
Supplementary Material

Supplement to “Moment inequalities for multinomial choice
with fixed effects”

(Quantitative Economics, Vol. 15, No. 1, January 2024, 1–25)

Ariel Pakes
Department of Economics, Harvard University and NBER

Jack Porter
Department of Economics, University of Wisconsin

Appendix: Proofs

Proof of Theorem 2. Take Fys ,yt ,xs ,xt ∈ Fob. It is straightforward to show that �S ⊂�0.
So, we will focus on showing �0 ⊂ �S . Take θ ∈ �0. For all xs , xt in the support of the
joint covariate space, we will exhibit a conditional distribution (ε∗

s , ε∗
t )|xs , xt satisfying

Assumption 1(b) with λ∗ = 0 and Fy∗
s ,y∗

t |xs ,xt = Fys ,yt |xs ,xt where y∗
j = y(xj , λ∗ = 0, ε∗

j , θ)
for j = s, t.

Suppose we order the covariate indices for the parameter θ and there is a strict order-
ing: [g(D)(x(D),s , θ) − g(D)(x(D),t , θ)] > [g(D−1)(x(D−1),s , θ) − g(D−1)(x(D−1),t , θ)] > · · · >
[g(0)(x(0),s , θ)−g(0)(x(0),t , θ)] (with some abuse of the order statistic subscript notation).
Since θ ∈�0, the conditional moment inequalities imply

Pr
(
ys ∈ {

(D), � � � , (d)
}

|xs , xt
) ≥ Pr

(
yt ∈ {

(D), � � � , (d)
}

|xs , xt
) ∀d = 1, 2, � � � , D.

Let pd,d′ = Pr(ys = d, yt = d′|xs , xt ) and p∗
d,d′ = Pr(y∗

s = d, y∗
t = d′|xs, xt ). We need to find

(ε∗
s , ε∗

t )|xs , xt such that p∗
d,d′ = pd,d′ ∀d, d′ and ε∗

s |xs , xt ∼ ε∗
t |xs , xt .

Define Rd;s = {ε∗ : y(xs , λ∗ = 0, ε∗
s , θ) = d}. The set inclusion obtained in the proof of

Proposition 1 shows that

R(D);t ∪ · · · ∪R(d);t ⊂R(D);s ∪ · · · ∪R(d);s , ∀d ∈ {1, � � � , D}. (S1)

Since the sets R(d);s form a partition for d = 0, � � � , D, the set inclusion (S1) implies that

R(d);s ∩R(d′ );t = ∅ for d′ > d. (S2)

Let Rd,d′ = Rd;s ∩ Rd′;t , which is a set in the ε∗
s -space (or the ε∗

t -space). Cartesian prod-
ucts of these sets will form sets in the (ε∗

s , ε∗
t )-space, Rd,d′ × Rd′′,d′′′ = {(ε∗

s , ε∗
t ) : ε∗

s ∈
Rd,d′ , ε∗

t ∈ Rd′′,d′′′ }. Finally, let q∗
d,d′×d′′,d′′′ = Pr((ε∗

s , ε∗
t ) ∈ Rd,d′ × Rd′′,d′′′ |xs , xt ). These
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probabilities form the basic building blocks for our constructed (ε∗
s , ε∗

t )|xs , xt distribu-
tion, as Rd,d′ ×Rd′′,d′′′ partitions the (ε∗

s , ε∗
t )-space. By (S2), q∗

(d),(d′ )×(d′′ ),(d′′′ ) = 0 if d < d′
or d′′ < d′′′, so

p∗
(d),(d′ ) =

D∑
˜d=0

D∑
d̃=0

q∗
(d),( ˜d)×(d̃),(d′ ) =

d∑
˜d=0

D∑
d̃=d′

q∗
(d),( ˜d)×(d̃),(d′ ).

