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Appendix A: Optimal fiscal policy with Epstein–Zin preferences

This Appendix presents the general model with N bonds and Epstein–Zin preferences,
describes the computation algorithm, and presents the equilibrium dynamics of the
Epstein–Zin model with two bonds.

A.0.0.1 The household’s problem Households have Epstein–Zin preferences where the
instantaneous utility comes from consumption (ct ) and leisure (lt ). The parameter ρ
controls the substitutability in time and the parameter γ controls the attitude toward
risk.26 When ρ = γ, preferences collapse to CRRA, where consumption and leisure are
additively separable. Preferences are

Vt =
[
(1 −β)U(ct , lt )1−ρ +β(

EtV
1−γ
t+1

) 1−ρ
1−γ ] 1

1−ρ .

The time endowment is equal to 1; therefore, hours worked are ht = 1 − lt . The house-
hold cash-on-hand consists of (i) the after-tax labor income and (ii) the current bond
holdings. This can be either consumed or spent to purchase new bonds. The budget
constraint (BC) is

ct +ptbt+1 = bt + (1 − τt )ht .

DefiningWt = bt and Rt+1 =Wt+1/ptbt+1 = 1/pt , the BC can be rewritten as

ct +ptWt+1 =Wt + (1 − τt )ht
=⇒ Wt+1 =Rt+1

(
Wt − ct + (1 − τt )ht

)
.
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Alessandro T. Villa: alessandro.villa@chi.frb.org

26When the instantaneous utility includes leisure, the relative risk aversion is not γ but 1− (1−γ)(1−ρ),
see Swanson (2012) or Swanson and Rudebusch (2012) for a detailed explanation.
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Given the redefinition of the BC, the household’s problem can be rewritten as

Vt(Wt ) = max
ct ,ht

[
(1 −β)U(ct , 1 − ht )1−ρ +β(

EtVt+1(Wt+1 )1−γ) 1−ρ
1−γ ] 1

1−ρ ,

Wt+1 =Rt+1
(
Wt − ct + (1 − τt )ht

)
.

Define the certainty equivalent (CE) as Rt(Vt+1 ) ≡ (EtV
1−γ
t+1 )

1
1−γ . The optimality condi-

tion for consumption (FOCc) is

V
ρ
t

(
(1 −β)(1 − ρ)U−ρ

t Uc,t −β(1 − ρ)
(
EtV

1−γ
t+1

) γ−ρ
1−γ Et

[
V

−γ
t+1Rt+1VW ,t+1

]) = 0

=⇒ (1 −β)U−ρ
t Uc,t = βRγ−ρ

t Et
[
V

−γ
t+1Rt+1VW ,t+1

]
.

The optimality condition for labor supply (FOCh) is

V
ρ
t

(−(1 −β)(1 − ρ)U−ρ
t Ul,t +β(1 − ρ)

(
EtV

1−γ
t+1

) γ−ρ
1−γ Et

[
V

−γ
t+1(1 − τt )Rt+1VW ,t+1

]) = 0

=⇒ (1 −β)U−ρ
t Ul,t = (1 − τt )βRγ−ρ

t Et
[
V

−γ
t+1Rt+1VW ,t+1

]
.

The envelope condition is

VW ,t = V ρt βRγ−ρ
t EtV

−γ
t+1Rt+1VW ,t+1.

Combine FOCc with FOCh to get

Ul,t
Uc,t

= 1 − τt .

Combine FOCc with the envelope condition to get

VW ,t = V ρt (1 −β)U−ρ
t Uc,t =⇒ VW ,t+1 = V ρt+1(1 −β)U−ρ

t+1Uc,t+1,

which implies

(1 −β)U−ρ
t Uc,t = βRγ−ρ

t Et
[
V

−γ
t+1Rt+1V

ρ
t+1(1 −β)U−ρ

t+1Uc,t+1
]
.

Plugging this back in the FOCc , rearranging and simplifying leads to the following inter-
temporal Euler equation:

1 = βEt
[
Mt(Vt+1 )

(
Ut+1

Ut

)−ρUc,t+1

Uc,t
Rt+1

]
,

where Mt(Vt+1 ) ≡ ( Vt+1
Rt (Vt+1 ) )ρ−γ . The bond’s pricept is the expected value of the stochas-

tic discount factor

pt = βEt
[
Mt(Vt+1 )

(
Ut+1

Ut

)−ρUc,t+1

Uc,t

]
.
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This problem can be generalized to N maturities in a similar fashion to Section 3.2.
This yields one Euler equation for each maturity i= 1, � � � ,N that reads

pit = βEt
[
Mt(Vt+i )

(
Ut+i
Ut

)−ρUc,t+i
Uc,t

]
.

Ramsey problem The Ramsey problem consists of finding {ct , {bit+1}Ni=1, μt , Vt }∞t=0 in or-
der to maximize the household’s welfare taking household intra and intertemporal first-
order conditions as constraints. Hence, the Lagrangian of the problem is

L = V0 +E0

∞∑
t=0

βt

{
μt

(
U

−ρ
t Uc,t st +

N∑
i=1

Etβ
ibit+1Mt(Vt+i )U−ρ

t+iUc,t+i

−
N∑
i=1

Etβ
i−1bitU

−ρ
t+i−1Uc,t+i−1Mt(Vt+i−1 )

)

+
N∑
i=1

ξiU ,t

(
BU − bit+1

) +
N∑
i=1

ξiL,t

(
bit+1 −BL)}

.

