞. The inequality P(maxj=1, 			,pXj > aN ) > α/N implies cα,N ≥

aN .

Lemma A.11 (Long-run variance is finite). Let ξit denote any element of the vec-
tors vitxit , vec(xitx′

it ) − EP vec(xitx′
it ), vec(witx′

it ) − EP vec(witx′
it ), and vec(v2

itxitx
′
it ) −

EP vec(v2
itxitx

′
it ), or any of the random variables ‖xit‖2, ‖xit‖‖wit‖, |vit |‖xit‖, ‖xit‖4,

‖x2
it‖‖w2

it‖, and |v2
it |‖x2

it‖. Let PN be a set of probability measures, which satisfy Assump-
tions 1.6–1.8 with identical choices of a, b, d1, and d2. Let

s2
i,T (P ) = max

1≤t≤T

(
EP
(
ξ2
it

)+ 2
∑
s>t

∣∣E(ξitξis )
∣∣).



44 Dzemski and Okui Supplementary Material

Then there exists a constant Cξ <∞ such that

lim sup
N ,T→∞

sup
P∈PN

max
1≤i≤N

s2
i,T (P )<Cξ.

In particular,

lim sup
N ,T→∞

sup
P∈PN

max
1≤i≤N

∣∣∣∣∣varP

(
1√
T

T∑
t=1

ξit

)∣∣∣∣∣<Cξ.

Proof. Lemma A.7 and Lemma A.8 imply P(|ξit| > z) < exp(−(z/aξ )d1,ξ ) for some aξ
and d1,ξ, which in turns implies that EP (ξmit )<Mξp for some universal constantMξ <∞
for any integer m by Lemma A.12. Moreover, Lemma A.9 implies that ξit is an α-mixing
sequence with mixing coefficient supi αi,ξ[k] ≤ exp(1 − bξk

d2,ξ ). Thus, by the argument
in Galvao and Kato (2014, Section C.1), which is an application of Davydov (1968), it
holds that, for any s > t and any integerm,∣∣EP (ξitξis )

∣∣≤ 12
(
EP
(|ξit |m))2/m(αi,ξ[s− t])1−2/m

.

In particular,

2
∑
s>T

∣∣EP (ξitξis )
∣∣≤ 24

(
EP
(|ξit |m))2/m∑

s>T

(
αi,ξ[s− t])1−2/m

.

The right-hand side is bounded by a constant C ′
ξ that depends only on a, b, d1, and d2.

This follows from the existence of moments and the mixing property of ξit . Note that the
stationarity assumption is used to apply the result of Davydov (1968).

Lemma A.12 (Exponential tail bound implies existence of moments). Suppose that a
random variable X satisfies that P(|X| > x) < C exp(−(x/a)d ) for some C, a > 0 and
d > 1. Then, for any integer p, E|X|p <M forM depending only on C, a, d, and p.

Proof. By the argument given in Kosorok (2008, page 129), which is based on the series
expansion of the exponential function, we have (E(|X|p ))1/p ≤ p!‖X‖ψ1 where ‖ · ‖ψa
is the Orlicz norm with ψa(x) = exp(xa ) − 1 as defined in the proof of Lemma A.13. By
Kosorok (2008, Lemma 8.1), ‖X‖ψ1 is bounded by a constant, which depends on C, a,
and d.

Lemma A.13 (Large CLT for mixing sequences). Suppose that {{Xjt }Jj=1}Tt=1 is an α-
mixing sequence (as a sequence indexed by t) with mixing coefficients α(k). Suppose that
Tδ1 ≤ J for some δ1 > 0. Let SJ = T−1/2∑T

t=1(X1t , 	 	 	 ,XJt )′. Let G∼N(0,�), where � is
the long-run covariance matrix of (X1t , 	 	 	 ,XJt ). Assume the following three conditions:

1. There exist some universal constants C1 > 0, a > 0, and d1 > 0 such that P(|Xjt| >
x)<C1 exp(−(1/a)d1xd1 ) for all t ∈ {1, 	 	 	 , T } and j ∈ {1, 	 	 	 , J}.

2. There exist some universal constants C2 > 1, b > 0, and d2 > 0 such that α(k) ≤
C2 exp(−bkd2 ) for any k≥ 1.
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3. There exists a universal constant C3 > 0 such that VT ,j ≥ C3 for any j ∈ {1, 	 	 	 , J},
where VT ,j = var(

∑T
t=1Xjt/

√
T ).

For a ∈ RN , define A(a) = {x ∈ RN : xj ≤ aj for j = 1, 	 	 	 , J}. Let A =⋃a∈RJ A(a). Then it
holds that

sup
P∈P

sup
A∈A

∣∣P(SJ ∈A) − P(G ∈A)
∣∣� (logJ )(1+2d2 )/(3d2 )

T 1/9 + (logJ )7/6

T 1/9

provided that (logJ )3−d2 = o(Td2/3 ) and P is a collection of probabilities measures under
which the above three conditions are satisfied with identical choices of C1, C2, C3, a, b, d1,
and d2.

Proof. The lemma follows by Theorem 1 of Chang, Chen, and Wu (2024), noting the
remark at the beginning of Section 2.1 of Chang, Chen, and Wu (2024). Theorem 1 of
Chang, Chen, and Wu (2024) has three conditions, and the second and third conditions
are given in the statement of the lemma. The first condition is “there exist a sequence
of constants BJ ≥ 1 and a universal constant d1 ≥ 1 such that ‖Xjt‖ψd1

≤ BJ for all
t ∈ {1, 	 	 	 , T } and j ∈ {1, 	 	 	 , J},” where ‖ξ‖ψα = inf[λ > 0 : E(ψα(|ξ|/λ)) ≤ 1] for ψα(x) =
exp(xα ) − 1 (the Orlicz norm with ψα). By Lemma 8.1 of Kosorok (2008), P(|Xjt| > x) <
C1 exp(−(1/a)d1xd1 ) implies this condition by taking BJ = ((1 + C1/(1/a)d1 ))1/d1 , which
is constant if C1, a, and d1 are constant.

Lemma A.14. Let PN be the set of probability measures, which satisfy Assumption 1 with
identical choices of a, b, d1, and d2. Assume that there are finite constants 0 < δ1 < δ2

such that Tδ1 ≤ N ≤ o(1)Tδ2 . Let Assumption 2 hold with κN � Tρ where 0 < ρ < (ϑ −
1)/(3ϑ− 2). Let

bLV∗
N = (

√
T ∨ logN )rθ,N

ιN min
1≤i≤N

σi
+ T−c1 (logN )c2 + T−ρ,

where c1 > 0 and c2 > 0 are two constants defined in Lemma A.5 with c1 depending only
on (ρ,ϑ) and c2 depending only on (d2,ϑ). Assume that bLV∗

N → 0. Then for any sequence
ζN such that ζN → ∞ asN , T → ∞,

sup
P∈PN

P
(

max
1≤i≤N

max
(h,h∗ )∈G2

∣∣D̂i(g0
i , h
)−Di(g0

i , h
)∣∣> ζNbLV∗

N

)
= o(1).

Proof. Throughout the proof, let C denote a generic constant that does not depend on
P ∈ P and whose value may change between different equations. Let δi(h) = θg0

i
− θh

and δ̂i(h) = θ̂g0
i
− θ̂h. Let ξ̂i(h) =

√
�̂i(h, h) and ξ(h) =√�i(h, h). Let

bLV
N = rθ,N

ιN min
1≤i≤N

σi
+ T−c1 (logN )c2 + T−ρ.
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By the inequality |1 − √
a| ≤ |1 − a|,∣∣∣∣1 − ξ̂i(h)

ξi(h)

∣∣∣∣≤
∣∣ξ̂i(h, h′)− ξi(h, h′)∣∣

ξi
(
h, h′)

≤ σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

ξi
(
h, h′)

∣∣ξ̂i(h, h′)− ξi(h, h′)∣∣
σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥ .

By Assumption 1.4, ξi(h, h′ )/(σ2
i ‖δi(h)‖‖δi(h′ )‖) is bounded away from zero. Moreover,

with probability approaching one,∣∣ξ̂i(h, h′)− ξi(h, h′)∣∣
σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥ ≤ ζNbLV

N

uniformly over i= 1, 	 	 	 ,N and h, h′ ∈G \ {g0
i }. Therefore, we can take∣∣1 − ξ̂i(h)/ξi(h)
∣∣≤ ζNbLRN . (A.11)

Next, we consider ‖T−1/2∑T
t=1 vitxit‖. Consider any component xit,p of xit . Set ξit =

vitxit,p in Lemma A.11 and conclude that

s2
T = max

1≤i≤N
max

1≤t≤T

(
E
(
ξ2
it

)+ 2
∑
s>t

∣∣E(ξitξis )
∣∣)

is bounded and fulfills the condition in Lemma A.15. By Lemma A.7 and Lemma A.9,
ξit satisfies the tail and mixing conditions for Xit in Lemma A.15. Now, applying
Lemma A.15

max
1≤i≤N

∥∥∥∥∥T−1/2
T∑
t=1

vitxit

∥∥∥∥∥=Op(logN ). (A.12)

Similarly, it can be argued that

max
1≤i≤N

∣∣∣∣∣T−1/2
T∑
t=1

(‖xit‖2 −E‖xit‖
)∣∣∣∣∣=Op(logN ),

max
1≤i≤N

∣∣∣∣∣T−1/2
T∑
t=1

(‖xit‖‖wit‖ −E
∥∥xit‖wit‖∥∥)

∣∣∣∣∣=Op(logN ),

max
1≤i≤N

∣∣∣∣∣T−1/2
T∑
t=1

(|vit |‖xit‖ −E|vit |‖xit‖
)∣∣∣∣∣=Op(logN ).

(A.13)

We write

D̂i(h) −Di(h) =
(
ξi(h)

ξ̂i(h)
− 1
)
Di(h) +

1√
T

T∑
t=1

(
d̂it(h) − dit(h)

)
/
(
σi
∥∥δi(h)

∥∥)
ξ̂i(h)/

(
σi
∥∥δi(h)

∥∥) ≡ J1 + J2.
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We bound J1 by writing

∣∣∣∣(ξi(h)

ξ̂i(h)
− 1
)
Di(h)

∣∣∣∣=
∣∣∣∣∣∣∣∣∣∣∣
ξi(h)

ξ̂i(h)

(
1 − ξ̂i(h)

ξi(h)

) 1
T

T∑
t=1

vix
′
iδi(h)/

∥∥δi(h)
∥∥

ξi(h)/
(
σi
∥∥δi(h)

∥∥)
∣∣∣∣∣∣∣∣∣∣∣

≤ ξi(h)

ξ̂i(h)

∣∣∣∣1 − ξ̂i(h)
ξi(h)

∣∣∣∣
∥∥∥∥∥ 1√

T

T∑
t=1

vitxi

∥∥∥∥∥
(

ξi(h)

σi
∥∥δi(h)

∥∥
)−1

.

