Supplement to "Moment inequalities for multinomial choice with fixed effects"

(Quantitative Economics, Vol. 15, No. 1, January 2024, 1-25)

Ariel Pakes
Department of Economics, Harvard University and NBER

Jack Porter
Department of Economics, University of Wisconsin

Appendix: Proofs

Proof of Theorem 2. Take $F_{y_{s}, y_{t}, x_{s}, x_{t}} \in \mathcal{F}_{\text {ob }}$. It is straightforward to show that $\Theta_{S} \subset \Theta_{0}$. So, we will focus on showing $\Theta_{0} \subset \Theta_{S}$. Take $\theta \in \Theta_{0}$. For all x_{s}, x_{t} in the support of the joint covariate space, we will exhibit a conditional distribution $\left(\varepsilon_{s}^{*}, \varepsilon_{t}^{*}\right) \mid x_{s}, x_{t}$ satisfying Assumption $1(\mathrm{~b})$ with $\lambda^{*}=0$ and $F_{y_{s}^{*}, y_{t}^{*} \mid x_{s}, x_{t}}=F_{y_{s}, y_{t} \mid x_{s}, x_{t}}$ where $y_{j}^{*}=\mathrm{y}\left(x_{j}, \lambda^{*}=0, \varepsilon_{j}^{*}, \theta\right)$ for $j=s, t$.

Suppose we order the covariate indices for the parameter θ and there is a strict ordering: $\left[g_{(\mathcal{D})}\left(x_{(\mathcal{D}), s}, \theta\right)-g_{(\mathcal{D})}\left(x_{(\mathcal{D}), t}, \theta\right)\right]>\left[g_{(\mathcal{D}-1)}\left(x_{(\mathcal{D}-1), s}, \theta\right)-g_{(\mathcal{D}-1)}\left(x_{(\mathcal{D}-1), t}, \theta\right)\right]>\cdots>$ $\left[g_{(0)}\left(x_{(0), s}, \theta\right)-g_{(0)}\left(x_{(0), t}, \theta\right)\right.$] (with some abuse of the order statistic subscript notation). Since $\theta \in \Theta_{0}$, the conditional moment inequalities imply

$$
\operatorname{Pr}\left(y_{s} \in\{(\mathcal{D}), \ldots,(d)\} \mid x_{s}, x_{t}\right) \geq \operatorname{Pr}\left(y_{t} \in\{(\mathcal{D}), \ldots,(d)\} \mid x_{s}, x_{t}\right) \quad \forall d=1,2, \ldots, \mathcal{D} .
$$

Let $p_{d, d^{\prime}}=\operatorname{Pr}\left(y_{s}=d, y_{t}=d^{\prime} \mid x_{s}, x_{t}\right)$ and $p_{d, d^{\prime}}^{*}=\operatorname{Pr}\left(y_{s}^{*}=d, y_{t}^{*}=d^{\prime} \mid x_{s}, x_{t}\right)$. We need to find $\left(\varepsilon_{s}^{*}, \varepsilon_{t}^{*}\right) \mid x_{s}, x_{t}$ such that $p_{d, d^{\prime}}^{*}=p_{d, d^{\prime}} \forall d, d^{\prime}$ and $\varepsilon_{s}^{*}\left|x_{s}, x_{t} \sim \varepsilon_{t}^{*}\right| x_{s}, x_{t}$.

Define $R_{d ; s}=\left\{\varepsilon^{*}: y\left(x_{s}, \lambda^{*}=0, \varepsilon_{s}^{*}, \theta\right)=d\right\}$. The set inclusion obtained in the proof of Proposition 1 shows that

$$
\begin{equation*}
R_{(\mathcal{D}) ; t} \cup \cdots \cup R_{(d) ; t} \subset R_{(\mathcal{D}) ; s} \cup \cdots \cup R_{(d) ; s}, \quad \forall d \in\{1, \ldots, \mathcal{D}\} . \tag{S1}
\end{equation*}
$$

Since the sets $R_{(d) ; s}$ form a partition for $d=0, \ldots, \mathcal{D}$, the set inclusion (S1) implies that

$$
\begin{equation*}
R_{(d) ; s} \cap R_{\left(d^{\prime}\right) ; t}=\emptyset \quad \text { for } d^{\prime}>d \tag{S2}
\end{equation*}
$$

Let $R_{d, d^{\prime}}=R_{d ; s} \cap R_{d^{\prime} ; t}$, which is a set in the ε_{s}^{*}-space (or the ε_{t}^{*}-space). Cartesian products of these sets will form sets in the ($\varepsilon_{s}^{*}, \varepsilon_{t}^{*}$)-space, $R_{d, d^{\prime}} \times R_{d^{\prime \prime}, d^{\prime \prime \prime}}=\left\{\left(\varepsilon_{s}^{*}, \varepsilon_{t}^{*}\right): \varepsilon_{s}^{*} \in\right.$ $\left.R_{d, d^{\prime}}, \varepsilon_{t}^{*} \in R_{d^{\prime \prime}, d^{\prime \prime \prime}}\right\}$. Finally, let $q_{d, d^{\prime} \times d^{\prime \prime}, d^{\prime \prime \prime}}^{*}=\operatorname{Pr}\left(\left(\varepsilon_{s}^{*}, \varepsilon_{t}^{*}\right) \in R_{d, d^{\prime}} \times R_{d^{\prime \prime}, d^{\prime \prime \prime}} \mid x_{s}, x_{t}\right)$. These

