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Appendix C: Mobility at grocery stores

In Appendix C, we provide evidence that suggests the public health measures placed
during the COVID-19 pandemic made grocery shopping more costly. We use Google
Community Mobility Reports (available at https://www.google.com/covid19/mobility/
?hl=en) to document how people in the United States changed grocery shopping activity
around the stay-at-home order. In Figure C.1, each gray line represents how visits and
length of stay at grocery stores changed in the 30 days before and after the stay-at-home
order at each state (see Table C.1 for the day when the stay-at-home order was imple-
mented around the first wave of COVID-19 spread). The black line represents its coun-
trywide average, weighted by the state population as of April 2020. They are reported in

Figure C.1. Visits and length of stay at grocery stores around stay-at-home orders.
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Table C.1. Start date of stay-at-home orders.

State Start Date

Alabama April 4
Alaska March 28
Arizona March 31
Arkansas None
California March 19
Colorado March 26
Connecticut March 23
Delaware March 24
District of Columbia April 1
Florida April 3
Georgia April 3
Hawaii March 25
Idaho March 25
Illinois March 21
Indiana March 24
Iowa None
Kansas March 30
Kentucky March 26
Louisiana March 23
Maine April 2
Maryland March 30
Massachusetts March 24
Michigan March 24
Minnesota March 27
Mississippi April 3
Missouri April 6

State Start Date

Montana March 28
Nebraska None
Nevada March 31
New Hampshire March 27
New Jersey March 21
New Mexico March 24
New York March 20
North Carolina March 30
North Dakota None
Ohio March 23
Oklahoma April 2
Oregon March 23
Pennsylvania April 1
Rhode Island March 28
South Carolina April 7
South Dakota None
Tennessee April 2
Texas April 2
Utah None
Vermont March 24
Virginia March 30
Washington March 23
West Virginia March 24
Wisconsin March 25
Wyoming None

the percent change compared to the median value for that day of the week during the
5-week period, January 3–February 6, 2020.

Appendix D: Interpretation of the rationing rule

In this section, we provide a microfoundation for the rationing rule of our model by
demonstrating that it can be derived as a large-market limit of a finite economy.

We begin with a discrete-period model, where each period has a physical time length
of dt > 0. Let μ > 0 be a scaling parameter that characterizes the size of the market. We
take the limit of μ → ∞ later while we always choose μ so that μdt becomes an integer.
At each period, μdt consumers arrive at the market. In addition, sμdt units of product
are supplied to the store. Note that the ratio between the inflow of consumers (μ) and
supplied product (sμ) is fixed for any μ and dt.

In each period, all consumers, μdt of them, are randomly sorted. Each consumer i
demands Qi(t ) =Ai(t )dNi(t )qi(t ) units of the product, where Ai(t ) represents whether
the consumer searches or not, dNi(t ) represents whether the consumer arrives at the
store or not, and qi(t ) represents the quantity of the product demanded. It is worth not-
ing that we consider the “potential” demand, that is, the demand of all consumers who
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search and arrive at the store, rather than only the demand of those who actually make
a purchase. These two specifications are equivalent because Ai(t )dNi(t ) = 0 for all con-
sumers who do not arrive at the store in period t.

The dynamics of the aggregate stock are primarily determined by Qi(t ): all con-
sumers, except for at most one person, face either (i) sufficient stock, where inventory
levels are not a constraint, or (ii) no stock, where purchasing is not an option. As we
focus on the large market limit, the presence of the marginal consumer diminishes. To
simplify the analysis, we assume that if the stock does not deplete before consumer i’s
turn, she will purchase Qi, and will be unable to purchase the product otherwise.

Without loss of generality, we can reorder consumers so that consumers arrive at the
store in ascending order of their indices, i = 1, 2, � � � , μdt. Consider an arbitrary rational
number γ ∈ (0, 1). We derive the condition under which the consumer who arrived at
the store in the γth percentile can purchase the product in the limit of μ → ∞. To this
end, we take a sequence μ in which γμdt becomes an integer. Note that whenever γ

is rational, for any μ̄ > 0, there exists μ such that both μdt and γμdt are integers. Let
i = γμdt be the consumer who is positioned at the γth percentile.

Consumer i can meet her unconstrained demand Qi(t ) if and only if

γμdt∑
j=1

Qj(t ) < sμdt,

or equivalently,

γ ·

γμdt∑
j=1

Qj(t )

γμdt
< s. (D.1)

We consider a large market limit of this economy, that is, take a limit of μ → ∞. Indeed,
the main model assumes that infinitely many consumers arrive for any time interval
[t, t + dt]. Since we assume that consumers are ordered uniformly at random, we can
apply the law of large numbers. In the limit of μ → ∞, (D.1) becomes

γE
[
Qi(t )

]
< s. (D.2)

Rearranging the terms in (D.2) yields

γ <
s

E
[
Qi(t )

] .

Since this conclusion holds for all rational γ ∈ (0, 1), the same conclusion holds for all
real γ ∈ (0, 1).

From now on, let us assume that there is a unit mass of (infinitely many) recurring
consumers. The total amount of the product demanded in this length-dt period is given
by

dD(t ) :=
∫
i∈[0,1]

Ai(t ) · dNi(t ) · qi(t )di.
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Meanwhile, the mass of consumers in this period is given by dt. Accordingly, we have

E
[
Qi(t )

]= dD(t )
dt

=: d(t ).

Thus, the proportion of consumers who can buy the product without any constraints
in each period can be expressed as s/d(t ) for any dt, which is consistent with the main
model. Similarly, all other consumers are unable to purchase anything. Since this pro-
portion remains constant regardless of the duration of each period, by taking the limit
as dt → 0, we derive the same rationing rule for the main continuous model.

Appendix E: Supplementary materials

E.1 Supplementary materials for Section 5

E.1.1 Iteration and cognitive hierarchy In the iterative scheme to find the equilibrium
path of R(t ), we use the following algorithm. Let R̃j(t ) represent the consumer’s belief for
R(t ) at round j = 0, 1, 2, � � � , and R̂j(t ) represent the path of R(t ) that would be achieved
if consumers acted on the belief {R̃j(t )}t≥0. Starting with an initial guess R̃0(t ) = 1 for all
t ≥ 0, we update the consumer’s belief according to

R̃j+1 = (1 − λ)R̃j + λR̂j with λ ∈ (0, 1), (E.1)

and repeat this until the differences between R̃j and R̂j become sufficiently small.
Figure E.1 depicts the updated beliefs of consumers R̃1, R̃2, � � �, showing the conver-

gence process of consumer’s belief for the path of R(t ) to the equilibrium in the bench-
mark simulation. There are three noteworthy observations to make.