The right-hand side is bounded by (A.11), (A.12), noting that ξi(h)/(σi‖δi(h)‖) is
bounded away from zero by Assumption 1.4, and observing that

ξ̂i(h)
ξi(h)

≥ 1 −
∣∣∣∣ ξ̂i(h)
ξi(h)

− 1

∣∣∣∣
in conjunction with (A.11) implies a lower bound on ξ̂i(h)/ξi(h). Hence, J1 is bounded
by CζNbLV

N logN with probability approaching one.
To bound J2, we derive a lower bound on its denominator from

ξ̂i(h)

σi
∥∥δi(h)

∥∥ = ξi(h)

σi
∥∥δi(h)

∥∥
{(
ξ̂i(h)
ξi(h)

− 1
)

+ 1
}

in conjunction with (A.11) and noting that ξi(h)/(σi‖δi(h)‖) is bounded away from zero
by Assumption 1.4. For the numerator in J2, we observe the following decomposition:

d̂it(h) − dit(h)

σi
∥∥δi(h)

∥∥ = 1
2

x′
it(θ̂g0

i
− θg0

i
) +w′

it

(
θ̂w − θw)

σi
x′
it

(
δ̂i(h)∥∥δi(h)
∥∥
)

− 1
2
vitx

′
it

(
δ̂i(h) − δi(h)

)∥∥δi(h)
∥∥ .

In the following arguments, we use that

∥∥δ̂i(h)
∥∥/∥∥δi(h)

∥∥≤ 1 +
∥∥δ̂i(h) − δi(h)

∥∥∥∥δi(h)
∥∥

is bounded by the fact that rθ,N = o(1 ∧ ιN ). With probability at least 1 − aθ,N , we
bound∣∣∣∣ d̂it(h) − dit(h)

σi
∥∥δi(h)

∥∥
∣∣∣∣≤ C(‖xit‖2 + ‖xit‖‖wit‖

min
1≤i≤N

σi
+ |vit |‖xit‖

ιN

)
rθ,N

≤ rθ,NC

(
E‖xit‖2 +E‖xit‖‖wit‖

min
1≤i≤N

σi
+ E|vit |‖xit‖

ιN

)
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≤ rθ,NC

(‖xit‖2 + ‖xit‖‖wit‖ − (E‖xit‖‖wit‖ +E‖xit‖‖wit‖
)

min
1≤i≤N

σi

+ |vit |‖xit‖ −E|vit |‖xit‖
ιN

)
.

Noting that E‖xit‖2, E‖xit‖‖wit‖ and E|vit |‖xit‖ are bounded uniformly over i and t by
Assumption 1.6, (A.13) implies

max
1≤i≤T

∣∣∣∣∣ 1√
T

T∑
t=1

d̂it(h) − dit(h)

σi
∥∥δi(h)

∥∥
∣∣∣∣∣≤ rθ,NC

(
min

1≤i≤N
σi ∧ ιN

)−1
(
√
T + logN )

≤ rθ,NC
(

min
1≤i≤N

σi ∧ ιN
)−1√

T ,

where the last inequality follows since N ≤ o(1)Tδ2 . The bounds on J1 and J2 yield the
desired result.

Lemma A.15 (Fuk–Nagaev-type inequality for mixing sequences). Suppose that Xit
is a strongly mixing process with zero mean for each i = 1, 	 	 	 ,N with tail proba-
bilities supi=1, 			,N P(|Xit| > x) ≤ exp(1 − (x/a)d1 ) and with strong mixing coefficients
supi=1, 			,N ai[t] ≤ exp(−btd2 ), where a, b, d1, and d2 are positive constants. Let PN denote
a sequence of sets of probability measures that satisfy the above conditions with given val-
ues of a, b, d1, and d2. Let

s2
T = max

1≤i≤N
max

1≤t≤T

(
E
(
X2
it

)+ 2
∑
s>t

∣∣E(XitXis )
∣∣).

Assume that s2
T < Cs logas N for constants Cs and 0 ≤ as ≤ 1, which do not depend on N ,

T , nor P . Then it holds that for any constant C > 0, as N , T → ∞ with NT−δ2 → 0 for
some δ2 > 0,

sup
P∈PN

P

(
max

1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

Xit

∣∣∣∣∣≥ CT−1/2 logN

)
→ 0.

Proof. By the Bonferroni inequality and inequality (1.7) in Merlevède, Peligrad, and
Rio (2011), which is an application of Rio (2017, Theorem 6.2) (the original French ver-
sion was published in 2000), we have

sup
P∈P

P

(
max

1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

Xit

∣∣∣∣∣≥ x
)

≤ sup
P∈P

N∑
i=1

P

(∣∣∣∣∣ 1T
T∑
t=1

Xit

∣∣∣∣∣≥ x
)

≤ 4N
(

1 + T (x/4)2

rs2
T

)−r/2

+ 4CN(x/4)−1 exp
(

−a (Tx/4)d

bdrd

)
,
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where r ≥ 1, d = (d−1
1 + d−1

2 )−1 and C ′ is a positive constant. Thus, for x= CT−1/2 logN ,
it holds that

sup
P∈P

P

(
max

i=1, 			,N

∣∣∣∣∣ 1T
T∑
t=1

Xit

∣∣∣∣∣≥ CT−1/2 logN

)

≤ 4N
(

1 + C2 log2N

16rs2
T

)−r/2

+ 16
(
C ′/C
)
NT 1/2 log−1N exp

(
−a
(
CT 1/2 logN

)d
4dbdrd

)

= 4N exp
(

− r
2

log
(

1 + C2 log2N

16rs2
T

))

+ 16
(
C ′/C
)NT 1/2

logN
exp
(

−a cd

4dbd

(
T 1/2 logN

r

)d)
.

We take r = T 1/2−c for 0< c < 1/2. The second term on the last line in the above display
converges to zero because T 1/2 logN/r = Tc logN and NT−δ2 → 0. We now argue that
the first term vanishes as well. For a close to zero, a second-order Taylor expansion of
the natural logarithm function yields

log(1 + a) = a− 1(
1 + a∗)2 a2,

where a∗ is an intermediate value between zero and a. For a close to zero, 1/(1 + a∗ ) is
bounded and, therefore,

log(1 + a) ≥ a+O(a2).
In particular, log(1 − a) ≥ a + O(a2 ). We set a = C2 log2N/(16T 1/2−cs2

T ). Under the as-
sumption of the lemma, a → 0. Now, the term in the exponential function can be
bounded by

−T
1/2−c

2
log
(

1 + C2 log2N

16T 1/2−cs2
T

)
≤ −T

1/2−c

2

{
C2 log2N

16T 1/2−cs2
T

+O
([

C2 log2N

16T 1/2−cs2
T

]2)}

≤ −T
1/2−cC2 log2N

32T 1/2−cs2
T

(
1 + o(1)

)
≤ −C

2 log2N

64s2
T

.

Thus, under s2
T ≤K logas N with 0< as < 1,

4N exp
(

− r
2

log
(

1 + C2 log2N

16rs2
T

))
≤ 4N exp

(
−C

2 log2N

64s2
T

)
→ 0.

Lemma A.16. Let PN be the set of probability measures, which satisfy Assumptions 1.1–1.7
and Assumption 1.9 with identical choices of a, b, d1, and d2. Assume that there are finite
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constants 0< δ1 < δ2 such that Tδ1 ≤N ≤ o(1)Tδ2 and that

rθ,N

ιN ∧ min
1≤i≤N

σi
→ 0.

Suppose that Assumption 3 holds and κN = 0. Then there is a constant C such that

sup
P∈PN

P

(
max

1≤i≤N
max

(h,h∗ )∈G2

∣∣D̂i(g0
i , h
)−Di(g0

i , h
)∣∣>C rθ,N

√
T

ιN ∧ min
1≤i≤N

σi

)
= o(1)

and for all c > 0

sup
P∈PN

P
(

max
1≤i≤N

max
(h,h∗ )∈G2

∥∥�̂i(g0
i

)−�i(g0
i

)∥∥> c)= o(1).

Proof. Following the arguments in Lemma A.14, we bound, with probability at least
1 − aθ,N , ∣∣∣∣ d̂it(h) − dit(h)

σi
∥∥δi(h)

∥∥
∣∣∣∣≤C(‖xit‖2 + ‖xit‖‖wit‖

min
1≤i≤N

σi
+ |vit |‖xit‖

ιN

)
rθ,N ,

and hence

1
T

T∑
t=1

d̂it(h) − dit(h)

σi
∥∥δi(h)

∥∥ =Op
(

rθ,N

ιN ∧ min
1≤i≤N

σi

)
,

1
T

T∑
t=1

(
d̂it(h) − dit(h)

)(
d̂it
(
h′)− dit(h′))

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥ =Op

(
r2
θ,N

ι2
N ∧ min

1≤i≤N
σ2
i

) (A.14)

uniformly in unit i and probability measure P ∈ PN . Following similar arguments as in
the proof of Lemma A.14, Lemma A.15 yields∣∣∣∣∣∣∣∣∣∣∣

1
T

T∑
t=1

dit(h)dit
(
h′)

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥ −

1
T

T∑
t=1

EP
[
dit(h)dit

(
h′)]

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣∣∣∣∣∣∣
≤ C 1

T

T∑
t=1

(‖xit‖2 + ‖xit‖‖wit‖
min

1≤i≤N
σi

+ |vit |‖xit‖
ιN

)2

r2
θ,N

≤ Cr2
θ,N

ι2
N ∧ min

1≤i≤N
σ2
i

+ op(1), (A.15)
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where the op(1) term is uniform over units i and probability measures P ∈ PN . Noting
that ∣∣∣∣∣ 1√

T

T∑
t=1

dit(h)

σi
∥∥δi(h)

∥∥
∣∣∣∣∣=
∥∥∥∥∥ 1√

T

T∑
t=1

vitxit

∥∥∥∥∥,
Lemma A.15 implies ∣∣∣∣∣ 1√

T

T∑
t=1

dit(h)

σi
∥∥δi(h)

∥∥
∣∣∣∣∣=Op(logN ) (A.16)

uniformly in i and P . Since Assumption 1.6 bounds the expectation E[v2
itxitx

′
it ] by a finite

constant, we have

1
T

T∑
t=1

dit(h)dit
(
h′)

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥ =

δi(h)′
1
T

T∑
t=1

v2
itxitx

′
itδi
(
h′)

∥∥δi(h)
∥∥∥∥δi(h′)∥∥ .

≤
∥∥∥∥∥ 1
T

T∑
t=1

(
v2
itxitx

′
it −E
[
v2
itxitx

′
it

])∥∥∥∥∥
+
∥∥∥∥∥ 1
T

T∑
t=1

E
[
v2
itxitx

′
it

]∥∥∥∥∥
=Op(logN/

√
T ) = op(1) (A.17)

uniformly in i and P .
Now, combining the decomposition

1
T

T∑
t=1

(
d̂it(h) − ¯̂

dit(h)
)(
d̂it
(
h′)− ¯̂

dit
(
h′))

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥ −

1
T

T∑
t=1

EP
[
dit(h)dit

(
h′)]

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

= 1
T

T∑
t=1

(
d̂it(h) − dit(h)

σi
∥∥δi(h)

∥∥
)(

d̂it
(
h′)− dit(h′)
σi
∥∥δi(h′)∥∥

)

+ 1
T

T∑
t=1

dit(h)

σi
∥∥δi(h)

∥∥
(
d̂it
(
h′)− dit(h′)
σi
∥∥δi(h′)∥∥

)
+ 1
T

T∑
t=1

dit
(
h′)

σi
∥∥δi(h′)∥∥

(
d̂it(h) − dit(h)

σi
∥∥δi(h)

∥∥
)

.