To get the constructed distribution to match the observed distribution, we will need to
show that there exists q∗

d,d′×d′′,d′′′ satisfying

p(d),(d′ ) =
d∑

˜d=0

D∑
d̃=d′

q∗
(d),( ˜d)×(d̃),(d′ ), (S3)

as well as ensuring that Assumption 1(b) holds for the constructed distribution. For each
Rd,d′ �= ∅, choose a point rd,d′ ∈ Rd,d′ . Define (ε∗

s , ε∗
t )|xs , xt to be the discrete distribution

on the support points (rd,d′ , rd′′,d′′′ ), Pr((ε∗
s , ε∗

t ) = (rd,d′ , rd′′,d′′′ )|xs , xt ) = q∗
d,d′×d′′,d′′′ .1 So,

the marginal distribution is

Pr
(
ε∗
s = r(d),(d′ )|xs , xt

) =
D∑

˜d=0

D∑
d̃=˜d

q∗
(d),(d′ )×(d̃),( ˜d)

.

The marginal for ε∗
t |xs , xt is similar. To ensure that Assumption 1(b) is satisfied, we will

need the marginals to match, for d ≥ d′,

0 =
∑
˜d≤d̃

(
q∗

(d̃),( ˜d)×(d),(d′ ) − q∗
(d),(d′ )×(d̃),( ˜d)

)
. (S4)

In addition to equations (S3) and (S4), the nonegativity inequalities q∗
d,d′×d′′,d′′′ ≥ 0 must

hold. Let p denote the vector of joint probabilities, p = (p(D),(D), p(D),(D−1), � � �)′. Let
q∗ be the vector of probabilities q∗

(d),(d′ )×(d′′ ),(d′′′ ) (where d ≥ d′ and d′′ ≥ d′′′), q∗ =
(q∗

(D),(D)×(D),(D), � � �)′. And let Qs be the matrix with elements in {0, 1} such that equa-
tion (S3) can be restated as p =Qsq

∗, and let Qp be the matrix with elements in {−1, 0, 1}
such that equation (S4) can be restated as 0 =Qpq

∗.
Our goal then can be summarized as showing that ∃q∗ ≥ 0 such that: (A) p =

Qsq
∗; and (B) 0 = Qpq

∗. Let z be a (D + 1)2-dimensional vector conformable with
p, z = (z(D),(D), z(D),(D−1), � � �)′. Let w be a (D + 1)(D + 2)/2-dimensional vector, w =
(� � � , w(d),(d′ ), � � �)′. Farkas’ lemma states that if(

z

w

)′ (
Qs

Qp

)
≥ 0 implies

(
z

w

)′ (
p

0

)
= z′p ≥ 0,

then ∃q∗ ≥ 0 satisfying (A) and (B) above.2

1A continuous distribution for (ε∗
s , ε∗

t )|xs , xt could be obtained by defining the density on each Rd,d′ �= ∅
to be a constant chosen so that Pr((ε∗

s , ε∗
t ) ∈ Rd,d′ |xs , xt ) = q∗

d,d′×d′′ ,d′′′ .
2Farkas’ lemma actually states that the condition provided is both necessary and sufficient; see Matoušek

and Gärtner (2007, Proposition 6.4.1).
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Each element q∗
(d),(d′ )×(d′′ ),(d′′′ ) of q∗ appears in exactly one equation from con-

straints (A) and either zero or two (with positive and negative signs) from constraints (B).
In particular, elements of the form q∗

(d),(d′ )×(d),(d′ ) with d ≥ d′ appear in (A) but not (B).

Hence,
(z
w

)′(Qs
Qp

) ≥ 0 implies z(d),(d′ ) ≥ 0 for d ≥ d′. Otherwise,
(z
w

)′(Qs
Qp

) ≥ 0 yields, for

d �= d′, z(d),(d′ ) +w(d̃),(d′ ) −w(d),( ˜d) ≥ 0 with d̃ ∈ {d′, � � � , D}, ˜d ∈ {0, � � � , d}. Define w̄(d), · =
max

˜d∈{0, ���,d} w(d),( ˜d) and ¯w·,(d) = min
d̃∈{d, ���,D} w(d̃),(d) for d = 0, � � � , D. Then z(d),(d′ ) ≥

w̄(d), · − ¯w·,(d′ ).
Also, the conditional moment inequalities yield Pr(ys ∈ {(D), � � � , (d)}|xs , xt ) ≥

Pr(yt ∈ {(D), � � � , (d)}|xs, xt ) for d = 1, � � � , D, which implies

D∑
d̃=d

d−1∑
˜d=0

p(d̃),( ˜d) ≥
D∑

d̃=d

d−1∑
˜d=0

p( ˜d),(d̃) for d = 1, � � � , D. (S5)

