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Local projections, autocorrelation, and efficiency

Amaze Lusompa
Research Department, Federal Reserve Bank of Kansas City

It is well known that Local Projections (LP) residuals are autocorrelated. Conven-
tional wisdom says that LP have to be estimated by OLS and that GLS is not possi-
ble because the autocorrelation process is unknown and/or because the GLS esti-
mator would be inconsistent. I show that the autocorrelation process of LP can be
written as a Vector Moving Average (VMA) process of the Wold errors and impulse
responses and that autocorrelation can be corrected for using a consistent GLS
estimator. Monte Carlo simulations show that estimating LP with GLS can lead to
more efficient estimates.
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1. Introduction

Vector Autoregressions (VARs) and Local Projections (LP) are major tools used in em-
pirical macroeconomic analysis, primarily being used for causal analysis and forecast-
ing through the estimation of impulse response functions. The two methods often give
different results when applied to the same problem (Ramey (2016)), and the choice
of whether to use impulse responses from LP or VARs can be thought of as the bias-
variance tradeoff problem with VARs and LP lying on a spectrum of small sample bias
variance choices.1

It is well known that LP residuals are autocorrelated. Practitioners exclusively esti-
mate LP via OLS (Ramey (2016)). Jordà (2005) argues that since the true data-generating
process (DGP) is unknown, Generalized Least Squares (GLS) estimation is not possible.
Hansen and Hodrick (1980) claim that direct forecast regressions (LP) cannot be esti-
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mated by GLS because estimates would be inconsistent.2 I show that under standard
time series assumptions, the autocorrelation process can be written as a Vector Mov-
ing Average (VMA) process of the Wold errors and impulse responses and can be cor-
rected for using GLS. Consistency and asymptotically normality of the LP GLS estima-
tor is proved, though efficiency of LP GLS relative to LP OLS is not proved uniformly in
this paper. Efficiency of LP GLS relative to LP OLS is only shown for the homoskedastic
AR(1) case. Monte Carlo simulations for a wide range of models highlight the benefits
of LP GLS and give us an idea of where it lies on the VAR-LP frontier.

The paper is outlined as follows: Section 2 contains the core result showing that the
autocorrelation process of LP can be written as a VMA process of the Wold errors and
impulse responses and illustrates why GLS is possible. Section 3 explains how to es-
timate LP GLS and presents the asymptotic properties of the estimator. Section 4 dis-
cusses some relative efficiency results of LP estimated by OLS versus LP GLS. Section 5
contains Monte Carlo evidence of the small sample properties of LP GLS, and Section 6
concludes. The Online Appendix in the Supplementary Material (Lusompa (2023)) con-
tains most proofs, additional Monte Carlo evidence, discussion of bootstrapping theory
and inference with LP GLS, an empirical application to Gertler and Karadi (2015), as
well as a “how to” section for the code. Replication materials can be downloaded from
the Quantitative Economics website.

Some notation N(·, ·) is the normal distribution. plim is the probability limit,
p−→ is con-

verges in probability, and
d−→ is converges in distribution.

p∗
−→ is converges in probability,

and
d∗−→ is converges in distribution with respect to the bootstrap probability measure.

vec is the vector operator and ⊗ is the Kronecker product.

2. The autocorrelation process and OLS

Section 2.1 discusses how LP work, drawbacks of OLS estimation with LP, and how GLS
estimation can improve upon them. Section 2.2 presents the core result: the autocor-
relation process of LP can be written as a VMA process of the Wold errors and impulse
responses and can be corrected for via GLS.

2.1 LP and OLS

To illustrate how LP work, take the simple VAR(1) model

yt+1 =A1yt + εt+1,

where yt is a demeaned r × 1 vector of endogenous variables and εt is an r × 1 vector
white noise process with E(εt ) = 0 and var(εt ) = �. Assume that the eigenvalues of A1

have moduli less than unity and A1 �= 0. Iterating forward leads to

yt+h =Ah
1yt +Ah−1

1 εt+1 + · · · +A1εt+h−1 + εt+h.

2Hansen and Hodrick (1980) assume strict exogeneity (which neither LP or VARs satisfy) is a necessary
condition for GLS. See Hayashi (2000) for a counterexample for why strict exogeneity is not a necessary
condition.
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To estimate the impulse responses of a VAR, one would estimate A1 from equation (1)
and then use the delta method, bootstrapping, or Monte Carlo integration to perform
inference on the impulse responses: {A1, � � � , Ah

1 }. To estimate impulse responses using
LP, one would estimate the impulse responses directly at each horizon with separate
regressions

yt+1 = B(1)
1 yt + e(1)

t+1,

...

yt+h = B(h)
1 yt + e(h)

t+h,

where h is the horizon, and when the true DGP is a VAR(1), {B(1)
1 , � � � , B(h)

1 } and
{A1, � � � , Ah

1 } are equivalent. Even if the true DGP is not a VAR(1), B(1)
1 = A1 because

the horizon 1 LP is a VAR. In practice, it is common for more than one lag to be used.
A VAR(k) and the horizon h LP(k) can be expressed as

yt+1 =A1yt + · · · +Akyt−k+1 + εt+1,

and

yt+h = B(h)
1 yt + · · · +B(h)

k yt−k+1 + e(h)
t+h,

respectively. Bear in mind that any VAR(k) can be written as a VAR(1) (companion
form), so results and examples involving the VAR(1) can generally be extended to
higher-order VARs.