−
(

1
T

T∑
t=1

d̂it(h)

σi
∥∥δi(h)

∥∥
)(

1
T

T∑
t=1

d̂it
(
h′)

σi
∥∥δi(h′)∥∥

)

+ 1
T

T∑
t=1

dit(h)dit
(
h′)

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥ −

1
T

T∑
t=1

EP
[
dit(h)dit

(
h′)]

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥
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with (A.14), (A.15), (A.16), and (A.17) yields a constant C such that

sup
P∈P

P

(
max

1≤i≤N

∣∣∣∣∣
1
T

T∑
t=1

(
d̂it(h) − ¯̂

dit(h)
)(
d̂it
(
h′)− ¯̂

dit
(
h′))

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥ − 1

T

T∑
t=1

dit(h)dit
(
h′)

σ2
i

∥∥δi(h)
∥∥∥∥δi(h′)∥∥

∣∣∣∣∣
≥ C rθ,N

ιN ∧ min
1≤i≤N

σi

)
= o(1).

This implies the first statement of the lemma. The proof of the second statement of the
lemma is similar to the proof of Lemma A.14, but replacing all references to Lemma A.5
by a reference to the result in the previous display.

Lemma A.17. Let ν(N ) ≥ 1 denote a sequence that converge to infinity and let cN (α) de-
note the (1 − α/N )-quantile of the t-distribution with ν(N ) degrees of freedom. Suppose
that (logN )/ν(N ) → 0. For each ε > 0 and 0< α< 1, there is a thresholdN0 such that for
N ≥N0,

sup
α≤α<1

cN (α) ≤√2(1 + ε) log(N/α).

Proof. For notational convenience, write ν = ν(N ). We prove the bound for α = α

and write cN = cN (α). The uniformity then follows from the monotonicity of the dis-
tribution function. Clearly, cN → ∞ so we can take cN ≥ 1, provided that N is large
enough. The density function of the t-distribution with ν degrees of freedom is given
by fν(x) = c(ν)(1 + x2/ν)−

ν+1
2 , where

c(ν) =
�

(
ν+ 1

2

)
√
νπ�

(
ν

2

)→ 1√
2π

as ν→ ∞. It follows that there is a universal constant C such that c(ν) ≤ C. We first show
that c2

N/ν = O(1). The proof is by contradiction. Suppose that lim supN→∞ c2
N/ν = ∞.

Applying Theorem 1 in Soms (1976) with n= 1 yields

1 − Fν(cN ) ≤ fν(cN )
1
cN

(
1 + c2

N

ν

)
. (A.18)

This implies that

α

N
≤ c(ν)

(
1 + c2

N

ν

)− ν+1
2
(

1 + c2
N

ν

)
≤ C
(

1 + c2
N

ν

)− ν−1
2

.

Taking logs and rearranging give

log(N/α)
ν

≥ 1
2
ν− 1
ν

(
log
(

1 + c2
N

ν

)
−C
)

.
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The left-hand side of the inequality vanishes under the assumptions of the lemma,
whereas a subsequence of the right-hand side diverges to infinity. This establishes that
the inequality is impossible and, therefore, c2

N/ν =O(1). This implies that there exists a
constant b such that

1< b≤
(

1 + c2
N

ν

) ν

c2
N ≤ e,

so that we can take ((
1 + c2

N

ν

) ν

c2
N

)−1

≤ e− ν
ν+1 (1+ε∗/2)−1

for a positive ε∗. Then

fν(cN ) ≤ C
[(

1 + c2
N

ν

) ν

c2
N

]− c2
N
2 [ ν+1

ν ]

≤ C exp
(

−c
2
N

2

(
1 + ε∗/2

)−1
)

.

TakeN large enough that

1
1 + ε∗/2

− 4 log cN
c2
N

>
1

1 + ε∗ .

Then the right-hand side of (A.18) can be bounded by

C exp
(

−c
2
N

2

(
1 − ε∗/2

)−1
)(

1 + c2
N

ν

)
≤ 2C exp

(
−c

2
N

2

((
1 + ε∗/2

)−1 − 4 log cN
c2
N

))

≤ 2C exp
(

−c
2
N

2

(
1 + ε∗)−1

)
.

Plugging in 1 − Fν(cN ) = α/N and taking logs give

c2
N ≤ (1 + ε∗) log(N/α) + log(2C )

≤ 2
(
1 + ε∗) log(N/α)

(
1 + 1

2
(
1 + ε∗) log(2C )

log(N/α)

)
.

Hence, there is a constant C such that c2
N ≤ C log(N/α). Using this inequality, we can

now verify that c2
N/ν→ 0 so that (

1 + c2
N

ν

) ν

c2
N → e,

allowing us to take ε∗ = ε/2 for sufficiently largeN . TakingN large enough that

(1 + ε/2)

(
1 + 1

2(1 + ε/2)

log(2C )
log(N )

)
≤ 1 + ε

yields c2
N ≤ 2(1 + ε) log(N/α).
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Lemma A.18. For ν ≥ 1, let Fν and fν denote the distribution and density function of a
t-distributed random variable with ν degrees of freedom. For x2 > 2,

fν(x)< 2x
(
1 − Fν(x)

)
.

Proof. Applying Theorem 1 in Soms (1976) with n= 2 yields the inequality

1 − Fν(x) ≥ (1 + x2/ν
)(

1 − ν

(ν+ 2)x2

)
fν(x)/x.

Now, x2 > 2 implies

1 − Fν(x)>
(

1 − 1
2

)
fν(x)/x.

Lemma A.19. Let PN denote a family of probability measures satisfying Assumptions 1
with parameters satisfying ‖θh‖<M for some finiteM for any h. Assume rθ,N = o(1 ∧ ιN )
and rθ,N (

√
T +√logN )(ιN + min1≤i≤N σi ) = o(1). There are constants C and C ′ such that

sup
P∈PN

P

(
max

1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

d̂Uit
(
g0
i , h
)− dUit (g0

i , h
)

sUi (h)

∣∣∣∣∣≥ C rθ,N

ιN + min
1≤i≤N

σi

)
= o(1). (A.19)

sup
P∈PN

P

(
max

1≤i≤N
∣∣D̂Ui (g0

i , h
)− D̃Ui (g0

i , h
)∣∣≥ C ′ rθ,N (

√
T +√logN )

ιN + min
1≤i≤N

σi

)
= o(1). (A.20)

Proof. Throughout the proof, let C denote a generic constant that does not depend on
P ∈ P. Let δi(h) = θg0

i
− θh and δ̂i(h) = θ̂g0

i
− θ̂h. Note that

∥∥δ̂i(h)
∥∥/∥∥δi(h)

∥∥≤ 1 +
∥∥δ̂i(h) − δi(h)

∥∥∥∥δi(h)
∥∥

is bounded by the fact that rθ,N = o(1 ∧ ιN ).
We observe

d̂Uit (h) − dUit (h)

= 1
2

((
yit −w′

it θ̂
w − x′

it θ̂g0
i

)2 − (yit −w′
it θ̂

w − x′
it θ̂h
)2)

− 1
2

((
yit −w′

itθ
w − x′

itθg0
i

)2 − (yit −w′
itθ

w − x′
itθh
)2)

= −uitx′
it

(
δ̂i(h) − δi(h)

)+w′
it

(
θ̂w − θw)x′

it δ̂i(h) + x′
it δ̂i(h)x′

it(θ̂g0
i
− θg0

i
)

− 1
2

(
x′
it δ̂i(h)

)2 + 1
2

(
x′
itδi(h)

)2
.

Thus, we have, with probability at least 1 − aθ,N ,∣∣∣∣ d̂Uit (h) − dUit (h)

σi
∥∥δi(h)

∥∥
∣∣∣∣≤ C(‖xit‖2 + ‖xit‖‖wit‖

min
1≤i≤N

σi
+ |vit |‖xit‖

ιN

)
rθ,N , (A.21)



Supplementary Material Confidence set for group membership 55(
d̂Uit (h) − dUit (h)

σi
∥∥δi(h)

∥∥
)2

≤ C
(‖xit‖4 + ‖xit‖2‖wit‖2

min
1≤i≤N

σ2
i

+ |vit |2‖xit‖2

ι2
N

)
r2
θ,N (A.22)

and ∣∣∣∣ dUit (h)

σi
∥∥δi(h)

∥∥
(
d̂Uit (h) − dUit (h)

σi
∥∥δi(h)

∥∥
)∣∣∣∣

≤C
(‖xit‖4 + |vi|‖xit‖3 + |vi|‖xit‖2‖wit‖ + ‖xit‖3‖wit‖

min
1≤i≤N

σi

+ |vi|2‖xit‖2 + |vi|‖xit‖3

ιN

)
rθ,N , (A.23)

where (A.23) also rely on the compactness assumption in the theorem.
Combining (A.22), Lemmas A.12, and A.15, the fact that sUi (h) = σi‖δi(h)‖E‖xit‖ +

E(‖xit‖2 )‖δi(h)‖2 ≥ Cσi‖δi(h)‖ yields (A.19).
Let

ŝUi (h)2 = 1
T

T∑
t=1

(
d̂Uit (h) − ¯̂

dUit (h)
)2

, s̃Ui (h)2 = 1
T
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We observe that
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∥∥ + 2
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∥∥
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.