In addition, the Ramsey planner needs to respect the recursivity constraint for Vt ,

Vt =
[
(1 −β)U(ct , 1 − ct − gt )1−ρ +β(

EtV
1−γ
t+1

) 1−ρ
1−γ ] 1

1−ρ .

Optimality conditions In order to calculate the first-order condition with respect to ct ,
it is necessary to calculate an expression for the derivative of welfare V0 with respect to ct .
Note that V0 contains all the consumption path from 0 throughout ∞, which we derive
in Section A.0.0.2. Knowing ∂V0

∂ct (gt )
the first-order condition with respect to consumption

is27

V
ρ

0 (1 −β)X0,tU
−ρ
t

∂Ut

∂ct
(
gt

) +μt
(
∂U

−ρ
t Uc,t

∂ct
(
gt

) st + ∂st

∂ct
U

−ρ
t Uc,t

)

+ ∂U
−ρ
t Uc,t

∂ct
(
gt

) N∑
i=1

(
μt−iMt−i(Vt ) −μt−i+1Mt−i+1(Vt )

)
bit−i+1

+ λVt V −ρ
t (1 −β)U−ρ

t

∂Ut

ct
(
gt

) = 0,

where λVt is the time-t Lagrange multiplier associated with the recursive constraint and
Xt1,t2 ≡ ∏t2−t1

k=1 Mt1+k−1(Vt1+k ) with Xt1,t2 ≡ 1, ∀t2 ≤ t1. Note that X admits a recursive
representation.28 The first-order condition with respect to bit+1 yields following inter-

27With ∂V0
∂ct (gt ) = V ρ0 βt (1 −β)X0,tπ(gt |g0 )U−ρ

t
∂Ut
∂ct (gt ) .

28Xt1,t2 ≡ ∏t2−t1
k=1 Mt1+k−1(Vt1+k ) = Mt2−1(Vt2 )

∏t2−t1−1
k=1 Mt1+k−1(Vt1+k ) = Mt2−1(Vt2 )Xt1,t2−1.
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temporal expression for the promise keeping Lagrange multiplier μ:

μt =
[
EtMt(Vt+i )U−ρ

t+iUc,t+i
]−1

[
Etμt+1Mt+1(Vt+i )U−ρ

t+iUc,t+i + ξUt

βi
− ξLt

βi

]
.

The first-order condition with respect to Vt is

βt−i
N∑
i=1

π
(
gt−i|g0)βiμt−iπ(

gt|gt−i
)
bit−i+1Uc,tU

−ρ
t

∂Mt−i(Vt )
∂Vt

(
gt

)
−βt−i+1

N∑
i=1

π
(
gt−i+1|g0)βi−1μt−i+1π

(
gt|gt−i+1)bit−i+1Uc,tU

−ρ
t

∂Mt−i+1(Vt )

∂Vt
(
gt

)
− λVt βtπ

(
gt|g0) +βt−1π

(
gt−1|g0)λVt−1βV

ρ
t−1Rt−1(Vt )−ρMt−1(Vt )

−γ
ρ−γ π

(
gt|gt−1) = 0,

which, after rearranging, yields the following recursion for λVt :29

λVt =
N∑
i=1

(
μt−i

∂Mt−i(Vt )
∂Vt

(
gt

) −μt−i+1
∂Mt−i+1(Vt )

∂Vt
(
gt

) )
bit−i+1Uc,tU

−ρ
t

+ λVt−1

(
Vt−1

Vt

)ρ
Mt−1(Vt ).

The remaining first-order condition with respect to μt just gives back the intertemporal
government implementability constraint.

A.0.0.2 1. Derivation of ∂Vt/∂ct+j
If j < 0:

∂Vt/∂ct+j = 0.

If j = 0,

∂Vt

∂ct
= (1 −β)V ρt U

−ρ
t

∂Ut

∂ct
.

If j = 1,

∂Vt

∂ct+1
(
gt+1) = V ρt βRt(Vt+1 )γ−ρπ

(
gt+1|gt

)
V

−γ
t+1

∂Vt+1

∂ct+1
(
gt+1)

= V ρt βRt(Vt+1 )γ−ρπ
(
gt+1|gt

)
V

−γ
t+1

(
(1 −β)V ρt+1U

−ρ
t+1

∂Ut+1

∂ct+1
(
gt+1)

)

= V ρt β(1 −β)Mt(Vt+1 )π
(
gt+1|gt

)
U

−ρ
t+1

∂Ut+1

∂ct+1
(
gt+1) .

