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This paper studies how the strength of social ties is affected by the geographical
location of other individuals and their social capital. We characterize the equilib-
rium in terms of both social interactions and social capital. We show that lower
travel costs increase not only the interaction frequency but also the social capital
for all agents. We also show that the equilibrium frequency of interactions is lower
than the efficient one. Using a unique geocoded data set of friendship networks
among adolescents in the United States, we structurally estimate the model and
show that indeed agents socially interact less than that at the first best optimum.
Our policy analysis suggests that, at the same cost, subsidizing social interactions
yield a higher total welfare than subsidizing transportation costs.
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1. Introduction

Over the past two decades, the economics literature has increasingly utilized network
analysis to understand decision-making.1 Surprisingly, however, the importance of spa-
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tial proximity in the determination and intensity of network exchange remains under-
examined. Indeed, most papers from the network economics literature (Jackson (2008))
assume that the existence and intensity of dyadic contacts do not depend on the agents’
location.2

In this paper, we develop a new theory of social-tie formation where individuals care
about the geographical location of other individuals. In our model, a population of stu-
dents, embedded in a network and residing in different locations, entertains social inter-
actions with each other. Each student decides the number of visits (social interactions)
to every other agent in the network and the value of each interaction depends on the so-
cial network of the visited agents. We define the value of such interactions as the social
capital of the agent (Putnam (2000)). Social capital is thus defined in a recursive fashion:
it increases with interactions with highly social individuals. When deciding how much
to interact with others, students face the following trade-off. Each student can increase
her social capital by interacting with highly social students. However, social interactions
require costly travel to the other students. We characterize the equilibrium in terms of
social interactions and social capital. We show that the equilibrium frequencies of inter-
actions are lower than the efficient ones. We demonstrate that a policy that subsidizes
transportation costs can restore the first best but the subsidy should be higher for trips
to students who have higher social capital and for trips from individuals whose social
capital increases more with additional interactions.

We then structurally estimate this model using data on patterns of social interactions
among high school students in the US recorded in the National Longitudinal Survey of
Adolescent Health (Add Health). This survey contains information on friendship nomi-
nations and the strength of the interactions between friends, and also allows us to calcu-
late the Euclidean distance between the homes of the respondents. Because residential
decisions are taken by parents, this spatial distance is predetermined to the friendship
decisions of the children. Our main empirical challenges are due to the fact that there
is some discrepancy between the theory and the data in terms of measuring the inten-
sity of social interactions and that the interaction value offered by a friend (social cap-
ital) is unobserved to the econometrician. We address these challenges by applying an
indirect inference estimation method to simulate unobserved social capital. The main
idea of this method is to simulate data from the model, which requires solving for the
unobserved equilibrium social capital conditional on structural parameters and unob-
servables, in order to find the parameters for which the simulated data best match the
observed data.3

The estimation results highlight the importance of the effects discussed in our the-
ory. We find that transportation costs (and hence geographic distance), social distance,
and combined levels of sociodemographic characteristics are all important factors in
determining the intensity of social interactions. With the estimated model, we compute
the planner’s first-best solution for the frequency of social interactions and compare it
with the observed equilibrium level. Compared to the socially optimal level, our results

2Exceptions include Johnson and Gilles (2000) and Jackson and Rogers (2005).
3Fu and Gregory (2019) develop an equilibrium model of post-disaster neighborhood rebuilding choices

with externalities and estimate the model using indirect inference to implement policy simulations.
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show that students interact with each other far less and accumulate less social capital.
We find that these inefficiencies can be explained by the geographical distance between
students. With the estimated model, we also simulate the level of social interactions after
different policy interventions. By subsidizing social interactions or transportation costs,
the policymaker can indeed improve the intensity of social interactions. At the same
given cost, we find that subsidizing social interactions is more effective than subsidizing
transportation costs because it leads to higher total welfare.

1.1 Related literature

We contribute to the literature on network formation (Jackson (2008)) by showing the
importance of geographical distance in the formation of friendship links. There already
exist models of endogenous networks with explicit geographical distance (see, e.g., John-
son and Gilles (2000), Jackson and Rogers (2005)). However, these studies consider a
framework where network formation is modeled on a link-by-link basis by extending
Jackson and Wolinsky (1996). Thus, these models are usually not tractable and the au-
thors can neither characterize all the equilibria nor derive some comparative statics re-
sults and policy implications (see Jackson (2008), for a discussion of these issues). Our
model is different; in particular, we have a unique equilibrium. We can also derive com-
parative statics exercises, explicitly determine the first-best equilibrium and implement
some policies. There is another strand of the literature (Brueckner and Largey (2008),
Helsley and Strange (2007), Zenou (2013), Mossay and Picard (2011, 2019), Helsley and
Zenou (2014), Sato and Zenou (2015), Picard and Zenou (2018)) that studies the role of
social networks in cities but take the network as given. In the current paper, link forma-
tion depends on the location of individuals in the geographical space.

There is also a small empirical literature that studies the relevance of geographical
location for social interactions in networks (see Ioannides (2013), for a survey). In fact, it
is extremely difficult to find detailed data on social contacts as a function of geographical
distance between agents together with information on relevant socioeconomic charac-
teristics. Some evidence can be found in Marmaros and Sacerdote (2006). Using data
on email communication between Dartmouth college students, this paper shows that
being in the same freshman dorm increases the volume of interactions by a factor of
three.4

 Büchel and von Ehrlich (2020) measure social connectedness between postcode
areas in Switzerland using mobile phone communication patterns between residents in
different areas. They find that distance as measured by travel time is detrimental to pri-
vate mobile phone interactions by exploiting an exogenous change in travel time.5 Bai-
ley, Cao, Kuchler, Stroebel, and Wong (2018b) and Bailey, Farrell, Kuchler, and Stroebel

4See also Fafchamps and Gubert (2007) who show that geographic proximity is a strong correlate of risk-
sharing networks and Rosenthal and Strange (2008), Arzaghi and Henderson (2008), Bisztray, Koren, and
Szeidl (2018), and List, Momeni, and Zenou (2019) who find that knowledge and productivity spillovers are
important but decay sharply with distance.

5Another strand of related literature uses geographic proximity as a proxy for social interactions. Most
notably, Bayer, Ross, and Topa (2008) assume that agents living in the same census block exchange in-
formation about jobs. Their finding that residing in the same block raises the probability of sharing work
location by 33% is thus interpreted as a referral effect. Hellerstein, McInerney, and Neumark (2011), Heller-
stein, Kutzbach, and Neumark (2014), and Schmutte (2015) build on the same assumption using matched



1298 Kim, Patacchini, Picard, and Zenou Quantitative Economics 14 (2023)

(2020) reach a similar conclusion by using anonymized and aggregated data from Face-
book to explore the spatial structure of social networks in the New York metropolitan
area.

The vast literature in the computer science literature and statistical mechanics look-
ing at the role of distance in social interaction uses primarily mobile phone data or on-
line social networks data and is mainly concerned about describing the shape of the
statistical relationship between link probability and distance (see, e.g., Liben-Nowell,
Novak, Kumar, Raghavan, and Tomkins (2005) Lambiotte et al. (2008), Goldenberg and
Levy (2009), Krings, Calabrese, Ratti, and Blondel (2009) and the excellent reviews of
Barthélemy (2011) and Kaltenbrunner et al. (2012)).

To the best of our knowledge, this paper is the first to propose a theory for the rela-
tionship between geographical distance and social interactions and to test it using the
precise geometry of individual social contacts and the geographical distance between
them. It is also the first that empirically establishes the degree of inefficiency of social
interactions and, by using counterfactual exercises, determines whether it is more effi-
cient to subsidize transportation costs or social interactions.

The rest of the paper unfolds as follows. Section 2 develops the theoretical model
and determines the equilibrium while Section 3 studies its efficiency properties and the
policy implications of the model. In Section 4, we describe our data and how we con-
struct our different variables. Section 5 is devoted to the empirical strategy. In Section 6,
we provide our main empirical results and discuss some robustness checks. In Section 7,
we test the different predictions of the model and determine the level of inefficiencies
of social interactions and social capital and how they are affected by the size of the net-
work. We also simulate two policies and determine which one leads to the highest so-
cial welfare. Finally, Section 8 concludes the paper and discusses our policy results. All
proofs of the theoretical model can be found in the Appendix. In Online Appendix A
in the Online Supplementary Material (Kim, Patacchini, Picard, and Zenou (2023)), we
solve for the social capital fixed point and show under which condition it is unique. In
Online Appendix B, we carry out Monte Carlo simulation experiments while, in Online
Appendix C, we explain our calibration method in the policy exercises.

2. The model

2.1 Notation and definitions

Consider a set of N ≥ 2 homogeneous individuals embedded in a social network. As in
our data set (see Section 4 below), these are students at a given school, so that all so-
cial interactions only take place within the school. We consider one network (within a
school) of N students who reside in different locations. Each student i lives with her par-
ent at a given geographical location i.6 Thus, we denote by dij the geographical distance

employer–employee data with residential information. Using mobile phone data on one entire city in
China, Barwick, Liu, Patacchini, and Wu (2023) show that geographical distance is important in spreading
information about jobs.

6For the sake of the exposition, we denote by the same letter i both an individual and her residential
location.



Quantitative Economics 14 (2023) Spatial interactions 1299

between two students i and j belonging to the same social network. Each student visits
every other student in the network and benefits from socially interacting with them. The
utility from social interactions for student i is given by

Si =
∑
j �=i

v(nij )sj , (1)

where nij is the number of interactions that student i initiates with student j who offers
an interaction value sj .7 For the sake of tractability, we assume that8

v(nij ) = nij − 1
2
n2
ij . (2)

This expression assumes decreasing returns to the frequency of interactions with a given
student; it even assumes negative returns (saturation) above nij = 1. Observe that, in (1),
we assume that there are decreasing returns in v(nij ) but not in sj . This is mainly for
analytical tractability because we need to calculate a fixed point on social interactions
and social capital (see equation (7) below).