Note that ∣∣∣∣∣ 1T
T∑
t=1

dUit (h)

σi
∥∥δi(h)

∥∥
∣∣∣∣∣≤
∥∥∥∥∥ 1
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t=1

vitxit

∥∥∥∥∥+ ∥∥δi(h)
∥∥ 1
T
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‖xit‖2

By Lemmas A.12 and A.15, and the compactness condition, we have

sup
P∈P

P

(
max

1≤i≤N

∣∣∣∣∣ 1T
T∑
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dUit (h)

σi
∥∥δi(h)

∥∥
∣∣∣∣∣≥ C(1 + T−1/2

√
logN
))= o(1), (A.24)

Combining Lemma A.15, (A.21), (A.22), (A.23), and (A.24) yield

sup
P∈P

(
max

1≤i≤N

∣∣∣∣ ŝUi (h)2 − s̃Ui (h)2

σ2
i

∥∥δi(h)
∥∥2

∣∣∣∣≥ C rθ,N

ιN ∧ min
1≤i≤N

σi

)
= o(1). (A.25)
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Observing that sUi (h) > si(h), which holds under E(uitxitk1xitk2xitk3 ) = 0, σi‖δi(h)‖/
sUi (h) is bounded away from infinity by Assumption 1.4. This in turn implies that
σi‖δi(h)‖/s̃Ui (h) is bounded away from infinity. We thus have

sup
P∈P

(
max

1≤i≤N

∣∣∣∣ ŝUi (h)
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= o(1). (A.26)

Lastly, we consider

D̂Ui (h) − D̃Ui (h) =
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We bound J1 by writing
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ŝUi (h)
− 1
)
D̃i(h)

∣∣∣∣

=
∣∣∣∣∣ s̃Ui (h)
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T
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and applying Lemma A.15 to bound ‖T−1/2∑T
t=1 vitxit‖, (A.26) to bound |1− ŝi(h)/s̃i(h)|,

the discussion above (A.26) for a lower bound on s̃Ui (h)/(σi‖δi(h)‖) and

ŝUi (h)

s̃Ui (h)
≥ 1 −

∣∣∣∣ ŝUi (h)

s̃Ui (h)
− 1

∣∣∣∣
in conjunction with (A.26) to derive a lower bound on ŝUi (h)/s̃Ui (h). To bound JU2 , we
derive a lower bound on its denominator from

ŝUi (h)

σi
∥∥δi(h)

∥∥ = s̃Ui (h)

σi
∥∥δi(h)

∥∥
{(
ŝUi (h)

s̃Ui (h)
− 1
)

+ 1
}

in conjunction with (A.26) and the lower bound on s̃Ui (h)/(σi‖δi(h)‖) discussed above.
The numerator in JU2 is bounded by the argument used to prove (A.19). The bounds on
JU1 and JU2 yield (A.20).
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Appendix B: Additional results for empirical application

B.1 One-step confidence set

Table B.1. Marginal confidence set at level 1 − α= 0.95. “p-val ĝi” is the p-value for the signif-
icance of the estimated group membership. “card” is the cardinality of the marginal confidence
set for the state. “CS” is the marginal confidence set. “baseline” refers to the procedure with crit-
ical values defined in Section 2.4. “SNS” refers to the procedure with critical values defined in
Section 4.1.

baseline SNS

State ĝi p-val ĝi card CS p-val ĝi card CS

Alabama 1 0.000 1 1 0.000 1 1
Alaska 3 1.000 3 2, 3, 4 1.000 3 2, 3, 4
Arizona 3 1.000 3 2, 3, 4 1.000 3 2, 3, 4
Arkansas 2 0.027 1 2 0.041 1 2
California 3 0.000 1 3 0.000 1 3

Colorado 4 0.893 2 3, 4 1.000 2 3, 4
Connecticut 3 0.631 2 2, 3 0.715 2 2, 3
Delaware 2 1.000 2 2, 3 1.000 2 2, 3
D.C. 2 1.000 4 1, 2, 3, 4 1.000 4 1, 2, 3, 4
Florida 4 0.049 1 4 0.074 2 3, 4

Georgia 1 0.000 1 1 0.000 1 1
Hawaii 2 1.000 4 1, 2, 3, 4 1.000 4 1, 2, 3, 4
Idaho 3 0.664 2 3, 4 0.852 2 3, 4
Illinois 3 0.003 1 3 0.004 1 3
Indiana 3 0.024 1 3 0.038 1 3

Iowa 4 0.000 1 4 0.000 1 4
Kansas 4 0.010 1 4 0.015 1 4
Kentucky 3 0.093 2 3, 4 0.151 3 2, 3, 4
Louisiana 1 0.000 1 1 0.000 1 1
Maine 2 0.015 1 2 0.023 1 2

Maryland 2 0.000 1 2 0.000 1 2
Massachusetts 2 1.000 2 2, 3 1.000 2 2, 3
Michigan 2 0.001 1 2 0.001 1 2
Minnesota 2 0.000 1 2 0.000 1 2
Mississippi 1 0.001 1 1 0.001 1 1

Missouri 2 0.002 1 2 0.003 1 2
Montana 3 1.000 3 2, 3, 4 1.000 3 2, 3, 4
Nebraska 4 1.000 3 2, 3, 4 1.000 3 2, 3, 4
Nevada 2 1.000 4 1, 2, 3, 4 1.000 4 1, 2, 3, 4
New Hampshire 3 0.080 2 3, 4 0.130 2 3, 4

New Jersey 2 1.000 2 2, 3 1.000 2 2, 3
New Mexico 3 0.094 3 2, 3, 4 0.121 3 2, 3, 4
New York 2 0.000 1 2 0.000 1 2
North Carolina 2 0.000 1 2 0.000 1 2
North Dakota 4 0.010 1 4 0.015 1 4

(Continues)
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Table B.1. Continued.

baseline SNS

State ĝi p-val ĝi card CS p-val ĝi card CS

Ohio 1 0.000 1 1 0.000 1 1
Oklahoma 3 0.168 2 2, 3 0.207 2 2, 3
Oregon 4 0.000 1 4 0.000 1 4
Pennsylvania 3 0.021 1 3 0.030 1 3
Rhode Island 2 0.000 1 2 0.001 1 2

South Carolina 1 0.000 1 1 0.000 1 1
South Dakota 4 1.000 3 2, 3, 4 1.000 3 2, 3, 4
Tennessee 2 0.000 1 2 0.000 1 2
Texas 1 0.000 1 1 0.000 1 1
Utah 4 1.000 2 3, 4 1.000 2 3, 4

Vermont 4 0.000 1 4 0.000 1 4
Virginia 2 1.000 2 2, 3 1.000 2 2, 3
Washington 4 0.000 1 4 0.000 1 4
West Virginia 3 0.014 1 3 0.041 1 3
Wisconsin 3 0.392 2 2, 3 0.455 2 2, 3

Wyoming 3 1.000 3 2, 3, 4 1.000 3 2, 3, 4

B.2 Two-step confidence set assuming no serial correlation

Under the assumption of no serial correlation, we can use the non-HAC variance esti-
mator from Section 4.2 in the main paper and eliminate nine units in the first step.

Figure B.1. Two-step procedure assuming no serial correlation. Second-step p-values for the
significance of the estimated group memberships with and without unit selection (α = 0.05,
β = 0.01). The dashed horizontal line indicates the threshold for significance without unit se-
lection. The solid horizontal line indicates the threshold for significance with unit selection.
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As illustrated in Figure B.1, the elimination at the first stage decreases the second-
step p-values since the Bonferroni adjustment is over a smaller number of simultane-
ous tests. On the other hand, turning on unit selection lowers the threshold p-value at
which we can conclude significance from α= 0.05 to α− 2β= 0.03. In this example, the
two-step procedure reduces p-values in the second step but does not produce a smaller
confidence set.

Appendix C: Additional simulation results

C.1 Choice of the regularization sequence εN

C.1.1 Benchmark simulation designs from Section 6 For our simulation results in Sec-
tion 6 in the main text, we set the regularization sequence εN equal to the constant
sequence εN = 0.01. In this appendix, we investigate the robustness of our simulation
results to this choice of regularization sequence.

The simulation design is identical to the specification simulated in Section 6. For
all simulation results presented in this section, we estimate the group-specific model
parameters by the k-means estimator and use the HAC-type estimator of the long-run
variance with a data-driven bandwidth. Simulation results are based on 500 replications.

We first consider constant sequences εN = 0, 0.01, 0.05. Here, εN = 0.01 is the value
used in the simulations in the main text, and εN = 0 turns off the regularization of the
variance matrix. Table C.1 reports the simulation results.

The results are not very sensitive to the choice of εN . Notably, the performance of
our method is not affected substantially by turning off regularization completely (i.e.,
choosing εN = 0). In the next section, we show that regularization plays a greater, though
still limited, role in an alternative design that is tailored to make regularization relevant.

Table C.1. Simulation results for εN = 0, 0.01, 0.05. Nominal level 1−α= 0.95. “coverage” is the
empirical coverage probability of the joint confidence set. “average cardinality” is the expected
average (over all units) cardinality of the marginal unitwise confidence sets.

coverage average cardinality

ρ N T ε= 0 ε= 0.01 ε= 0.05 ε= 0 ε= 0.01 ε= 0.05

0.0 50 60 0.92 0.92 0.93 1.94 1.97 2.00
120 1.00 1.00 1.00 1.14 1.16 1.18

100 60 0.95 0.95 0.95 2.10 2.13 2.19
120 0.99 1.00 1.00 1.19 1.21 1.26

200 60 0.97 0.96 0.95 2.28 2.30 2.37
120 1.00 0.98 0.99 1.27 1.28 1.34

0.5 50 60 0.69 0.69 0.66 3.39 3.42 3.49
120 0.98 0.98 0.98 3.67 3.72 3.78

100 60 0.67 0.69 0.73 3.60 3.62 3.66
120 0.97 0.98 0.97 3.83 3.84 3.85

200 60 0.68 0.70 0.68 3.73 3.74 3.76
120 0.97 0.97 0.98 3.86 3.87 3.87
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Table C.2. Simulation results for εN = log−2N , log−3/2N . Nominal level 1 − α = 0.95. “cover-
age” is the empirical coverage probability of the joint confidence set. “average cardinality” is the
expected average (over all units) cardinality of the marginal unitwise confidence sets.

ε coverage average cardinality

ρ N T ε= log−2N ε= log−3/2N ε= log−2N ε= log−3/2N ε= log−2N ε= log−3/2N

0.0 50 60 0.07 0.13 0.92 0.93 2.03 2.04
120 0.07 0.13 1.00 0.99 1.19 1.18

100 60 0.05 0.10 0.96 0.96 2.19 2.25
120 0.05 0.10 1.00 1.00 1.24 1.26

200 60 0.04 0.08 0.95 0.97 2.37 2.44
120 0.04 0.08 1.00 1.00 1.34 1.35

0.5 50 60 0.07 0.13 0.72 0.74 3.49 3.53
120 0.07 0.13 0.98 0.97 3.79 3.80

100 60 0.05 0.10 0.75 0.71 3.67 3.68
120 0.05 0.10 0.99 0.98 3.85 3.86

200 60 0.04 0.08 0.67 0.68 3.75 3.77
120 0.04 0.08 0.98 0.98 3.87 3.87

We also simulate vanishing sequences εN = log−2N , log−3/2N . These sequences sat-
isfy the rate condition imposed in Theorem 2. Table C.2 reports the simulation results.

Again, we find that the simulation results are not sensitive to the choice of regular-
ization sequence.

C.1.2 A design where regularization matters In our benchmark designs, the choice of
regularization parameter hardly affects the performance of our procedure, raising the
question of whether regularization is indeed necessary. It seems possible that regular-
ization may be a purely technical device to facilitate the mathematical proof of the va-
lidity of our procedure, but that it may not have any practical relevance.

We address this concern by presenting an alternative simulation design where regu-
larization affects the finite-sample performance of our procedure.

The design is very stylized and exhibits close-to-perfect correlations among the mo-
ment inequalities. For such correlations, our comparison bound relies on regularization
to bound the estimation error in the critical values (see proof of Lemma A.3).