First, we cannot observe a rational expectations equilibrium (REE) with R(t ) = 1 for
all t after the shock hits the market. Initially, we set R̃0(t ) = 1 for all t ≥ 0. In each iter-
ation, R̃j is a weighted average of R̄j−1 and the aggregate dynamic that emerges as the
optimal response against R̃j−1. The existence of a time period t where R̃1(t ) �= 1 indi-
cates that, after the shock arrives, and consumers act rationally, there is a shortage.

Second, we find no evidence of an equilibrium in which the shortage is less severe. To
search for a fixed point, we begin with the most optimistic initial guess, R̃0(t ) = 1 for all t,
and iteratively compute best responses. Figure E.1 displays the monotonic convergence
of R̃j , suggesting that there is no fixed point (i.e., equilibrium) where the availability R(t )
is higher than the one we have presented, although this is not conclusive evidence of the
uniqueness of the equilibrium transition dynamics.

Third, we can interpret the hoarding-demand spiral using cognitive hierarchy the-
ory (Camerer, Ho, and Chong (2004)). In our economy, the level-0 agents are consumers
who adhere to the stationary-equilibrium shopping strategy. The level-k agents are con-
sumers who optimize their shopping strategy, taking into account the fundamental
shock, while assuming that all other consumers are level k−1. As such, R̃j roughly repre-
sents the “level-j” consumer’s belief about product availability. Figure E.1 illustrates this



Supplementary Material A dynamic model of rational “panic buying” 5

Figure E.1. Illustration of the process of searching for the rational belief for R(t ). Note: This fig-
ure illustrates the process where consumers update their belief for the path of R(t ) using the up-
dating rule (E.1) with λ = 1/6, each colored solid line representing R̃j(t ) for j = 0, 10, 20, 30, � � � .
The horizontal axis represents the number of weeks after the announcement.

cognitive hierarchy by showing how each level of consumer’s belief converges toward
the equilibrium.1

The impact of the shopping-cost shock on hoarding demand in the first round is
relatively small. However, as consumers realize that other consumers will respond to the
shock and there will be a slight shortage of products, they begin to stockpile more. This
leads to an increase in hoarding demand driven by the fear of lower product availability,
which in turn increases hoarding demand further in subsequent rounds. This iterative
process continues until an equilibrium point is reached, capturing how the shortage
grows through the spiral of defensive hoarding.

E.1.2 Self-fulfilling panics In this section, we briefly investigate the potential for self-
fulfilling panics. To be specific, we explore whether our model can rationalize R(t ) < 1
without any exogenous changes in the model parameters. For that purpose, holding all
the parameter values fixed, we consider an exogenous shift in consumer belief regarding
R(t ), that is, R̃0(t ) < 1 for a certain period (see Supplemental Appendix E.1.1 for the
definition of R̃0).

1Two key differences exist between our updating rule and the standard cognitive hierarchy theory. First,

we update consumers’ beliefs about product availability R̃j , rather than their shopping strategy. However,
this difference is not significant as we are analyzing a mean-field game, in which a consumer’s problem is
influenced by other consumers’ strategies only through product availability. Second, we define the level-j+
1 consumers’ belief R̃j+1 as a convex combination of (i) the availability in level j, R̃j , and (ii) the availability
obtained as the best response against R̃j . While the standard cognitive hierarchy theory puts the entire
weight on (ii), we only assign a 90% weight on (i) for computational stability. This is because assigning too
much weight on (ii) would cause abrupt belief changes, making the calculation errors more significant.
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Figure E.2. Response of R(t ) to an exogenous shift in R̃(t ). Note: All the parameter values are
fixed.

Here, instead of demonstrating a global absence of belief changes leading to self-
fulfilling panics, we explore specific belief changes and provide intuitive explanations
for why they do not result in (self-) fulfillment. In Figure E.2, we illustrate consumer be-
lief R̃0(t ) with a dotted line and the best response to this belief, R̂0(t ), with a solid line. It
is evident that when a future shortage is anticipated without any changes in fundamen-
tals, consumers make their purchases in advance of the expected shortage, resulting in

Figure E.3. Response of R(t ) to an exogenous shift in R̃(t ). Note: All the parameter values are
fixed.
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the realized shortage occurring earlier than initially expected. Thus, the initial expecta-
tion of a future shortage cannot be fulfilled.

In Figure E.3, we illustrate the scenario where consumers anticipate an immediate
shortage. It also reveals that such an expectation does not lead to fulfillment, as con-
sumers delay their purchases until the shortage is expected to ease, causing the realized
shortage to occur later than initially anticipated.

In summary, in the absence of any changes in fundamentals, consumers refrain from
making purchases when severe shortages are anticipated. Consequently, expectations of
shortages do not become self-fulfilling.

E.1.3 Additional policy simulations

E.1.3.1 Sale-tax increases We consider a month-long tax increase, comparing its ef-
fectiveness with different tax rates and implementation lags in Table E.1.

Policy simulation (Short-Term Sales-Tax Hike). The government imposes a special
sales tax of τ percent for a month (4.3 weeks) from d weeks after recognizing the news of
a shopping-cost increase. The after-tax price is given by

p̂(t ) =

⎧⎪⎨
⎪⎩
(

1 + τ

100

)
·p if t ∈ [d, 4.3 + d];

p otherwise.

Table E.1 shows that the sales-tax increase can be useful in reducing the welfare cost
of a shopping-cost shock if it is implemented immediately, and that if its implementa-
tion is delayed even a few days, the effect is limited since it encourages consumers to
shop before the (after-tax) price will increase.

E.1.3.2 Nonmarket distribution We first consider a case in which the government dis-
tributes the product equally to all consumers. Since fairness is an important policy con-
cern, the government often wants to accommodate the whole population when specific
consumers’ needs are not observed.

Table E.1. A shopping-cost shock with short-term sales-tax hike.

Implementation Lags (d)

d = 0 d = 1/2 (Week) d = 1 (Week)

Tax Rate (τ) R(t ) < 0.33 �tax GR R(t ) < 0.33 �tax GR R(t ) < 0.33 �tax GR

τ = 0 (Benchmark) 2.12 (weeks) 5.05 0
τ = 3.0 1.91 4.60 2.04 2.00 4.80 1.29 2.04 4.88 1.24
τ = 6.0 1.68 4.15 4.08 1.88 4.55 2.58 1.96 4.72 2.46
τ = 9.0 1.41 3.70 6.12 1.76 4.31 3.86 1.88 4.56 3.68

Note: GR is the present value of increased government revenues (GR= ∫∞
0 e−rt [p̂(t ) −p(t )]R(t )d(t )dt).
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Simulation E.1 (Governmental Distribution to All Consumers). The government dis-
tributes 4.5 days worth (4.5/7 unit) of the product to all consumers at t = 0: The initial
condition is set to S(0) = So − 4.5/7 and G(0, k) =Go(k− 4.5/7) for all k.