[^0]probabilities form the basic building blocks for our constructed $\left(\varepsilon_{s}^{*}, \varepsilon_{t}^{*}\right) \mid x_{s}, x_{t}$ distribution, as $R_{d, d^{\prime}} \times R_{d^{\prime \prime}, d^{\prime \prime \prime}}$ partitions the $\left(\varepsilon_{s}^{*}, \varepsilon_{t}^{*}\right)$-space. By (S2), $q_{(d),\left(d^{\prime}\right) \times\left(d^{\prime \prime}\right),\left(d^{\prime \prime \prime}\right)}^{*}=0$ if $d<d^{\prime}$ or $d^{\prime \prime}<d^{\prime \prime \prime}$, so
$$
p_{(d),\left(d^{\prime}\right)}^{*}=\sum_{d=0}^{\mathcal{D}} \sum_{\tilde{d}=0}^{\mathcal{D}} q_{(d),(\underset{\sim}{d}) \times(\tilde{d}),\left(d^{\prime}\right)}^{*}=\sum_{\underset{d}{ }=0}^{d} \sum_{\tilde{d}=d^{\prime}}^{\mathcal{D}} q_{(d),(\underset{\sim}{d}) \times(\tilde{d}),\left(d^{\prime}\right)}^{*} .
$$

To get the constructed distribution to match the observed distribution, we will need to show that there exists $q_{d, d^{\prime} \times d^{\prime \prime}, d^{\prime \prime}}^{*}$ satisfying

$$
\begin{equation*}
p_{(d),\left(d^{\prime}\right)}=\sum_{\underset{\sim}{d=0}}^{d} \sum_{\tilde{d}=d^{\prime}}^{\mathcal{D}} q_{(d),(\underset{\sim}{d}) \times(\tilde{d}),\left(d^{\prime}\right)^{\prime}}^{*}, \tag{S3}
\end{equation*}
$$

as well as ensuring that Assumption 1(b) holds for the constructed distribution. For each $R_{d, d^{\prime}} \neq \emptyset$, choose a point $r_{d, d^{\prime}} \in R_{d, d^{\prime}}$. Define $\left(\varepsilon_{s}^{*}, \varepsilon_{t}^{*}\right) \mid x_{s}, x_{t}$ to be the discrete distribution on the support points $\left(r_{d, d^{\prime}}, r_{d^{\prime \prime}, d^{\prime \prime \prime}}\right), \operatorname{Pr}\left(\left(\varepsilon_{s}^{*}, \varepsilon_{t}^{*}\right)=\left(r_{d, d^{\prime}}, r_{d^{\prime \prime}, d^{\prime \prime \prime}}\right) \mid x_{s}, x_{t}\right)=q_{d, d^{\prime} \times d^{\prime \prime}, d^{\prime \prime \prime}}^{*} .{ }^{1}$ So, the marginal distribution is

$$
\operatorname{Pr}\left(\varepsilon_{s}^{*}=r_{(d),\left(d^{\prime}\right)} \mid x_{s}, x_{t}\right)=\sum_{d=0}^{\mathcal{D}} \sum_{\tilde{d}=d}^{\mathcal{D}} q_{(d),\left(d^{\prime}\right) \times(\tilde{d}),(\underset{\sim}{d})}^{*} .
$$

The marginal for $\varepsilon_{t}^{*} \mid x_{s}, x_{t}$ is similar. To ensure that Assumption $1(\mathrm{~b})$ is satisfied, we will need the marginals to match, for $d \geq d^{\prime}$,

$$
\begin{equation*}
0=\sum_{\underset{\sim}{d \leq \tilde{d}}}\left(q_{(\tilde{d}),(\underset{\sim}{d}) \times(d),\left(d^{\prime}\right)}^{*}-q_{(d),\left(d^{\prime}\right) \times(\tilde{d}),(\underset{\sim}{d})}^{*}\right) . \tag{S4}
\end{equation*}
$$