For d = 1, � � � , D, let a(d) denote the slackness in the inequalities in (S5),

a(d) =
D∑

d̃=d

d−1∑
˜d=0

p(d̃),( ˜d) −
D∑

d̃=d

d−1∑
˜d=0

p( ˜d),(d̃),

so that a(d) ≥ 0 for d = 1, � � � , D. We use these expressions to substitute for all terms of
the form p(d),(d−1) in the equality (S6) below:3

z′p =
D∑

d=0

z(d),(d)p(d),(d) +
∑
d>d′

(z(d),(d′ )p(d),(d′ ) + z(d′ ),(d)p(d′ ),(d) )

≥
∑
d>d′

(z(d),(d′ )p(d),(d′ ) + z(d′ ),(d)p(d′ ),(d) )

≥
∑
d>d′

(
(w̄(d), · − ¯w·,(d′ ) )p(d),(d′ ) + (w̄(d′ ), · − ¯w·,(d) )p(d′ ),(d)

)

=
[
a(D)w̄(D), · − a(1) ¯w·,(0) +

D−1∑
d=1

(
a(d) − (a(d+1) ∧ a(d) )

)
w̄(d), · (S6)

−
D−1∑
d=1

(
a(d+1) − (a(d+1) ∧ a(d) )

)
¯w·,(d)

]

+ (w̄(0), · − ¯w·,(0) )
D∑

d=1

p(0),(d) + (w̄(D), · − ¯w·,(D) )
D−1∑
d=0

p(d),(D)

+
D−1∑
d=1

(w̄(d), · − ¯w·,(d) )

[
(a(d+1) ∧ a(d) ) +

D∑
d̃=d

d−1∑
˜d=0

p( ˜d),(d̃) +
D∑

d̃=d+1

p(d),(d̃) (S7)

3The expressions below apply to the case D+ 1 = 2 with the convention that summations are taken to be
zero when the upper limit is strictly less than the lower limit.
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−
D∑

d̃=d+1

d−1∑
˜d=0

p(d̃),( ˜d)

]
.

Now we can show directly that the expression in (S6) is nonnegative. First, note that
for all d ≥ d′, w̄(d), · − ¯w·,(d′ ) ≥w(d),(d′ ) −w(d),(d′ ) = 0.

Next, show that the term in square brackets in (S6) is nonnegative. For each d =
1, � � � , D,

a(D) +
D−1∑
d′=d

(
a(d′ ) − (a(d′+1) ∧ a(d′ ) )

) = a(d) +
[D−1∑
d′=d

(
a(d′+1) − (a(d′+1) ∧ a(d′ ) )

)]
. (S8)

The term on the left is the sum of coefficients on w̄(d), ·, � � � , w̄(D), ·, and the term in the
square brackets on the right is the sum of coefficients on ¯w·,(d), � � � , ¯w·,(D−1) for d =
1, � � � , D. Moreover, when d = 1, the expression on the right is the sum of coefficients on

¯w·,(0), � � � , ¯w·,(D−1), which is exactly equal to the sum of coefficients on w̄(1), ·, � � � , w̄(D), ·.
These relationships are used to rearrange the initial expression. In particular, using (S8)
we can find nonnegative values ¯b(d′ ),(d) such that (i) a(D) = ∑D−1

d′=0 b(D),(d′ ) and a(d) −
(a(d+1) ∧ a(d) ) = ∑d

d′=0 b(d),(d′ ) for d = 1, � � � , D − 1 and (ii) a(1) = ∑D
d′=1 b(d′ ),(0) and

a(d+1) − (a(d+1) ∧ a(d) ) = ∑D
d′=d b(d′ ),(d) for d = 1, � � � , D − 1. Hence, we can write

a(D)w̄(D), · − a(1) ¯w·,(0) +
D−1∑
d=1

(
a(d) − (a(d+1) ∧ a(d) )

)
w̄(d), ·

−
D−1∑
d=1

(
a(d+1) − (a(d+1) ∧ a(d) )

)
¯w·,(d)

=
(D−1∑
d′=0

b(D),(d′ )

)
w̄(D), · +

D−1∑
d=1

(
d∑

d′=0

b(d),(d′ )