Figure E.4a presents the simulation results. The adoption of the distribution pol-
icy successfully curbs the consumer’s tendency to rush for panic buying, which can be
observed in the lower-left chart. This, in turn, reduces market congestion and mini-
mizes product shortages. It is worth noting that increasing the product allocation per

Figure E.4. Governmental distribution. Note: The horizontal axis represents the number of
weeks after the announcement. The dotted lines show the results for the benchmark case.
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consumer can further alleviate panic buying. However, distributing the product equally
to the entire population, as simulated in Simulation E.1, can be both costly and time-
consuming. Therefore, alternative distribution rules are being investigated.

Simulation E.2 (Governmental Distribution to One-Half of Consumers). The govern-
ment distributes 9 days’ worth (9/7 unit) of the product to one-half of consumers at
t = 0: the initial condition is set to S(0) = So−4.5/7 and G(0, k) = 1/2Go(k)+1/2Go(k−
9/7) for all k.

The distribution policy is only targeted toward a portion of the population. Surpris-
ingly, as shown in Figure E.4b, allocating the product to only half of the population yields
similar results to distributing it to the entire population. This suggests that the govern-
ment can improve the welfare of the entire population by catering to only a fraction of it.

In practice, it is also challenging to implement the distribution policy immediately.
Therefore, we consider a scenario in which the government distributes the products 1
week after purchase.

There are various information settings that can be adopted for product distribution.
For instance, consumers may be aware or unaware of whether they will receive the prod-
uct from the government in the future. Such information plays a crucial role in shaping
consumer behavior as those who are aware of receiving the product soon have no in-
centive to rush to the store.

In this study, we adopt a conservative information setting where consumers have ra-
tional expectations of the evolution of product availability, denoted by R(t ). However,
we assume that no consumer expects to receive the product at t = 1, which is an ir-
rational expectation. This conservative assumption underestimates the effectiveness of
the government’s distribution policy since consumers’ hoarding behavior can only de-
crease when they are aware of the chance of receiving the product. Conversely, if the
conservative setting can suppress panic buying, the same results should be applicable
to any information setting.

Simulations E.3 and E.4 investigate the scenario where the distribution is delayed
by 1 week. In these simulations, the government purchases the product at t = 0 but dis-
tributes it at t = 1. As in Simulation E.2, the policy only covers half of the population.

Simulation E.3 (Delayed Governmental Distribution). The government collects 4.5/7
unit of the product at time t = 0: S(0) = So − 4.5/7. The government distributes 9
days worth (9/7 unit) of the product to one-half of consumers at t = 1: G(1, k) =
1/2G(1−, k) + 1/2Go(1−, k − 9/7) for all k. Before time t, each consumer behaves as
if there is no chance to receive the governmental distribution, but they correctly antici-
pate the evolution of the availability, R.

Figure E.5 displays the simulation results, which reveal a marginal improvement due
to the policy. However, the effect is not significant, at least with our conservative infor-
mation setting. To explore whether the efficacy of the policy increases with an increase
in the quantity of distributed products, we perform another simulation in which the
government distributes 2 weeks’ stock instead of 9 day’s stock.
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Figure E.5. Delayed governmental distribution (Simulation E.3). Note: The horizontal axis rep-
resents the number of weeks after the announcement. The dotted lines show the results for the
benchmark case.

Simulation E.4 (Delayed Governmental Distribution 2). The government collects one
unit of the product at time t = 0: S(0) = So − 1. The government distributes two units of
the product to one-half of consumers at t = 1: G(1, k) = 1/2G(1−, k) + 1/2Go(1−, k− 2)
for all k. Before time t, each consumer behaves as if there is no chance to receive the
governmental distribution, but they correctly anticipate the evolution of the availabil-
ity, R.

Figure E.6. Delayed governmental distribution (Simulation E.4). Note: The horizontal axis rep-
resents the number of weeks after the announcement. The dotted lines show the results for the
benchmark case.
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The result of this simulation is presented in Figure E.6. As shown in the top-middle
chart, the availability of the product substantially improves with the distribution of two
units. It is worth noting that in this scenario, the government only purchases one out
of 2.5 units of the product at t = 0, implying that the policy can be scaled up further to
suppress panic buying more effectively.

These simulation results suggest that the effectiveness of the government’s distribu-
tion policy is not significantly affected by implementation delays. Even if there are de-
lays in product delivery, consumers anticipate that market congestion will ease quickly,
leading to fewer consumers rushing to the market upon the policy announcement.

Figure E.6 illustrates that despite delays in the delivery of consumer products, con-
sumers anticipate the market congestion to ease quickly, leading to fewer consumers
rushing to the market upon the announcement. In reality, consumers are aware that
their stock increases at t = 1, which further improves product availability. This result
contrasts with the tax policy, which may have an adverse effect if the government can-
not implement it immediately after the announcement.

E.1.3.3 Efficiency of policy interventions We further discuss the efficiency of policy in-
terventions. Our welfare measure focuses on the impact of the average value. Here, we
examine who gets better off through the policy interventions discussed above. To this
end, the difference in the flow value (rV (0, k)) to consumers with stock k at time 0 with
and without policy interventions is displayed in Figures E.7–E.9. That is, these figures
display r(Ṽ (0, k) − V (0, k)), where Ṽ (t, k) and V (t, k) be consumers’ value given stock
k at time t, with and without policy interventions, respectively.

Figure E.7 displays the distributional welfare impacts of the purchase-quota policy.
It shows that (i) all consumers would be better off by implementing the policy, and (ii)
it would especially benefit consumers with small stock. This is because such consumers
urgently need to shop and would benefit greatly from having difficulties in shopping
relieved by the policy.

Figure E.8 displays the distributional welfare impacts of the future sales-tax reduc-
tion (Section 5.6.2), showing that the tax policy makes all consumers better off.

Figure E.9 displays the distributional welfare impacts of the governmental distribu-
tion policies (Supplemental Appendix E.1.3.2). We find that government rationing in-
creases value for all consumers under any scenario and that consumers with low inven-
tories benefit greatly, similar to purchase quotas and tax reductions.

E.2 Supplementary materials for Section 6

Here, we introduce consumption shock by considering the time variation in the con-
sumption rate as follows:

u
(
t, xi(t )

)=
{

0, xi(t ) ≥ μ(t );

−a, xi(t ) <μ(t ),
(E.2)

where μ(t ) is a time-varying positive parameter with limt→∞μ(t ) = 1. Given (E.2), the
stock is consumed at rate of μ(t ), that is, x(t, ki(t )) = μ(t ) if ki(t ) > 0 and x(t, ki(t )) = 0
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Figure E.7. The increase in consumers’ value at time 0 due to the purchase quota.

otherwise. Namely, the good is consumed μ(t ) units per unit of time (as long as stock is
available).