The interaction value offered by student j is assumed to be equal to

sj = 1 + α

N

∑
k�=j

njksk, (3)

where N is the number of students in the network. The first constant term (normal-
ized to 1) represents the idiosyncratic interaction value that student j provides to her
visitors. The second term, (α/N )

∑
k�=j njksk, reflects the value of her social network. It

increases with the number (njk) and value (sk) of her interaction with each of her net-
work partners. We refer to sj as the social capital of the student who reside in location j.
The parameter α > 0 measures the importance of others’ social capital in an agent’s so-
cial capital formation. The higher is α, the higher is the impact of the social network of
“friends of friends.” We divide α by N to control for network size.

Each student i incurs a cost c(dij ) of visiting another student j, where dij is the geo-
graphical distance between i and j. We consider a continuous, increasing cost function
with c(0) = 0, c(dij ) > 0, and c′(dij ) > 0, ∀dij > 0. The total social interaction cost of stu-
dent i is given by

Ci =
∑
j �=i

nijc(dij ),

which increases with the frequency of social interactions.

7Here, as in Cabrales, Calvó-Armengol, and Zenou (2011), individuals do not explicitly choose with
whom to link with but decide a level of social interactions at each location in the city.

8Observe that in (2), for student i, the curvature in v comes from her interactions with j and not from all
her interactions. Since student i has only a limited time for interactions, more interactions with student j
could lower her utility from interactions with the other students in the network. Observe also that in (2), we
assume that v(nij ) only depends on nij , the number of interactions that student i initiates with student j,
and not on nji . In other words, we assume that if student i initiates the interaction with j by commuting to
j and bearing this commuting cost, student i will get all the benefits of this interaction while j will not. We
assume these two simplifications to keep the model tractable.
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We now examine the question of how social capital is distributed across space where
students are exogenously located.

2.2 Social capital and space

Each student i chooses the profile of interactions nij that maximizes her utility

Ui = Si −Ci =
∑
j �=i

v(nij )sj −
∑
j �=i

nijc(dij ).

Note that her utility depends on the profile of other student’s social capital levels (sj ,
j �= i). It also depends on her own social capital si, since sj is a function of si (see (3)). We
assume that each student takes the social capital levels of all other students as given and
is not strategic with respect to the effect of her own social interactions on her utility.

Define the access cost measure as

gj ≡
∑
k�=j

c(djk ), (4)

which is the total traveling cost of social interactions for student j. Denote by d the max-
imum geographical distance between two agents in the network.

Proposition 1. Assume c(d) <N and α< 1. Then, for all i, j, there exists a unique equi-
librium (n∗

ij , s
∗
j ) such that

n∗
ij = 1 − c(dij )

s∗j
> 0 (5)

and

s∗j = s0 − α/N

1 + α/N
gj > 1, (6)

where

s0 =
1 + α/N − (α/N )2

∑
j

gj

(1 + α/N )
(
1 − α(N − 1)/N

) . (7)

Under the conditions c(d) <N and α < 1, the optimal frequency of interactions n∗
ij

is always strictly positive and social capital s∗j is always larger than one. Intuitively, travel
costs should not be too high to entice agents to interact. Also, the importance of others’
social capital in an agent’s social capital formation should not be too high to avoid that
each individual’s social capital reinforces each others’ social capital and ultimately blows
up to infinity.

Consider now (5). For student i, n∗
ij , the optimal number of interactions with a stu-

dent j, increases with student j’s social capital and decreases with the geographical dis-
tance between i and j. Hence, there is complementarity between the frequency, n∗

ij , and
the quality of social interactions, sj .
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Let us now discuss the properties of the equilibrium social capital s∗j defined in (6).9

First, lower travel costs increase social capital for all agents. Indeed, a downward shift
in the travel cost function c(·) reduces the access cost measure gj , which has a positive
effect on both terms in (6), since higher access cost increases s0. As a result, travel costs
can be seen as a barrier to social capital formation. Improvements in transportation
infrastructure should therefore enhance social capital.

Second, a rise in the importance of peers’ social links in the creation of their own
social capital α, has the following effects. By using the proof of Proposition 1, we can
differentiate each side of (42) with respect to α to obtain

ds∗j
dα

= 1
N

∑
k�=j

s∗k + α

N

∑
k�=j

ds∗k
dα

− 1
N

gj .

Thus, an agent’s social capital increases with higher α because she places greater value
on the social capital of her interaction partners (first term), because her partners them-
selves have higher social capital (second term), and finally because she is physically
closer to her partners, and thus has higher incentives to meet them (third term). By dif-
ferentiating (6) with respect to α, we obtain the total effect as a function of exogenous
variables:

ds∗j
dα

= ds0

dα
− 1

N(1 − α/N )2 gj .

This expression is always positive for low enough travel costs c(dij ), since the terms in
gj are in this case close to zero. Otherwise, geographically distance agents may get lower
social capital.

We summarize these findings in the following proposition.

Proposition 2. Lower travel costs increase social capital for all agents. An increase in α,
the importance of peers’ social links, increases each agent’s social capital for small enough
travel cost.

We now study the optimal levels of social interaction and capital.

3. Efficient social interactions

We now study the planner’s allocation of interaction frequency for each individual i. The
planner chooses the profiles of social interactions nij and social capital sj that maximize
the aggregate utility

W =
∑
i

Ui =
∑
i

(Si −Ci )

subject to the social capital constraint

si ≤ 1 + α

N

∑
k�=i

niksk. (8)

9Once we know the comparative statics results with respect to s∗j , then it is straightforward to deduce
those of n∗

ij .
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This inequality allows us to define and interpret the (positive) sign of the Kuhn–Tucker
multiplier χi (which measures the welfare value of a marginal increase of the social cap-
ital of agent i) of the social capital formation constraint. The interpretation of this in-
equality is that the planner cannot give more social capital to a student than what her
interactions with her partners can give. Conversely, the planner can erase some of the
social capital of an individual but it has no incentives to do so, since welfare increases
with social capital.

Lemma 3. The efficient frequency of interactions noij and level of social capital soj satisfy
the following necessary conditions:

v′(noij)soj − c(dij ) + α

N
χis

o
j = 0, (9)

∑
i

[
v
(
noij

) + α

N
χin

o
ij

]
−χj = 0. (10)

Equations (9) and (10) together with the constraint (8) solve for noij , s
o
j , and χi.

Condition (9) captures the main externality at work in the process of social inter-
action. When the planner chooses the interaction frequency nij , she considers both the
benefit and cost experienced by agent i and the fact that an increase in i’s social capital
increases j’s social capital. In the decentralized equilibrium, this last effect is not consid-
ered by agent i. One can indeed see that condition (9) is equal to the first-order condition
of the individual’s choice of interactions if χi = 0. The weight that the planner puts on
raising another agent’s social capital increases with the importance of interactions, α,
and with the social benefit of relaxing the social capital constraint, χi. Then, because
χi > 0 and v′′ > 0, the equilibrium number of interactions nij is smaller than the ones
chosen by the planner. In other words, there are too few interactions in equilibrium.

The second condition (10) can be interpreted as follows. When the planner increases
the social capital of agent j, she raises the utility of all agents who interact with this agent
(first term in brackets) and indirectly increases the social capital of these agents (second
term in brackets). In the efficient allocation, this combined effect should be equal to χj ,
the welfare value of a marginal increase of the social capital of an agent at j.

Proposition 4. The equilibrium frequency of interactions and level of social capital are
lower than the efficient ones, that is, n∗

ij ≤ noij and s∗i ≤ soi .

Intuitively, the planner internalizes the effect that each agent has on others’ social
capital when she entertains more intense social interactions. As a result, the planner
imposes to the agents to increase their frequency of social interactions above the equi-
librium level. This welfare result confirms Brueckner and Largey’s (2008) and extends
their analysis to the case where agents are distributed across space.
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Can the efficient allocation of social interactions be restored with a subsidy σij on
social interactions (for students i and j) or with a subsidy τij on travel costs? Let

τoij = α

N
χo
i s

o
j and σo

ij = soj
Nc(dij )

αχo
i s

o
j

− 1
. (11)

Proposition 5. The first-best solutions noij and soj can be restored by either setting a sub-
sidy on travel costs τij = τoij or a subsidy on social interactions σij = σo

ij . The subsidy τoij
on travel costs should be higher for recipient students who have higher social capital and
for trips to students whose social capital increases more with additional interactions. The
(positive) subsidy σo

ij on social interactions increases for recipient students with more so-
cial capital, from initiator students who are closer and who have higher welfare value of
a marginal social capital increase.

The optimal subsidies τoij and σo
ij have no direct relation to distance between stu-

dents, since it is very unlikely that τoij and σo
ij reduce to a simple function of the geo-

graphical distance dij between students i and j. This result contrasts with Helsley and
Zenou (2014), who advocate that the planner should subsidize the most central agents.
Their model, which has only two locations, however, imperfectly captures the full pic-
ture of spatial interactions. In the present model, we observe that the planner does not
subsidize the agents with high social capital but only subsidizes the trips of these agents.

Note that the subsidies τoij and σo
ij defined in (11) are not uniform. This suggests that

decentralization is going to be difficult to implement, since subsidies depend on both
the originator and recipient of each social interaction. Consequently, in the counterfac-
tual (subsidy) policies in Section 7.2, we will investigate the effect of subsidies that are
uniform across individuals, and thus easier to implement.

4. Data

In this section, we describe our data and the fit between our theoretical framework and
them. First, we explain the data source and highlight the key features of the data that
are relevant to spatial interactions. Second, we describe how the data measures social
interaction intensity among individuals. Third, we discuss the geographic space and
the residential distance among students. Fourth, we explain how we construct networks
from friendship nominations. Fifth, we describe the final sample after deleting missing
variables/observations. In each part, we discuss and address the issues related to the
discrepancies between our theory and data.