In addition to equations (S3) and (S4), the nonegativity inequalities $q_{d, d^{\prime} \times d^{\prime \prime}, d^{\prime \prime \prime} \geq 0}^{*} \geq 0$ must hold. Let p denote the vector of joint probabilities, $p=\left(p_{(\mathcal{D}),(\mathcal{D})}, p_{(\mathcal{D}),(\mathcal{D}-1)}, \ldots\right)^{\prime}$. Let q^{*} be the vector of probabilities $q_{(d),\left(d^{\prime}\right) \times\left(d^{\prime \prime}\right),\left(d^{\prime \prime \prime}\right)}^{*}$ (where $d \geq d^{\prime}$ and $\left.d^{\prime \prime} \geq d^{\prime \prime \prime}\right), q^{*}=$ $\left(q_{(\mathcal{D}),(\mathcal{D}) \times(\mathcal{D}),(\mathcal{D})}^{*}, \ldots\right)^{\prime}$. And let Q_{s} be the matrix with elements in $\{0,1\}$ such that equation (S3) can be restated as $p=Q_{s} q^{*}$, and let Q_{p} be the matrix with elements in $\{-1,0,1\}$ such that equation (S4) can be restated as $0=Q_{p} q^{*}$.

Our goal then can be summarized as showing that $\exists q^{*} \geq 0$ such that: (A) $p=$ $Q_{s} q^{*}$; and (B) $0=Q_{p} q^{*}$. Let z be a $(\mathcal{D}+1)^{2}$-dimensional vector conformable with $p, z=\left(z_{(\mathcal{D}),(\mathcal{D})}, z_{(\mathcal{D}),(\mathcal{D}-1)}, \ldots\right)^{\prime}$. Let w be a $(\mathcal{D}+1)(\mathcal{D}+2) / 2$-dimensional vector, $w=$ $\left(\ldots, w_{(d),\left(d^{\prime}\right)}, \ldots\right)^{\prime}$. Farkas' lemma states that if

$$
\binom{z}{w}^{\prime}\binom{Q_{s}}{Q_{p}} \geq 0 \quad \text { implies } \quad\binom{z}{w}^{\prime}\binom{p}{0}=z^{\prime} p \geq 0
$$

then $\exists q^{*} \geq 0$ satisfying (A) and (B) above. ${ }^{2}$

[^1]Each element $q_{(d),\left(d^{\prime}\right) \times\left(d^{\prime \prime}\right),\left(d^{\prime \prime \prime}\right)}^{*}$ of q^{*} appears in exactly one equation from constraints (A) and either zero or two (with positive and negative signs) from constraints (B). In particular, elements of the form $q_{(d),\left(d^{\prime}\right) \times(d),\left(d^{\prime}\right)}^{*}$ with $d \geq d^{\prime}$ appear in (A) but not (B). Hence, $\binom{z}{w}^{\prime}\binom{Q_{s}}{Q_{p}} \geq 0$ implies $z_{(d),\left(d^{\prime}\right)} \geq 0$ for $d \geq d^{\prime}$. Otherwise, $\binom{z}{w}^{\prime}\binom{Q_{p}}{Q_{p}} \geq 0$ yields, for $d \neq d^{\prime}, z_{(d),\left(d^{\prime}\right)}+w_{(\tilde{d}),\left(d^{\prime}\right)}-w_{(d),(d)} \geq 0$ with $\tilde{d} \in\left\{d^{\prime}, \ldots, \mathcal{D}\right\}, d \in\{0, \ldots, d\}$. Define $\bar{w}_{(d),}=$ $\max _{d \in\{0, \ldots, d\}} w_{(d),(d)}$ and $\underline{w}_{\cdot,(d)}=\min _{\tilde{d} \in\{d, \ldots, \mathcal{D}\}} w_{(\tilde{d}),(d)}$ for $d=0, \ldots, \mathcal{D}$. Then $z_{(d),\left(d^{\prime}\right)} \geq$ $\bar{w}_{(d), .}-\underline{w},\left(d^{\prime}\right)$.

Also, the conditional moment inequalities yield $\operatorname{Pr}\left(y_{s} \in\{(\mathcal{D}), \ldots,(d)\} \mid x_{s}, x_{t}\right) \geq$ $\operatorname{Pr}\left(y_{t} \in\{(\mathcal{D}), \ldots,(d)\} \mid x_{s}, x_{t}\right)$ for $d=1, \ldots, \mathcal{D}$, which implies

$$
\begin{equation*}
\sum_{\tilde{d}=d}^{\mathcal{D}} \sum_{\tilde{d}=0}^{d-1} p_{(\tilde{d}),(\underset{\sim}{d})} \geq \sum_{\tilde{d}=d}^{\mathcal{D}} \sum_{\underset{d}{d=0}}^{d-1} p_{(\underset{\sim}{d}),(\tilde{d})} \quad \text { for } d=1, \ldots, \mathcal{D} \tag{S5}
\end{equation*}
$$