Similar to the simulation designs in Section 6, the data generating process is given
by

l̃empit = θg0
i ,1l̃mwit + θg0

i ,2l̃popit + θg0
i ,3l̃emp

TOT
it + σivit

for i = 1, 	 	 	 ,N and t = 1, 	 	 	 , T . We simplify the generating process of the covariates

and obtain xit = (l̃mwit , l̃popit , l̃emp
TOT
it ) by sampling independently three times from

the empirical distribution of l̃mwit observed in the data for our application. This guaran-
tees that the components of xit have identical and independent marginal distributions,
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which makes it easier to parameterize the correlation structure of the moment inequal-
ities with the parameter κ below.

For group g = 1, we set the group-specific coefficient θ1 = (θ1,1, θ1,2, θ1,3 ) equal to
(0.5, 0.5, 0.5). For the remaining groups, the coefficients are a convex combination of a
design with parallel groups and a design with orthogonal groups. For g= 2, 3, 4, the coef-

ficients with parallel groups are θparallel
g = cgθ1, with c2 = 0.7, c3 = 0.4, and c4 = 0.1. The

coefficients with orthogonal groups are θorthogonal
2 = (0.5, 0, 0), θorthogonal

3 = (0, 0.5, 0),

θ
orthogonal
4 = (0, 0, 0.5). For g = 2, 3, 4, the group-specific coefficients are given by the

convex combination θg = (1 − κ)θparallel
g + κθ

orthogonal
g , where κ = 0, 0.05, 0.1, 0.2. For

κ= 0, groups are parallel, and all off-diagonal entries of the population correlation ma-
trix�i(g) are perfect correlations. For κ= 1, groups are orthogonal, and the matrix�i(g)
is diagonal.

As in the designs in Section 6, each unit i is assigned to one of the four groups
with equal probability and exhibits a random heteroscedasticity parameter σi = 0.1 ×
χ2(4)/4, where χ2(df ) is a random draw from a χ2-distribution with df degrees of free-
dom.

To establish a conjecture about the role of regularization in this design, we briefly re-
view where regularization enters our theoretical arguments. Regularization is part of our
strategy to control estimation errors in the critical values. Estimation error is a concern
because group-specific critical values are estimated from data. It is a greater concern in
small panels (T andN small) than in large panels (T orN large). Consider a positive off-
diagonal entry in �i(g0

i ). From the proof of Lemma A.3, it is apparent that estimation
error is easily controlled if the entry is bounded away from unity. We apply an argument
that relies on our regularization scheme to control estimation error if the entry is close
to unity. In summary, regularization is expected to be relevant if T and/or N are small
and κ is small.

This conjecture is confirmed by the simulation results in Table C.3 For κ= 0, 0.1, reg-
ularization improves size control in the designs with small samples. In particular, we see
improvements if N = 50. For κ= 0.2, regularization leads to slightly worse size control.
We interpret this as a sign that for κ= 0.2, the cost of regularization in terms of a biased
variance estimator is not outweighed by the benefit of guarding against underestimating
close-to-perfect positive correlations.

Simulation designs that investigate the role of regularization are by necessity designs
with substantial sampling error in the the group-specific coefficients. Without sampling
error, there is no uncertainty about the critical values and regularization is not needed.
The overall noisiness that makes the designs presented here informative about regular-
ization also affects the performance of our procedure directly, leading to a confidence
set that is underpowered independently of imprecisely estimated critical values. This
can be seen by comparing the performance of the regularized procedure with MVT crit-
ical values to the procedure with data-independent SNS critical values. The coverage un-
der SNS critical values provides an upper bound on the coverage that can be achieved
by eliminating estimation error in the critical values, that is, an upper bound on what
better regularization can achieve. This has to be considered when interpreting the im-
provements in size control from regularization. For example, for κ = 0.1, N = 50, and
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Table C.3. Simulation results for a stylized design with strongly correlated moment inequal-
ities. Nominal level 1 − α = 0.95. “coverage” is the empirical coverage probability of the joint
confidence set. “average cardinality” is the expected average (over all units) cardinality of the
marginal unitwise confidence sets. MVT = use MVT critical values. SNS = use SNS critical val-
ues.

coverage average cardinality

MVT SNS MVT SNS

κ N T ε= 0 ε= 0.01 ε= 0.05 ε= 0 ε= 0.01 ε= 0.05

0.0 50 60 0.82 0.80 0.84 0.86 2.19 2.18 2.22 2.30
120 0.91 0.94 0.94 0.95 1.66 1.65 1.69 1.74

100 60 0.92 0.91 0.93 0.95 2.32 2.32 2.36 2.47
120 0.93 0.96 0.95 0.96 1.72 1.73 1.77 1.83

0.1 50 60 0.69 0.74 0.73 0.75 2.32 2.32 2.35 2.42
120 0.86 0.87 0.89 0.91 1.80 1.79 1.80 1.85

100 60 0.84 0.82 0.85 0.87 2.46 2.46 2.50 2.58
120 0.93 0.92 0.92 0.95 1.87 1.87 1.89 1.95

0.2 50 60 0.65 0.62 0.66 0.68 2.42 2.42 2.43 2.50
120 0.87 0.86 0.85 0.88 1.88 1.90 1.89 1.93

100 60 0.78 0.78 0.76 0.81 2.59 2.60 2.59 2.67
120 0.91 0.90 0.91 0.94 1.99 1.98 1.99 2.03

T = 60, regularization improves the size by about five percentage points, bringing the
size within a percentage point of the size under SNS critical values.

The simulation results offer some evidence that the theoretical considerations that
motivate our regularization approach have practical relevance. This suggests that it may
not be possible to rigorously justify a version of our procedure that does not use regular-
ization. On the other hand, even in this highly stylized design, gains from regularization
are limited. From a practical perspective, correct regularization may not be a key con-
cern.

C.2 Testing the estimated group membership ĝi

In the definition of Ĉα,N ,i, we explicitly add ĝi to the confidence set. Not doing this
changes the marginal confidence set of unit i only if ĝi is not already included anyway,
that is, if

T̂i(ĝi )> ĉα,N ,i(ĝi ). (C.1)

We simulate the finite sample probability of this happening in our simulation designs
from Section 6 in the main text. The simulation results are summarized in Table C.4.
The column “ĝi not rej” gives the simulated probability of our group membership not
rejecting the estimated group membership (i.e., one minus the probability of the event
defined in equation (C.1)). We find that our test for group membership does not reject
the estimated group membership with probability close to, but not equal to, one.
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Table C.4. Simulated probability of the event (C.1).

ρ σ N T coverage cardinality ĝi not rej

0.0 0.1 50 60 0.99 1.60 0.99
120 1.00 1.07 0.99

100 60 0.99 1.76 1.00
120 1.00 1.12 1.00

200 60 0.99 1.95 1.00
120 1.00 1.17 1.00

0.2 50 60 0.92 1.97 0.99
120 1.00 1.16 0.99

100 60 0.95 2.13 0.99
120 1.00 1.21 1.00

200 60 0.96 2.30 1.00
120 0.98 1.28 1.00

0.5 0.1 50 60 0.87 3.35 0.99
120 0.99 3.71 1.00

100 60 0.86 3.52 1.00
120 0.99 3.80 1.00

200 60 0.82 3.67 1.00
120 1.00 3.84 1.00

0.2 50 60 0.69 3.42 0.99
120 0.98 3.72 1.00

100 60 0.69 3.62 0.99
120 0.98 3.84 1.00

200 60 0.70 3.74 1.00
120 0.97 3.87 1.00

C.3 Two-step procedure

In this appendix, we report simulation results regarding the finite-sample performance
of our two-step procedure.

We simulate a design with independent time periods. Like our main design in Sec-
tion 6 in the main text, the design studied here builds on the model estimated in Sec-
tion 5 in the main text. A unit i corresponds to a US state and the “time periods” are given
by observations of different counties in different quarters. The panel model is specified
as in equation (12) in the main text, with coefficients equal to the estimated coefficients
in Table 1 in the main text. The joint distribution of the regressors l̃mwit , l̃popit , and

l̃emp
TOT
it is defined from the data used in our empirical application. In particular, l̃mwit ,

l̃popit , and l̃emp
TOT
it are sampled from the pooled empirical distribution of the respec-

tive fixed-effect transformations of log(mwict ), log(popict ), and log(empTOT
ict ). The error

component vit is a standard normal noise term.
We set the distribution of (σi, Ti, g0

i ), that is, the distribution of heteroscedasticity
and group membership, such that the simulation results reveal different aspects of the
performance of the two-step procedure. We note that the two-step procedure is sensitive
to this distribution. We determine it from the data by mapping each simulated unit i to
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Table C.5. Simulation results for the two-step procedures (unit selection).

success failure card with sel card without sel

mσ α/β insignif signif insignif signif insignif signif insignif signif N̂ coverage

MVT
0.25 10 0.55 0 0.00 0.00 1.48 1.00 2.01 1 10.06 1.00

5 0.48 0 0.00 0.00 1.55 1.00 2.01 1 9.29 1.00

1.00 10 0.13 0 0.00 0.00 2.15 1.00 2.21 1 33.73 0.99
5 0.00 0 0.01 0.03 2.22 1.00 2.21 1 32.35 1.00

4.00 10 0.00 0 0.50 0.45 2.75 1.02 2.72 1 50.95 0.96
5 0.00 0 0.80 0.77 2.79 1.05 2.72 1 50.90 0.97

SNS
0.25 10 0.53 0 0.00 0.00 1.51 1.00 2.00 1 10.04 1.00

5 0.46 0 0.00 0.00 1.58 1.00 2.00 1 9.32 1.00

1.00 10 0.13 0 0.00 0.00 2.21 1.00 2.27 1 33.73 1.00
5 0.00 0 0.01 0.04 2.27 1.00 2.27 1 32.42 1.00

4.00 10 0.00 0 0.52 0.44 2.78 1.02 2.75 1 50.95 0.98
5 0.00 0 0.81 0.73 2.82 1.05 2.75 1 50.92 0.98

one of the N = 51 units from our empirical application. We set σi equal to mσ times the
standard deviation of the empirical residuals for unit i, g0

i equal to the estimated group
membership of i, and Ti equal to the number of observed “time periods” for unit i (i.e.,
number of counties times number of quarters). The parameter mσ = 1/4, 1, 4 shifts the
global level of uncertainty.

The other parameters for the simulations are set as follows. The nominal level of the
simulated joint confidence set is 1 − α = 0.95. We simulate different values of the first-
step parameter β= α/5, α/10 = 0.01, 0.005. The regularization sequence is specified as
εN = 0.01. We simulate the confidence set using our benchmark critical values defined
in Section 2.4 of the main text (labeled MVT = multivariate t-distribution), as well as the
SNS critical values defined in Section 4.1 of the main text (labeled SNS).

The simulation results are based on 1000 replications and reported in Table C.5. The
columns labeled “insignif” give averages over units that are insignificant under no unit
selection. Columns labeled “signif” give averages over units that are significant under
no unit-selection. A unit is labeled as a “success” (“failure”) if its marginal confidence
set is strictly smaller (strictly larger) under unit-selection than under no unit selection.
The columns labeled “card with sel” (“card without sel”) give the cardinality of unitwise
marginal confidence sets if unit selection is turned on (turned off). The column labeled
N̂ gives the simulated expected number of units that survive unit selection (N = 51).
“coverage” gives the simulated joint coverage probability of the two-step joint confi-
dence set (nominal level 1 − α= 0.95).