LP have at least two drawbacks. One, because the dependent variable is a lead, a to-
tal of h observations are lost from the original sample when estimating projections for
horizon h. Two, the error terms in LP for horizons greater than 1 are inherently autocor-
related. Assuming the true model is a VAR(1), it is obvious that autocorrelation occurs
because the LP residuals follow a VMA(h − 1) process of the residuals in equation (1).
That is,

e(h)
t+h = Ah−1

1 εt+1 + · · · +A1εt+h−1 + εt+h,

or written in terms of LP

e(h)
t+h = B(h−1)

1 εt+1 + · · · +B(1)
1 εt+h−1 + εt+h.

Inference generally proceeds using nonparametric Heteroskedasticity and Autocorrela-
tion Consistent (HAC) standard errors, which will yield asymptotically correct standard
errors in the presence of autocorrelation and heteroskedasticity of unknown forms. Au-
tocorrelation can be corrected for explicitly by including {εt+1, � � � , εt+h−1} in the condi-
tioning set of the horizon h LP. Obviously, {εt+1, � � � , εt+h−1} are unobserved and would
have to be estimated. This will affect the asymptotic distribution of the estimator and
will be formally discussed in Section 3, but for now this issue can be ignored.

One major advantage of correcting for autocorrelation explicitly is that it fixes what
I dub the “increasing variance problem.” To my knowledge, the increasing variance
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Table 1. Asymptotic variance of residuals for LP horizons.

Horizons 5 10 20 40

LP OLS 5.7093 9.9683 17.3036 28.2102
LP GLS 1 1 1 1

problem has not been noticed in the literature. If the true model is a VAR(1), then
var(e(h)

t+h ) =∑h−1
i=0 Ai

1�A
i
1
′ < ∞, which is increasing in h.3 Macro variables tend to be

persistent, so Ai
1 may decay slowly leading to the increase in the variance to be pretty

persistent as h increases. To illustrate, let the true model be an AR(1) with

yt+1 = 0.99yt + εt+1,

where var(εt ) = 1. The var(e(h)
t+h ) = ∑h−1

i=0 Ai
1�εA

i
1
′ = ∑h

i=0 0.992i. Table 1 presents the
asymptotic variance of the residuals for different horizons when estimated by OLS ver-
sus LP estimated with GLS.

Correcting for autocorrelation explicitly is asymptotically more efficient because
var(εt+h ) ≤ var(e(h)

t+h ), where the equality only binds when A1 = 0. The increasing vari-
ance problem cannot only cause standard errors to be larger than they have to be, but
the larger variance is one of the reasons why LP impulse responses are sometimes er-
ratic.4

2.2 The autocorrelation process of LP

First, I will show that even when the true DGP is not a VAR, including the horizon 1
LP residuals (or equivalently, VAR residuals), {εt+1, � � � , εt+h−1}, in the horizon h condi-
tioning set will eliminate autocorrelation as long as the data follow standard regularity
conditions and the horizon 1 LP residuals are uncorrelated. Second, I will show that the
autocorrelation process of e(h)

t+h is a moving average process with a known structure.

Assumption 1. The data {yt } are covariance stationary and purely nondeterministic,
with an everywhere nonsingular spectral density matrix, and absolutely summable Wold
representation coefficients. So, there exists an invertible Wold representation

yt = εt +
∞∑
i=1

�iεt−i.

Assumption 1 implies that by the Wold representation theorem, there exists a lin-
ear and time-invariant VMA representation of the uncorrelated one-step ahead fore-

3This is a major reason why Kilian and Kim (2011) found that LP had excessive average length relative to
the bias-adjusted bootstrap VAR interval in their Monte Carlo simulations. I provide Monte Carlo evidence
of this in the Online Appendix.

4Obviously, eliminating the increasing variance problem would not prevent erratic behavior of LP im-
pulse responses since they are not restricted.
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cast errors {εt }. Assumption 1 guarantees that the Wold representation can be in-
verted into a VAR or LP process. It follows that εt = yt − Proj(yt|yt−1, yt−2, � � �) where
Proj(yt|yt−1, yt−2, � � �) is the (population) orthogonal projection of yt onto {yt−1, yt−2, � � �}.

Consider for each horizon h= 1, 2, � � � the infinite lag linear LP,

yt+h = B(h)
1 yt +B(h)

2 yt−1 + · · · + e(h)
t+h.

Proposition 1. Under Assumption 1, including {εt+1, � � � , εt+h−1} in the conditioning
set of the horizon h LP will eliminate autocorrelation in the horizon h LP residuals.

Proof. I first show that

Proj(yt+h|εt+h−1, � � � , εt+1, yt , yt−1, � � �)

= Proj(yt+h|εt+h−1, � � � , εt+1, yt+h−1, yt+h−2, � � �).

From the Wold representation, we know that εt+h−1 = yt+h−1 − Proj(yt+h−1|yt+h−2,
yt+h−3, � � �), which implies that {εt+h−1, yt+h−1, yt+h−2, � � �} are linearly dependent. This
implies that yt+h−1 can be dropped from Proj(yt+h|εt+h−1, � � � , εt+1, yt+h−1, yt+h−2, � � �)
since it contains redundant information. Therefore,

Proj(yt+h|εt+h−1, � � � , εt+1, yt+h−1, yt+h−2, � � �)

= Proj(yt+h|εt+h−1, � � � , εt+1, yt+h−2, yt+h−3, � � �).