For $d=1, \ldots, \mathcal{D}$, let $a_{(d)}$ denote the slackness in the inequalities in (S5),

$$
a_{(d)}=\sum_{\tilde{d}=d}^{\mathcal{D}} \sum_{d=0}^{d-1} p_{(\tilde{d}),(d)}-\sum_{\tilde{d}=d}^{\mathcal{D}} \sum_{d=0}^{d-1} p_{(d),(\tilde{d})},
$$

so that $a_{(d)} \geq 0$ for $d=1, \ldots, \mathcal{D}$. We use these expressions to substitute for all terms of the form $p_{(d),(d-1)}$ in the equality (S6) below: ${ }^{3}$

$$
\begin{align*}
z^{\prime} p= & \sum_{d=0}^{\mathcal{D}} z_{(d),(d)} p_{(d),(d)}+\sum_{d>d^{\prime}}\left(z_{(d),\left(d^{\prime}\right)} p_{(d),\left(d^{\prime}\right)}+z_{\left(d^{\prime}\right),(d)} p_{\left(d^{\prime}\right),(d)}\right) \\
\geq & \sum_{d>d^{\prime}}\left(z_{(d),\left(d^{\prime}\right)} p_{(d),\left(d^{\prime}\right)}+z_{\left(d^{\prime}\right),(d)} p_{\left(d^{\prime}\right),(d)}\right) \\
\geq & \sum_{d>d^{\prime}}\left(\left(\bar{w}_{(d), \cdot}-\underline{w}_{\cdot,\left(d^{\prime}\right)}\right) p_{(d),\left(d^{\prime}\right)}+\left(\bar{w}_{\left(d^{\prime}\right), \cdot}-\underline{w}_{\cdot,(d)}\right) p_{\left(d^{\prime}\right),(d)}\right) \\
= & {\left[a_{(\mathcal{D})} \bar{w}_{(\mathcal{D}), \cdot}-a_{(1)} \underline{w}_{\cdot,(0)}+\sum_{d=1}^{\mathcal{D}-1}\left(a_{(d)}-\left(a_{(d+1)} \wedge a_{(d)}\right)\right) \bar{w}_{(d), \cdot}\right.} \tag{S6}\\
& \left.-\sum_{d=1}^{\mathcal{D}-1}\left(a_{(d+1)}-\left(a_{(d+1)} \wedge a_{(d)}\right)\right) \underline{w}_{\cdot,(d)}\right] \\
& +\left(\bar{w}_{(0), \cdot}-\underline{w}_{\cdot,(0)}\right) \sum_{d=1}^{\mathcal{D}} p_{(0),(d)}+\left(\bar{w}_{(\mathcal{D}), \cdot}-\underline{w}_{\cdot,(\mathcal{D})}\right) \sum_{d=0}^{\mathcal{D}-1} p_{(d),(\mathcal{D})} \\
& +\sum_{d=1}^{\mathcal{D}-1}\left(\bar{w}_{(d), \cdot}-\underline{w}_{\cdot,(d)}\right)\left[\left(a_{(d+1)} \wedge a_{(d)}\right)+\sum_{\tilde{d}=d}^{\mathcal{D}} \sum_{d=0}^{d-1} p_{(d),(\tilde{d})}+\sum_{\tilde{d}=d+1}^{\mathcal{D}} p_{(d),(\tilde{d})}\right. \tag{S7}
\end{align*}
$$

[^2]$$
\left.-\sum_{\tilde{d}=d+1}^{\mathcal{D}} \sum_{\sim}^{d-1} p_{(\tilde{d}),(\tilde{d})}\right]
$$

Now we can show directly that the expression in (S6) is nonnegative. First, note that for all $d \geq d^{\prime}, \bar{w}_{(d), .}-\underline{w}_{\cdot,\left(d^{\prime}\right)} \geq w_{(d),\left(d^{\prime}\right)}-w_{(d),\left(d^{\prime}\right)}=0$.

Next, show that the term in square brackets in (S6) is nonnegative. For each $d=$ $1, \ldots, \mathcal{D}$,

$$
\begin{equation*}
a_{(\mathcal{D})}+\sum_{d^{\prime}=d}^{\mathcal{D}-1}\left(a_{\left(d^{\prime}\right)}-\left(a_{\left(d^{\prime}+1\right)} \wedge a_{\left(d^{\prime}\right)}\right)\right)=a_{(d)}+\left[\sum_{d^{\prime}=d}^{\mathcal{D}-1}\left(a_{\left(d^{\prime}+1\right)}-\left(a_{\left(d^{\prime}+1\right)} \wedge a_{\left(d^{\prime}\right)}\right)\right)\right] \tag{S8}
\end{equation*}
$$