29Where ∂Mt−i(Vt )
∂Vt

= (ρ− γ) Mt−i(Vt )
Vt

[1 −Mt−i(Vt )
1−γ
ρ−γ π(gt |gt−i )].
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If j = 2,

∂Vt

∂ct+2
(
gt+2) = V ρt βRt(Vt+1 )γ−ρπ

(
gt+1|gt

)
V

−γ
t+1
∂Vt+1

∂ct+2

= V ρt βRt(Vt+1 )γ−ρπ
(
gt+1|gt

)
V

−γ
t+1

·
(
V
ρ
t+1β(1 −β)Rt+1(Vt+2 )γ−ρπ

(
gt+2|gt+1)V ρ−γt+2 U

−ρ
t+2
∂Ut+2

∂ct+2

)

= V ρt β2(1 −β)
2∏
k=1

Mt+k−1(Vt+k )
2∏
k=1

π
(
gt+k|gt+k−1)U−ρ

t+2
∂Ut+2

∂ct+2
(
gt+2) .

For a generic j ≥ 0,

∂Vt

∂ct+j
(
gt+j

) = V ρt βj(1 −β)Xt,t+jπ
(
gt+j|gt

)
U

−ρ
t+j

∂Ut+j
∂ct+j

(
gt+j

) .

A.0.0.3 2. Derivation of ∂Mt−1(Vt )
∂Vt

∂Mt−1(Vt )
∂Vt

= (ρ− γ)
Mt−1(Vt )

ρ−γ−1
ρ−γ

Rt−1(Vt )2

[
Rt−1(Vt ) − VtMt−1(Vt )

−γ
ρ−γ π

(
gt|gt−1)︸ ︷︷ ︸

∂Rt−1(Vt )
∂Vt

]

= (ρ− γ)
Mt−1(Vt )

ρ−γ−1
ρ−γ(

Vt

Mt−1(Vt )
1
ρ−γ

)2

[
Rt−1(Vt ) − VtMt−1(Vt )

−γ
ρ−γ π

(
gt|gt−1)]

= (ρ− γ)
Mt−1(Vt )

ρ−γ+1
ρ−γ

V 2
t

[
Mt−1(Vt )

−1
ρ−γ Vt − VtMt−1(Vt )

−γ
ρ−γ π

(
gt|gt−1)]

= (ρ− γ)
Mt−1(Vt )

ρ−γ+1
ρ−γ

Vt

[
Mt−1(Vt )

−1
ρ−γ −Mt−1(Vt )

−γ
ρ−γ π

(
gt|gt−1)]

= (ρ− γ)
Mt−1(Vt )

Vt

[
1 −Mt−1(Vt )

1−γ
ρ−γ π

(
gt|gt−1)].

Algorithm to solve the model with Epstein–Zin preferences Here, we describe an algo-
rithm to solve the model with Epstein–Zin preferences. Generally, it is very similar to the
one used to solve the model with CRRA preferences, with the exception that there are ad-
ditional state variables and additional terms that the neural network has to approximate.
At every instant t, the information set is It = {gt , {{bit−k}N−1

k=0 }Ni=1, {μt−k}Nk=1, {λVt−k}Nk=1}.

Consider projections of Rt−i(Vt ), EtMt(Vt+i )U−ρ
t+iUc,t+i, Etμt+iMt+1(Vt+i )U−ρ

t+iUc,t+i and

EtMt(Vt+i−1 )U−ρ
t+i−1Uc,t+i−1 on It . We model these relationships using one single-

layer artificial neural network ANN (It ). For example, with two bonds we would have
4N + 1 inputs and 8 outputs.30 In particular, use the following notation for each out-

30One with maturity 1 and the other with maturityN .
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put:

ANN i
1 = Rt−i(Vt ) for i= {1,N − 1,N },

ANN i
2 = EtMt(Vt+i )U−ρ

t+iUc,t+i for i= {1,N },

ANN i
3 = Etμt+iMt+1(Vt+i )U−ρ

t+iUc,t+i for i= {1,N },

ANN i
4 = EtMt(Vt+i−1 )U−ρ

t+i−1Uc,t+i−1 for i= {N }.

Given starting values μt−1 = λV−1 = 0 and initial weights for ANN , simulate a sequence
of {ct }, {λVt }, {μt } as follows:

1. Impose the Maliar moving bounds on all debts instruments; see Maliar and Maliar
(2003). These bounds are particularly important and need to be tight and open
slowly, since the neural network at the beginning can only make accurate predic-
tions around zero debt, that is, our initialization point. Proper penalty functions are
used instead of the ξ terms to avoid out of bound solutions; see Faraglia, Marcet,
Oikonomou, and Scott (2014) for more details.

2. Use forward-states on the following i equations:

∀i : μt =
[
EtANN i

1(It+1 )
]−1

[
EtANN i

2(It+1 ) + ξiU ,t

βi
− ξiL,t

βi

]
.