)
w̄(d), ·

−
[D−1∑
d=1

( D∑
d′=d

b(d′ ),(d)

)
¯w·,(d) +

( D∑
d′=1

b(d′ ),(0)

)
¯w·,(0)

]

=
D−1∑
d=1

( D∑
d′=d

b(d′ ),(d)(w̄(d′ ), · − ¯w·,(d) )

)
+

D∑
d′=1

b(d′ ),(0)(w̄(d′ ), · − ¯w·,(0) )

≥ 0,

where the final inequality follows from the terms in each sum being nonnegative.
Finally, show that the term in square brackets in (S7) is nonnegative. This term is the

minimum of the following expressions in (S9) and (S10):

a(d+1) +
D∑

d̃=d

d−1∑
˜d=0

p( ˜d),(d̃) +
D∑

d̃=d+1

p(d),(d̃) −
D∑

d̃=d+1

d−1∑
˜d=0

p(d̃),( ˜d) (S9)
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=
D∑

d̃=d+1

d∑
˜d=0

p(d̃),( ˜d) −
D∑

d̃=d+1

d∑
˜d=0

p( ˜d),(d̃)

+
D∑

d̃=d+1

d−1∑
˜d=0

p( ˜d),(d̃) +
d−1∑
˜d=0

p( ˜d),(d) +
D∑

d̃=d+1

p(d),(d̃) −
D∑

d̃=d+1

d−1∑
˜d=0

p(d̃),( ˜d)

=
D∑

d̃=d+1

p(d̃),(d) +
d−1∑
˜d=0

p( ˜d),(d)

and similarly,

a(d) +
D∑

d̃=d

d−1∑
˜d=0

p( ˜d),(d̃) +
D∑

d̃=d+1

p(d),(d̃) −
D∑

d̃=d+1

d−1∑
˜d=0

p(d̃),( ˜d) (S10)

=
d−1∑
˜d=0

p(d),( ˜d) +
D∑

d̃=d+1

p(d),(d̃).

Both terms (S9) and (S10) are seen to be sum of probabilities, and hence nonnegative,
so the minimum of these two terms is also nonnegative:

0 ≤ (a(d+1) ∧ a(d) ) +
D∑

d̃=d

d−1∑
˜d=0

p( ˜d),(d̃) +
D∑

d̃=d+1

p(d),(d̃) −
D∑

d̃=d+1

d−1∑
˜d=0

p(d̃),( ˜d).

It follows that z′p ≥ 0, which completes the argument for the case where there is
a strict covariate index ordering. When the covariate index ordering is weak (includes
some ties), the analogous argument applies imposing additional restrictions as in (S2)
on the partition Rd,d′ and using the information provided by the additional implied mo-
ment inequalities to verify Farkas’ lemma as above. Finally, we can conclude that a con-
structed disturbance distribution exists that satisfies Assumption 1 and generates a con-
structed outcome and covariate distribution that matches the observed distribution, so
that �0 ⊂�S and �0 is sharp.

Proof of Proposition 3. In binary choice, it will be useful to note that when Pr(ys = 1|
xs , xt ) = Pr(yt = 1|xs , xt ) then Pr(ys = 0|xs, xt ) = Pr(yt = 0|xs , xt ). In this case, take an
arbitrary θ. Then D(xs , xt , θ) = {{0}}, {{1}}, or {{0}, {1}}. In any of these cases, H(xs , xt ,
θ) = 0, so H(xs , xt , θ) = 0 ∀θ when Pr(ys = 1|xs, xt ) = Pr(yt = 1|xs , xt ).

Another useful finding is that for any θ such that D(xs , xt , θ) = {{0}, {1}}, H(xs , xt ,
θ) = ∑

D∈D(xs ,xt ,θ) E[1{ys ∈ D} − 1{yt ∈ D}|xs, xt ] = [Pr(ys = 0|xs, xt ) − Pr(yt = 0|xs , xt )] +
[Pr(ys = 1|xs, xt ) − Pr(yt = 1|xs, xt )] = 0.