Similarly, εt+h−2 = yt+h−2 − Proj(yt+h−2|yt+h−3, yt+h−4, � � �), which implies that {εt+h−2,
yt+h−2, yt+h−3, � � �} are linearly dependent. This implies that yt+h−2 can be dropped from
Proj(yt+h|εt+h−1, � � � , εt+1, yt+h−2, yt+h−3, � � �) since it contains redundant information.
Therefore,

Proj(yt+h|εt+h−1, � � � , εt+1, yt+h−2, yt+h−3, � � �)

= Proj(yt+h|εt+h−1, � � � , εt+1, yt+h−3, yt+h−4, � � �).

This process is repeated until yt+1 is being dropped due to linear dependence yielding

Proj(yt+h|εt+h−1, � � � , εt+1, yt+1, yt , � � �) = Proj(yt+h|εt+h−1, � � � , εt+1, yt , yt−1, � � �).

Therefore, if Assumption 1 is satisfied and the horizon 1 LP residuals are uncorrelated,

Proj(yt+h|εt+h−1, � � � , εt+1, yt , yt−1, � � �)

= Proj(yt+h|εt+h−1, � � � , εt+1, yt+h−1, yt+h−2, � � �).

It follows that[
yt+h − Proj(yt+h|εt+h−1, � � � , εt+1, yt , yt−1, � � �)

]
⊥ [yt+h−i − Proj(yt+h−i|εt+h−i−1, � � � , εt−i+1, yt−i, yt−i−1, � � �)

] ∀i ≥ 1,

where ⊥ is the orthogonal symbol.
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Therefore, if the data satisfy Assumption 1, autocorrelation can be eliminated in the
horizon h LP by including {εt+1, � � � , εt+h−1} in the conditioning set. Of course, if the
true model requires only finitely many lags in the LP specification, then the proof above
applies to that case as well, since the extraneous lags will all have coefficients of zero in
population.

Theorem 1. Under Assumption 1, the autocorrelation process of the horizon h LP resid-
uals (e(h)

t+h) is a VMA(h − 1) process of the Wold errors and impulse responses. That is,

e(h)
t+h = �h−1εt+1 + · · · +�1εt+h−1 + εt+h.

Proof. We know from the Wold representation that εt ⊥ yt−1, yt−2, � � � , hence εt ⊥ εs
for t �= s. Recall that the infinite lag horizon h LP is

yt+h = B(h)
1 yt +B(h)

2 yt−1 + · · · + e(h)
t+h = Proj(yt+h|yt , yt−1, � � �) + e(h)

t+h.

By Proposition 1, including {εt+1, � � � , εt+h−1} in the conditioning set eliminates auto-
correlation, so the horizon h LP can be rewritten as

yt+h = Proj(yt+h|εt+h−1, � � � , εt+1, yt , yt−1, � � �) + u(h)
t+h,

where u(h)
t+h = e(h)

t+h − Proj(yt+h|εt+h−1, � � � , εt+1 ) = e(h)
t+h − Proj(yt+h|εt+h−1 ) − · · · −

Proj(yt+h|εt+1 ). The Proj can be broken up additively because {εt+1, � � � , εt+h−1} are or-
thogonal to each other and to {yt , yt−1, � � �}. By Proposition 1, u(h)

t+h is not autocorrelated.
By the Wold representation, we know that Proj(yt+h|εt ) = �hεt . This implies that the
horizon h LP can be written as

yt+h = B(h+1)
1 yt +B(h+1)

2 yt−1 + · · · +�h−1εt+1 + · · · +�1εt+h−1 + u(h)
t+h,

which implies

e(h)
t+h = �h−1εt+1 + · · · +�1εt+h−1 + u(h)

t+h.

Using the same linear dependence arguments as in Proposition 1, it can be shown that

Proj(yt+h|εt+h−1, � � � , εt+1, yt , yt−1, � � �) = Proj(yt+h|yt+h−1, yt+h−2, � � �),

which implies that u(h)
t+h = εt+h, in population. As a result, the autocorrelation process of

e(h)
t+h is a VMA(h− 1) process of Wold errors and coefficients.

Thus, in population, the error process for the horizon h LP can be written as a
VMA(h− 1) process even if the true model is not a VAR. In population B(h)

1 = �h, which
implies

e(h)
t+h = B(h−1)

1 εt+1 + · · · +B(1)
1 εt+h−1 + εt+h.
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3. LP GLS and its properties

Since e(h)
t+h can be written as

e(h)
t+h = B(h−1)

1 εt+1 + · · · +B(1)
1 εt+h−1 + u(h)

t+h,

GLS can be used to eliminate autocorrelation in LP while avoiding increasing the num-
ber of parameters by including {εt+1, � � � , εt+h−1} in the horizon h conditioning set. To
understand how, I will first explain what happens when {εt+1, � � � , εt+h−1} is included in
the conditioning set. Just like it is impossible to estimate a VAR(∞) in practice, one can-
not estimate LP with infinite lags since there is insufficient data. In practice, truncated
LP are used where the lags are truncated at k. The proofs of consistency and asymp-
totic normality discuss the rate at which k needs to grow with the sample size to ensure
consistent estimation of the impulse responses. In practice, k, needs to be large enough
that the estimated residuals from the horizon 1 LP are uncorrelated, which is what will
be assumed for now. From Theorem 1, we know the horizon h LP is

yt+h = B(h)
1 yt + · · · +B(h)

k yt−k+1 +B(h−1)
1 εt+1 + · · · +B(1)