The term on the left is the sum of coefficients on $\bar{w}_{(d), .}, \ldots, \bar{w}_{(\mathcal{D}), .}$, and the term in the square brackets on the right is the sum of coefficients on $\underline{w}_{\text {., }(d)}, \ldots, \underline{w}_{\text {., (} \mathcal{D}-1)}$ for $d=$ $1, \ldots, \mathcal{D}$. Moreover, when $d=1$, the expression on the right is the sum of coefficients on $\underline{w}_{\cdot,(0)}, \ldots, \underline{w}_{\cdot,(\mathcal{D}-1)}$, which is exactly equal to the sum of coefficients on $\bar{w}_{(1), .}, \ldots, \bar{w}_{(\mathcal{D}), .}$ These relationships are used to rearrange the initial expression. In particular, using (S8) we can find nonnegative values $\underline{b}_{\left(d^{\prime}\right),(d)}$ such that (i) $a_{(\mathcal{D})}=\sum_{d^{\prime}=0}^{\mathcal{D}-1} b_{(\mathcal{D}),\left(d^{\prime}\right)}$ and $a_{(d)}-$ $\left(a_{(d+1)} \wedge a_{(d)}\right)=\sum_{d^{\prime}=0}^{d} b_{(d),\left(d^{\prime}\right)}$ for $d=1, \ldots, \mathcal{D}-1$ and (ii) $a_{(1)}=\sum_{d^{\prime}=1}^{\mathcal{D}} b_{\left(d^{\prime}\right),(0)}$ and $a_{(d+1)}-\left(a_{(d+1)} \wedge a_{(d)}\right)=\sum_{d^{\prime}=d}^{\mathcal{D}} b_{\left(d^{\prime}\right),(d)}$ for $d=1, \ldots, \mathcal{D}-1$. Hence, we can write

$$
\begin{aligned}
& a_{(\mathcal{D})} \bar{w}_{(\mathcal{D}), \cdot}-a_{(1) \underline{w_{\cdot,(0)}}}+\sum_{d=1}^{\mathcal{D}-1}\left(a_{(d)}-\left(a_{(d+1)} \wedge a_{(d)}\right)\right) \bar{w}_{(d), \cdot} \\
& \quad-\sum_{d=1}^{\mathcal{D}-1}\left(a_{(d+1)}-\left(a_{(d+1)} \wedge a_{(d)}\right)\right) \underline{w}_{\cdot,(d)} \\
& \quad=\left(\sum_{d^{\prime}=0}^{\mathcal{D}-1} b_{(\mathcal{D}),\left(d^{\prime}\right)}\right) \bar{w}_{(\mathcal{D}), \cdot}+\sum_{d=1}^{\mathcal{D}-1}\left(\sum_{d^{\prime}=0}^{d} b_{(d),\left(d^{\prime}\right)}\right) \bar{w}_{(d), \cdot} \\
& \quad-\left[\sum_{d=1}^{\mathcal{D}-1}\left(\sum_{d^{\prime}=d}^{\mathcal{D}} b_{\left(d^{\prime}\right),(d)}\right) \underline{w}_{\cdot,(d)}+\left(\sum_{d^{\prime}=1}^{\mathcal{D}} b_{\left(d^{\prime}\right),(0)}\right) \underline{w}_{\cdot,(0)}\right] \\
& \quad=\sum_{d=1}^{\mathcal{D}-1}\left(\sum_{d^{\prime}=d}^{\mathcal{D}} b_{\left(d^{\prime}\right),(d)}\left(\bar{w}_{\left(d^{\prime}\right), \cdot}-\underline{w}_{\cdot,(d)}\right)\right)+\sum_{d^{\prime}=1}^{\mathcal{D}} b_{\left(d^{\prime}\right),(0)}\left(\bar{w}_{\left(d^{\prime}\right), \cdot}-\underline{w}_{\cdot,(0)}\right) \\
& \geq 0,
\end{aligned}
$$

where the final inequality follows from the terms in each sum being nonnegative.
Finally, show that the term in square brackets in (S7) is nonnegative. This term is the minimum of the following expressions in (S9) and (S10):

$$
\begin{equation*}
a_{(d+1)}+\sum_{\tilde{d}=d}^{\mathcal{D}} \sum_{\underset{d}{d=0}}^{d-1} p_{\underset{\sim}{d}),(\tilde{d})}+\sum_{\tilde{d}=d+1}^{\mathcal{D}} p_{(d),(\tilde{d})}-\sum_{\tilde{d}=d+1}^{\mathcal{D}} \sum_{\underset{d}{d=0}}^{d-1} p_{(\tilde{d}),(\underset{\sim}{d})} \tag{S9}
\end{equation*}
$$

$$
\begin{aligned}
= & \sum_{\tilde{d}=d+1}^{\mathcal{D}} \sum_{d=0}^{d} p_{(\tilde{d}),(\underset{\sim}{d})}-\sum_{\tilde{d}=d+1}^{\mathcal{D}} \sum_{d=0}^{d} p_{(\underset{\sim}{d}),(\tilde{d})} \\
& +\sum_{\tilde{d}=d+1}^{\mathcal{D}} \sum_{\underset{\sim}{d}=0}^{d-1} p_{(\underset{d}{d}),(\tilde{d})}+\sum_{d=0}^{d-1} p_{(\underset{\sim}{d}),(d)}+\sum_{\tilde{d}=d+1}^{\mathcal{D}} p_{(d),(\tilde{d})}-\sum_{\tilde{d}=d+1}^{\mathcal{D}} \sum_{\underset{d}{d=0}}^{d-1} p_{(\tilde{d}),(\underset{\sim}{d})} \\
= & \sum_{\tilde{d}=d+1}^{\mathcal{D}} p_{(\tilde{d}),(d)}+\sum_{d=0}^{d-1} p_{(\underset{\sim}{d}),(d)}
\end{aligned}
$$