4.1 Data source

We use a data set on friendship networks from the National Longitudinal Survey of Ado-
lescent Health (Add Health) to test our theoretical findings and compute the effects of
several policies.10

10This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and
designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Car-
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The Add Health data set has been designed to study the impact of the social environ-
ment (i.e., friends, family, neighborhood, and school) on adolescents’ behavior in the
United States. It is a school-based survey that contains extensive information on a rep-
resentative sample of students who were in grades 7–12 in 1995. More than 100 schools
were sampled. Three features of the Add Health data are unique and key to our analy-
sis: (i) the nomination-based friendship information, which allows us to reconstruct the
precise geometry of social contacts, (ii) the detailed information about the intensity of
social interactions between each of two friends in the network, and (iii) the geocoded
information on residential locations, which allows us to measure the geographical dis-
tance between students.

4.2 Construction of nij , the social-interaction intensity

All students who were present at school in the interview day were asked to identify their
best school friends from a school roster (up to five males and five females).11 For each
individual i, the friendship nomination file also contains detailed information on the
frequency and nature of interaction with each nominated friend j. The precise questions
are as follows:

• Did you go to {NAME}’s house during the past 7 days?

• Did you meet {NAME} after school to hang out or go somewhere during the past 7
days?

• Did you spend time with {NAME} during the past weekend?

• Did you talk to {NAME} about a problem during the past 7 days?

• Did you talk to {NAME} on the telephone during the past 7 days?

Students can answer these questions with a yes or a no; thus, these answers are
coded by one (for yes) and zero (for no). From their answers, we are able to measure the
intensity of social interactions nij between students i and j by summing all these items,
so that the maximum value of the social interaction intensity is five and the minimum is
zero.

4.3 Geographical space

A random sample of students in each school (about 20,000 students) is also interviewed
at home where a longer list of questions are asked both to the child and to his/her par-
ents. Most notably for this study, the geographical locations of their residential location

olina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute
of Child Health and Human Development, with cooperative funding from 23 other federal agencies and
foundations. Special acknowledgment is due to Ronald R. Rindfuss and Barbara Entwisle for assistance in
the original design. Information on how to obtain the Add Health data files is available on the Add Health
website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 for
this analysis.

11The limit in the number of nominations is not binding (even by gender). Less than 1% of the students
in our sample show a list of ten best friends.

http://www.cpc.unc.edu/addhealth
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are also recorded. Latitude and longitude coordinates are calculated for each home ad-
dress and then translated into X- and Y -coordinates in an artificial space. We use this
information to derive the spatial distance dij between any two students i and j by com-
puting the Euclidean distance between their homes. The maximum geographical dis-
tance between two students in a network is about 47 kilometers. The average distance is
6.75 kilometers, and its standard deviation is 6.71 kilometers.

4.4 Discrepancy between theory and data

There are some discrepancies between our theoretical model and the Add Health data.
First, recall that the theoretical model assumes that each student visits, and thus so-
cially interacts with every other student in the network. That is, nij is always positive
(see Proposition 1). By contrast, in the Add Health data set, students can only answer
the social-interaction questionnaires for their nominated friends (see Section 4.2). In-
deed, if student i does not nominate student j as a friend, then clearly i will not be asked
about how many times she interacted with j. In addition, students in the Add Health
data set may have zero interactions with their (nominated) friends, which is related to
the sparsity of networks, a common problem in network data.

Finally, the measurement of social interactions is different in the theoretical model
and the data. Indeed, in the model, nij takes continuous values. By contrast, the
social-interaction intensity in the Add Health data takes a discrete value, which is in
{0, 1, 2, 3, 4, 5}, because there are five different survey questions about students’ social
interactions and students can answer only by yes or no (Section 4.2). In the next subsec-
tions, we explain how we construct our networks and how we tackle these three different
issues.

4.5 Construction of networks

In Add Health, 15,837 students have geocoded data and other socioeconomic character-
istics. Information on nominated friends, types of interactions, and geographical loca-
tion is only available for 5711 students. This large reduction in sample size is common in
the papers that use the Add Health data set with friendship information, and it is mainly
due to the network construction procedure—roughly 20% of the students do not nomi-
nate any friend and another 20% cannot be correctly linked.

Using the friendship nomination data and the corresponding social interaction re-
sponses, we construct two 5711 by 5711 adjacency matrices, indicating the status of (di-
rected) friendship and the intensity of (directed) social interaction. Each element in the
former matrix is a binary indicator of whether two students are friends or not, while each
element in the latter takes one of the values in {0, 1, 2, 3, 4, 5}.

Because the students and their schools in the data are geographically dispersed all
around the United States, we cannot assume that all those students know each other.
Hence, we consider each school as a network. From the data, we have a total of 128
directed networks (schools), where the values of nij are not constrained to be equal to
those of nji. Then we exclude networks that have less than five students and two large
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networks of 652 and 857 students, and focus on the other 122 networks. Among these
122 networks, the largest one has 134 students, and the smallest one has six students
for whom the information on social interaction and geographic location is available. We
exclude the two large networks for the following reasons. First, the upper tails of the dis-
tribution of networks by network size is commonly trimmed since the strength of peer
effects may be too different in too large networks (see Calvó-Armengol, Patacchini, and
Zenou (2009)). Second, and most importantly, because the large networks include stu-
dents who are not likely to know many others, its exclusion reduces the discrepancy
between the theoretical model, where all students interact with each other (i.e., nij > 0),
and the data, where many students are not nominated as friends by other students (see
Section 4.4). By doing so, the number of students in the final sample is 4036.

While we use almost all schools up to a size of 134 students in the structural esti-
mation, we also run the estimation with 100 schools of size up to 50 students. We find
that the coefficients estimated in the structural estimation are similar between these
two data sets. In the policy section, we use the later data set (up to 50 students) for com-
putational feasibility. Indeed, in our policy simulations, we need to solve optimization
problems where the choice variable has a dimension equal to the square of student size;
the policy simulations become infeasible for the large data set.

4.6 Final sample

Our final sample consists of 4036 individuals distributed over 122 schools. Table 1 de-
scribes our data and details our sample selection procedure. We report the characteris-
tics of four different samples, which correspond to the three steps of our selection pro-
cedure. In column (1), we consider the original sample of students who have valid in-
dividual characteristics. In columns (2)–(3), we further restrict the sample to those with
geocode information and intensity of social interactions. Finally, in column (4), we re-
port our final sample where we exclude students in the two large schools.

Table 1 shows that the differences in means between these different samples are
mostly statistically insignificant. This strongly suggests no specific bias in the selection
of the sample. Among the adolescents in the final sample, 52% are female and 22% are
blacks. Approximately 71% of the students live in a household with two parents. The av-
erage parental education is high-school graduate. The performance at school, as mea-
sured by the grade point average or GPA, exhibits a mean of 2.88, meaning slightly less
than a grade of “B.” The average family income is 44,050 in 1994 dollars, although 10%
of parents chose not to report such information.

In Table 2, we document the number of social interactions. There are a total of 10,582
social interactions over 122 schools, which are mainly between white students; there are
fewer interethnic interactions. Further, on average, each pair has 2.533 social interac-
tions; black pairs socially interact with each other slightly more than white pairs do.

5. Empirical strategy

5.1 Incorporating agents’ heterogeneity

To bring the model to the data, we introduce agents’ heterogeneity. We assume that the
benefits of the intensity of interactions between individuals at i and j also depend on
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Table 2. Number of social interactions per pair.

Pair Types

Black–Black Black–White White–White All

Number of total social interactions 1688 480 8414 10,582
Number of friendship pairs 659 218 3300 4177
Average social interactions per friendship pair 2.561 2.202 2.550 2.533

Note: The statistics are computed with 122 networks (schools).

their social distances, that is, on their distances in terms of sociodemographic charac-
teristics:

v(nij ) = (n0 + θij )nij − 1
2

(nij )2,

where θij denotes the social distance between individuals i and j and n0 a constant that
captures the baseline level of social interactions. We include θij in this equation because
students are heterogeneous in the data; θij captures the effects of social distance in
terms of observable and unobservable characteristics (different from geographic prox-
imity) on the intensity of interactions. The difference between students in the observ-
able and unobsevable characteristics of θij is exogenous in the sense that it is not a
choice variable of students. We further assume linear travel cost such that c(dij ) = c×dij
where c > 0 is a constant.

In the model, we consider one social network of N students at school who reside in
different residential locations. In the data, we have R = 122 networks (r = 1, � � � , R) or
R = 100 networks when we restrict the size of networks to be up to 50 students. Since
networks are defined as schools that are independent from each other, we can use our
theoretical results by adding the subscript r. In other words, all the results of our theo-
retical model are valid for each network.

Consequently, the optimal frequency of interaction can be written as follows:

n∗
ij,r = n0 − cdij,r

s∗j,r
+ θij,r , (12)

and the social capital is equal to

s∗j,r = 1 + α

Nr

Nr∑
k=1,k�=j

n∗
jk,rs

∗
k,r . (13)

We allow the social distance to depend on observed (pair-level) individual charac-
teristics xij,r and on unobserved factors εij,r . For simplicity, we assume that εij,r is in-
dependent and identically distributed across pairs and networks with mean zero and
variance σ2

ε , but the i.i.d. assumption within a network can be relaxed.
To capture homophily, that is, the tendency of individuals to associate and bond

with similar others (McPherson, Smith-Lovin, and Cook (2001), Currarini, Jackson, and
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Pin (2009), Graham (2017)), we employ the following undirectional specification:

θij,r =
M∑

m=1

βm|xi,m,r − xj,m,r | +
M∑

m=1

βM+m(xi,m,r + xj,m,r ) + εij,r , (14)

where negative values in the vector (β1, � � � , βM ) capture homophily effects (associated
with smaller socioeconomic distance |xi,m,r − xj,m,r |), and (βM+1, � � � , β2M ) measures
the effect of the combined level of xi and xj , where M is the number of individual-level
covariates. Indeed, under homophily behavior, individuals with similar characteristics
(same race, same gender, etc.) will tend to interact more than less similar individuals
(thus βm should be negative under homophily). Similar specifications have been used
in the literature; see, for example, Fafchamps and Gubert (2007). Note that having an
undirectional specification on for θij,r does not necessarily mean that nij,r and nji,r are
the same. Because of the presence of social capital s∗j,r in equation (12), the social in-
teraction intensity can be asymmetric between ij and ji. The Add Health data set also
exhibits asymmetry between nij,r and nji,r .