1 εt+h−1 + u(h)
t+h,k,

where u(h)
t+h,k is the lag k analogue of u(h)

t+h. Due to {εt+1, � � � , εt+h−1} being unobserved,
the estimates {ε̂t+1,k, � � � , ε̂t+h−1,k} from the horizon 1 LP/VAR with k lags must be used
instead. Estimates of the impulse responses are still consistent (will be shown in The-
orem 2), however, even if the sample size is large, textbook formulas for GLS standard
errors underrepresent uncertainty because {ε̂t+1,k, � � � , ε̂t+h−1,k} are generated regres-
sors and because the textbook formulas for GLS assume strict exogeneity is satisfied.
In order to do valid inference, one must use formulas that take into account that the
generated regressors were estimated, which the textbook GLS estimator does not.5

Including {ε̂t+1,k, � � � , ε̂t+h−1,k} in the conditioning set increases the number of pa-
rameters in each equation in the system by (h − 1) × r. If consistent estimates of
{B(h−1)

1 , � � � , B(1)
1 } are obtained in previous horizons, one can do a Feasible GLS (FGLS)

transformation. Let ỹ(h)
t+h = yt+h − B̂(h−1),GLS

1 ε̂t+1,k − · · · − B̂(1),OLS
1 ε̂t+h−1,k. Then one can

estimate horizon h via the following equation:

ỹ(h)
t+h = B(h)

1 yt + · · · +B(h)
k yt−k+1 + ũ(h)

t+h,k.

ỹ(h)
t+h is just a FGLS transformation that eliminates the autocorrelation in the LP residuals

without having to sacrifice degrees of freedom and ũ(h)
t+h,k is the error term correspond-

ing to this FGLS transformation. If the impulse responses are estimated consistently,
then by the continuous mapping theorem, ỹ(h)

t+h converges in probability to the true GLS

transformation y(h)
t+h = yt+h − B(h−1)

1 εt+1 − · · · − B(1)
1 εt+h−1 asymptotically. For clarifica-

tion, LP can be estimated sequentially, horizon by horizon, as follows. First, estimate the
horizon 1 LP/VAR

yt+1 = B(1)
1 yt + · · · +B(1)

k yt−k+1 + εt+1,k.

5In the proof of asymptotic normality of the limiting distribution, it can be seen that the impact of the
generated regressors does not disappear asymptotically.
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B̂(1),OLS
1 and ε̂t,k are estimates of B(1)

1 and εt,k, respectively. Horizon 2 can be estimated
as

ỹ(2)
t+2 = B(2)

1 yt + · · · +B(2)
k yt−k+1 + ũ(2)

t+2,k,

where ỹ(2)
t+2 = yt+2 − B̂(1),OLS

1 ε̂t+1,k, and B̂(2),GLS
1 is the FGLS estimate of B(2)

1 . Horizon 3
can be estimated as

ỹ(3)
t+3 = B(3)

1 yt + · · · +B(3)
k yt−k+1 + ũ(3)

t+3,k,

where ỹ(3)
t+3 = yt+3 − B̂(2),GLS

1 ε̂t+1,k − B̂(1),OLS
1 ε̂t+2,k, and B̂(3),GLS

1 is the FGLS estimate of

B(3)
1 , and so on.

A closely related working paper by Breitung and Brüggemann (2023) was developed
independently of the present paper and released after earlier drafts of the present paper
instead use the transformation ỹ(h)

t+h = yt+h − ε̂t+h,k and include {ε̂t+2,k, � � � , ε̂t+h−1,k} as
regressors. This correction would also leave the LP residual uncorrelated. They show that
in the AR(1) case this correction is asymptotically as efficient as the VAR. However, since
the estimator is approximately equivalent to the VAR in finite samples, it is probably the
case their estimator exhibits the same issues with truncation bias as the VAR.6

The LP GLS estimator has desirable properties. But first, some assumptions need to
be introduced.

Assumption 2. Let yt satisfy the Wold representation as presented in Assumption 1. As-
sume that in addition (i) εt is strictly stationary and ergodic such that E(εt|Ft−1 ) = 0
a.s., where Ft−1 = σ(εt−1, εt−2, � � �) is the sigma field generated by {εt−1, εt−2, � � �} and
(ii) E(εtε′

t ) = � is positive definite.

Note that for any Wold representation det{�(z)} �= 0 for |z| ≤ 1 where �(z) =∑∞
h=0 �hz

h. It follows from Assumption 2 that the Wold representation can be written as
an infinite-order VAR representation yt =∑∞

j=1 Ajyt−j + εt , with
∑∞

j=1 ‖Aj‖ < ∞ where

‖Aj‖2 = tr(A′
jAj ) and A(z) = Ir −∑∞

h=1 Ahz
h =�(z)−1. By recursive substitution,

yt+h = B(h)
1 yt +B(h)

2 yt−1 + · · · + εt+h +�1εt+h−1 + · · · +�h−1εt+1,

where B(h)
1 = �h, B(h)

j = �h−1Aj + B(h−1)
j+1 for h ≥ 1 and with B(0)

j+1 = 0; �0 = Ir for j ≥ 1.