In the following, we consider a consumption shock that increases the rate of con-
sumption by 100% over a 4-week period and compare the impact when it is unantici-
pated and when it is anticipated.

Simulation E.5 (Unanticipated Consumption Shock). The rate of instantaneous con-
sumption is μ(t ) = 2.0 for t ∈ [0, 4] and μ(t ) = 1.0 otherwise.

Figure E.8. The increase in consumers’ value at time 0 due to the future tax reduction of 20%.
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Figure E.9. The increase in consumers’ value at time 0 due to the governmental distribution.
Note: Panels (a), (b), (c), and (d) are for Simulations E.1, E.2, E.3, and E.4, respectively.

Simulation E.6 (Anticipated Consumption Shock). The rate of instantaneous con-
sumption is μ(t ) = 2.0 for t ∈ [1, 5] and μ(t ) = 1.0 otherwise. Agents become aware of
the rise in consumption at time t = 0.

The simulation results in Figure E.10 suggest that the anticipated consumption
shock has a similar impact on shortages as the anticipated shopping-cost shock. How-
ever, in contrast to panic buying caused by shopping costs, unanticipated consumption
shocks (as in Simulation E.5) also result in severe shortages. This is because a consump-
tion shock makes the goods absolutely scarce, and consumers need to compete for the
limited resources, regardless of whether the shock is anticipated or not. Therefore, the
timing of information has little effect on the severity of panic buying caused by con-
sumption shocks.
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Figure E.10. An unanticipated and anticipated consumption shock. Note: The horizontal axis
represents the number of weeks after the news.

E.3 Supplementary materials for Section 7

E.3.1 The magnitude of the shopping-cost shock In the benchmark case, we consid-
ered the case in which the flow shopping costs are increased by 500%. In Figure E.11, by
varying the parameter c̄, we investigate how the size of the shock affects social welfare.

The figure shows that the welfare cost is very small when the shock size is about 300%
but drastically severe when the size of the shock is greater than 360%. This implies that
there is a nonlinear S-shaped relationship between the gross welfare cost of a shopping-
cost shock and the size of the shock (c̄ − c)/c: If the increase in shopping costs exceeds
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Figure E.11. Welfare cost of a shopping-cost shock with different magnitudes.

a certain level, there is a serious shortage of products, resulting in substantial costs to
consumers.

E.3.2 Price dynamics In the benchmark simulation, we assumed that the market price
is kept constant at the stationary-equilibrium level (p(t ) = p). Here, we allow the market
price to change in response to the increase in demand. In light of extensive empirical ev-
idence suggesting that stores are reluctant to increase the price in emergency situations
in order to maintain their reputation, we assume that the market price is rigid and grad-
ually rises in response to the spike in demand. Specifically, we consider the following
scenarios:

Simulation E.7 (Inflation). During the first 6 weeks after time 0, the market price in-
creases at a monthly rate of 10%.

Simulation E.8 (High Inflation). During the first 6 weeks after time 0, the market price
increases at a monthly rate of 20%.

Figure E.12 illustrates how inflation exacerbates the extent of shortages. While the
changes in individual consumer policies in response to inflation might seem modest,
the anticipated inflation encourages consumers to shop earlier, thereby contributing to
an aggregate exacerbation of shortages. Consequently, the likelihood of consumers be-
coming stockless increases. The figure indicates that this effect becomes more substan-
tial as consumers encounter even higher inflation rates.2

2Awaya and Krishna (2021) provide a two-period model framework in which the price of a storable good
is endogenously determined by the market-clearing price. In their model, when consumers purchase a large
amount in the first period, the second-period price increases and becomes even higher than the first-period
price. This situation resembles Simulations E.7 and E.8 in the sense that the price does not increase instan-
taneously at the beginning of the game. Awaya and Krishna (2021) also show that price controls mitigate
panic buying and enhance social welfare.
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Figure E.12. Response to a shopping-cost shock with inflation. Note: The horizontal axis rep-
resents the number of weeks after the announcement. The dotted, dash-dotted, and solid lines
show the results for the benchmark case (no inflation), Simulation E.7 (10% inflation), Simula-
tion E.8 (20% inflation), respectively.

E.3.3 Model extension We extend the model by introducing heterogeneity in the de-
gree of product market frictions faced by consumers. Kano (2018) documents a large
dispersion in the purchase cycle of toilet paper. In particular, there is a marked dif-
ference in inventory at the time of purchase; on average, households purchase when
they reach a 2-week stock, but there are many households that purchase with about half
that amount in stock. Here, we examine how the heterogeneity in the purchase cycle
affects the response to the shopping-cost shock by incorporating consumers who are
heterogeneous in the degree of product market frictions captured by parameters (α, c).
Specifically, we consider two types of household: (i) average shoppers with making pur-
chases once every 4 weeks and having 2 weeks’ stock remaining on average at the time
of purchase; (ii) accessible shoppers with making purchases once every 4 weeks and
having 1.2 weeks’ stock remaining on average at the time of purchase. Following the
calibration strategy in Section 4, average shoppers face product market frictions with
(α, c) = (2.29, 14.63), while accessible shoppers face (α, c) = (3.82, 26.89).

Figure E.13 illustrates the response to a shopping cost shock, similar to the bench-
mark, in an economy where the population is composed of an equal number of average
and accessible shoppers. The results reveal that the presence of accessible shoppers in-
tensifies the impact of the shopping cost increase. Specifically, the shortage becomes
more severe and persistent, and the risk of becoming stockless is higher than in the ab-
sence of accessible shoppers. This is because accessible shoppers have less inventory
when they receive the news of rising shopping costs, leading them to hoard products
more intensely than the average shoppers. Consequently, the intensive hoarding by ac-
cessible shoppers hastens the onset of shortages, which further accelerates hoarding by
the average consumers. The findings imply that to avoid panic buying, it is crucial to
prevent highly accessible consumers from rushing to stores and purchasing products.
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Figure E.13. Response to a shopping-cost shock with heterogeneous households. Note: The
horizontal axis represents the number of weeks after the announcement. The dotted lines show
the results for the benchmark case. In the upper-right panel, the lines with marks represent the
response of accessible shoppers.

Appendix F: Proofs

F.1 Proofs of Proposition 1(i)–(iii)

Proof. We prove the proposition in six steps. In steps 1–4, we show that there exists a
unique inaction region. Then, in step 5, we show the uniqueness of optimal stopping
time, k∗, and k̄. In step 6, we drive the expressions for the value functions and k̄.