3. Find λVt , μt , ct , and {bit+1}Ni=1 that solve the following system of equations:

(i) λVt =
N∑
i=1

(
μt−i

∂Mt−i(Vt )
∂Vt

(
gt

) −μt−i+1
∂Mt−i+1(Vt )

∂Vt
(
gt

) )
bit−i+1Uc,tU

−ρ
t

+ λVt−1

(
Vt−1

Vt

)ρ( Vt

ANN 1
1(It+1 )

)ρ−γ
,

(ii) V
ρ

0 (1 −β)X0,tU
−ρ
t

∂Ut

∂ct
(
gt

) +μt
(
∂U

−ρ
t Uc,t

∂ct
(
gt

) st + ∂st

∂ct
U

−ρ
t Uc,t

)

+ ∂U
−ρ
t Uc,t

∂ct
(
gt

) N∑
i=1

(
μt−i

(
Vt

ANN i
1(It+1 )

)ρ−γ

−μt−i+1

(
Vt

ANN i−1
1 (It+1 )

)ρ−γ)
bit−i+1 + λVt V −ρ

t (1 −β)U−ρ
t

∂Ut

ct
(
gt

) = 0,

(iii)
N∑
i=1

βi−1bitANN i
4(It+1 ) = stU−ρ

c Uc,t +
N∑
i=1

βibit+1ANN i
2(It+1 ),

(iv) ∀i : μt =
[
EtANN i

1(It+1 )
]−1

[
EtANN i

2(It+1 ) + ξiU ,t

βi
− ξiL,t

βi

]
,
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Figure A.1. Simulated series with 2 bonds and Epstein–Zin preferences. Note: The figure
shows the equilibrium dynamics of the two-bond model with Epstein–Zin preferences. The
left panel plots a sequence of exogenous shocks. Solid black—government expenditure, dashed
black—productivity. The right panel plots the sequence of bonds. Solid blue—long bond with
N = 10. Dashed purple line—short bond withN = 1.

where

∂Mt−i(Vt )
∂Vt

= (ρ− γ)

(
Vt

ANN i
1

)ρ−γ
Vt

[
1 −

(
Vt

ANN i
1

)1−γ
fgt (gt|gt−i )

]
,

Vt =
[
(1 −β)U(ct , 1 − ct − gt )1−ρ +βANN 1

1(It+1 )1−ρ] 1
1−ρ ,

and

∂Ut

∂ct
=Uc,t −Ul,t .

Note that fgt (gt|gt−1 ) is the conditional probability density of the exogenous g pro-
cess.

4. Use the simulated sequence to train the ANN and restart from point 1 till conver-
gence of the predicted sequence over the realized one.

Numerical results with two bonds and Epstein–Zin preferences Bhandari, Evans, Golo-
sov, and Sargent (2017) and Karantounias (2018) convincingly demonstrate that impli-
cations for optimal portfolios changes once the model contains preferences that match
the asset prices. In this section, we explore the implications for optimal debt manage-
ment once we change preferences to Epstein–Zin and add a shock that is orthogonal to
the government expenditure process. In particular, we add an endowment shock zt , such
that lt = zt − ht .31 Table A.1 summarizes all parameter values. Figure A.1 shows that in

31zt is independent of gt and follows an AR(1) process zt = μz + ρzzt−1 + εzt with μz = 0.9, ρz = 0.1,
ε∼N(0, 0.0001).
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Table A.1. Parameter values used in the model with Epstein–Zin preferences.

Parameter Value

Discount factor β= 0.96
RRA γ = 1.5
1/EIS ρ= 1.6
Leisure utility parameter η= 1.8
AR(1) parameter in gt φ1 = 0.95
constant in AR(1) process of in gt c = 0.00416
Variance of the disturbances to gt σ2

ε = 0.00001
AR(1) parameter in zt φz = 0.1
constant in AR(1) process of in zt c = 0.9
Variance of the disturbances to zt σ2

εz = 0.0001
Borrowing limits M̄N , M̄S = 100% of GDP

MN ,MS = −100% of GDP

this setting the allocation shares are around equal among different maturities, and little
portfolio rebalancing happens in response to government shocks. The intuition is that
the presence of TFP shocks, which are orthogonal to government expenditure shocks,
makes it risky to hold a highly leveraged position. This risk is magnified by Epstein–Zin
preferences. Bhandari et al. (2017) solve a similar model using a perturbation method
around the current level of government debt. Our results using our methodology are
consistent with their intuition.

Appendix B: Implementation details

This Appendix includes three subsections: (i) additional algorithm details, (ii) an in-
depth discussion about the relationship with GSSA, and (iii) additional figures.

B.1 Algorithm details

In this section, we describe the practical details of the algorithm used to solve the model
described in Section 3.3. For explanation purposes, and as an example, we use the case
with three bonds. In particular, we use three maturities S = 1,M = 5, and L= 10.

