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Appendix B: Supplemental appendix

B.1 Sticky prices (Matějka (2016))

Additional figures Both the GAP-SQP and BA algorithms replicate the results in
Matějka (2016) very closely. Figure 9 shows the marginal distributions over prices for
the GAP-SQP algorithm (panel (a)) and BA algorithm (panel (b)), together with the nu-
merical solutions from AMPL provided by Filip Matĕjka. Solutions are so close that we
had to offset the histograms for visibility. We find that increasing grid precision for ac-
tions does not meaningfully alter the solution.

Figure 10 reports the differences in the objective function value, at the computed
maximum, between the GAP-SQP and BA algorithms, for the benchmark case. The dif-
ference is positive for all the information values, indicating that the GAP-SQL algorithm
achieves greater precision despite running on a fraction of the time of the BA algorithm.
The difference, though, is very small by our choice of stopping values.

B.2 Portfolio choice (Jung, Kim, Matějka, and Sims (2019))

Derivation of the optimal Gaussian solution Thanks to the properties of the CARA util-
ity function, it is possible to rewrite Equation (6) as

U(θ, Y ) = −exp
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Figure 9. Replication of Matějka (2016).

or in matrix notation with x = [θ1, θ2, Y1, Y2]T as

U(x) = −exp
(

−1.03α−mTx+ 1
2
xTMx

)
,

Figure 10. Objective function: GAP-SQP minus the Blahut–Arimoto algorithm.
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where
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If we restrict x to a multivariate Gaussian distribution with mean x̂ = [θ̂1, θ̂2, 0, 0]T and
covariance matrix

� =
[
�θ �θY

�T
θY �Y

]
,

expected consumption utility admits a closed-form expression. By rearranging terms,
the integral can be written as
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where φ(x) denotes the probability density function of a multivariate normal distribu-
tion with mean Q(�−1x̂−m) and covariance matrix Q = (�−1 −M )−1. Since the proba-
bility density function integrates to one, we obtain
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The mutual information of a multivariate Gaussian distribution also admits a
closed-form solution, MI(θ, Y ) = 1

2 log( |�θ||�Y |
|�| ), where | · | denotes the matrix determi-

nant and �X denotes the marginal covariance of the X.
Exploiting the symmetry of the problem, we use a nonlinear solver with five degrees

of freedom (one for the mean x̂ = (θ̂, θ̂, 0, 0), and two each two for the bisymmetric co-
variance matrices �θ and �θY ), we obtain the best Gaussian solution, with
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Additional figures For comparison purposes, Figure 11 plots the statewise payoff dis-
tribution U(θ, Y )−λMI, assuming (θ, Y ) is distributed according to the numeric solution
of GAP-SQP (blue), JKMS (orange), or the optimal Gaussian solution (gray), and the in-
formation cost MI is borne unconditionally. We explicitly compute joint probabilities for
the two discrete solutions. For the optimal Gaussian, we use Monte Carlo methods and
sample 100 million draws from the distribution. We then plot weighted kernel density
estimates with a bandwidth of 0.01.
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Figure 11. Payoff distribution across algorithm estimates, smoothed with a kernel density es-
timate with bandwidth 0.01.
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