By plugging the value of n∗
ij,r from (12) into (13), in Online Appendix A, we solve for

the social capital fixed point and show under which condition it is unique. The social
capital fixed point is given by (see equation (A.4) in Online Appendix A):

s∗
r =

[
Ir − α

Nr
(N0,r +�r )

]−1(
Ir − α

Nr
cDr

)
1r , (15)

where sr = (si,r ) is a (Nr × 1) vector; 1r is the (Nr × 1) vector of 1; N0,r is an (Nr × Nr )
matrix in which the off-diagonal elements are n0 and the diagonal elements are all zero;
�r = (θij,r ) = (xT

ij,rβ+εij,r ) is an (Nr ×Nr ) matrix; Dr = (dij,r ) is an (Nr ×Nr ) matrix (see
equation (A.3) in Online Appendix A).

5.2 Estimation strategy

5.2.0.1 Indirect inference For each network r, our data set provides us with xij,r , the
agents’ characteristics, n∗

ij,r , the intensity of social interactions between agents i and
j, dij,r , the geographical distance between agents i and j, and Nr , the number of
agents in the network. Using this information, we can recover the parameters α, β (or
β1, � � � , β2M ), c, n0, σε, and the equilibrium social capital, s∗j,r . For that, we employ the in-
direct inference (I-I) estimation method, proposed by Gourieroux, Monfort, and Renault
(1993), which recovers the true parameters from the data by attempting to closely match
simulated and observed levels of social interactions.12 The estimator is indirect in the
sense that, rather than directly estimating the structural model, it estimates an auxiliary
model with (computationally) easier methods such as the ordinary least squares (OLS).
We run the auxiliary model with the observed data and the simulated ones. The esti-
mates for the structural parameters are the ones that best match the two sets of auxiliary

12The I-I method was introduced by Smith (1993) and Gourieroux, Monfort, and Renault (1993), and
later extended by Gallant and Tauchen (1996). For overviews on I-I, see Gourieroux and Monfort (1996) and
Smith (2008).
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parameters, based on an injectivity assumption (i.e., one-to-one mapping between the
structural parameters and the auxiliary parameters).

5.2.0.2 Structural model For the sake of exposition, we denote the vector of structural
parameters by μ ≡ (n0, α, c, β, σε ) and we group the unobserved information into the
vector Er ≡ (εij,r ) and the observed information into the vector Yr ≡ (Xr , Dr , Nr ) where
Xr and Dr capture the individuals characteristics xi,r and the distances dij,r , respectively.
The structural models (12) and (15) can now be written as the following system of equa-
tions:

n∗
ij,r(Yr , Er ; μ) = n0 − cdij,r

s∗j (Yr , Er ; μ)
+ xT

ijβ+ εij,r , (16)

s∗(Yr , Er ; μ) =
[

Ir − α

Nr
(N0,r +�r )

]−1(
Ir − α

Nr
cDr

)
1r . (17)

As explained in Section 4.2, the observed nobs
ij,r in the data takes one of the six integer

values {0, 1, 2, 3, 4, 5} while n∗
ij,r in the theoretical model can take all values in the set of

all nonnegative real numbers. Hence, to fill the gap between n∗
ij,r and nobs

ij,r , we apply the

following mapping to calculate the final nsim
ij,r , which we will be the counterpart to nobs

ij,r
in the I-I procedure:

nsim
ij,r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if − ∞ < n∗
ij,r < 1;

1 if 1 < n∗
ij,r ≤ 2;

2 if 2 < n∗
ij,r ≤ 3;

3 if 3 < n∗
ij,r ≤ 4;

4 if 4 < n∗
ij,r ≤ 5;

5 if n∗
ij,r ≥ 5.

(18)

More precisely, we set the social interaction intensity between two students as the
closest integer value that is lower than the simulated intensity. Then, if the value is less
than zero, we make it zero. If the value is greater than five, we set it as five.

5.2.0.3 Auxiliary model The main advantage of the I-I method is that researchers can
use a simple model to match the simulated data and the observed ones. Specifically, we
use simple linear regression equations as auxiliary models. We propose a first auxiliary
model equation that expresses the relationship between social interaction intensities,
individual characteristics, and distance between interaction partners as follows:

nij,r = γ10 + xT
ij,rγ11 + γ12dij,r + ε1,ij,r . (19)

We propose a second auxiliary model equation expressing a similar relationship with re-
spect to indirect interactions. Let us denote by Nr = (nij,r ) the (Nr ×Nr ) matrix of social
interaction intensities for network r. We further define the matrix of second degree in-
teraction as the square matrix N2

r ≡ NrNr . We denote by [N2
r ]ij the ith row and jth column
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element of this matrix. The second auxiliary equation can then be written as[
N2
r

]
ij

= γ20 + xT
ij,rγ21 + γ22dij,r + ε2,ij,r . (20)

We denote by γ the vector of the above auxiliary model coefficients and R2.

5.2.0.4 Algorithm We draw T sets of simulation errors, E t ≡ (εtij,r ), t = 1, � � � , T , for all
pairs i and j and all networks r. These sets of errors are fixed for the entire estimation
process.13 First, we compute social capital str and predict the intensity of social inter-
actions n̂tij,r for each set of errors using equations (16) and (17). To match the data, we
constrain n̂tij,r to lie between zero and five (included). This process yields the first degree

interaction matrix N̂r(Yr , E t
r ; μ) and the second degree interaction matrix as the square

of the latter. Let Y, E t , N, and N̂(Y, E t ; μ) collect the observed data, the nonobserved data,
the observed interactions and the predicted interactions in all networks. We then run
OLS regressions on the auxiliary models (19) and (20) separately with the observed and
simulated interaction values. As a result, we obtain a set of the OLS estimates γ̂(N, Y),
including R2’s, with the observed interactions and a set of estimates γ̂[N̂(Y, E t ; μ), Y],
t = 1, � � � , T with the simulated interactions. Finally, since OLS estimates using the sim-
ulated data are functions of the structural parameter vector μ, we choose μ that leads
the closest difference between γ̂(N, Y) and γ̂[N̂(Y, E t ; μ), Y]. Formally, the I-I estimator
μ̂II is constructed such that

μ̂II = arg min
μ

∥∥∥∥∥γ̂(N, Y) − 1
T

T∑
t=1

γ̂
[
N̂

(
Y, E t ; μ

)
, Y

]∥∥∥∥∥, (21)

where the norm ‖ · ‖ is defined by a (positive-definite) weight matrix, A, with dimension
equal to the number of the auxiliary model parameters. Gourieroux, Monfort, and Re-
nault (1993) show that the efficient weight matrix is given by the inverse of the variance
of the moment conditions in (21), evaluated at the true parameter value μ0. Hence, we
use

A =
[(

1 + 1
T

)
var

(
γ̂(N, Y)

)]−1

(22)

as our weight matrix. We estimate A using a bootstrap (e.g., Ackerberg and Gowrisanka-
ran (2006)). Given the complex dependence structure of dyadic observations within
each network, we also use a bootstrap to calculate the standard errors of our estimated
structural parameters, where we resample networks instead of individuals to address
clustering at the network level.

5.3 The advantages of indirect inference in filling the gap between theory and data

In Section 4.4, we highlighted the discrepancy between the model and data; in particu-
lar, the fact that nij was a continuous variable while being discrete in the data and that

13Gourieroux, Monfort, and Renault (1993) show that the I-I estimator is consistent for a fixed number
of simulation draws.
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nij could be equal to zero and mismeasured in the data. The I-I method, which incor-
porates a simulation procedure, can help us deal with these limitations. First, when we
run the simulations to calculate the social capital fixed points and the corresponding
social interaction intensity matrix N, we restrict and discretize the values of nij so that
they belong to {0, 1, 2, 3, 4, 5}; see equation (18).

Second, in the data, students can only answer about their social interactions with
their nominated friends. That is, we do not observe student i’s social interaction in-
tensity with j if i does not nominate j as a friend. In this unobserved case, we do not
impute any arbitrary values and leave it unobserved. In contrast, during the simulation
process, as long as i and j are in the same school (network), quite naturally, the simula-
tion method will generate their social interaction intensity; it can take any value. Then
we discretize the social interaction intensity of all pairs of students and, following their
censusing strategy, we let the value be one of {0, 1, 2, 3, 4, 5}.

More importantly, when we match the simulated data with the observed ones, we
only consider those (directed) pairs of students ij, such that student i nominates j as a
friend. In other words, the pair-level sample for the auxiliary dyadic regressions consists
of (directed) friendship pairs. We believe that excluding the nonfriend pairs in the auxil-
iary regressions is appropriate given that we do not observe their social interactions. The
reasons are as follows. First, in a large network, no one can be sure of the fact that if two
students do not nominate each other as friends, it is because of their preferential choices
or a consequence of not knowing each other. Second, if we consider friendship networks
as given and apply the same census strategy to both observed and simulated data, the
most reasonable strategy is to assign a value of zero to the social interaction intensity
of nonfriend pairs both in observed and simulated data sets. In this case, including or
excluding those pairs will make no difference to the auxiliary regression results. Third,
the friendship network is usually very sparse. For example, when we consider 122 net-
works (schools), approximately 2% of the directed pairs are friends, and 98% are not. We
choose not to include the latter pairs in the auxiliary regression rather than assigning
potentially arbitrary values of social interaction intensity between them.