and similarly,

$$
\begin{align*}
& a_{(d)}+\sum_{\tilde{d}=d}^{\mathcal{D}} \sum_{\substack{d=0}}^{d-1} p_{(\underset{\sim}{d}),(\tilde{d})}+\sum_{\tilde{d}=d+1}^{\mathcal{D}} p_{(d),(\tilde{d})}-\sum_{\tilde{d}=d+1}^{\mathcal{D}} \sum_{\tilde{d}=0}^{d-1} p_{(\tilde{d}),(\underset{\sim}{d})} \tag{S10}\\
& \quad=\sum_{d=0}^{d-1} p_{(d),(\underset{\sim}{d})}+\sum_{\tilde{d}=d+1}^{\mathcal{D}} p_{(d),(\tilde{d})} .
\end{align*}
$$

Both terms (S9) and (S10) are seen to be sum of probabilities, and hence nonnegative, so the minimum of these two terms is also nonnegative:

$$
0 \leq\left(a_{(d+1)} \wedge a_{(d)}\right)+\sum_{\tilde{d}=d}^{\mathcal{D}} \sum_{\underset{d}{d=0}}^{d-1} p_{(\underset{\sim}{d}),(\tilde{d})}+\sum_{\tilde{d}=d+1}^{\mathcal{D}} p_{(d),(\tilde{d})}-\sum_{\tilde{d}=d+1}^{\mathcal{D}} \sum_{\underset{d}{d=0}}^{d-1} p_{(\tilde{d}),(\underset{\sim}{d})} .
$$

It follows that $z^{\prime} p \geq 0$, which completes the argument for the case where there is a strict covariate index ordering. When the covariate index ordering is weak (includes some ties), the analogous argument applies imposing additional restrictions as in (S2) on the partition $R_{d, d^{\prime}}$ and using the information provided by the additional implied moment inequalities to verify Farkas' lemma as above. Finally, we can conclude that a constructed disturbance distribution exists that satisfies Assumption 1 and generates a constructed outcome and covariate distribution that matches the observed distribution, so that $\Theta_{0} \subset \Theta_{S}$ and Θ_{0} is sharp.

Proof of Proposition 3. In binary choice, it will be useful to note that when $\operatorname{Pr}\left(y_{s}=1 \mid\right.$ $\left.x_{s}, x_{t}\right)=\operatorname{Pr}\left(y_{t}=1 \mid x_{s}, x_{t}\right)$ then $\operatorname{Pr}\left(y_{s}=0 \mid x_{s}, x_{t}\right)=\operatorname{Pr}\left(y_{t}=0 \mid x_{s}, x_{t}\right)$. In this case, take an arbitrary θ. Then $\overline{\mathbb{D}}\left(x_{s}, x_{t}, \theta\right)=\{\{0\}\}$, $\{\{1\}\}$, or $\{\{0\},\{1\}\}$. In any of these cases, $H\left(x_{s}, x_{t}\right.$, $\theta)=0$, so $H\left(x_{s}, x_{t}, \theta\right)=0 \forall \theta$ when $\operatorname{Pr}\left(y_{s}=1 \mid x_{s}, x_{t}\right)=\operatorname{Pr}\left(y_{t}=1 \mid x_{s}, x_{t}\right)$.

Another useful finding is that for any θ such that $\overline{\mathbb{D}}\left(x_{s}, x_{t}, \theta\right)=\{\{0\},\{1\}\}, H\left(x_{s}, x_{t}\right.$, $\theta)=\sum_{D \in \overline{\mathbb{D}}\left(x_{s}, x_{t}, \theta\right)} E\left[\mathbf{1}\left\{y_{s} \in D\right\}-\mathbf{1}\left\{y_{t} \in D\right\} \mid x_{s}, x_{t}\right]=\left[\operatorname{Pr}\left(y_{s}=0 \mid x_{s}, x_{t}\right)-\operatorname{Pr}\left(y_{t}=0 \mid x_{s}, x_{t}\right)\right]+$ $\left[\operatorname{Pr}\left(y_{s}=1 \mid x_{s}, x_{t}\right)-\operatorname{Pr}\left(y_{t}=1 \mid x_{s}, x_{t}\right)\right]=0$.