In all designs, unit selection produces a valid joint confidence set that covers the true
group structure at the prescribed nominal level.

Unit selection aims to tighten the marginal confidence sets for units for which esti-
mated group memberships are insignificant under a one-step procedure. Among such
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units, the expected proportion of units for which a two-step procedure tightens the
marginal confidence set varies across the different designs. In the design with low er-
ror variances (mσ = 0.25), this proportion ranges between 46% and 55%. This means
that the two-step procedure improves the marginal confidence sets for roughly half of
the units for which they can be improved. In the design with medium error variances
(mσ = 1), this proportion lies between 0% and 13%. In the design with high error vari-
ances (mσ = 4), there are no improvements. This illustrates that the two-step procedures
can only be successful if the overall uncertainty is low but unequally distributed across
units. If overall uncertainty is high, then the first step cannot deselect units, and hence
the second-step confidence sets cannot be tightened.

The two-step procedures can cause the confidence set to become wider if insuffi-
ciently many units are eliminated in the first step. This happens in the designs with high
error variance (mσ = 4): hardly any units are eliminated in the first step and the size
of the marginal confidence sets increases both for units with significant and units with
insignificant group membership estimates under the one-step procedure.

Using MVT instead of SNS critical values increases the power of our two-step pro-
cedure. In our designs, both choices of critical values select a similar number of units
for the second step. Therefore, the power gain from using MVT critical values is almost
entirely due to more efficient testing in the second step.

Appendix D: Weak group separation

D.1 Introduction

In this appendix, we consider grouped panel models in which groups are only weakly
separated. By weak separation, we mean that groups are distinct but very similar to each
other. We formalize this notion using an approach inspired by the local alternatives in
asymptotic testing theory. In particular, we let the distance between groups shrink to
zero at a fixed rate.

We offer new theoretical results on the rate of consistency of the k-means estima-
tor under weak separation. In particular, we give conditions under which the estimated
group-specific coefficients converge at the parametric

√
NT -rate if the distance be-

tween groups shrinks at a rate slower than T−1/2. We then use this result to derive con-
ditions under which our confidence set is valid under weak group separation.

In addition to the theoretical analysis, we provide simulation studies to investigate
the finite sample behavior of the k-means estimator and our joint confidence set under
weak separation and to verify our theoretical predictions.

This appendix is structured as follows. In Section D.2, we discuss existing results on
k-means estimation in a setting where groups are not separated at all. We then turn
to our analysis of the k-means estimation under weak separation. In Section D.3, we
present asymptotic results. In Section D.4, we present simulation evidence. Proofs are
given in Section D.5.
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D.2 No group separation

We first discuss k-means estimation under no group separation. By “no group separa-
tion,” we mean that there are at least two groups with identical coefficients. This corre-
sponds to overspecification of the number of groups. Bonhomme and Manresa (2015)
study this setting in their Supplemental Appendix. In this setting, the estimators of the
group-specific coefficient converge at most at the rate of T−1/2. As discussed in the main
text of this paper, this rate is too slow to satisfy our conditions for the validity of the joint
confidence set.

We consider a simple mean shift model where we observe yit , for i = 1, 	 	 	 ,N , and
t = 1, 	 	 	 T . The parameter of interest is the mean of yit . We assume that there is a latent
group structure with G groups and that the mean of yit may depend on unit i’s group
membership. Suppose that there is only one distinct group, that is, all units have the
same mean, but we incorrectly set the number of groups to two. Specifically, the esti-
mated model is

yit = αgi + vit ,
where gi = 1, 2 and vit is assumed to be i.i.d. N(0, σ2 ). Let α̂1 and α̂2 be the estimators
of α1 and α2, respectively, by the k-means method. By relabeling if necessary, we impose
α̂1 ≥ α̂2. The true model is homogeneous such that α= α1 = α2.

Proposition S.2 of Bonhomme and Manresa (2015) (Supplemental Appendix) states
that, asN → ∞ with T fixed, it holds that in probability,

α̂1 → α+
√

2
πT

, α̂2 → α−
√

2
πT

.

We note that the model considered in Proposition S.2 of Bonhomme and Manresa (2015)
includes regressors with common coefficients, but their presence does not affect the
probability limits of α̂1 and α̂2.

The above result indicates that, even if we take T → ∞ in addition to N → ∞, the
convergence rates of α̂1 and α̂2 are at most of order T−1/2. In particular, the probability
that P(|α̂g − α| >CT−1/2 ) for fixed C does not converge to zero.

D.3 Asymptotic analysis

We now turn to the setting of weak group separation, where groups are distinct but very
similar. The discussion given here is a simplified version of Lumsdaine, Okui, and Wang
(2023, Supplemental Appendix C).

We observe (yit , xit ) for i= 1, 	 	 	 ,N and t = 1, 	 	 	 , T . Units are divided intoG groups,
and all members of a group share the same value of the regression coefficient. The model
is

yit = x′
itθ

0
g0
i
+ uit ,

where θ0
g, g = 1, 	 	 	 ,G, are group-specific coefficients, g0

i ∈ {1, 	 	 	 ,G} is unit i’s true
group membership, and uit is an error term.
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The parameters are estimated by the k-means method (Bonhomme and Manresa
(2015)). Let G = {1, 	 	 	 ,G} be the set of groups. Then GN is the parameter space for the
group membership structure. A typical element of G is γ = (g1, 	 	 	 , gN ). The true group
membership structure is γ0 = (g0

1, 	 	 	 , g0
N ) ∈ G. The parameter space for the coefficients

is denoted as B ⊂ RGp. The estimator is

(γ̂, θ̂) = arg min
γ∈GN ,θ∈B

= 1
NT

T∑
t=1

N∑
i=1

(
yit − x′

itθgi
)2

.

We prove a rate of consistency of the k-means estimator under the following assump-
tions that are weaker than the standard set of assumptions imposed in the literature
(see, e.g., Bonhomme and Manresa (2015)). Most importantly, the group separation con-
dition is relaxed, allowing the difference between the slope coefficients associated with
two groups to vanish asymptotically. In addition, we relax the conditions on the exis-
tence of moments and the mixing properties of the data.

Assumption D.1. 1. Let zit be x′
itxit , or ‖uitxit‖. Assume the following holds for any

choice of zit : zit is a strictly stationary and strong mixing sequence over t whose
mixing coefficients ai[t] are bounded by a[t] such that max1≤i≤N ai[t] ≤ a[t] and∑∞
t=0(t + 1)r/2−1a[t]b/r+b < ∞ for some b > 0, and max1≤i≤N E(|zit|r+b ) < ∞ for

some b > 0.

2. B is compact.

3. Let ρN (γ, g, g̃) be the minimum eigenvalue of

N∑
i=1

T∑
t=1

1
{
g0
i = g}1{gi = g̃}xitx

′
it/(NT ),

where γ = (g1, 	 	 	 , gN ). For any g ∈ G,

min
γ∈(G)N

max
g̃∈G

ρN (γ, g, g̃)> ρ̂,

where ρ̂→p ρ asN , T → ∞ and ρ > 0.

4. There exists ρ̂∗ such that for any i,

λmin

(
1
T

T∑
t=1

xitx
′
it

)
≥ ρ̂∗

and ρ̂∗ →p ρ
∗ > 0 as N , T → ∞, where λmin gives the minimum eigenvalue of its

argument.

5. There exists a nonrandom sequence cT > T−1/2+e for some e > 0 such that for any
g �= h̃where g, h ∈G, it holds that ‖θ0

g − θ0
h‖> cT .
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Assumption D.1.5 is the key assumption that replaces the standard group separation
assumption by weak group separation. Similar to the standard assumption, any pair of
groups must have distinct coefficients. In particular, the distance between their coeffi-
cients has to be bounded away from zero in any finite sample. We generalize the stan-
dard assumption and allow the distance to vanish asymptotically. In the limit, groups
are not separated. We assume that the rate at which group differences vanish is slower
than T−1/2.

The mixing and moment conditions in Assumption D.1.1 are weaker than the stan-
dard assumptions imposed in the literature (see, e.g., Bonhomme and Manresa (2015)).
However, we impose the additional assumption of strict stationarity. Under this assump-
tion, we can relate the degree of weak group separation to a condition on the relative
magnitudes ofN and T .

All other assumptions are standard in the literature.
The following theorem derives an asymptotic equivalence between the k-means es-

timator θ̂ and the oracle estimator θ̃ under a known group membership structure. The
oracle estimator is trivially

√
NT -consistent.

Unlike most existing results on the consistency of the k-means estimator in grouped
panels, the theorem holds under weak group separation. However, the degree of group
separation affects the required condition on the relative magnitudes of N and T . The
faster group separation converges to the limit of no group separation, the stronger the
conditions on N and T . In particular, when group separation is weak, T must be large
relative toN .

Theorem D.1. Suppose that Assumptions D.1.1–D.1.5 hold. AsN , T → ∞ withNT−er →
0, where e and r are defined in Assumptions D.1.1 and D.1.5, respectively, it holds that

θ̂= θ̃+ op(1/
√
NT ).

Since the oracle estimator θ̃ is
√
NT -consistent, Theorem D.1 implies that θ̂ is

√
NT -

consistent.
Under the conditions of Theorem D.1, group consistency still holds (see Lemma D.4).

This is restrictive since the relevance of our testing problem relies on uncertainty about
the group memberships even in the asymptotic limit. We leave a formal analysis that
extends our results to settings with asymptotic misclassification for future research.

Our results indicate that such an extension is feasible. In our previous work in Dzem-
ski and Okui (2021), we have shown that consistent estimation of group memberships is
not a necessary condition for

√
NT -estimation of the group-specific coefficients under

weak separation. We proved this result for the mean-shift model estimated from i.i.d.
data. Theorem D.1 extends some of our previous analysis to a grouped panel regres-
sion model with weakly dependent time series. To simplify the derivations and make
our main point (robustness to weak separation) in a clear and transparent manner, we
impose a uniform bound on the variance of the error term (see our Assumption D.1.1).
This bound implies group consistency. We conjecture that the uniform variance bound
can be replaced by a set of more convoluted conditions (see condition (4) in Dzemski
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and Okui (2021)) that do not imply group consistency. We leave the details of this argu-
ment to future research.

Putting ιN = cT , Theorem 2 in the main text yields

T 1−erθ,N → 0 (D.1)

as N , T → ∞ as a necessary condition (ignoring a log term) for the validity of our con-
fidence set. Here, rθ,N is the rate of convergence of (θ̂1, 	 	 	 , θ̂G ). It indicates that the
validity of our confidence set holds even when groups are only weakly separated as long
as the cross-sectional sample is sufficiently large so that the group-specific coefficients
converge sufficiently fast.

D.4 Simulations

We now report simulation evidence to study the finite sample effect of weak group sep-
aration on the rate of convergence of the k-means estimator and the validity of our joint
confidence set for group membership.