5.4 Identification

Our model consists of four main parameters: the baseline social interaction intensity n0,
the social capital accumulation parameter α, the transportation cost c, and the effect of
social distance β. Understanding the separate identification of each of these parameters
is challenging because our model is nonlinear and our error terms are not additively sep-
arable, which is more complicated than a typical model of network externalities, such as
the linear-in-means network model (Manski (1993)). Although matching the OLS esti-
mates of the auxiliary model between the observed and simulated data yields reason-
able estimates of the structural parameters, it is important to discuss the identification
of our model.

To illustrate the separate identification of these four parameters, let us focus on the
sources of identification. First, consider β. In the first equation (19) of the auxiliary
model, it is straightforward to assume that there is a one-to-one relationship between
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γ11 and β, as equation (19) closely mimics equation (16) in xij term. The intercept, or
the baseline intensity level, n0, is similarly identified from its one-to-one relationship
with γ10. Next, the cost parameter c is identified given that both equations (19) and (20)
contain the term dij,r . Given that the cost parameter is a coefficient on dij,r/s

∗
j in equa-

tion (16), having γ22 in addition to γ12 helps the identification of c.
The most challenging (structural) parameter to identify is α in equation (17). To ob-

tain α, consider the social capital equation (13). Social capital is recursively defined, and
hence, it is a function of not only the first degree network connections (or social interac-
tions) but also of higher-degree indirect connections. Therefore, we use the additional
equation (20), which uses [N2

r ]ij , the number of second-degree interactions between i

and j as a dependent variable, to identify the importance of others’ social capital in
an agent’s social capital formation. The overall fit of two auxiliary equations, measured
by two R2 values will help the identification of the social capital parameter α. The R2

in equation (19) is closely related to the sum of squared residuals, and hence, helps
identify the variance of the idiosyncratic error σε. Since the identification is based on
a rather heuristic consideration, we run Monte Carlo simulations to evaluate whether
the parameter values are precisely identified and estimated using our proposed empir-
ical method. Online Appendix B shows the details of the Monte Carlo simulations and
results and confirm that our method can capture the true parameter values precisely.

6. Structural estimation results

Table 3 reports the estimation results of the key structural parameters and other param-
eters in the undirectional specification. We also include all sociodemographic character-
istics that are related to the intensity of social interactions and social capital. In column
(1), we present the results with schools of size up to 150 students, and in column (2) we
show the results with schools of size up to 50 students; we also compare whether the
results are different when we reduce the network size. For the sake of the exposition, we
report the estimates related to social distances and combined levels in two different sub-
columns. Note that those two subcolumns of estimates are from the same estimation.

Let us start with the sociodemographic characteristics of the students in column (1)
with school size of up to 150 students. Students’ preferences exhibit homophily in their
own characteristics if the coefficient βm is negative and significantly different from zero.
Table 3 shows that this is the case for most individual characteristics: female, ethnicity,
GPA, and religion practice. The estimates are all negative and significant, which supports
homophily behavior. When it comes to family background, we find strong homophily
behavior in family size, having two parents, family income, and whether they refuse to
answer family income. The degree of homophily is the largest in gender.

The estimated coefficients on the (xi +xj ) variables exhibit mixed signs. Indeed, the
intensity of social interactions is increasing if two students are older (i.e., higher grade),
if they are female, and nonblack students, if they are more physically developed or prac-
ticing religion, or if they are from families from higher parents’ education, bigger family
size, and more family income. By contrast, the intensity of social interactions is decreas-
ing if the students have a higher GPA or if they have two parents.
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Table 3. Structural estimation results.

Undirected Model With Directed nij

(1) Network Size: (2) Network Size:
Up to 150 Students Up to 50 Students

n0 1.3504 1.5900
(0.0082) (0.0127)

α 0.1287 0.1281
(0.0014) (0.0005)

c 0.2101 0.2088
(0.0019) (0.0016)

β |xi − xj| (xi + xj ) |xi − xj| (xi + xj )
Female −0.9660 0.1833 −0.9943 0.1932

(0.0068) (0.0015) (0.0104) (0.0013)
Black −0.2697 −0.0161 −0.6641 −0.0772

(0.0022) (0.0001) (0.0083) (0.0007)
Grade 0.1081 0.0888 0.2967 0.0829

(0.0012) (0.0004) (0.0021) (0.0006)
GPA −0.1636 −0.1406 −0.1114 −0.0703

(0.0016) (0.0009) (0.0009) (0.0005)
Physical development 0.0317 0.0552 0.0046 0.0641

(0.0002) (0.0002) (0.0001) (0.0003)
Religious practice −0.0232 0.0119 −0.1186 0.0334

(0.0001) (0.0001) (0.0007) (0.0003)
Family size −0.0659 0.0250 −0.0671 −0.0153

(0.0003) (0.0002) (0.0004) (0.0003)
Two parents −0.0770 −0.0675 −0.0076 0.0305

(0.0006) (0.0005) (0.0001) (0.0003)
Parental education −0.0050 0.0254 −0.0463 0.0145

(0.00002) (0.0001) (0.0003) (0.0001)
Family income −0.0017 0.0024 −0.0016 0.0016

(0.00002) (0.00002) (0.00002) (0.00001)
Family income refused −0.1923 0.1532 −0.1224 0.1346

(0.0023) (0.0008) (0.0012) (0.0010)

σε 1.3488 1.3484
(0.0121) (0.0047)

Number of networks 122 100
Number of pupils 4036 3538
Number of directed pairs 199,892 183,080
Objective function 16,421.7 8401.7

Note: We estimate parameters (n0, α, c, βT )T from equations (12)–(14). We try many starting values to ascertain that a
global minimum is attained. Bootstrap standard errors (clustered by networks) in parentheses.

Turning our attention to the structural parameters of the model, we see that they are
all statistically significant and have reasonable values. Indeed, the estimated baseline
level of social interactions n0 is 1.35 and α, which measures the importance of others’
social capital on an agent’s social capital formation, has an estimated value of approx-
imately 0.13. This means that there are positive externalities from peers’ social capital.
This estimated value of α is in line with standard estimation of network models with pos-
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itive externalities in education (see, e.g., Calvó-Armengol, Patacchini, and Zenou (2009),
Boucher, Del Bello, Panebianco, Verdier, and Zenou (2023)).14

In column (2) of Table 3, we further present the structural estimation results by re-
stricting the size of networks to up to 50 students. We do this for the following reasons.
First, to fill the gap between our theoretical model (where all students interact with each
other) and the data (where students nominate up to ten friends), we restrict the sample
of students in smaller networks. By doing so, we can reduce the number of no-friendship
pairs in the observed data. Second, for policy simulations, we have to numerically solve
for the social planner’s optimization problem. The larger the number of students in a
network, the more severe is the curse of dimensionality. Hence, for computational fea-
sibility, we check the robustness of our results to difference choices of network size. By
comparing columns (1) and (2) in Table 3, we see that the estimates of our structural pa-
rameters as well as the homophily parameters are almost identical across the two sam-
ples.

7. Policy analysis

7.1 Welfare

We now use the estimated parameters of the model provided in Table 3, that is, α, c, and
n0, to calculate the welfare loss and to perform policy analyses. By extending Lemma 3
to agents’ heterogeneity and linear travel cost, we get the following conditions for the
optimal choice of interaction and social capital:

noij,r = n0 − cdij,r

soj,r
+ α

Nr
χi,rs

o
j,r + θij,r , (23)

χj,r =
Nr∑

i=1,i �=j

{
(n0 + θij,r )noij,r − 1

2

(
noij,r

)2 + α

Nr
χi,rn

o
ij,r

}
, (24)

soj,r = 1 + α

Nr

N∑
k=1,k�=j

nojk,rs
o
k,r . (25)

From the previous estimations of the equilibrium model, we have the estimated values
of n0, α, c, and θij,r (Table 3). From the data, we know dij,r . By plugging these values into
(23), (24), and (25), we can solve numerically these equations and determine the interac-
tion frequency noij,r , for each pair i, j, soj,r for all j, χi,r for all i, and ultimately the first-best
welfare level W o

r for each network r. For each network r, we have 2Nr + Lr unknowns,
where Lr is the number of links in network r, and we have 2Nr +Lr equations since there
are Lr equations for (23), Nr equations for (24), and Nr equations for (25). We then com-
pare the observed equilibrium values of n∗

ij,r and s∗j,r with the social optimum values noij,r
and soj,r (using equations (17) and (25) evaluated at our parameter estimates). According
to Proposition 4, we should find that students socially interact too little compared to the
social optimal outcome, such that noij,r > n∗

ij,r , ∀i, j, and soi,r > s∗i,r , ∀i.
14For an overview of this literature, see Sacerdote (2011).
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Table 4. Social interactions and social capital: optimal level vs. observed level.

Social Interactions

Optimal
Level
(SD)

Observed
Level

Average
Difference

(SD)

Minimum
Difference

Maximum
Difference

[95% CI]

4.060 2.818 1.242 1.227 1.390
(0.030) - (0.030) [1.279, 1.371]

Social Capital

Optimal
Level
(SD)

Observed
Level

Average
Difference

(SD)

Minimum
Difference

Maximum
Difference

[95% CI]

2.048 1.014 1.034 1.025 1.059
(0.007) - (0.007) [1.031, 1.050]

Note: The statistics are computed using the network-level average social interactions and social capital from 100 schools
(networks) over 100 simulations. Standard deviations over 100 simulations are in parentheses, and 95% confidence interval
(CI) for the differences are in brackets. Note that these statistics differ from pair-level averages.
The observed level of social capital is augmented using equation (15).