The standard horizon h LP consists of estimating �h from a least squares estimate of Ah
1

6The approximate equivalence is to the order Op(T−1 ). They do not write their proofs for more general
stationary processes (i.e., VAR(∞)), so it is not clear if their higher-order equivalence argument holds more
generally. Though, consistency and asymptotic normality of their estimator should hold in the general case
based off of proofs in this paper. Their estimator does not avoid the degrees of freedom issue discussed
above since they include the residuals in the conditioning set, but this problem can be fixed as discussed
above. Bruns and Lütkepohl (2022) show that with a moving block bootstrap the Breitung and Brüggemann
(2023) estimator can have nontrivial coverage distortions relative to the estimator proposed in this paper
(they use VAR(1) data generating processes). It may be worth exploring in future research if there is a way
to construct a new estimator, which is a combination of the two estimators and is at least weakly better
than both.
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with truncated regression

yt+h = B(h)
1 yt + · · · +B(h)

k yt−k+1 + e(h)
t+h,k,

where e(h)
t+h,k =

∞∑
j=k+1

B(h)
j yt−j+1 + εt+h +

h−1∑
l=1

�lεt+h−l.

Assumption 3. Let Assumption 2 hold. Assume that, in addition, (i) the r-dimensional
εt has absolutely summable cumulants up to order 8. That is,

∞∑
i2=−∞

· · ·
∞∑

ih=−∞

∣∣κa(0, i2, � � � , ij )
∣∣<∞ for j = 2, � � � , 8,

a1, � � � , aj ∈ {1, � � � , r}, a = {a1, � � � , aj }, and κa(0, i2, � � � , ij ) denotes the jth joint cumulant
of ε0,a1 , εi2,a2 , � � � , εij ,aj . In particular, this condition includes the existence of the eight
moments of ε. (ii) LrE(vec(εtε′

t−j ) vec(εtε′
t−j )′ )L′

r is positive definite for all j, and Lr is a

finite r(r + 1)/2 × r2 elimination matrix, which is defined as Lr vec(A) = vech(A). (iii) k
satisfies k4

T → 0; T , k → ∞. (iv) k satisfies (T − k−H )1/2∑∞
j=k+1 ‖Aj‖ → 0; T , k → ∞.

Theorem 2. Under Assumption 3, the LP GLS estimator is consistent. In particular,

B̂(h),GLS
1

p−→�h, and more generally
∥∥B̂(k, h, GLS) −B(k, h)

∥∥ p−→ 0,

where

B̂(k, h, GLS)︸ ︷︷ ︸
r×kr

= (B̂(h),GLS
1 , � � � , B̂(h),GLS

k

)= (T − k−H )−1
T−h∑
t=k

ỹ(h)
t+hX

′
t,k�̂

−1
k ,

B(k, h)︸ ︷︷ ︸
r×kr

= (B(h)
1 , � � � , B(h)

k

)
, Xt,k︸︷︷︸

kr×1

= (y ′
t , � � � , y ′

t−k+1

)′
,

�̂k︸︷︷︸
kr×kr

= (T − k)−1
T∑

t=k

Xt,kX
′
t,k, �k︸︷︷︸

kr×kr

=E
(
Xt,kX

′
t,k

)
.

Remark 1. Goncalves and Kilian (2007) use these assumptions to show consistency
and asymptotic normality of the VAR(∞) when there is conditional heteroskedastic-
ity. These assumptions are more general versions of the ones used by Lewis and Reinsel
(1985) and Jordà and Kozicki (2011) who show consistency and asymptotic normality of
the VAR(∞) and the LP(∞), respectively, in the i.i.d. case.7

7These are sufficient conditions. Some of the proofs can be written under weaker conditions (e.g., Theo-

rem 2 with k2

T → 0), but for sake of brevity these will suffice.
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Proof. See the Online Appendix.

As noted earlier, the parameters used in the GLS correction are not known, and their
uncertainty must be taken into account in order to do valid inference. To take into ac-
count the uncertainty in the generated regressors, one can use bootstrapping, multi-
step estimation, or joint estimation. The bootstrap estimator is fleshed out in detail
in the Online Appendix. Standard errors for the multistep estimator will be discussed
next.

Following Brüggemann, Jentsch, and Trenkler (2016), a mixing condition is imposed
for structural inference.

Assumption 4. Let Assumption 3 hold. Assume that, in addition, εt is strong (α) mix-
ing, with α(m) of size −4(ν + 1)/ν for some ν > 0, where α(m) = supA∈F0−∞,B∈F∞

m
|P(A ∩

B) − P(A)P(B)| for m = 1, 2, � � � denote the α mixing process of εt where F0−∞ =
σ(� � � , ε−2, ε−1, ε0 ) and F∞

m = σ(εm, εm+1, � � �). Lastly, V (k, H ) is positive definite where
H is the max horizon and

V (k, H ) =
[
V11(k, H ) V12(k, H )
V21(k, H ) V22

]
, V11(k, H ) =

∞∑
p=−∞

cov
(
Score(H )

t+H , Score(H )
t+H−p

)
,

V22 = L′
r

{ ∞∑
p=−∞

E
(
vec
(
εt+1ε

′
t+1

)
, vec

(
εt+1−pε

′
t+1−p

)′)− vec(�) vec(�)′
}
Lr ,

V12(k, H ) = V21(k, H )′ =
∞∑

p=−∞
cov
(
Score(H )

t+H , vec
(
εt+1−pε

′
t+1−p −�

)′
Lr
)
,

Score(H )
t+H = l(k, H )′

⎡⎢⎢⎢⎢⎢⎣

(
�−1
k Xt,k ⊗ Ir

)
εt+H + sk,H

(
�−1
k Xt,k ⊗ Ir

)
εt+1

...(
�−1
k Xt,k ⊗ Ir

)
εt+2 + sk,2

(
�−1
k Xt,k ⊗ Ir

)
εt+1(

�−1
k Xt,k ⊗ Ir

)
εt+1

⎤⎥⎥⎥⎥⎥⎦ ,

sk,h =
(
h−1∑
l=1

{
�−1
k �′

(h−l−1),k ⊗�l

})
, �(m−n),k =E

(
Xm,kX

′
n,k

)
,

and l(k, H ) is a sequence of kr2H × 1 vectors such that 0 <M1 ≤ ‖l(k, H )‖2 ≤M2 <∞.