Lagrange multipliers The system in step 2 contains multiple constraints, which poses
a significant computational challenge. Ideally, one would numerically solve the uncon-
strained model and then verify that the constraints do not bind and if, for example,MN

binds, set bNt+1 = M̄N and find the associated values for consumption and leisure. In a
multiple-bond model, this is challenging because after setting bNt+1 = M̄N , one needs to
check if the other constraints do not bind in the recomputed solution, and if they do,
enforce them and recalculate the solution again and so on. To overcome this challenge,
we approximate Lagrange multipliers with the following function: ξiL,t =φ(Mi−bit+1 ) +
log(1 + φ(M̄i − bit+1 )) if bit+1 <M

i and ξiU ,t = φ(bit+1 − M̄i ) + log(1 + φ(bit+1 − M̄i )) if

bit+1 > M̄
i, whereφ controls the relative importance of the constraint. In our implemen-

tation, we set φ = 90. We also find that including these multipliers in the training set
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allows for different bond dynamics close and away from the constraints and improves
prediction accuracy. As a result, in our implementation

It =
{
gt ,

{
bSt−k

}S−1
k=0,

{
bMt−k

}M−1
k=0 ,

{
bLt−k

}L−1
k=0 , {μt−k}Lk=1,

{{
ξSi,t−k

}S−1
k=0

}
i=L,U ,{{

ξMi,t−k
}M−1
k=0

}
i=L,U ,

{{
ξLi,t−k

}L−1
k=0

}
i=L,U ,

{
ξTotal
i,t−1

}
i=L,U

}
.

With S = 1,M = 5, and L= 10, the state space includes 61 variables.

Forward-states PEA When the model contains more than one maturity, μt is over-
identified. This is because optimality conditions for every maturity identify μt , as the
information set It contains variables that are predetermined at time t:

∀i : μt = ANN i
1(It )−1

[
ANN i

2(It ) + ξiU ,t

βi
− ξiL,t

βi
+ ξTotal

U ,t

βi
− ξTotal

L,t

βi

]
. (9)

We tackle this problem by using a forward-states PEA, introduced in Faraglia,
Marcet, Oikonomou, and Scott (2019). It uses the current values of the state variables
It+1 combined with the law of iterated expectations. This is done in two steps. First, we
replace the ANN i(It ) terms in the optimality conditions with EtANN i(It+1 ) and, in-
stead of approximating Et(uc(ct+i )), Et(uc(ct+i−1 )) and Et(uc(ct+iμt+1 )), we use the in-
formation set It+1 to approximate Et+1(uc(ct+i )), Et+1(uc(ct+i−1 )), and
Et+1(uc(ct+iμt+1 )) for i = S,M , L. Then we use Gaussian quadrature to calculate the
conditional expectation of the neural network evaluated at It+1.

Neural network initialization In order to initialize the neural network weights, we
need to make a guess for bond sequences. We make an educated guess that bLt+1 =
gt/2 − E(gt/2); bSt+1 = −bLt and bMt+1 = √

gt/10 − E(gt/10). Given these sequences, we
use the government budget constraint and the first-order condition for ct to find the se-
quence for μt . Given the guess for bonds, we can calculate the initial multipliers ξiL,t ,

ξiU ,t , ξ
Total
L,t , and ξTotal

U ,t . We calculate them setting the initial bond constraints equal to

M , M̄ = ±0.005. We then use these sequences to initialize the neural network. Gener-
ally, the initial guess can be any real sequences as long as it is not constant. Nevertheless,
having a good guess helps the algorithm to converge faster.

Stochastic simulation We run the stochastic simulation from the starting point where
bS1 = bM1 = bN1 = 0 and μ0 = E(μ). To solve the system of first-order conditions at ev-
ery period t of the simulation, we use the Levenberg–Marquardt algorithm and stop the
solver when the first-order condition errors are less than 10−12. We set T=1000 and drop
the first 150 periods in training the neural network. The algorithm converges when the
sequences for bonds and neural network weights do not change between two consecu-
tive stochastic simulations.

Solving the system At every period t of the stochastic simulation, we need to solve the
system of first-order conditions to get values for ct , bLt+1, bMt+1, and bSt+1. We solve it using
the Levenberg–Marquardt method. Since this is a local solver, there is no guarantee that
the system is solved given a particular initial guess. In our implementation, we attempt
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Table B.1. NN hyperparameters.

Parameter Value

Activation function Hyperbolic tangent sigmoid
Training algorithm Gradient descent with an adaptive learning

rate backpropagation
Number of Hidden Layers 1
Number of Neurons 10
Learning Rate 0.0001
Learning Increase Factor 1.01
Learning Decrease Factor 0.9
Maximum Number of Epochs 1000
Performance Goal 0
Maximum Validation Checks 6
Maximum Performance Increase 1.04

Note: The table summarizes the hyperparameters of the neural network used to solve the model in Section 4.

to solve the system for at most maxrep number of different starting points. If the solu-
tion errors are below our specified threshold, the algorithm proceeds with the solution
and moves to the next period. If the solution errors are not below our specified thresh-
old, we pick the solution with the lowest error. In practice, we use 10−13 as the solution
criteria and set maxrep to 50 and verify that solution errors are below it for every t in the
stochastic simulation.

Neural network hyperparameters We set most of the hyperparameters to standard val-
ues used in the literature. We use one hidden layer to leverage the trade-off between ap-
proximation accuracy and training time. According to the universal approximation the-
orem, single hidden layer networks are able to approximate every continuous bounded
function with an arbitrarily small error Cybenko (1988) and have smaller training times
than multiple hidden layer networks. We then choose the number of neurons accord-
ing to the procedure described in Section 2.3. We train the network using gradient de-
scent with an adaptive learning rate. Table B.1 summarizes the remaining hyperparam-
eters.