We numerically solve the optimal level of social interactions and social capital, us-
ing the sample of 100 schools of size up to 50 students and the I-I parameter estimates
displayed in column (2) in Table 3, by running a total of 100 simulations. Table 4 dis-
plays the results. Note that, in this table, we first take the average of social interactions
in each network, and then take the average again over all networks. We find that, on av-
erage, each pair interacts 1.24 fewer times than what is socially optimal. The difference
between the socially optimal and the observed levels of social interactions varies from
1.23 to 1.39 across networks. Students also have less social capital than the optimal one;
they have, on average, 51% less social capital.

7.1.0.0.1 Network size and social interactions We would now like to find which vari-
ables are closely associated with the discrepancy between the optimal level and the ob-
served level.15 For that, we regress the differences nor −n∗

r and sor − s∗r on the network size,
network measures, and average characteristics (e.g., average family income) of students
in each network r:

nor − n∗
r = γ0 + γ1Nr + γ2(Nr )2 + γ3dr + γzzr + γxxr + εr , (26)

sor − s∗r = δ0 + δ1Nr + δ2(Nr )2 + δ3dr + δzzr + δxxr + ζr . (27)

Tables 5 and 6 display the results. Consider, first, social interactions (Table 5) and
let us examine if the difference between the optimal and the observed levels of social
interactions, (nor − n∗

r ), is associated with network size Nr or other variables. The coeffi-
cients on the network size and its square are insignificant in column (4), but the average

15In this subsection and the next one, we do not use any structural estimation methods. We just docu-
ment some interesting correlations.
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Table 5. Difference between optimal level and observed level of social interactions.

Optimal-Observed (Social Interactions)

(1) (2) (3) (4)

Network population 0.038 0.034 0.033 −0.003
(0.027) (0.028) (0.029) (0.030)

Network population squared −0.0007 −0.0004 −0.0004 0.00001
(0.0005) (0.0005) (0.0005) (0.0005)

Avg. geographic distance −0.069 −0.069 −0.066
(0.024) (0.024) (0.019)

Avg. degree centrality −0.042 −0.133
(0.221) (0.214)

Std. dev. of degree centrality 0.167 0.650
(0.375) (0.349)

Female fraction 0.067
(0.517)

Black fraction −0.008
(0.376)

Avg. student grade 0.230
(0.039)

Avg. GPA −0.091
(0.254)

Avg. level of physical development −0.061
(0.190)

Avg. level of religion practice 0.222
(0.114)

Avg. family size −0.084
(0.150)

Fraction of students with two parents 0.546
(0.562)

Avg. level of parent education −0.017
(0.250)

Avg. family income −0.005
(0.005)

Fraction family income refused −0.388
(0.681)

Constant 0.869 1.206 1.207 −0.343
(0.342) (0.398) (0.443) (1.399)

Observations (networks) 100 100 100 100
R-squared 0.019 0.156 0.161 0.426

Note: The outcome variable is the average difference between optimal level and observed level of social interactions (no −
n∗) over 100 simulations for each network. Robust standard errors in parentheses.

geographic distance is significantly associated with the inefficiency. A one-kilometer in-
crease in the average pairwise distance lead to a 0.066 decrease in the inefficiency. Only
a few average characteristics of the students are associated with the optimal-observed
difference in social interactions. In particular, networks that consist of students with a
higher average grade (and hence age) or religion practice level are more likely to have
high inefficiencies in terms of social interactions.
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Table 6. Difference between optimal level and observed level of social capital.

Optimal-Observed (Social Capital)

(1) (2) (3) (4)

Network population 0.058 0.055 0.057 0.028
(0.014) (0.012) (0.012) (0.006)

Network population squared −0.0009 −0.0007 −0.0007 −0.0003
(0.0003) (0.0002) (0.0002) (0.0001)

Avg. geographic distance −0.050 −0.050 −0.048
(0.010) (0.010) (0.005)

Avg. degree centrality 0.063 −0.047
(0.105) (0.041)

Std. dev. of degree centrality −0.365 0.037
(0.169) (0.068)

Female fraction 0.279
(0.088)

Black fraction −0.163
(0.064)

Avg. student grade 0.182
(0.008)

Avg. GPA −0.151
(0.053)

Avg. level of physical development 0.116
(0.037)

Avg. level of religion practice 0.082
(0.025)

Avg. family size 0.002
(0.024)

Fraction of students with two parents 0.074
(0.083)

Avg. level of parent education 0.143
(0.047)

Avg. family income 0.000
(0.001)

Fraction family income refused −0.109
(0.161)

Constant 0.291 0.536 0.575 −1.450
(0.151) (0.153) (0.170) (0.247)

Observations (networks) 100 100 100 100
R-squared 0.150 0.349 0.431 0.935

Note: The outcome variable is the difference between optimal level and observed level of social capital (so − s∗) over 100
simulations for each network. The observed level of social capital is augmented using equation (15). Robust standard errors
are in parentheses.

7.1.0.0.2 Network size and social capital Let us now turn to the inefficiencies in

terms of social capital (Table 6). From the estimates in column (4), we have

∂
(
sor − s∗r

)
∂Nr

= δ1 + 2δ2Nr = 0.028 − 2(0.0003)Nr = 0. (28)
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Solving this equation leads to Nr = 0.028
2(0.0003) = 46.67. This means that the difference be-

tween the optimal and the observed level of social interactions is increasing until the
network size reaches (approximately) 46 students and then decreases. As a result, there
is a nonmonotonic relationship between sor − s∗r and Nr where an increase in the net-
work size increases sor − s∗r up to Nr = 46 and, above this size, an increase in the network
size decreases sor − s∗r . Thus, Nr = 46 is the size of the network that maximizes these in-
efficiencies.

We also find that the average geographic distance is significantly associated with the
inefficiency in social capital. A one-kilometer increase in the average pairwise distance
leads to a 0.048 decrease in the inefficiency.

Although these regressions do not have a formal identification strategy, the results,
partly based on the structural estimation of the model (that determine nor − n∗

r and sor −
s∗r ), provide some interesting explanations on what drives the size of inefficiency of the
intensity of social interactions and social capital accumulation.

7.1.0.0.3 Network size and average welfare Another interesting exercise, for which
we do not have a theory, is to determine the optimal network, that is, the one that max-
imizes total welfare.16 For that, without any policy, we compare the average welfare (to
avoid size effects, the welfare is not defined as the sum of utilities but as the average
utility) in each of the 100 networks. Remember that the welfare in network r is given by

W ∗
r =

Nr∑
i=1

Nr∑
j=1,j �=i

[(
(n0 + θij,r )n∗

ij,r − 1
2

(
n∗
ij,r

)2
)
s∗j,r − n∗

ij,rcdij,r

]
. (29)

As a result, the average welfare per network is

AW ∗
r = W ∗

r

Nr
.

We would like know which network size Nr yields the largest AW ∗
r .

For that, we run the following regression:

AW ∗
r = δ0 + δ1Nr + δ2(Nr )2 + δzzr + δxxr + εr

to investigate the relationship between average welfare and network size. In addition, as
controls, we include the average geographical distance and network measures, such as
mean and standard deviation of the degree distribution, average eigenvector centrality.

Table 7 reports the results. We can first calculate the network size that maximizes the
average welfare per network AW ∗

r . Using column (4), we have

∂AW ∗
r

∂Nr
= δ1 + 2δ2Nr = 0.113 − 2(0.0021)Nr = 0. (30)

16Determining the optimal network is a very difficult exercise; see König, Tessone, and Zenou (2014), Bel-
haj, Bervoets, and Deroïan (2016), and Chen, Zenou, and Zhou (2022) for such attempts when the network
is given. Jackson and Wolinsky (1996) provide a similar exercise for endogenous network formation. Be-
cause this exercise is complicated, only extreme structures emerge such as the complete network, the star
network or nested split graphs. This is why we do it here by numerical simulations based on the estimated
parameters.
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Table 7. Optimal network design: average welfare and number of students.

(1) (2) (3) (4)
Welfare Welfare Welfare Welfare

Network population 0.126 0.105 0.163 0.113
(0.064) (0.040) (0.033) (0.030)

Network population squared −0.0027 −0.0013 −0.0026 −0.0021
(0.0013) (0.0008) (0.0006) (0.0005)

Avg. geographic distance −0.352 −0.346 −0.343
(0.034) (0.032) (0.024)

Avg. degree centrality 1.366 1.080
(0.291) (0.294)

Std. dev. of degree centrality −1.220 −0.393
(0.457) (0.424)

Sociodemographic controls No No No Yes

Observations (networks) 100 100 100 100
R-squared 0.070 0.653 0.725 0.841

Note: The outcome variable is the simulated average welfare (AW r ), averaged over 100 simulations for each network.
Sociodemographic control variables: female fraction, black fraction, average student grade, average GPA, the average level of
physical development, the average level of religion practice, average family size, the fraction of students with two parents,
average level of parent education, average family income, and the fraction of students who refuse to answer family income.
Robust standard errors are in parentheses.

This means that the network that comprises (approximately) 27 students is the one that
maximizes the average welfare per network.

In Table 7, we also find that the average pairwise geographic distance is an impor-
tant factor for designing an optimal network. The longer is the distance between two
students, the lower is the average welfare. In addition, from the changes in R2 across
columns (1) and (2), from 0.070 to 0.653, we find that the average geographic distance
explains a significant proportion of the average welfare in a network.

7.2 Policies

We have seen in Proposition 5 that social optimal allocations can be restored with ap-
propriate subsidies on student’s travel cost or interactions. However, such subsidies are
unlikely to be implemented because they depend on detailed information about every
interaction pair such as destination and origin of interaction partners, which does not
only imply a strong problem of information collection but also an issue of equity be-
tween the recipients of unequal subsidies.