Remark 2. l(k, H ) is simply a Cramer–Wold device, which is used to show that any
linear combinations of the parameters that satisfy the condition have asymptotically
normal limiting distributions. Assumption 4 is slightly to somewhat stronger than the
condition used in Brüggemann, Jentsch, and Trenkler (2016), and is probably a stronger
condition than necessary. However, it allows for the use of mixingale inequalities, which
in turn allows for a straightforward proof using the mixingale Central Limit Theorem
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(CLT). The proof can probably be written using weaker conditions and following a proof
similar to Theorem 3.1 in Brüggemann, Jentsch, and Trenkler (2016).

Theorem 3. Define �̂ = (T − k)−1∑T−H
t=k ε̂t,kε̂

′
t,k. Under Assumption 4,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

l(k, H )′

⎡⎢⎢⎢⎢⎢⎣

√
T − k−H vec

[
B̂(k, H, GLS) −B(k, H )

]
...√

T − k−H vec
[
B̂(k, 2, GLS) −B(k, 2)

]
√
T − k−H vec

[
B̂(k, 1, OLS) −B(k, 1)

]

⎤⎥⎥⎥⎥⎥⎦
√
T − k−H vech[�̂−�]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
d→ N

(
0, V (k, H )

)
.

Proof. See the Online Appendix.

Note that even though the FGLS procedure makes the residuals asymptotically un-
correlated, the regression score for reduced form impulse responses, Score(H )

t+H , is still se-
rially correlated. This is because the impact of the estimated residuals used in the FGLS
correction does not disappear in the limiting distribution.8 Fortunately, since the auto-
correlation process was explicitly derived, one does not need to choose a HAC proce-
dure and associated difficult-to-interpret tuning parameters to calculate V11(k, H ).9 To
see why, note that the regression score can be “rearranged.” Define

Rscore(H )
t+1 = l(k, H )′

⎡⎢⎢⎢⎢⎣
(
�−1
k Xt−H+1,k ⊗ Ir

)
εt+1 + sk,H

(
�−1
k Xt,k ⊗ Ir

)
εt+1

...(
�−1
k Xt−1,k ⊗ Ir

)
εt+1 + sk,2

(
�−1
k Xt,k ⊗ Ir

)
εt+1(

�−1
k Xt,k ⊗ Ir

)
εt+1

⎤⎥⎥⎥⎥⎦ ,

where Rscore(H )
t+1 is the rearranged score where the time subscripts of ε line up. Note that

for finite H,

sup
s∈R

∣∣∣∣∣P
[

(T − k−H )−1/2
T−H∑
t=k

Score(H )
t+H ≤ s

]
− P

[
(T − k−H )−1/2

T−H∑
t=k

Rscore(H )
t+1 ≤ s

]∣∣∣∣∣
converges in probability to zero. Due to the martingale difference assumption and the
fact that the horizon h LP residuals are only correlated up to h − 1 horizons, V11(k,
H ) = ∑∞

p=−∞ cov(Score(H )
t+H , Score(H )

t+H−p) = ∑H−1
p=−H+1 cov(Score(H )

t+H , Score(H )
t+H−p) =

var(Rscore(H )
t+1 ). Therefore, the limiting distribution in Theorem 3 is not affected by sub-

stituting Rscore(H )
t+1 for Score(H )

t+H .
If one is only interested in marginal distribution for the impulse responses, note that√

T − k−Hl(k)′ vec
[
B̂(k, h, GLS) −B(k, h)

] d→ N
(
0, �(k, h, GLS)

)
,

8If the true errors were known, the score would be uncorrelated, but they obviously have to be estimated.
9See Lazarus, Lewis, Stock, and Watson (2018), footnote 1, for a summary of the different types of HAC

estimators.
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where l(k) is a kr2 × 1 Cramer–Wold device satisfying 0 <M1 ≤ ‖l(k)‖2 ≤M2 < ∞, and

�(k, h, GLS) = l(k)′
{
E
[(
�−1
k Xt−h+1,k ⊗ Ir

)
εt+1ε

′
t+1
(
�−1
k Xt−h+1,k ⊗ Ir

)′]
+E

[
sk,h
(
�−1
k Xt,k ⊗ Ir

)
εt+1ε

′
t+1

(
�−1
k Xt,k ⊗ Ir

)′
s′k,h

]
+E

[(
�−1
k Xt−h+1,k ⊗ Ir

)
εt+1ε

′
t+1
(
�−1
k Xt,k ⊗ Ir

)′
s′k,h

]
+E

[
sk,h
(
�−1
k Xt,k ⊗ Ir

)
εt+1ε

′
t+1

(
�−1
k Xt−h+1,k ⊗ Ir

)′]}
l(k).

Even though deriving the autocorrelation process makes calculation of V11(k, H ) (and
hence �(k, h, GLS)) simple and straightforward, structural inference is more compli-
cated since a nonparametric or sieve parametric HAC estimators would in general be
needed to calculate V12(k, H ) = V21(k, H )′ and V22. This is also true in the VAR case as
noted in Brüggemann, Jentsch, and Trenkler (2016).10 Consistent estimation of V (k, H )
combined with the delta method would lead to asymptotically valid joint inference. I do
not explore which type of HAC estimators perform best for V12(k, H ) = V21(k, H )′ and
V22. I instead propose a block wild bootstrap estimator due to its simplicity (details can
be found in the Online Appendix).