Step 1. We first prove 0 ∈ A and

α
(
V A(0) − V ∗

o (0)
)− c > 0 (F.1)

by contradiction. Suppose 0 /∈ A, we must have

Vo(0) = −a

r
= V N (0) > V ∗

o (0), (F.2)

where

V N (k) :=
∫ ∞

0
e−rsh

(
max{k− s, 0}

)
ds = 1

r

[
1 − (1 + a)e−rk − b̄

[
e−rk

(
1
r

+ k

)
− 1

r

]]
.

By definition of V ∗
o ,

V ∗
o (0) = −a+ c

r
+ α

V A(0) − V ∗
o (0)

r

> −a+ c

r
+ α

sup
q≥0

V N (q) −pq− V (0)

r

= −a+ c

r
+ α

sup
q≥0

V N (q) −pq+ a/r

r
,
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where the second line used the fact V A(k) = supq≥0 Vo(k + q) − pq ≥ supq≥0 V N (k +
q) −pq and the third line used V N (0) = −a/r. Then, using (F.2), we have

−a

r
> −a+ c

r
+ α

sup
q≥0

V N (q) −pq+ a/r

r
,

or

c > α

[
sup
q≥0

V N (q) −pq+ a

r

]
.

This clearly contradicts Assumption 1. Then we must have 0 ∈A, which implies

Vo(0) = V ∗
o (0) = −a+ c

r
+ α

V A(0) − V ∗
o (0)

r
> −a

r
.

This immediately implies (F.1).
Step 2. We next prove [0, ε] ∈ A for sufficiently small ε > 0 by contradiction. Suppose

that A = {0}, that is, V ∗
o (k) < Vo(k) for all k> 0.

By construction of Vo and V ∗
o , we have Vo(ε) = max{Ṽo(ε), V ∗

o (ε)}, where

Ṽo(ε) = h(ε)dt + (1 − r dt )Vo(ε− dt ) (F.3)

and

V ∗
o (ε) = [

h(ε) − c + αV A(ε)
]
dt + (

1 − (α+ r )dt
)
V ∗
o (ε− dt ) (F.4)

for any ε > 0. Take ε = dt > 0. Then, taking difference (F.3) from (F.4), we have

V ∗
o (ε) − Ṽo(ε) = [

α
(
V A(ε) − V ∗

o (0)
)− c

]
ε. (F.5)

Since

V A(ε) = sup
q≥0

Vo(ε+ q) −pq = sup
q′≥ε

Vo
(
q′)−p

(
q′ − ε

)=
(

sup
q′≥ε

Vo
(
q′)−pq′)+pε,

we have, for a sufficiently small ε,

V A(ε) = V A(0) +pε. (F.6)

Substituting (F.6) into (F.5), we have

V ∗
o (ε) − Ṽo(ε)

ε
= α

(
V A(0) − V ∗

o (0)
)− c +pε.

Rearranging the terms yields

α
(
V A(0) − V ∗

o (0)
)− c = − Ṽo(ε) − V ∗

o (ε)
ε

−pε < 0, (F.7)

where the last inequality comes from the assumption Vo(ε) = Ṽo(ε) > V ∗
o (ε). Here, (F.7)

contradicts to (F.1).
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Step 3. Using the same arguments as step 2, we can show that if [0, k̂] ∈ A such that
α(V A(k̂) − V ∗

o (k̂)) − c > 0, then [0, k̂ + ε′] ∈ A for a small ε′ > 0. Then continuity of
V ∗
o and the instantaneous payoff function h(k) show that [0, k∗] ∈ A with α(V A(k∗ ) −

V ∗
o (k∗ )) = c.

Step 4. We show that the interval A is connected. That is, A = [0, k∗]. This is almost
obvious. Because h(k) is strictly decreasing for k ≥ k∗, there is no reason to increase k at
the cost of shopping search.

Step 5. We show the uniqueness of optimal stopping-time policies, or k∗ and k̄.
Since we have shown the problem has a unique inaction region and have assumed
V o(k) is continuous, applying the uniqueness theorem for optimal stopping (Øksendal
(2003, Theorem 10.1.12)) to this problem derives a unique stopping time. This implies a
unique k∗.

The uniqueness of k̄ is clear since for k > k∗, Vo(k) − pk is continuous and strictly
concave with V ′

o(k∗ ) −p> 0. (See step 6 for the explicit expression).
Step 6. Finally, given that optimal policy, we derive V and V ∗ satisfying

Vo(k) = 1{k≥k∗}

[∫ k−k∗

0
e−rs′h

(
k− s′

)
ds′ + e−r(k−k∗ )V ∗

o

(
k∗)]+ 1{k<k∗}V

∗
o (k), (F.8)

and

V ∗
o (k) =

∫ ∞

0
e−(α+r )s′[h(max

{
k− s′, 0

})+ αV A
(
max

{
k− s′, 0

})− c
]
ds′,

where V A(k) = maxq≥0 Vo(k+ q) −pq. It is therefore confirmed that

rVo(k) = 1{k≥k∗}

[
h(k) − ∂Vo(k)

∂k
x(k)

]
+ 1{k<k∗}V

∗
o (k) (F.9)

and

rV ∗(k) = h(k) − c − ∂V ∗(k)
∂k

x(k) + α
[
V A(k) − V ∗(k)

]
. (F.10)

Lemma F.1. Vo(k) and V ∗
o (k) are respectively expressed as follows:

Vo(k) = 1{k≥k∗}

[
1
r

e−r(k−k∗ )
(
b
(
k∗)− b̄

r
+ rV ∗

o

(
k∗))+ 1

r

(
b̄

r
− b(k)

)]
+ 1{k<k∗}V

∗
o (k),

(F.11)
and

V ∗
o (k) = α
(k) + 1

α+ r

[(
1 − e−(α+r )k) b̄

α+ r
− b(k) − e−(α+r )ka− c

]
, (F.12)

where


(k) :=
∫ k

0
e−(α+r )(k−s)V A(s)ds + e−(α+r )k V

A(0)
α+ r

.

They satisfy the value-matching condition

Vo
(
k∗)= V ∗

o

(
k∗)= lim

k↑k∗ V
∗
o (k) = lim

k↑k∗ Vo(k), (F.13)
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and the smooth pasting condition

V ′
o

(
k∗)= V ∗′

o

(
k∗)= lim

k↑k∗ V
∗′
o (k) = lim

k↑k∗ V
′
o(k). (F.14)

Proof of Lemma F.1. First, we derive (F.11). The first term of the right-hand side of (F.8)
is ∫ k−k∗

0
e−rs′h

(
k− s′

)
ds′ + e−r(k−k∗ )V ∗

o

(
k∗)= −

∫ k∗

k
e−r(k−s)h(s)ds + e−r(k−k∗ )V ∗

o

(
k∗)

=
∫ k∗

k
e−r(k−s)b(s)ds + e−r(k−k∗ )V ∗

o

(
k∗).