In this section, we consider the more realistic case of uniform subsidies on social
interactions and/or travel costs that only target each individual irrespective of their per-
sonal characteristics but not a pair of individuals. We evaluate their impact on the fre-
quency of interactions, nij by running a total of 100 simulation exercises using the sam-
ple of 100 schools of size up to 50 students. We provide the average, the sample standard
deviations, and/or 95% confidence intervals for each policy question from these 100
simulations. Which policy is more effective at moving the observed interactions/social
capital closer to the optimal levels?
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Assume that each individual receives a common subsidy σ for each interaction
made with a friend and a (percentage) subsidy τ on her transport cost c. The total
amount of each subsidy received by an individual i is therefore given by

∑
j σnij for so-

cial interactions and
∑

j nijτcdij for transportation costs.
Note that the government (or the planner) is here introduced as an agent that can set

subsidies on social-interaction efforts before the individuals decide upon their efforts.
The assumption that the government can precommit itself to such subsidies, and thus
can act in this leadership role is fairly natural. As a result, this subsidy will affect the
levels of social interaction efforts of all individuals.17

For each individual i interacting with j, when subsidies are included, the equilibrium
conditions lead to the following level of social interactions:

n∗
ij =

(
n0 − cdij

s∗j
+ θij

)
+ σ

s∗j
+ τcdij

s∗j
,

while the social capital is still given by

s∗j = 1 + α

N

∑
l �=j

n∗
jls

∗
l .

Holding social capital constant, quite naturally, the subsidies increase the number of
social interactions. Subsidies can entice interactions with new partners as the number
of interactions to a partner may rise from zero to a positive value in the presence of the
subsidy. The total welfare is now defined as

W =
∑
i

∑
j �=i

(
(n0 + θij )n∗

ij − 1
2

(
n∗
ij

)2
)
s∗j − n∗

ijcdij +
∑
i

∑
j �=i

n∗
ij(σ + τcdij ).

We now implement two uniform-subsidy policies (first, we subsidize social interac-
tions and then transportation costs) whose aim is to find the subsidy that achieves the
same welfare level as the level obtained at the first best.

7.2.1 Subsidizing social interactions We consider a uniform subsidy σr for each social
interaction in network r. We use the following discrete version of the equilibrium iden-
tities:

nσij,r = n0 + σr − cdij,r

sσj,r
+ θij,r (31)

and

sσj,r = 1 + α

Nr

Nr∑
k=1

nσjk,rs
σ
k,r , (32)

17This is is similar to the standard policy of firms’ subsidies on R&D efforts; see, for example, Spencer
and Brander (1983) and König, Liu, and Zenou (2019).
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Table 8. Policy levels for optimal outcomes.

(1) Subsidizing Social Interactions: σ (2) Subsidizing Transportation Costs: τ

Average Minimum Maximum Average Minimum Maximum

(SD) [95% CI] (SD) [95% CI]

3.009 1.325 7.224 0.635 0.532 0.744
(0.901) [2.099, 4.660] (0.046) [0.553, 0.702]

Note: The subsidy level for each network is computed for students in each network to obtain the optimal level of social
interactions and social capital in (23)–(25).
We report the average results over 100 simulations and confidence intervals among 100 schools.

where the superscript σ denotes the subsidy policy outcome. For the estimation, the
total welfare per network is equal to

W σ
r =

Nr∑
i=1

Nr∑
j=1,j �=i

[(
(n0 + θij,r )nσij,r − 1

2

(
nσij,r

)2
)
sσj,r − (cdij,r − σr )nσij,r

]
. (33)

In this exercise, we determine the subsidy σ∗
r that gives network r the same aggregate

welfare W σ
r as its first best level W o

r . From the estimated value of the equilibrium model,
we have α, c, and n0; from the data we have dij,r and Nr . We then numerically solve
equations (31) and (32) and find the subsidy such that W σ

r =W o
r ; see Online Appendix C

for technical details.
The first three columns in Table 8 display the results. On average, a subsidy level of

3.009 (units of utility) for each social interaction is required for a network to achieve the
first-best aggregate level of social interactions and social capital.

7.2.2 Subsidizing transportation costs In the case of subsidies on transport cost, we
consider the following equilibrium conditions:

nτij,r = n0 − (1 − τr )cdij,r

sτj,r
+ θij,r , (34)

sτj,r = 1 + α

Nr

Nr∑
k=1,k�=j

nτjk,rs
τ
k,r . (35)

The total welfare per network is defined as

W τ
r =

Nr∑
i=1

Nr∑
j=1,j �=i

[(
(n0 + θij,r )nτij,r − 1

2

(
nτij,r

)2
)
sτj,r − nτij,r(1 − τr )cdij,r

]
. (36)

As for the social interaction subsidy, we find the subsidy τ∗
r that gives the same aggregate

utility W τ
r in network r as the first-best W 0

r . From the estimated value of the equilibrium
model, we have α, c, and n0,r , and from the data dij,r and br . We can then numerically
solve equations (34) and (35) and find the subsidy such that W τ

r =W 0
r .
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The last three columns in Table 8 display the results. On average, a subsidy level of
τ = 0.635 (63.5% of travel cost) is required for a network to achieve the first best ag-
gregate level of social interactions and social capital. From this result, we can also infer
that a decrease in a geographical distance between two students with different socioeco-
nomic backgrounds would increase their levels of social interactions and social capital.

7.2.3 Comparing the two policies In the two above exercises, subsidy policies are given
at no social cost by the planner. It is then interesting to compare these two policies at
the same given cost. The question is then as follows: Given that the planner has a budget
of B to spend, which policy should she choose? In order to distribute a total amount of
subsidy B to each network, we consider three different schemes. First, we distribute the
same amount Br = B/R for each network r (uniform subsidy), where R is the total num-
ber of networks. The second scheme gives an amount proportional to network popula-
tion Nr . Hence, Br = Nr∑

r′ Nr′
B. The last subsidy scheme provides an amount proportional

to the number of pairs Nr(Nr − 1), that is, Br = Nr (Nr−1)∑
r′ N ′

r (Nr′−1)
B.

We also need to set the total budget B to a level that is comparable to the subsidy
budget spent in the two above exercises. We consider two ways of setting this budget.
First, we choose the amount of budget that corresponds to the average social interaction
subsidy level that achieves the first-best level of social interactions:

B := Bσ = σ̄on̄o
R∑

r=1

Nr(Nr − 1), (37)

where σ̄o is the average optimal social interaction subsidy level, as obtained in Table 8,
that is, σ̄o = 3.009, and n̄o is the average optimal social interaction level, as obtained in
Table 4, that is, n̄o = 4.060.

Second, we use the amount of budget that corresponds to the average transportation
subsidy level to achieve the first-best level of social interactions:

B := Bτ = τ̄ocn̄o
R∑
r=1

Nr(Nr − 1), (38)

where τ̄o is the average transportation subsidy rate, that is, τ̄o = 0.635 (Table 8).
We proceed as follows. First, we consider the social-interaction subsidy policy. We

observe dij,r and Nr in the data and have estimated α, c, and n0. Then we solve simul-
taneously equations (31), (32), and (37). We get the different endogenous variables, in
particular, the different subsidies σr . Then, for each value of σr , we calculate the to-
tal welfare W σ

r given by (33). Second, we consider the transportation subsidy policy. We
observe dij,r and Nr in the data and have estimated α, c, and n0. Then we solve simul-
taneously equations (34), (35), and again (37). We obtain the endogenous variables, in
particular, the different subsidies τr . Then, for each value of τr , we calculate the total
welfare W τ

r given by (36). We finally repeat these two steps with the budget Bτ given by
(38).

Our key question is then about which subsidy on travel costs or social interactions
yields the highest welfare in each network for either budgetBσ or Bτ . That is, we examine
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Table 9. Comparison of two policies.

Panel A: Budget Corresponding to the Average (Optimal) Social Interaction Subsidy Level

Number of Networks
With Higher Welfare for

Each Policy
[95% CI]

Difference in
Average Welfare

[95% CI]

Subsidy Schemes Policy: σ Policy: τ Policy σ − Policy τ

(1) Uniform subsidy amount for each network 97 1 293.65
[97, 98] [0, 1] [270.56, 323.62]

(2) Subsidy proportional to Nr 97 1 271.46
[97, 97] [1, 1] [241.80, 301.02]

(3) Subsidy proportional to Nr (Nr − 1) 97 1 251.03
[97, 98] [0, 1] [209.66, 325.83]

Panel B: Budget Corresponding to the Average (Optimal) Transportation Subsidy Level

Number of Networks
With Higher Welfare for

Each Policy
[95% CI]

Difference in
Average Welfare

[95% CI]

Subsidy Schemes Policy: σ Policy: τ Policy σ − Policy τ

(1) Uniform subsidy amount for each network 96 2 71.70
[96, 97] [1, 2] [56.22, 74.38]

(2) Subsidy proportional to Nr 97 1 67.46
[97, 97] [1, 1] [49.65, 76.47]

(3) Subsidy proportional to Nr (Nr − 1) 97 1 62.43
[97, 98] [0, 1] [42.70, 78.30]

Note: The median number of networks over 100 simulations, which leads to higher welfare for each policy is reported,
along with the 95% confidence interval among 100 schools (networks). There are a couple of schools in which two policies are
tied in their total welfare. The term “Policy σ − Policy τ” indicates the average welfare after the social interaction subsidy policy
(policy σ) minus the average welfare after the transportation subsidy policy (policy τ).

whether W τ
r � W σ

r . Table 9 shows the results of this analysis by counting the number of
networks for which the total welfare is higher under one policy versus the other. In this
table, we find that, under the social-interaction subsidy policy, the total welfare is higher
for most networks, regardless of the amount of budget we assign (panels A and B) and
the type of subsidy scheme (uniform, proportional to Nr and proportional to Nr(Nr −1);
rows (1), (2), and (3)).18 As a result, if a planner has a given amount of money to spend,
she should subsidize social interactions and not transportation costs because it yields
greater improvements of total welfare.