The simulation design is a simplified version of the design in Section 6 in the main
text. The data generating process is given by

l̃empit = θg0
i ,1l̃mwit + θg0

i ,2l̃popit + θg0
i ,3l̃emp

TOT
it + σivit

for i = 1, 	 	 	 ,N and t = 1, 	 	 	 , T , where g0
i is the group membership of unit i and takes

either the value one or two with equal probability. For g = 1, 2, the group specific-
coefficient is equal to

θg = (1 − 2T−1/2+e) θ̄1 + θ̄2

2
+ 2T−1/2+eθ̄g,

where (θ̄1, θ̄2 ) are estimated by fitting the model to the data from the empirical appli-
cation using the k-means algorithm and setting the number of groups to G = 2. The
data generating process for the covariates and error is the same as in Section 6 in the
main text, setting ρ = 0 and σ = 0.2. We simulate designs with N = 50, 100, 200, T =
30, 60, 120, and e = −0.25, 0, 0.25. The parameter e controls the rate at which the two
group-specific coefficients converge to a common value as T → ∞. Under e = −0.25,
the two groups converge to a common group the fastest, and under e= 0.25, they con-
verge the slowest. The case e= 0.25 is covered by the theoretical result in Theorem D.1.
The case e = 0 is the infimum of the e considered in Theorem D.1. Under e = −0.25,
group separation vanishes at a rate too fast to be covered by Theorem D.1. Table D.1
reports group separation between the two groups for the different choices of e.

To measure the distance between two sets of group-specific slope coefficients θ =
(θ1, θ2 ) and θ′ = (θ′

1, θ′
2 ), we define

∥∥θ− θ′∥∥=

√√√√√ 2∑
g=1

E
∥∥θg − θ′

g

∥∥2
2
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Table D.1. Group separation and e.

‖θ0
1 − θ0

2‖ ‖θ0‖
T e = 0.25 e = 0.00 e = −0.25 e = 0.25 e = 0.00 e = −0.25

30 0.50 0.22 0.09 1.01 0.99 0.98
60 0.43 0.16 0.06 1.00 0.98 0.98

120 0.36 0.11 0.03 1.00 0.98 0.98

and

‖θ‖ =

√√√√√ 2∑
g=1

E‖θg‖2
2

and ‖·‖2 is the L2-norm. Table D.1 shows that, for θ0 = (θ0
1, θ0

2 ), ‖θ0‖ is almost indepen-
dent of e.

We simulate the joint confidence for group membership using the variance estima-
tor for the case of no serial correlation (i.e., setting the bandwidth equal to zero). For all
simulations, the nominal level for the joint confidence set is set to 1 − α= 0.95, and the
number of replications is 500. The simulation results are summarized in Table D.2.

The column “coverage” gives the simulated coverage probability of the joint con-
fidence set for group membership. The coverage is always conservative for the designs
with slowly vanishing group separation (e= 0.25). For the designs with group separation
that vanishes at a moderate or fast rate (e = 0 and e = −0.25, respectively), the confi-
dence set has appropriate or conservative coverage providedN and T are large enough.

The columns labeled “θ̂ − θ” simulate the expected total error of k-means estima-
tion ‖θ̂ − θ0‖/‖θ0‖, where θ̂ = (θ̂1, θ̂2 ) and the norm ‖·‖ is defined above. This error is
relevant for assessing the finite sample validity of the assumptions we impose on co-
efficient estimation in Theorem 2 in the main text. When scaled by T 1/2, the error is
approximately constant when increasing T and leaving N constant. This indicates that
this is the rate at which time-series variation reveals information about the panel model.
A smaller error can be achieved by using both time-series and cross-sectional variation,
that is, by increasing both T and N . As discussed in Section D.3, a necessary condition
for the asymptotic validity of our confidence set is

T 1−e∥∥θ̂− θ0
∥∥→ 0

as N , T → ∞. Clearly, this condition cannot be met by increasing T alone while keep-
ing N constant. However, the estimation error scaled by T 1−e vanishes if N increases,
suggesting that estimation error from k-means estimation is negligible in panels with a
large cross-sectional dimension.

The columns labeled “θ̂ − θ̃” simulate ‖θ̃ − θ̂‖/‖θ0‖. They are the normalized ex-
pected differences between the k-means estimator θ̂ and the oracle estimator θ̃. Based
on these columns, we assess the finite-sample relevance of our asymptotic result on k-
means estimation under weak separation. Only the designs with e= 0.25 are covered by
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Table D.2. Estimation error and confidence set coverage under shrinking group separation.

Error Error scaled by T 1/2 Error scaled by T 1−e

e N T coverage θ̂− θ θ̂− θ̃ θ̃− θ θ̂− θ θ̂− θ̃ θ̃− θ θ̂− θ θ̂− θ̃ θ̃− θ

0.25 50 30 0.97 0.28 0.12 0.25 1.52 0.66 1.37 3.55 1.54 3.22
60 0.99 0.20 0.05 0.19 1.52 0.35 1.48 4.23 0.99 4.11

120 1.00 0.14 0.00 0.14 1.56 0.04 1.56 5.16 0.15 5.16

100 30 0.97 0.20 0.10 0.17 1.09 0.53 0.95 2.54 1.23 2.23
60 0.99 0.14 0.04 0.14 1.10 0.30 1.06 3.07 0.85 2.96

120 1.00 0.10 0.01 0.10 1.09 0.06 1.09 3.61 0.21 3.61

200 30 0.98 0.15 0.08 0.12 0.80 0.43 0.68 1.87 1.00 1.59
60 0.99 0.10 0.03 0.10 0.76 0.23 0.76 2.12 0.64 2.11

120 1.00 0.07 0.00 0.07 0.79 0.05 0.78 2.61 0.16 2.58

0.00 50 30 0.84 0.39 0.24 0.26 2.16 1.33 1.41 2.16 1.33 1.41
60 0.94 0.23 0.12 0.19 1.81 0.90 1.51 1.81 0.90 1.51

120 0.99 0.15 0.03 0.14 1.61 0.33 1.58 1.61 0.33 1.58

100 30 0.90 0.28 0.19 0.18 1.55 1.04 0.98 1.55 1.04 0.98
60 0.96 0.17 0.09 0.14 1.35 0.71 1.09 1.35 0.71 1.09

120 0.98 0.10 0.03 0.10 1.15 0.29 1.11 1.15 0.29 1.11

200 30 0.91 0.23 0.17 0.13 1.26 0.94 0.70 1.26 0.94 0.70
60 0.97 0.12 0.07 0.10 0.96 0.55 0.77 0.96 0.55 0.77

120 0.99 0.07 0.02 0.07 0.82 0.21 0.79 0.82 0.21 0.79

−0.25 50 30 0.42 0.76 0.60 0.26 4.17 3.28 1.42 1.78 1.40 0.61
60 0.58 0.42 0.30 0.19 3.23 2.31 1.51 1.16 0.83 0.54

120 0.89 0.18 0.09 0.14 1.95 0.97 1.58 0.59 0.29 0.48

100 30 0.46 0.55 0.45 0.18 3.02 2.44 0.98 1.29 1.04 0.42
60 0.65 0.31 0.23 0.14 2.40 1.79 1.09 0.86 0.64 0.39

120 0.93 0.13 0.07 0.10 1.40 0.77 1.11 0.42 0.23 0.33

200 30 0.52 0.48 0.41 0.13 2.60 2.23 0.70 1.11 0.95 0.30
60 0.68 0.24 0.20 0.10 1.88 1.52 0.77 0.67 0.55 0.28

120 0.95 0.09 0.05 0.07 1.04 0.58 0.79 0.31 0.18 0.24

Theorem D.1. As predicted by the theorem, the difference between the k-means estima-

tor and the oracle estimation vanishes at a faster rate than T−1/2. We find the same result

for e= 0, −0.25, two cases not covered by our asymptotic results.

The columns labeled “θ̃− θ” report the simulated value of ‖θ̂− θ0‖/‖θ0‖, that is, the

expected error of the oracle estimator.

The columns labeled “θ̂− θ” are equivalent to differently scaled versions of the con-

vergence rate of θ̂, that is, of rθ,N defined in Assumption 1.3. The column scaled by

T 1−e checks the validity of condition (D.1) in finite samples. This condition is neces-

sary for the validity of our joint confidence set under weak separation. For e = 0.25,

Theorem D.1 predicts that T 1−erθ,N → ∞ (i.e., condition (D.1) above) if N is sufficiently

large compared to T . The simulation evidence confirms this prediction. The settings

with e= 0, −0.25 are not covered by the asymptotic analysis in Theorem D.1. Our simu-
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lation evidence suggests that the conditions for T 1−erθ,N → 0 are possibly even weaker
under these settings.

D.5 Proof of Theorem D.1

Let

Q(γ, θ) = 1
NT

T∑
t=1

N∑
i=1

(
yit − x′

itθgi
)2

.

Note thatQ(γ, θ) is the objective function for the estimation. We also define

Q̃(γ, θ) = 1
NT

T∑
t=1

N∑
i=1

(
x′
it

(
θ0
g0
i
− θgi
))2 + 1

NT

T∑
t=1

N∑
i=1

u2
it .

The theorem follows from the following sequence of lemmas.

Lemma D.1. Suppose that Assumptions D.1.1 and D.1.2 hold. Then

sup
γ∈GN ,θ∈B

∣∣Q̃(γ, θ) −Q(γ, θ)
∣∣=Op( 1√

T

)
.

Proof. The proof is almost identical to the proof of Lemma S.3 of Bonhomme and Man-
resa (2015). We have

Q̃(γ, θ) −Q(γ, θ) = −2
1
NT

T∑
t=1

N∑
i=1

x′
it

(
θ0
g0
i
− θgi
)
uit .

We rewrite a part of the right-hand side as

1
NT

T∑
t=1

N∑
i=1

x′
itθ

0
g0
i
uit = 1

NT

∑
g∈GB

T∑
t=1

N∑
i=1

1
(
gi(B) = g)x′

itθ
0
g0
i
uit .

For each g ∈GB, it holds that

E

(
1
NT

T∑
t=1

N∑
i=1

1
(
gi(B) = g)x′

itθ
0
g0
i
uit

)2

≤ CE
∥∥∥∥∥ 1
NT

T∑
t=1

∑
gi(B)=g

xituit

∥∥∥∥∥
2

=O
(

1
NT

)
,

where the inequality is the Cauchy–Schwarz inequality with C satisfying ‖θgi‖2 < C for
any θ ∈ B (by Assumption D.1.2), and the equality follows since Theorem 1 of Yokoyama
(1980) implies that under Assumption D.1.1, for any L ⊆ {1, 	 	 	 ,N }, there exists M ,
which does not depend on L such that

E

(∥∥∥∥∥ 1
NT

T∑
t=1

∑
i∈L

xituit

∥∥∥∥∥
2)

≤M |L|
N2T

, (D.2)
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where |L| denotes the cardinality of L. We then examine the other part of Q̃(γ, θ) −
Q(γ, θ). It follows that(

1
NT

T∑
t=1

N∑
i=1

x′
itθgiuit

)2

≤
(

1
NT

N∑
i=1

θgi

T∑
t=1

xituit

)2

≤
(

1
N

N∑
i=1

‖θgi‖2

)(
1

NT 2

N∑
i=1

∥∥∥∥∥
T∑
t=1

xituit

∥∥∥∥∥
2)

=Op
(

1
T

)
,

where the first inequality follows by the Cauchy–Schwarz inequality and the second in-
equality follows by Assumption D.1.2 and the Markov inequality by (D.2). We thus have

Q̃(γ, θ) −Q(γ, θ) =O
(

1√
NT

)
+O
(

1√
T

)
uniformly over θ and γ, and consequently,

sup
γ∈G,θ∈B

∣∣Q̃(γ, θ) −Q(γ, θ)
∣∣=Op( 1√

T

)
.