Then use b(k) = b̄k and then apply integration by part to obtain

∫ k∗

k
e−r(k−s)b(s)ds = b̄

∫ k∗

k
e−r(k−s)s ds

= b̄

[
1
r

[
e−r(k−s)s

]k∗
k

− 1
r

∫ k∗

k
e−r(k−s) ds

]

= b̄

r

[
e−r(k−s)

(
s − 1

r

)]k∗

k

= 1
r

[
e−r(k−k∗ )

(
b
(
k∗)− b̄

r

)
+ b̄

r
− b(k)

]
.

Then we derive (F.13) and (F.14). Given (F.8), it is immediate to derive the value
matching condition (F.13). Then (F.10) and the fact α(V A(k∗ ) − V ∗

o (k∗ )) = c implies

rV ∗(k∗)= −b
(
k∗)− V ∗′(

k∗). (F.15)

Then the value matching condition and (F.9) yield the smooth pasting condition (F.14).
Finally, we derive (F.12):

V ∗(k) =
∫ ∞

0
e−(α+r )s′[h(max

{
k− s′, 0

})+ αV A(
(
max

{
k− s′, 0

})− c
]
ds′

=
∫ k

0
e−(α+r )(k−s)[h(s) + αV A(s)

]
ds + 1

α+ r

[
e−(α+r )k(h(0) + αV A(0)

)− c
]

= α
(k) + 1
α+ r

[(
1 − e−(α+r )k) b̄

α+ r
− b(k)

]
− 1

α+ r

(
e−(α+r )ka+ c

)

= α
(k) + 1
α+ r

[(
1 − e−(α+r )k) b̄

α+ r
− b(k) − e−(α+r )ka− c

]
,

where


(k) =
∫ k

0
e−(α+r )(k−s)V A(s)ds + e−(α+r )k V

A(0)
α+ r

.
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Note that Lemma F.1 implies that, for k≥ k∗,

V ′
o(k) = −e−r(k−k∗ )

[
b
(
k∗)− b̄

r
+ rV ∗

o

(
k∗)]− b̄

r
,

and

V ′′
o (k) = re−r(k−k∗ )

[
b
(
k∗)− b̄

r
+ rV ∗(k∗)]

= −re−r(k−k∗ )
[
b̄

r
+ V ∗′

o

(
k∗)],

where the second line used (F.15) and (F.14).
Here, we postulate V ∗′

o (k∗ ) > 0, implying that V ′′
o (k) < 0 for k ≥ k∗ and, therefore,

Vo(k) is strictly concave for k≥ k∗. In this case, V A(0) = maxq≥0 Vo(q)−pq has a unique
solution. Let k̄ be the solution. It must be true that (i) k̄= k∗ if V ′

o(k∗ ) ≤ p or (ii) k̄ > k∗ if
V ′
o(k∗ ) > p. But it is clear that the case (i) contradicts to the fact that k∗ ∈ A. Hence, the

case (ii) must be held and k̄ satisfies

V ′
o(k̄) = −e−r(k̄−k∗ )

(
b
(
k∗)− b̄

r
+ rV ∗(k∗))− b̄

r
= p,

or

k̄= k∗ − 1
r

log
(

− b̄/r +p

b
(
k∗)− b̄/r + rV ∗

o

(
k∗)

)
= k∗ + 1

r
log

(
1 + V ′

o

(
k∗)−p

b̄/r +p

)
︸ ︷︷ ︸

>1

.

As a consequence, (when postulating V ∗′
o (k∗ ) > 0), we must have

V A(k) = max
q≥0

Vo(k+ q) −pq =
{
Vo(k̄) −p(k̄− k) for k ∈ [0, k̄],

Vo(k) for k ∈ (k̄, ∞).
(F.16)

Furthermore, use (F.9) to derive the following:

Vo(k̄) = −b(k̄) + V ′
o(k̄)

r
= −b(k̄) +p

r
.

Plugging this into (F.16) yields

V A(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−p+ b(k̄)
r

−p(k̄− k) for k ∈ [0, k̄],

1
r

[
e−r(k−k∗ )

(
b
(
k∗)− b̄

r
+ rV ∗(k∗))+

(
b̄

r
− b(k)

)]
for k ∈ (k̄, ∞).

Finally, we verify that our postulation was true. Using (F.12), we have

V ∗′
(k) = α
′(k) − (

1 − e−(α+r )k) b̄

α+ r
+ e−(α+r )ka.
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We then show that, for k ∈ [0, k̄],


′(k) = −(α+ r )
(k) + V A(k) = (
1 − e−(α+r )k) p

α+ r
,

since


′(k) = −(α+ r )

[∫ k

0
e−(α+r )(k−s)(V A(0) +ps

)
ds + e−(α+r )k V

A(0)
α+ r

]
+ (

V A(0) +pk
)

= −(1 − e−(α+r )k)V A(0) − e−(α+r )kV A(0) + (
V A(0) +pk

)
−p(α+ r )

∫ k

0
e−(α+r )(k−s)s ds

= pk−pk+ (
1 − e−(α+r )k) p

α+ r

for k ∈ [0, k̄]. Hence, we have

V ∗′
(k) = (

1 − e−(α+r )k)αp− b̄

α+ r
+ e−(α+r )ka,

for k < k̄. Assumption 2 ensures αp > b̄, and thus V ∗′
(k) > 0 for all k < k̄. Since k∗ < k̄,

we have shown V ∗′
(k∗ ) > 0.

In sum, the value functions in the stationary equilibrium is given by

rVo(k) = 1{k≥k∗
o}

[
e−r(k−k∗

o )
(
b̄k∗

o − b̄

r
+ rV ∗

o

(
k∗
o

))+
(
b̄

r
− b̄k

)]
+ 1{k<k∗

o}rV
∗
o (k),

where the value of exercising a control V ∗(k) satisfies

V ∗
o (k) = α

[∫ k

0
e−(α+r )(k−s)V A

o (s)ds − e−(α+r )k (p+ b̄k̄o )/r +pk̄o

α+ r

]

+ 1
α+ r

[(
1 − e−(α+r )k) b̄

α+ r
− b̄k− e−(α+r )ka− c

]
,

with

V A(k) = 1{k≤k̄o}

[
p(k− k̄o ) − (p+ b̄k̄o )/r

]+ 1{k>k̄o}Vo(k).