Take $\theta \in \Theta_{0}$ and show that $H\left(x_{s}, x_{t}, \theta\right)=H\left(x_{s}, x_{t}, \theta_{0}\right)$ a.s., so that $H(\theta)=H\left(\theta_{0}\right)$. Cases:
(a) $\Delta g\left(x_{s}, x_{t}, \theta\right)>0$. Then $\overline{\mathbb{D}}\left(x_{s}, x_{t}, \theta\right)=\{\{1\}\}$, so $H\left(x_{s}, x_{t}, \theta\right)=\operatorname{Pr}\left(y_{s}=1 \mid x_{s}, x_{t}\right)-$ $\operatorname{Pr}\left(y_{t}=1 \mid x_{s}, x_{t}\right)$. Since $\theta \in \Theta_{0}, \operatorname{Pr}\left(y_{s}=1 \mid x_{s}, x_{t}\right)-\operatorname{Pr}\left(y_{t}=1 \mid x_{s}, x_{t}\right) \geq 0$. If $\operatorname{Pr}\left(y_{s}=\right.$
$\left.1 \mid x_{s}, x_{t}\right)-\operatorname{Pr}\left(y_{t}=1 \mid x_{s}, x_{t}\right)>0$, then we must have by Proposition $1, \overline{\mathbb{D}}\left(x_{s}, x_{t}, \theta_{0}\right)=$ $\{\{1\}\}$, so $H\left(x_{s}, x_{t}, \theta\right)=H\left(x_{s}, x_{t}, \theta_{0}\right)$. If $\operatorname{Pr}\left(y_{s}=1 \mid x_{s}, x_{t}\right)-\operatorname{Pr}\left(y_{t}=1 \mid x_{s}, x_{t}\right)=0$, then as noted above $H\left(x_{s}, x_{t}, \theta\right)=0=H\left(x_{s}, x_{t}, \theta_{0}\right)$.
(b) $\Delta g\left(x_{s}, x_{t}, \theta\right)=0$. Then $\overline{\mathbb{D}}\left(x_{s}, x_{t}, \theta\right)=\{\{0\},\{1\}\}$, so as noted above $H\left(x_{s}, x_{t}, \theta\right)=0$. Since $\theta \in \Theta_{0}$, we must have $\operatorname{Pr}\left(y_{s}=0 \mid x_{s}, x_{t}\right)-\operatorname{Pr}\left(y_{t}=0 \mid x_{s}, x_{t}\right) \geq 0$ and $\operatorname{Pr}\left(y_{s}=1 \mid\right.$ $\left.x_{s}, x_{t}\right)-\operatorname{Pr}\left(y_{t}=1 \mid x_{s}, x_{t}\right) \geq 0$. So, $\operatorname{Pr}\left(y_{s}=1 \mid x_{s}, x_{t}\right)=\operatorname{Pr}\left(y_{t}=1 \mid x_{s}, x_{t}\right)$, and $H\left(x_{s}, x_{t}\right.$, $\left.\theta_{0}\right)=0$. Hence, $H\left(x_{s}, x_{t}, \theta\right)=H\left(x_{s}, x_{t}, \theta_{0}\right)$.
(c) $\Delta g\left(x_{s}, x_{t}, \theta\right)<0$. Similar to case (a), $H\left(x_{s}, x_{t}, \theta\right)=H\left(x_{s}, x_{t}, \theta_{0}\right)$.

So, we have shown that $H\left(x_{s}, x_{t}, \theta\right)=H\left(x_{s}, x_{t}, \theta_{0}\right)$ a.s., and so $H(\theta)=H\left(\theta_{0}\right)$.
Now take $\theta \notin \Theta_{0}$ and show $H(\theta)<H\left(\theta_{0}\right)$. Let

$$
\begin{aligned}
\mathcal{A} & =\left\{\left(x_{s}, x_{t}\right): E\left[m_{D}\left(y_{s}, y_{t}, x_{s}, x_{t}, \theta\right) \mid x_{s}, x_{t}\right]<0 \text { for some } D \in \mathbb{D}\right\} \\
& =\left\{\left(x_{s}, x_{t}\right): E\left[\mathbf{l}\left\{y_{s} \in D\right\}-\mathbf{1}\left\{y_{t} \in D\right\} \mid x_{s}, x_{t}\right]<0 \text { for some } D \in \overline{\mathbb{D}}\left(x_{s}, x_{t}, \theta\right)\right\} .
\end{aligned}
$$