Lemma D.2. Suppose that Assumptions 1–3 hold. Then

max
g∈G

min
g̃∈G
∥∥θ0
g − θ̂g̃

∥∥2 =Op(1/
√
T ).

Proof. The proof is almost identical to the proofs of Lemmas A.2 and B.3 of Bonhomme
and Manresa (2015). Lemma D.1 implies

Q̃(γ̂, θ̂) =Q(γ̂, θ̂) +Op
(

1√
T

)
≤Q(γ0, θ0)+Op( 1√

T

)
= Q̃(γ0, θ0)+Op( 1√

T

)
.

The fact that Q̃(γ, θ) is minimized at (γ0, θ0 ) implies

Q̃(γ̂, θ̂) − Q̃(γ0, θ0)=Op( 1√
T

)
.

We now establish a lower bound of Q̃(γ, θ) − Q̃(γ0, θ0 ) such that

Q̃(γ, θ) − Q̃(γ0, θ0)
= 1
NT

T∑
t=1

N∑
i=1

(
x′
it

(
θ0
g0
i
− θgi
))2
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= 1
NT

T∑
t=1

G∑
g=1

G∑
g̃=1

N∑
i=1

1
{
g0
i = g}{gi = g̃}

(
x′
it

(
θ0
g − θg̃

))2

≥ 1
T

T∑
t=1

G∑
g=1

G∑
g̃=1

ρN (γ, g, g̃)
∥∥θ0
g − θg̃

∥∥2

≥ ρ̂G2 max
g∈G

min
g̃∈GB
∥∥θ0
g − θg̃

∥∥2
,

where the first inequality follows by the definition of ρN (γ, g, g̃) and the second inequal-
ity is from the definition of ρ̂. Now, Assumption D.1.4 implies

max
g∈G

min
g̃∈G
∥∥θ0
g − θ̂g̃

∥∥2 =Op
(

1√
T

)
.

Lemma D.3. Suppose that Assumptions D.1.1–D.1.3, and D.1.5 are satisfied. Then there
exist a permutation σ : G �→ G such that ‖θ0

g − θ̂σ(g)‖2 =Op(1/
√
T ) for any g ∈G.

Proof. We construct a permutation with the property stated in the lemma. Indeed, we
show that

σ(g) = arg min
g̃∈G
∥∥θ0
g − θ̂g̃

∥∥2

is such a permutation. We first show that σ satisfies ‖θ0
g − θ̂σ(g)‖2 = Op(1/

√
T ) for any

g ∈G, and that it is a permutation.
Lemma D.2 states that

max
g∈G

min
g̃∈G
∥∥θ0
g − θ̂g̃

∥∥2 =Op(1/
√
T ).

The map σ , by construction, satisfies ‖θ0
g − θ̂σ(g)‖2 =Op(1/

√
T ) for any g ∈G.

It remains to establish that σ is a permutation. For g �= g̃, the triangular inequality
gives

‖θ̂σ(g) − θ̂σ(g̃)‖ ≥ ∥∥θ0
g − θ0

g̃

∥∥− ∥∥θ0
g − θ̂σ(g)

∥∥− ∥∥θ0
g̃ − θ̂σ(g̃)

∥∥.
In the above, we have seen that ‖θ0

g − θ̂σ(g)‖ =Op(1/
√
T ) and ‖θ0

g̃ − θ̂σ(g̃)‖ =Op(1/
√
T ).

Assumption 5 states that ‖θ0
g − θ0

g̃‖ > cT . The condition that cT > T−1/2+e implies that

‖θ0
g−θ0

g̃‖−‖θ0
g− θ̂σ(g)‖−‖θ0

g̃− θ̂σ(g̃)‖> 0 with probability approaching one. This means
that σ(g) �= σ(g̃) for g �= g̃ with probability approaching one. Thus, σ possesses a well-
defined inverse and is bijective; in other words, σ is a permutation.

From Lemmas D.2 and D.3, we observe that the Hausdorff distance between θ0 and
θ̂ converges to 0 at the rate of

√
T . By using the labeling such that σ(g) = g, we can write

‖θ0
g − θ̂g‖2 =Op(1/

√
T ) for any g ∈G.

We then establish that the group membership structure is correct asymptotically as
long as the coefficients are in a neighborhood of the true value. Let N = {θ : ‖θ0

g − θg‖<
η= T−1/2+f , ∀g ∈G} for 0< f < e, where e is defined in Assumption D.1.5, for any g ∈G.
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Lemma D.4. Suppose that Assumptions D.1.1, D.1.2, D.1.4, and D.1.5 hold. AsN , T → ∞
with NT−er → 0, where e and r are defined in Assumptions D.1.1 and D.1.5, respectively,
it holds that

P
{
γ̂(θ) �= γ0 for some θ ∈ N

}→ 0.

Proof. We establish an equivalent statement:

max
1≤i≤N

sup
θ∈N

1
{
ĝi(θ) �= g0

i

}= op(1).

Note that

1
{
ĝi(θ) �= g0

i

}= max
g∈G\{g0

i }
1

(
T∑
t=1

(
yit − x′

itθg
)2
<

T∑
t=1

(
yit − x′

itθg0
i

)2)
.

We have

T∑
t=1

((
yit − x′

itθg
)2 − (yit − x′

itθg0
i

)2)= T∑
t=1

2uitxit
(
θ0
g0
i
− θ0

g

)+ T∑
t=1

(
x′
it

(
θ0
g0
i
− θ0

g

))2 +�,

where

�=
T∑
t=1

2uitxit
(
θg0

i
− θg − θ0

g0
i
+ θ0

g

)+ T∑
t=1

(
θg0

i
− θg − θ0

g0
i
+ θ0

g

)′
xitx

′
it

(
2θ0
g0
i
− θg0

i
− θg
)

+
T∑
t=1

(
θ0
g0
i
− θ0

g

)′
xitx

′
it

(
θ0
g0
i
− θg0

i
− θg + θ0

g

)
.

Applying the Cauchy–Schwarz inequality and then Assumption D.1.2 and the definition
of N gives

|�| ≤ ηC1

∥∥∥∥∥
T∑
t=1

uitxit

∥∥∥∥∥+ηC2

∥∥∥∥∥
T∑
t=1

xitx
′
it

∥∥∥∥∥,
where C1 and C2 are constants independent of η and T . We thus have the following
inequality:

1

(
T∑
t=1

(
yit − x′

itθg
)2
<

k−1∑
t=1

(
yit − x′

itθg0
i

)2)

≤ 1

(
k0−1∑
t=1

2uitx
′
it

(
θ0
g0
i
− θ0

g

)

−
T∑
t=1

(
x′
it

(
θ0
g0
i
− θ0

g,B

))2 +ηC1
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T∑
t=1

uitxit

∥∥∥∥∥+ηC2

∥∥∥∥∥
T∑
t=1

xitx
′
it

∥∥∥∥∥
)

.
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Thus, we have

P
(

sup
θ∈N

1
(
ĝi(θ) �= g0

i

) �= 0
)

≤
∑

g∈G\{g0
i }

(
P

(
1
T

T∑
t=1

(
x′
it

(
θ0
g0
i
− θ0

g

))2 ≤ c′′T
2

)
+ P
(∥∥∥∥∥ 1
T

T∑
t=1

uitxit

∥∥∥∥∥≥M
)

+ P
(∥∥∥∥∥ 1
T

T∑
t=1

xitx
′
it

∥∥∥∥∥≥M
)

+ P
(

1
T

T∑
t=1

2uitx
′
it

(
θ0
g0
i
− θ0

g

)
<−c

′′
T

2
+ηC1M +ηC2M

))
,

where we take c′′T = cT ×ρ∗ for c in Assumption D.1.5 and ρ∗ in Assumption D.1.4 andM

is some large constant.

We now bound the second and third terms on the right-hand side of the inequality.

First, we have

P

(∥∥∥∥∥ 1
T

T∑
t=1

xitx
′
it

∥∥∥∥∥≥M
)

≤ P
(

1
T

T∑
t=1

∥∥xitx′
it

∥∥≥M
)

= P
(

1
T

T∑
t=1

x′
itxit ≥M

)
.

Assumption D.1.1 enables us to the Markov inequality and Theorem 1 of Yokoyama

(1980) to x′
itxit −E(x′

itxit ), and we establish

P

(∥∥∥∥∥ 1
T

T∑
t=1

xitx
′
it

∥∥∥∥∥≥M
)

=O(T−r/2),
by taking M large enough such that

∑T
t=1 E(x′

itxit )/T < M . A similar argument under

Assumption D.1.1 implies that P(‖(T )−1∑T
t=1 uitxit‖ ≥M ) =O(T−r/2 ).

Next, we consider the first term. We now use Assumptions D.1.4, D.1.5, and D.1.1.

The Markov inequality combined with Theorem 1 of Yokoyama (1980) implies

P

(∣∣∣∣∣ 1T
T∑
t=1

(
x′
it

(
θ0
g0
i
− θ0

g

))2 − 1
T

T∑
t=1

E
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x′
it

(
θ0
g0
i
− θ0
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))2)∣∣∣∣∣≥ c′′T
2

)
=O(T−er).

We thus have uniformly over g:

P

(
1
T

T∑
t=1

(
x′
it

(
θ0
g0
i
− θ0

g

))2 ≥ c′′T
2

)
=O(T−er).
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Lastly, we consider the fourth term. It follows that

P

(
1
T

T∑
t=1

2uitx
′
it

(
θ0
g0
i
− θ0

g

)
<−c

′′
T

2
+ηC1M +ηC2M

)

≤ P
(

1
T

T∑
t=1

2uitx
′
it

(
θ0
g0
i
− θ0

g

)
<−c

′′
T

4

)
=O(T−er)

uniformly over g under Assumption D.1.1. The inequality follows by c′′T = O(cT ) =
O(T−1/2+e ) and η= o(T−1/2+e ). The equality holds by the Markov inequality and Theo-
rem 1 of Yokoyama (1980).

To sum up, we have

P
(

max
1≤i≤N

sup
θ∈N

1
(
ĝi(θ) �= g0

i

) �= 0
)

≤
N∑
i=1

P
(

sup
θ∈N

1
(
ĝi(θ) �= g0

i

) �= 0
)

=O(N(T−er + T−r/2))=O(NT−er).
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