F.2 Proofs of Lemma 1 and Proposition 1(iv) and (v)

Let G(0, k) be the distribution function for the consumer’s stock at the initial period
t = 0. Because of the exogenous exit, the share of consumers who exist from the initial
period decreases at the rate of θ, and such consumers disappear in the long run. Thus,
the choice of g(0, k) does not affect the long-run distribution. Thus, in computing the
long-run distribution, without loss of generality, we can assume G(0, k) =Go(k).
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In the stationary equilibrium, it must be held that

∂g(t, k)
∂t

=

⎧⎪⎪⎨
⎪⎪⎩
∂g(t, k)

∂k
x(k) + θ

[
gnew(k) − g(t, k)

]− αg(t, k) for k ∈ [0, k∗
o

]
,

∂g(t, k)
∂k

x(k) + θ
[
gnew(k) − g(t, k)

]+ αG
(
t, k∗

o

)
δ(k− k̄o ) for k ∈ [k∗

o, k̄o
]
.

Then we show that there exists a unique g(t, k) that satisfies ∂g(t,k)
∂t = 0. Namely, we show

that the solution for the ordinary differential equation is unique:

0 =
{

−g′
o(k) − αgo(k) for k ∈ (0, k∗

o

)
,

−g′
o(k) + αGo

(
k∗
o

)
δ(k− k̄o ) for k ∈ [k∗

o, k̄o
]
,

with limk↑k∗
o
go(k) = go(k∗

o ) and Go(0) =G(k∗
o )eαk

∗
o .

It is clear that

go(k) =
{
C for k ∈ [k∗

o, k̄o
]
,

Ce−α(k∗
o−k) for k ∈ (0, k∗

o

)
.

Hence,

G
(
k∗
o

)= G(0) +C

∫ k∗
o

0
e−α(k∗

o−k) dk

= G
(
k∗
o

)
eαk

∗
o + C

α

(
1 − eαk

∗
o
)
.

Therefore,

G
(
k∗
o

)= C

α
.

Furthermore, it must be true that

G
(
k∗
o

)+
∫ ∞

k∗
o

go(k)dk = 1.

This requires

C

(
1
α

+ k̄o − k∗
o

)
= 1.

Namely,

C = α

1 + α
(
k̄o − k∗

o

) .

This shows that

go(k) =

⎧⎪⎪⎨
⎪⎪⎩

α

1 + α
(
k̄o − k∗

o

)e−α(k∗
o−k) for k ∈ (0, k∗

o

)
,

α

1 + α
(
k̄o − k∗

o

) for k ∈ [k∗
o, k̄o

]
,

and has a mass point at k= 0 with Go(0) = e−αk∗
o

1+α(k̄o−k∗
o )

.
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Proposition 1(v) is obvious from the average waiting time between two occurrences
in a Poisson process.

Appendix G: Algorithm description

We define differential operators (or infinitesimal generators of the process) K and T as

(KV )(t, k) = −∂kV (t, k)x(k)

and

(T V )(t, k) = ∂tV (t, k).

The value function V (t, k) can be written as a solution of the Hamilton–Jacobi–Bellman
variational inequality (HJBVI, henceforth):3

min
{
rV (t, k) − h(k) − (KV )(t, k) − (T V )(t, k), V (t, k) − V ∗(t, k)

}= 0, (G.1)

where V ∗(t, k) is the value function of exercising the option, which satisfies the following
HJB equation:(

r + αR(t )
)
V ∗(t, k) = h(k) − c(t ) + (

KV ∗)(t, k) + (
T V ∗)(t, k) + αR(t )V A(t, k).

We will find an approximated solution of the HJBVI (G.1) in a discretized space.
We begin with the description of our notations. Set an equidistant grid over the con-
sumer’s stock level, k1 = 0, k2, � � � , kL with k = k� − k�−1 for all � = 2, � � � , L. Through-
out, we use bold letters to denote vectors and subscript � to denote the �th ele-
ment of a vector. For example, k = (k1, � � � , k�, � � � , kL )′ and h = (h1, � � � , h�, � � � , hL )′ =
(h(k1 ), � � � , h(k� ), � � � , h(kL ))′. Let v(t ) be v(t ) = (V (t, k1 ), � � � , V (t, kL ))′. Similarly, let
v∗(t ) = (V ∗(t, k1 ), � � � , V ∗(t, kL ))′.

We then discretize the differential operator K . Since a functional operator is the
infinite-dimensional analogue of a matrix, the operator K can be discretized by a ma-
trix K. Specifically, we approximate the partial derivative based on the following finite
difference scheme:

∂kV (t, k� ) = V (t, k� ) − V (t, k�−1 )
k

.

Using the above scheme along with the boundary condition, we can write

−∂kV (t, k� )x(k� ) =

⎧⎪⎨
⎪⎩

0, � = 1,

−V (t, k� ) − V (t, k�−1 )
k

= v�−1(t )ω+ + v�(t )ω−, � = 2, � � � , L,

3Note that solving the HJBVI (G.1) is equivalent to finding the function V (t, k) that satisfies the comple-
mentary slackness conditions:

V (t, k) ≥ V ∗(t, k) if rV (t, k) = h(k) + (KV )(t, k) + (T V )(t, k),

V (t, k) = V ∗(t, k) if rV (t, k) ≥ h(k) + (KV )(t, k) + (T V )(t, k).
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where ω+ = 1/k and ω− = −1/k. Then we can build a L×L sparse matrix K such that

Kv(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · · · · · · · 0
ω+ ω− 0 0 · · · · · · 0
0 ω+ ω− 0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · · · · 0 ω+ ω− 0
0 · · · · · · · · · 0 ω+ ω−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1(t )
v2(t )
v3(t )

...
vL−1(t )
vL(t )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
v1(t )ω+ + v2(t )ω−
v2(t )ω+ + v3(t )ω−

...
vL−2(t )ω+ + vL−1(t )ω−
vL−1(t )ω+ + vL(t )ω−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (G.2)

With notation introduced above, the approximation of (G.1) in the discretized space
is given by

min
{
rv(t ) − h−Kv(t ) − v(t + dt ) − v(t )

dt
, v(t ) − v∗(t )

}
= 0.