Since $\theta \notin \Theta_{0}, \operatorname{Pr}(\mathcal{A})>0 .{ }^{4}$ Consider $\left(x_{s}, x_{t}\right) \in \mathcal{A}$.
(a) $\Delta g\left(x_{s}, x_{t}, \theta\right)>0$. But $\operatorname{Pr}\left(y_{s}=1 \mid x_{s}, x_{t}\right)<\operatorname{Pr}\left(y_{t}=1 \mid x_{s}, x_{t}\right)$. Then $\operatorname{Pr}\left(y_{s}=0 \mid x_{s}, x_{t}\right)>$ $\operatorname{Pr}\left(y_{t}=0 \mid x_{s}, x_{t}\right)$ and $\Delta g\left(x_{s}, x_{t}, \theta_{0}\right)<0$. Hence, $\overline{\mathbb{D}}\left(x_{s}, x_{t}, \theta\right)=\{\{1\}\}$ and $\overline{\mathbb{D}}\left(x_{s}, x_{t}\right.$, $\left.\theta_{0}\right)=\{\{0\}\}$, and $H\left(x_{s}, x_{t}, \theta\right)=\operatorname{Pr}\left(y_{s}=1 \mid x_{s}, x_{t}\right)-\operatorname{Pr}\left(y_{t}=1 \mid x_{s}, x_{t}\right)<0<\operatorname{Pr}\left(y_{s}=0 \mid\right.$ $\left.x_{s}, x_{t}\right)-\operatorname{Pr}\left(y_{t}=0 \mid x_{s}, x_{t}\right)=H\left(x_{s}, x_{t}, \theta_{0}\right)$.
(b) $\Delta g\left(x_{s}, x_{t}, \theta\right)=0$. Then $\overline{\mathbb{D}}\left(x_{s}, x_{t}, \theta\right)=\{\{0\},\{1\}\}$, so $H\left(x_{s}, x_{t}, \theta\right)=0$. But since $\left(x_{s}, x_{t}\right) \in \mathcal{A}, \operatorname{Pr}\left(y_{s}=1 \mid x_{s}, x_{t}\right) \neq \operatorname{Pr}\left(y_{t}=1 \mid x_{s}, x_{t}\right)$. Suppose $\operatorname{Pr}\left(y_{s}=1 \mid x_{s}, x_{t}\right)>\operatorname{Pr}\left(y_{t}=\right.$ $\left.1 \mid x_{s}, x_{t}\right)$, then $\Delta g\left(x_{s}, x_{t}, \theta_{0}\right)>0$, and $H\left(x_{s}, x_{t}, \theta_{0}\right)=\operatorname{Pr}\left(y_{s}=1 \mid x_{s}, x_{t}\right)-\operatorname{Pr}\left(y_{t}=\right.$ $\left.1 \mid x_{s}, x_{t}\right)>0=H\left(x_{s}, x_{t}, \theta\right)$. The argument holds similarly when $\operatorname{Pr}\left(y_{s}=1 \mid x_{s}, x_{t}\right)<$ $\operatorname{Pr}\left(y_{t}=1 \mid x_{s}, x_{t}\right)$. So $H\left(x_{s}, x_{t}, \theta_{0}\right)>H\left(x_{s}, x_{t}, \theta\right)$.
(c) $\Delta g\left(x_{s}, x_{t}, \theta\right)<0$. Arguing similar to (a), $H\left(x_{s}, x_{t}, \theta_{0}\right)>H\left(x_{s}, x_{t}, \theta\right)$.

So, we have shown that $H\left(x_{s}, x_{t}, \theta_{0}\right)>H\left(x_{s}, x_{t}, \theta\right)$ for $\left(x_{s}, x_{t}\right) \in \mathcal{A}$. For $\left(x_{s}, x_{t}\right) \notin \mathcal{A}$, it is straightforward to show $H\left(x_{s}, x_{t}, \theta\right)=H\left(x_{s}, x_{t}, \theta_{0}\right)$ using previous arguments. Hence, $H\left(\theta_{0}\right)-H(\theta)=E\left[\mathbf{1}\left\{\left(x_{s}, x_{t}\right) \in \mathcal{A}\right\}\left(H\left(x_{s}, x_{t}, \theta_{0}\right)-H\left(x_{s}, x_{t}, \theta\right)\right)\right]>0$. The result follows.

Reference

Matoušek, Jiří and Bernd Gärtner (2007), Understanding and Using Linear Programming. Springer-Verlag, Berlin. [2]

Co-editor Andres Santos handled this manuscript.
Manuscript received 23 November, 2020; final version accepted 12 May, 2022; available online 24 February, 2023.

[^3]
[^0]: Ariel Pakes: apakes@fas.harvard.edu Jack Porter: jrporter@ssc.wisc.edu
 © 2024 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0. Available at http://qeconomics.org. https://doi.org/10.3982/QE1776

[^1]: ${ }^{1}$ A continuous distribution for $\left(\varepsilon_{s}^{*}, \varepsilon_{t}^{*}\right) \mid x_{s}, x_{t}$ could be obtained by defining the density on each $R_{d, d^{\prime}} \neq \emptyset$ to be a constant chosen so that $\operatorname{Pr}\left(\left(\varepsilon_{s}^{*}, \varepsilon_{t}^{*}\right) \in R_{d, d^{\prime}} \mid x_{s}, x_{t}\right)=q_{d, d^{\prime} \times d^{\prime \prime}, d^{\prime \prime \prime}}^{*}$.
 ${ }^{2}$ Farkas' lemma actually states that the condition provided is both necessary and sufficient; see Matoušek and Gärtner (2007, Proposition 6.4.1).

[^2]: ${ }^{3}$ The expressions below apply to the case $\mathcal{D}+1=2$ with the convention that summations are taken to be zero when the upper limit is strictly less than the lower limit.

[^3]: ${ }^{4}$ Suppose \mathcal{A} is measurable or contains a measurable set of positive measure.