Take θ ∈ �0 and show that H(xs , xt , θ) = H(xs , xt , θ0 ) a.s., so that H(θ) = H(θ0 ).
Cases:

(a) �g(xs , xt , θ) > 0. Then D(xs , xt , θ) = {{1}}, so H(xs , xt , θ) = Pr(ys = 1|xs, xt ) −
Pr(yt = 1|xs , xt ). Since θ ∈ �0, Pr(ys = 1|xs , xt ) − Pr(yt = 1|xs , xt ) ≥ 0. If Pr(ys =
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1|xs, xt )−Pr(yt = 1|xs , xt ) > 0, then we must have by Proposition 1, D(xs , xt , θ0 ) =
{{1}}, so H(xs , xt , θ) = H(xs , xt , θ0 ). If Pr(ys = 1|xs, xt ) − Pr(yt = 1|xs, xt ) = 0, then
as noted above H(xs , xt , θ) = 0 = H(xs , xt , θ0 ).

(b) �g(xs , xt , θ) = 0. Then D(xs , xt , θ) = {{0}, {1}}, so as noted above H(xs , xt , θ) = 0.
Since θ ∈ �0, we must have Pr(ys = 0|xs , xt ) − Pr(yt = 0|xs, xt ) ≥ 0 and Pr(ys = 1|
xs , xt ) − Pr(yt = 1|xs , xt ) ≥ 0. So, Pr(ys = 1|xs, xt ) = Pr(yt = 1|xs, xt ), and H(xs , xt ,
θ0 ) = 0. Hence, H(xs , xt , θ) =H(xs , xt , θ0 ).

(c) �g(xs , xt , θ) < 0. Similar to case (a), H(xs , xt , θ) = H(xs , xt , θ0 ).

So, we have shown that H(xs , xt , θ) = H(xs , xt , θ0 ) a.s., and so H(θ) = H(θ0 ).
Now take θ /∈�0 and show H(θ) <H(θ0 ). Let

A = {
(xs , xt ) : E

[
mD(ys , yt , xs , xt , θ)|xs, xt

]
< 0 for some D ∈D

}
= {

(xs , xt ) : E
[
1{ys ∈D} − 1{yt ∈D}|xs , xt

]
< 0 for some D ∈D(xs , xt , θ)

}
.

Since θ /∈�0, Pr(A) > 0.4 Consider (xs , xt ) ∈ A.

(a) �g(xs , xt , θ) > 0. But Pr(ys = 1|xs, xt ) < Pr(yt = 1|xs, xt ). Then Pr(ys = 0|xs , xt ) >
Pr(yt = 0|xs, xt ) and �g(xs , xt , θ0 ) < 0. Hence, D(xs , xt , θ) = {{1}} and D(xs , xt ,
θ0 ) = {{0}}, and H(xs , xt , θ) = Pr(ys = 1|xs , xt ) − Pr(yt = 1|xs , xt ) < 0 < Pr(ys = 0|
xs , xt ) − Pr(yt = 0|xs, xt ) =H(xs , xt , θ0 ).

(b) �g(xs , xt , θ) = 0. Then D(xs , xt , θ) = {{0}, {1}}, so H(xs , xt , θ) = 0. But since
(xs , xt ) ∈ A, Pr(ys = 1|xs , xt ) �= Pr(yt = 1|xs, xt ). Suppose Pr(ys = 1|xs, xt ) > Pr(yt =
1|xs, xt ), then �g(xs , xt , θ0 ) > 0, and H(xs , xt , θ0 ) = Pr(ys = 1|xs , xt ) − Pr(yt =
1|xs, xt ) > 0 = H(xs , xt , θ). The argument holds similarly when Pr(ys = 1|xs, xt ) <
Pr(yt = 1|xs, xt ). So H(xs , xt , θ0 ) >H(xs , xt , θ).

(c) �g(xs , xt , θ) < 0. Arguing similar to (a), H(xs , xt , θ0 ) >H(xs , xt , θ).

So, we have shown that H(xs , xt , θ0 ) >H(xs , xt , θ) for (xs , xt ) ∈ A. For (xs , xt ) /∈ A, it is
straightforward to show H(xs , xt , θ) = H(xs , xt , θ0 ) using previous arguments. Hence,
H(θ0 ) − H(θ) = E[1{(xs , xt ) ∈ A}(H(xs , xt , θ0 ) − H(xs , xt , θ))] > 0. The result follows.
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4Suppose A is measurable or contains a measurable set of positive measure.
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