4. LP GLS and relative efficiency

It is not proved in this paper that LP GLS is uniformly at least as efficient as LP OLS, but
to give a sense of potential efficiency gains of estimating LP via GLS, I will compare the
asymptotic relative efficiency of the LP GLS estimator and the LP OLS estimator when
the true model is a homoskedastic AR(1). Take the simple AR(1) model

yt+1 = ayt + εt+1,

where |a| < 1, a �= 0, and εt is an i.i.d. error process with E(εt ) = 0 and var(εt ) = σ2.
Define {b(1), � � � , b(h)} as the LP impulse responses for the AR(1) model. For simplicity,
assume the lag length is known. By Proposition 6 in the Online Appendix, the limiting
distribution of the LP GLS impulse response at horizon h is

√
T
(
b̂(h),GLS − ah

) d−→N
(
0,
[
1 + (h2 − 1

)
a2h−2](1 − a2)).

The limiting distribution of the LP OLS impulse response at horizon h is

√
T
(
b̂(h),OLS − ah

) d−→N
(
0,
(
1 − a2)−1[

1 + a2 − {2h+ 1}a2h + {2h− 1}a2h+2])
(Bhansali (1997)).

Theorem 4 (FGLS Efficiency). Assume the true model is an AR(1) as specified above.
Then

lim
(
var
(√

T
(
b̂(h),GLS − ah

)))≤ lim
(
var
(√

T
(
b̂(h),OLS − ah

)))
.

10This is due to the more general assumption of conditional heteroskedasticity for the errors. In the i.i.d.
case, a HAC estimator would not be needed for V12(k, H ).
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Table 2. Relative efficiency of LP (GLS) to LP (OLS).

Autocorrelation
Coefficient

Horizons

3 5 10 20 30 40

a= 0.99 0.993 0.979 0.945 0.88 0.818 0.759
a= 0.975 0.983 0.948 0.864 0.713 0.580 0.464
a= 0.95 0.966 0.896 0.735 0.475 0.288 0.165
a= 0.9 0.931 0.792 0.508 0.179 0.061 0.029
a= 0.75 0.827 0.53 0.195 0.123 0.123 0.123
a= 0.5 0.727 0.496 0.45 0.45 0.45 0.45
a= 0.25 0.854 0.828 0.827 0.827 0.827 0.827
a= 0.01 1 1 1 1 1 1

Proof. See the Online Appendix.

The relative efficiency between the LP GLS and LP impulse responses (given by the
ratio of the variances) determines how much more efficient one specification is relative
to another. Note that the relative efficiency not only depends on the persistence, a, but
on the horizon as well. Table 2 presents the relative efficiency between the LP GLS and
LP OLS impulse responses for different values of a. The gains from LP GLS can be large
but they are not necessarily monotonic. This is because if the persistence is not that
high, the impulse responses decay to zero quickly making the variance of the impulse
responses small, and the gains from correcting for autocorrelation are not as large.

5. Monte Carlo evidence

In this section, I present Monte Carlo evidence of the finite sample properties of the LP
GLS bootstrap and the multistep (analytical) LP GLS estimator. I compare the follow-
ing six estimators: LP GLS bootstrap (LP GLS Boot), Bias-adjusted LP GLS bootstrap (LP
GLS Boot BA), Analytical LP GLS estimator (LP GLS), Analytical VAR estimator (VAR),
Bias-adjusted VAR bootstrap (VAR Boot BA), LP OLS with equal-weighted cosine HAC
standard errors (Lazarus et al. (2018)) (LP OLS). The abbreviations in the parentheses
are what the estimators are referred to in the figures.

In summary, I find that the LP GLS bootstrap estimators minimizes downside risk.
The bootstrap VAR had the shortest confidence interval on average, but coverage can
vary widely depending on the DGP. LP OLS typically had at least decent coverage, but
coverage typically did not exceed that of its GLS counterparts, and it was relatively inef-
ficient compared to the GLS estimators. The analytical LP GLS estimator does not per-
form as well as the LP GLS bootstraps. The performance of the analytical VAR could vary
greatly from one DGP to the next.

Unless stated otherwise, all simulations use a sample size of 250, which is represen-
tative of a quarterly data set dating back to 1960.11 The comprehensive McCracken and

11Even though the most prominent macro variables such as GDP, inflation, and unemployment date
back to at least 1948, many do not date back that far.
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Ng (2016) data set goes back to 1959 for quarterly and monthly data; so a sample size
of 250 would be a representative lower bound for practically most quarterly macroe-
conomic variables of interest.12 All of the Monte Carlos are generated using normally
distributed errors. All of the methods use the same lag length for each simulation. The
LP GLS methods requires that the VAR residuals are white noise. Unless stated other-
wise, the simulations lag lengths are chosen using a lag length criteria (e.g., AIC, BIC,
HQIC) and then the VAR residuals are tested for autocorrelation using the Ljung–Box Q-
test. The baseline lag length used is AIC, but results are not sensitive to other choices.
If the null of white noise is rejected, a lag is added, the model is reestimated, and the
new residuals are tested for autocorrelation. This process is repeated until the null of
white noise is not rejected for the VAR residuals. This lag length is then used for all of the
estimators.