In the similar way, we can find the expression for v∗(t ) in the discretized space as follows:

(
α+ rR(t )

)
v∗(t ) = h− c(t )1L +Kv∗(t ) +

(
v∗(t + dt ) − v∗(t )

dt

)
+ αR(t )vA(t ), (G.3)

where vA(t ) is the approximation of V A(t, k) in the discretized space.
For later use, we define a L×L sparse matrix M(t ) that captures the rate of transition

of the consumer’s stock associated with the purchase of the good.4 Its (�, n) element is
given by

M�,n(t ) =

⎧⎪⎪⎨
⎪⎪⎩

−αR(t ) for n = � if k� ∈ A(t ),

αR(t ) for n = k̄(t ) if k� ∈ A(t ),

0 otherwise,

where A(t ) is the action region is the discretized space. The sum of each row of K and
M(t ) equals to zero. Furthermore, we define a L × L diagonal matrix D all of whose
diagonal elements are −θ, which captures the rate of transition of the consumer’s stock
associated with exit.

We turn to the time evolution of the cross-sectional distribution of the stock level.
We denote g(t ) = [g(t, k1 ), � � � , g(t, kL )]′ and gnew = [gnew(k1 ), � � � , gnew(kL )]′. Since the

4The matrix K, which is given by (G.2), can be interpreted as the rate of transition of the consumer’s stock
associated with consumption.
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KF operator is the adjoint operator of the HJB operator, the KF equation (8) in the dis-
cretized space, can be written as

ġ(t ) = (
KT +M(t )T +DT

)
g(t ) + θgnew,

where ġ(t ) = [∂g(t, k1 )/∂t, � � � , ∂g(t, kL )/∂t]′ and AT , M(t )T , and DT are the transpose of
the intensity matrices A, M(t ), and D, respectively.

In the following, we describe the algorithm to obtain the stationary distribution in
Section G.1 and the transitional dynamics in Section G.2.

G.1 Stationary distribution

1. Set a concave function v0 as an initial guess for the value function. Specifically, we
use v0 such that rv0 = h+Kv0.

2. Given vn, find vn+1 by solving

min
{
vn+1 − vn


+ rvn+1 − h−Kvn+1, vn+1 − v∗(vn)}= 0, (G.4)

where

v∗(vn)=Ba
−1(h− c1 + αvA

(
vn
))

with Ba = (α+ r )IL −K.

2-A. Define matrix B as

B =
(
r + 1



)
IL −K.

Then rewrite (G.4) into

min
{
Bvn+1 − 1


vn − h, vn+1 − v∗(vn)}= 0. (G.5)

Now, find that that solving (G.5) is equivalent to solving the following problem:

(
vn+1 − v∗(vn))′(Bvn+1 − 1


vn − h

)
= 0,

vn+1 − v∗(vn)≥ 0,

Bvn+1 − 1

vn − h ≥ 0.

(G.6)

2-B. Define

zn+1 = vn+1 − v∗(vn) and yn =Bv∗(vn)− vn/− h.
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Then (G.6) is reduced to the following Linear Complementarity Problem
(LCP): (

zn+1)′(Bzn+1 + yn
)= 0,

zn+1 ≥ 0,

Bzn+1 + yn ≥ 0.

Then, given vn (equivalently yn), the above problem solves zn+1 and, therefore,
vn+1.

3. Repeat the step 2 until vn+1 is sufficiently close to vn.

4. Find g

4-A. Set M . The (�, n) elements are given by

M�,n =

⎧⎪⎪⎨
⎪⎪⎩

−α for n= � if k� ∈ A,

α for n= k̄ if k� ∈ A,

0 otherwise.

4-B. Find g such that

0 = (
KT +MT +DT)g+ θgnew,

or

g = −(KT +MT +DT)−1
θgnew.

G.2 Transitional dynamics

We describe the algorithm to find the transition of the equilibrium over time. First,
we discretize the time horizon as T = (t1, � � � , tτ , � � � , tT+1 )′ for τ ∈ Z with t1 = 0 and
a large integer T , using the equidistant grid points with distance t = k where t =
tτ − tτ−1 for all τ = 2, � � � , T + 1. Let v, v∗, and g denote the vectors for the value
functions and the density function for the consumer’s stock in the stationary equi-
librium, respectively. We keep the following notation: x�(τ) = x(tτ , k� ) and x(τ) =
(x(tτ , k1 ), � � � , x(tτ , k� ), � � � , x(tτ , kL ))′.

1. Set v(T + 1) = v, v∗(T + 1) = v∗, g(1) = g, and initial store’s stock S(1) = So > 0.

2. Set initial guess R̃ = (R̃(1), � � � , R̃(T + 1))′ for the consumer’s brief R(t ){t≥0}.

3. Given R̃, find the paths {v(τ)}T+1
τ=1 and {M(τ)}T+1

τ=1 iteratively backward in time.

3-A. Set τ = T .

3-B. Given v(τ + 1), find ṽ(τ) such that

rṽ(τ) = h+Kṽ(τ) + v(τ + 1) − ṽ(τ)
t

.
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3-C. Given v∗(τ + 1) and ṽ(τ), find v∗(τ) such that

(
α+ rR̃(τ)

)
v∗(τ) = h− c(τ)1L +Kv∗(τ) + v∗(τ + 1) − v∗(τ)

t
+αR̃(τ)vA

(
ṽ(τ)

)
.

3-D. Find v(τ) such that

v(τ) = max
{
ṽ(τ), v∗(τ)

}
that is, v(τ) is the elementwise maximum of ṽ(τ) and v∗(τ). At the same time,
find the optimal policy, k∗(τ) and k̄(τ).

3-E. Set the transition intensity matrix M(τ) as in (G.3).

3-F. Repeat until τ = 1.

4. Given {M(τ)}T+1
τ=1 , find the paths {g(τ)}T+1

τ=1 and {R(τ)}T+1
τ=1 forwardly.

4-A. Set τ = 1.

4-B. Given g(τ) and the optimal policy, find D(τ) as follows:

D(τ) =
∑

�=1, ���,L

1{k�≤k∗(τ)}
(
k̄(τ) − k�

)
g�(τ).

4-C. Given g(τ) and S(τ), find R(τ) using the following rule:

R(τ) = min
{
S(τ) + s ·t

D(τ)
, 1
}

.

4-D. Given g(τ), find g(τ + 1) according to the rule: for some integer n ≥ 1 and
i = 0, � � � , n− 1,

g
(
τ + (i+ 1)/n

)− g(τ + i/n)

t/n
= (

A+M(τ) +D
)T
g(τ + i/n) + θgnew.

4-E. Given R(τ) and S(τ), find S(τ + 1) using the following rule:

S(τ + 1) = S(τ) + (
s ·t −R(τ)D(τ)

)
.

4-F. Repeat until τ = T and let R = (R(1), � � � , R(T + 1))′.

5. If ‖R − R̃‖ < ε, find the equilibrium transitional dynamics. Otherwise, update the
guess R̃ based on the following rule:

R̃ ← λR̃+ (1 − λ)R,

with λ ∈ (0, 1), and repeat steps 3 and 4.
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