B.2 Relation to condensed PEA

Recall that S also corresponds to the number of neurons in the input layer, M is the
number of neurons in the hidden layer, E is the number of expectations to approximate
(which also corresponds to the number of neurons in the output layer), and T is the
number of training examples.

Time complexity of condensed PEA In a least squares regression, the matrix multiplica-
tion (XTX) dominates asymptotically the Cholesky factorization of XTX .32 Hence, the
time complexity to approximate E expectations terms with OLS is O(E · S2 · T ). In the

32We assume that the number of features (state variables) is smaller than the number of samples, that is,
T > S.
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condensed PEA, this operation is repeated for an unknown number of iterations nCPEA.
We estimate the time complexity of the condensed PEA as

O
(
nCPEA · nInternalLoop · (κ(E, S, T ) +E · S2 · T ))

,

where κ(E, S, T ) indicates the time complexity to compute lines 3–9 and nInternalLoop

is the unbounded number of iterations required for model convergence (while loop in
line 2).

Time complexity of NN-based expectations algorithm The time complexity of a single
iteration of back-propagation to train a neural network that has 3 layers (with S,M , and
E nodes) is O(T · (S ·M +M ·E)). Assuming there are more neurons in the hidden layer
than the number of expectations to approximate (M > E) and nNN is the number of
epochs (which is in principle unbounded), we estimate the time complexity to train a
neural network as O(nNN · T · S ·M ). We estimate the time complexity of the NN-based
expectations algorithm as

O
(
nInternalLoop · (κ(E, S, T ) + nNN · T · S ·M))

.

Given our estimates, our algorithm has a better time complexity when33

nInternalLoop · (κ(E, S, T ) + nNN · T · S ·M)
< nCPEA · nInternalLoop · (κ(E, S, T ) +E · S2 · T )

.

After rearranging, we get a simplified expression

nNN · T · S ·M︸ ︷︷ ︸
NN training

< (nCPEA − 1) · κ(E, S, T ) + nCPEA ·E · S2 · T︸ ︷︷ ︸
CPEA regression

. (10)

The left-hand side captures the time complexity of training the neural network. The
right-hand side contains the term that captures the time complexity of the regressions
involved in the condensed PEA and an additional term (nCPEA − 1) · κ(E, S, T ) that
captures the difference between the complexity of the stochastic simulation as com-
puted with condensed PEA and NN-based expectations algorithm. While κ(E, S, T ) is
unknown, we can still compare the nNN ·T ·S ·M and nCPEA ·E ·S2 ·T terms, which further
reduces to comparing nNN ·M with nCPEA ·E ·S. In our application, S = 27,E = 8,M = 10,
and nNN = 20 on average. Given these numbers, the two algorithms have comparable
complexity when nCPEA = 1.34 When nCPEA > 1, the inequality in (10) clearly holds since
(nCPEA − 1) · κ(E, S, T )> 0.

B.3 Relation to GSSA

Judd, Maliar, and Maliar (2011) propose a related method called generalized stochastic
simulation algorithm (GSSA) to deliver high accuracy predictions as well as resolving the
multicollinearity problem. Judd, Maliar, and Maliar (2011) resolve the multicollinear-

33We assume that nInternalLoop and κ(E, S, T ) are the same in both methods.
34Note that when nCPEA = 1, the condensed PEA is essentially a standard PEA algorithm. It is possible

that the condensed PEA converges in one iteration but that requires a good guess of the initial set of core
state variables, which needs to be found through trial and error.
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ity problem using standard econometric techniques, such as single value decomposi-
tion (SVD), principal components, or ridge regression. At the same time, high accuracy
is achieved by approximating the policy functions and integrating them using Gauss–
Hermite quadrature, instead of approximating the whole expectation terms in the opti-
mality conditions. While the GSSA method has multiple advantages and has been suc-
cessfully applied in different contexts, we find that its application to the Ramsey prob-
lem analyzed in this paper poses challenges. Judd, Maliar, and Maliar (2011) propose
a related method called the generalized stochastic simulation algorithm (GSSA) to de-
liver high accuracy predictions as well as resolving the multicollinearity problem. Judd,
Maliar, and Maliar (2011) resolve the multicollinearity problem using standard econo-
metric techniques, such as single value decomposition (SVD), principal components,
or ridge regression. At the same time, high accuracy is achieved by approximating the
policy functions and integrating them using Gauss–Hermite quadrature, instead of ap-
proximating the whole expectation terms in the optimality conditions. While the GSSA
method has multiple advantages and has been successfully applied in different con-
texts, we find that its application to the Ramsey problem analyzed in this paper poses
challenges.