8. Concluding remarks

In this paper, we presented a behavioral microfoundation for the relationship between
geographical distance, social interactions, and social capital. We characterized the equi-

18We also try different values of the total amount to be spent to check whether there are nonlinear effects,
but the results remain the same regardless of the value of the budget.
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librium in terms of levels of social interactions and social capital for a general distribu-
tion of individuals in the geographical space. An important prediction of the model was
that the level of social interactions was inversely related to the geographical distance.
Travel costs and spatial dispersion of agents were barriers to the development of so-
cial capital formation. Because of the externalities that agents exerted on each other, we
demonstrated that the equilibrium levels of social interactions and social capital were
lower than the efficient ones.

When we estimated the model using data on adolescents in the United States, we
found that, indeed, geographical distance was an hinder to social interactions. More-
over, we determined the exact inefficiencies of the market equilibrium. Interestingly and
surprisingly, we found that there was a nonmonotonic relationship between the ineffi-
ciencies in terms of social interactions and the network size. In our empirical context,
these inefficiencies were the largest when the network was composed of ten students.
We then performed two different subsidy policies and show that uniform subsidies on
social interactions were more effective than uniform subsidies on transportation costs.

Extrapolating those results to social interactions in city suggests that encouraging
social interactions is likely to enhance social welfare. In the real world, there are differ-
ent ways governments can subsidize social interactions. One natural way is social mixing
such as the Moving to Opportunity (MTO) programs in the United States where the local
government subsidizes housing to allow families to move from poor to richer neigh-
borhoods (see, e.g., Katz, Kling, and Liebman (2001), Kling, Liebman, and Katz (2007),
Chetty, Hendren, and Katz (2016)). These programs allow people from different neigh-
borhoods to interact with each other. Other policies that enhance social interactions are
those that improve physical environment such as zoning laws and public housing rules
(Glaeser and Sacerdote (2000)). For example, Glaeser and Sacerdote (2000) find that in-
dividuals in large apartment buildings are more likely to socialize with their neighbors
than those living in smaller apartment buildings. Using Facebook data from the United
States, Bailey, Cao, Kuchler, and Stroebel (2018a) document that, at the county level,
friendship networks are a mechanism that can propagate house price shocks through
the economy via housing price expectations.

This paper is a first stab at a complex problem. We hope that most research will
be conducted in the future on the interaction between the social and the geographical
space.

Appendix: Proofs of the theoretical results

Proof of Proposition 1. The equilibrium number of interactions n∗
ij of student i with

student j, is found by differentiating Ui with respect to nij taking sj as given. We obtain

v′(nij )sj − c(dij ) = 0, j = 1, � � � , N . (39)

Using (2), this is equivalent to (1 −nij )sj = c(dij ). Thus, the equilibrium number of inter-
actions is equal to

n∗
ij = 1 − c(dij )

sj
, j = 1, � � � , N . (40)
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For simplicity, we assume away corner solutions and assume global interactions, so that
students agents interact with every other student in the network, that is,

n∗
ij > 0 ⇔ sj > c(dij ), ∀i, j.

A sufficient condition for this inequality to hold is

min
j

sj > c(d), (41)

where d is the maximum distance between two agents in the network.
By plugging (40) into (3) and using (4), we obtain the equilibrium level of social cap-

ital s∗j . It is given by

s∗j = 1 + α

N

∑
k�=j

s∗k − α

N
gj . (42)

To solve for the fixed-point solution of this equation, we sum over j on both sides and
simplify as ∑

j

s∗j = 1

1 − α

(
N − 1
N

)[
N − α

N

∑
j

gj

]
, (43)

since α
N

∑
j

∑
k�=j s

∗
k = α

N

∑
k�=j

∑
j s

∗
j = α(N−1)

N

∑
j s

∗
j . Inserting (43) into (42) yields the fol-

lowing closed-form solution for the equilibrium social capital:

s∗j = s0 − α/N

1 + α/N
gj . (44)

Let us show that the global interaction condition (41) is satisfied if c(d) <N and α<

1. Indeed, using gj < (N − 1)c(d) and α < 1, the global interaction condition minj sj >

c(d) is satisfied if

c(d) <N
1 − α(1 − 2/N ) + α2(1 − 1/N )2

1 − α+ 2α/N
.

It can be shown that the ratio in the right-hand side (RHS) is larger than one. So, a suffi-
cient condition for global interaction is that c(d) <N .

Proof of Proposition 2. We demonstrate that the importance of peers’ social links,
increases each agent’s social capital for small enough travel cost. We need to compute

ds0

dα
=

f (α) − α(2 − α)
1
N

∑
l

gl

N

(
1 − α

N

)2(
1 − α+ α

N

)2 ,

where f (α) = (1 + α
N )2 + N[1 − 2( α

N ) − ( α
N )2]. It can be shown that f ′(α) = −2(N +

α)N−1
N2 < 0 so that f (α) ≥ f (0) = 1 + N ≥ 3. So, when travel costs c(·) tend to zero, gl
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and
∑

l gl also tend to zero while ds0/dα is bounded above zero. So, ds∗j /dα> 0 for small
enough travel costs c(dij ).

Proof of Lemma 3. The government chooses the profiles nij and sj that maximize the
Lagrangian function

L =
∑
i

∑
j �=i

[(
v(nij )sj − nijc(dij )

)] −
∑
i

χi

(
si − 1 − α

N

∑
j �=i

nijsj

)
,

where χi ≥ 0 is the Kuhn–Tucker multiplier of the social capital constraint. Thus, χi mea-
sures the welfare value of a marginal increase of the social capital of agent i.

We can write the Lagrangian function as

L =
∑
i

∑
j �=i

[
v(nij )sj − nijc(dij ) + (α/N )χinijsj

] −
∑
i

χi(si − 1).

Note that
∑

i χi(si − 1) evaluates to the same value as
∑

i

∑
j �=i χj(sj − 1)/(N − 1). Sub-

stituting the latter for the former, we rewrite the Lagrangian function as

L =
∑
i

∑
j �=i

v(nij )sj − nijc(dij ) + (α/N )χinijsj −χj(sj − 1)/(N − 1). (45)

First-order conditions with respect to nij and sj yield

v′(nij )sj − c(dij ) + (α/N )χisj = 0∑
i �=j

[
v(nij ) + (α/N )χinij −χj/(N − 1)

] = 0.

The last equality is equivalent to∑
i �=j

[
v(nij ) + (α/N )χinij

] −χj = 0.

This gives (9) and (10).

Proof of Proposition 4. Condition (9) yields

v′(nij ) = c(dij )
sj

− α

N
χi, (46)

which gives

noij = 1 − c(dij )
soj

+ α

N
χo
i , (47)

under our specification of utility function v. With social capital held fixed at j at the equi-
librium level (s∗j = soj ), this expression is larger than the equilibrium number of visits n∗

ij
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because χo
i ≥ 0. The question thus becomes how social capital changes in this efficient

allocation.
By inserting (7) in the binding condition (8), we obtain

soi = 1 + α

N

∑
l �=i

sol − α

N
gi +

(
α

N

)2

χo
i

∑
l �=i

sol . (48)

Observe that, for χo
i = 0, (47) and (48) are identical to the equilibrium conditions and

therefore yield the equilibrium values n∗
ij and s∗i . The RHS of (47) and (48) are increasing

functions of χo
i and/or soi . From (48), we see that an increase in χo

i above zero raises soi .
From (47), the joint increase in χo

i and soi raises noij . So, we conclude that noij ≥ n∗
ij and

soi ≥ s∗i .

Proof of Proposition 5. If we include the subsidies τij and σij , the utility becomes

Ui = Si −Ci

=
∑
j

{
v(nij )(sj + σij ) − nij

[
c(dij ) − τij

]}
.

This implies the following equilibrium number of social interactions:

n∗
ij = 1 − c(dij ) − τij

sj + σij
.

The social capital level is then given by the following fixed point:

s∗j = 1 + α

N

∑
k�=j

n∗
jks

∗
k

= 1 + α

N

∑
k�=j

(
1 − c(djk ) − τjk

s∗k + σjk

)
s∗k. (49)

The frequency of social interactions and the level of social capital are the same in
equilibrium and in the first best if and only if

n∗
ij = noij ⇐⇒ c(dij ) − τij

s∗j + σij
= c(dij )

soj
− α

N
χo
i , (50)

and s∗j = soj given by (49) and (48).
The first best can be decentralized with the subsidies σij = 0 and τij = (α/N )χo

i s
o
j .

Indeed, in this case, we find

n∗
ij = 1 − c(dij )/soj + (α/N )χo

i = noij .

Given that n∗
ij = noij , it is straightforward to see that s∗j = soj .
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The first best can also be decentralized with the subsidies τij = 0 and

σij = soj
Nc(dij )
αχo

i s
o
j

− 1
. (51)

This gives the interaction frequency

n∗
ij = 1 − c(dij )

s∗j + 1
1
soj

− α

N

χo
i

c(dij )

− soj

and the social capital fixed point

s∗j = 1 + α

N

∑
k�=j

s∗k − α

N

∑
k�=j

c(djk )

s∗k + 1

1
sok

− α

N

χo
j

c(djk )

− sok

s∗k.

Yet, the solution s∗j = sok is a fixed point of the latter expression as it gives the fixed point
for the following first-best social capital formation

soj = 1 + α

N

∑
k�=j

sok − α

N

∑
k�=j

c(djk ) +
(
α

N

)2 ∑
k�=j

χo
j s

o
k.

Importantly, the subsidy τij and σij are not uniform ones. This suggests that decen-
tralization would be difficult to implement.

How to interpret σij? Suppose that the denominator is positive, so that the subsidy is
a positive transfer for holding a social partner. We have

σij = soj
Nc(dij )
αχo

i s
o
j

− 1
> 0.

Hence, we need to subsidize more partnership with recipient individuals j with more
social capital and initiator individuals i with higher welfare value of a marginal increase
of the social capital and smaller distances.

Suppose the above denominator is negative so that σij is a tax:

tax = −σij = soj

1 − Nc(dij )
αχo

i s
o
j

> 0.

Hence, we need to tax less partnership from initiator individuals i with higher welfare
value of a marginal increase of the social capital and smaller distances.
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