First, in this application it is particularly challenging to approximate the policy func-
tions directly, because the expectations are over N periods ahead. In the context of
the model presented in Section 2 of this paper, the evaluation of E[u′(ct+1 )] requires
knowing Kt+2, which is a function of Kt+1, which itself is a function of Kt and zt ,
Kt+1 = φ(Kt , zt ). That is, ct+1 = zt+1φ(Kt , zt )α + (1 − δ)φ(Kt , zt ) − φ(φ(Kt , zt ), zt+1 ).
When the expectation is N periods ahead, the evaluation of E[u′(ct+N )] using the GSSA
approach would require iterating on the approximated policy functions and the budget
constraint N times to have the value for Kt+N+1, which would result in an imprecise
evaluation of the expectations and lower stability of the algorithm compared to an ap-
plication where the forecast is one period ahead.

Second, methods such as ridge regression impose a penalty on the size of the co-
efficients, providing stability but causing them to be downward biased. The choice of
this penalty parameter is the source of instability. It is particularly hard to choose the
penalty parameter in the context of solving the model, since the regression is performed
on simulated data, which are not fixed and not exogenous from the choice of the penalty.
Simulated data depend on the coefficients and penalties obtained in the previous iter-
ation of the algorithm. Typically, the choice of penalty parameter requires adding an
additional loop and solving the model with multiple values. However, it is not obvious
which penalty parameter is optimal because the optimal penalty is different at every
step of the PEA iteration as the Maliar bounds become increasingly open.

In order to compare our method with GSSA and other standard econometric tech-
niques, in this section we solve the one-bond model from Section 3, with short-term
debt N = 1. We solve it with standard PEA, except that we use ridge regression. Hence,
we do not use Montecarlo integration as in GSSA because that would require to integrate
N-periods ahead. Instead, standard PEA does not require to perform any integration
since it approximates the expectation terms directly.35 In order to pick the penalty pa-

35Note that when we use more than one maturity, we use forward-states PEA and perform one step of
integration using Gaussian quadrature as explained in Section 3.3.
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Table B.2. Solution using ridge regression.

Tight Constraint Loose Constraint

E(�β) 3.81 0.08
% constraint binds 38.2% 0

Note: The table shows selected statistics from model specifications with tight and loose borrowing constraints when solv-
ing the model using PEA with ridge regression. Tight refers to the case when M̄ , M at ±100% and loose refers to the case when
M̄ , M at ±200%. The first row shows the average change in the Ridge coefficients in the last five iterations. The second row
shows the percentage of time the bond hits the constraint. The specification with loose constraints converges in 198 iterations.
The specification with tight constraints never converges, therefore, we stop the code at iteration 198.

rameter, we use a cross-validation approach, where we change the penalty dynamically
at each step of the fixed-point iteration in the regression stage. We select the penalty
parameter that minimizes the mean squared prediction error between predicted and
simulated sequences.36 Equation (11) illustrates the penalty selection procedure:

min
κ

‖Y −Xβ̂‖2
2 s.t.

β̂= arg min
β

‖Y −Xβ‖2
2 + κ‖β‖2

2.
(11)

We use ridge regression as opposed to SVD or a principal component analysis for two
reasons. First, ridge regression is supposed to work better than SVD when the multi-
collinearity is severe, as is the case in the model of Section 4. Second, we do not use
principal component analysis, since the condensed PEA effectively does the same ex-
traction of orthogonal components, just iteratively.

From our numerical experiments, we discover that PEA combined with ridge regres-
sion converges only under specific conditions. Note that throughout the paper we have
been using debt limits. This effectively introduces an occasionally binding constraint,
which makes the multicollinearity problem even more severe if the debt sequence visits
the constrained region frequently. Besides, the algorithm requires using Maliar bounds,
which potentially cause even more instability since the borrowing constraint changes as
the bounds progressively open. We find this to be crucially important. For illustration,
we consider the one-bond model with tight (M̄ ,M at ±100% of GDP) and loose (M̄ ,M at
±200%) borrowing constraints. At every iteration, we compute the maximum difference
between the ridge regression coefficients at the current and the previous iteration. When
the borrowing constraint is loose, the regression coefficients stabilize after the Maliar
bounds are wide enough and the borrowing constraint stops binding. In contrast, in the
specification with tight constraints, the constraint binds more often, requiring the use
of a large penalty parameter, which prevents the algorithm from converging.

Table B.2 illustrates this point. The first row shows the average change in ridge co-
efficients across consecutive PEA iterations for the last 50 iterations. The second row
shows the percentage of time that debt visits the constraint in the last iteration. In the
specification with tight borrowing constraint, the bond stays around 43% of the time

36Similarly, Judd, Maliar, and Maliar (2011) choose the smallest penalty that ensures numerical stability
of the fixed-point iteration, which also provides a high accuracy solution.
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Figure B.1. Convergence of model forecast errors using ridge regression. Note: The figure
shows the convergence of the model using ridge regression. Left panel shows the value of Maliar
bound in function of the algorithm iteration. Right panel shows the total model forecast error in
function of the algorithm iteration. Solid blue line—loose borrowing constraint. Dashed purple
line—tight borrowing constraint. Tight constraint refers to the case when M̄ , M at ±100% and
loose constraint refers to the case when M̄ ,M at ±200%.

close to the constraint and ridge coefficients never stabilize. Alternatively, this can be
seen in Figure B.1, which plots the total model prediction error across the PEA itera-
tions as the Maliar bound is being opened. In the specification with loose constraints,
the forecast errors begin to stabilize when the Maliar bound stops changing and the
algorithm slowly converges. In contrast, when constraints are tight, the ridge penalty
parameter keeps changing and the forecast errors never stabilize and remain large (see
Table B.3).

We have also attempted to solve the two-bond model using ridge regression but in
this case, the problem of instability becomes even more severe as the long and the short
bonds are negatively correlated and highly volatile. As a result, bonds hit the constraint
very frequently and the algorithm fails to converge even before the Maliar bounds are
open.37

Table B.3. Prediction accuracy using ridge regression.

Et (uc,t+Nμt+1 ) Et (uc,t+N ) Et (uc,t+N−1 )

Tight Constraint 0.1634 0.2786 0.2664
Loose Constraint 0.0117 0.0679 0.0668

Note: The table shows the average absolute forecast errors from model specifications tight and loose borrowing constraint
when solving them using PEA with ridge regression. Tight refers to the case when M̄ , M at ±100% and loose refers to the case
when M̄ , M at ±200%. The first row shows the average change in the Ridge coefficients in the last five iterations. The specifica-
tion with loose constraints converges in 198 iterations. The specification with tight constraints never converges, therefore, we
stop the code at iteration 198. We define the average absolute forecast error as 1

T

∑ |Yt+N − Êt (Yt+N )|.

37In the one bond code ridge penalty is a scalar. When solving the 2 bonds model, we allow coefficients
to have different penalties, without any noticeable improvement.
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B.4 Additional figures

Figure B.2. Bias squared of the mean squared prediction error with a neural network and
a polynomial. Note: The figure shows the bias squared of the mean squared prediction er-
ror 1/n

∑n
t=1[yt − E(ŷt )]2 in function of the correlation between x2 and x3. Blue line with cir-

cles—NN, purple line with crosses—polynomial regression.

Figure B.3. Variance term of the mean squared prediction error with a neural network and a
polynomial. Note: The figure shows the variance component of the mean squared prediction
error 1/n

∑n
t=1[yt − E(ŷt )]2 in function of the correlation between x2 and x3. Blue line with cir-

cles—NN, purple line with crosses—polynomial regression.



16 Valaitis and Villa Supplementary Material

Appendix C: Neural network details

This Appendix includes further details about the type of neural network used in Sec-
tion 2.

C.1 Artificial neural networks

Neural networks can be used efficiently for both regression and classification purposes
(in a supervised machine learning fashion) and clustering (in an unsupervised machine
learning fashion). In the context of our application, we focus on the former. Neural net-
works are typically composed of three types of layers: (i) input, (ii) hidden, and (iii) out-
put. They can contain multiple hidden layers, but for regression purposes, typically one
or two hidden layers are sufficient.38 In our application, the input layer takes as input
the state space Xt ∈ R

S . The hidden layer performs an intermediate transformation of
the state space. The output layer predicts the expectation terms contained in the model
optimality conditions E[ge(ct+1,Xt+1 )|Xt ] �Fe(Xt ; w, β). See Figure C.1 for a graphical
illustration.

If the problem requires the approximation ofE expectations terms, a neural network
with one hidden layer has the following functional form:

X̃m = H
(

S∑
s=0

wm,s ·Xs,t
)

, m= 1, � � � ,M ,

Figure C.1. Artificial neural network structure. Note: The figure presents the structure of a sin-
gle hidden layer artificial neural network. Each circle in the picture represents an artificial neu-
ron, and the arrows point in the direction of the information flow in the prediction process. Neu-
rons in the hidden layer perform the non-linear activation of inputs, which are combined linearly
in the output layer.

38In our application, we consider a neural network with one hidden layer. The reader can refer to Good-
fellow, Bengio, and Courville (2016) for a general introduction to machine learning and deep learning in
particular.
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Figure C.2. Sigmoid function. Note: The plot of the function H̃(x; α). Solid blue line: Plot of the
sigmoid function (when α = 1), typically used in the hidden layer of a neural network. Dashed
purple line: Plot of the H̃(x; α), when α = 10. The higher is α the more the H̃ function acquires
the shape of a step function.

Fe(Xt ; w, ψ) =ψ0,e +
M∑
m=1

ψm,e · X̃m, e= 1, � � � , E.

Note that the universal approximation theorem (see Cybenko (1988) and Hornik,
Stinchcombe, and White (1989)) ensures that every bounded continuous function can
be approximated with arbitrarily small error, by a network with one hidden layer. The
hidden layer transforms the state space Xt ∈ R

S through M linear combinations of the
state variables, further transformed through an activation function H(x). The activation
function is typically a sigmoid

H(x) = 1
1 + exp(−x)

.

In order to gain intuition about the behavior of this function, consider a more
generic function H̃(x; α) = 1

1+exp(−α·x) , where α is a parameter that regulates the acti-

vation rate. Intuitively, the larger is α, the more H̃(x; α) resembles to a step function as
shown in Figure C.2.39 Note that neural networks are equivalent to linear regression if
the activation function H̃ is linear.40
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