Simulations were conducted 1000 times, and bootstraps have 5000 replications each.
Unless stated otherwise, only the Wold impulse responses are estimated. Coverage and
average length for 95% confidence intervals are calculated. That is, for each simulation,
I estimated the model for each desired horizon using all of the estimation methods and
then check if the 95% confidence intervals contain the true impulse response. I then
calculate the probability that the 95% confidence interval contains the true impulse re-
sponse over the Monte Carlo simulations, which gives me the coverage for each method
and horizon. I use Efron percentile confidence intervals for all of the bootstrap estima-
tors. For each simulation draw, I also save the length of the 95% interval for the the dif-
ferent methods for each horizon. The lengths are then averaged over each Monte Carlo
simulation for each method and horizon to get the respective average length of the 95%
confidence intervals for each method and horizon. Fifteen horizons are analyzed, which
would be representative of analyzing 4 years of impulse responses for quarterly data.

Even though LP GLS can improve efficiency relative to LP OLS over a wide range of
DGP, this section will focus on situations where truncation bias could be an issue. As
highlighted in Plagborg-Møller and Wolf (2021), truncation bias can hamper the perfor-
mance of a VAR. The data generating processes (DGP) used in the Monte Carlos were
chosen to highlight that in situations where the true DGP may not be well approximated
by a VAR (e.g., situations where partial autocorrelations of the true DGP decay suffi-
ciently slowly), LP GLS is a viable alternative. The first DGP is the following ARMA(1, 1)
from Kilian and Kim (2011),

yt+1 = 0.9yt + εt+1 +mεt ,

where m ∈ {0, 0.25, 0.5, 0.75}, and εt ∼ N(0, 1). Though simple, it is easy to control the
magnitude of the AR and MA component making it instructive. Select results can be
found in Figures 1 and 2. The bias-adjusted VAR bootstrap and analytical VAR perform
the best in terms of coverage, but LP GLS bootstraps perform well, with coverage of at
least approximately 90% at all horizons. LP OLS has slightly better coverage than the

12Even if one is doing IV, the major instruments used in macroeconomics are available for at least 200
observations (Ramey (2016)).
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Figure 1. Coverage rates for 95% confidence intervals and average length for ARMA(1, 1) mod-
els.

analytical LP GLS estimator, but not the bootstraps.13 The analytical LP GLS estimator
is the most efficient, but this is at least partly due to it having the worst coverage. The
LP GLS bootstrap estimators are more efficient than the LP OLS estimator with most of
the efficiency gains coming at the longer horizons. Moreover, the LP GLS estimators are
competitive with the VAR bootstrap in terms of efficiency and are more efficient than
the analytical VAR. The analytical VAR has the second largest average length (second to
LP OLS).14

Though arma models can be pedagogical since they are simple and it is easy to con-
trol the magnitude of the AR and MA component, they may not be able to replicate what
one may encounter in practice. Therefore, I include some empirically calibrated models.
Next, I will present evidence for two empirically calibrated Monte Carlos for a fiscal VAR
and technology VAR. But before I get into the details, it is important that I first discuss a
potential shortcoming in the way we calibrate empirical models in the impulse response
literature. Jordà (2005) and Kilian and Kim (2011) each empirically calibrated a VAR(12)
to give an empirically relevant Monte Carlo that would give a gauge of what is happen-

Figure 2. Coverage rates for 95% confidence intervals and average length for ARMA(1, 1) mod-
els (continued).

13As noted by a referee, LP OLS coverage could improve by being bootstrapped as well.
14Note that for DGP that do not admit finite lag VAR representations, I use the infinite-order analytic VAR

confidence intervals (see Lütkepohl (1990) for details). This choice does not need to be made with the VAR
bootstrap (Goncalves and Kilian (2007)).



1214 Amaze Lusompa Quantitative Economics 14 (2023)

Figure 3. Coverage rates for 95% confidence intervals and average length for fiscal VAR.

ing in practice. The problem with empirically calibrated VARs is that if the model used
to generate the data suffers from truncation bias, the Monte Carlo simulation may mask
the impact truncation bias could have in practice, say, a VAR with truncation bias is used
to generate data in a Monte Carlo. If the coverage in that Monte Carlo is great, one might
conclude that the truncation bias is not an issue. Obviously, we know truncation bias
can be an issue because we know what the true impulse responses are. In practice, when
empirically calibrating a Monte Carlo, the results of the Monte Carlo are only as good as
the calibration, and in practice we do not know how good the calibration is. To protect
against this problem, I estimate empirically calibrated VARs with lag lengths longer than
what is typically used in practice in order to protect against truncation bias.15

For the quarterly data sets, researchers will typically not include more than 1 or 2
years worth of lags, so I estimate a VAR(16). The first empirically calibrated VAR is a fis-
cal VAR that includes growth rates of real GDP per capita and real spending per capita,
which are the baseline variables used in fiscal multiplier analysis (Ramey and Zubairy
(2018)). The data runs from 1947Q2–2019Q4. Select results are presented in Figure 3.
There is little to no efficiency gain, if not a slight efficiency loss, from using the LP GLS
estimators relative to LP OLS for this DGP. The VAR estimators can be much more effi-
cient than the LP estimators, particularly at longer horizons. However, this is partly due
to the VAR estimators having coverage distortions while the LP GLS estimators as well as
the LP OLS estimator have approximately nominal coverage throughout. The VAR esti-
mators had coverage drop below 60% for most of impulse responses by horizon 15.

The second empirical Monte Carlo is a technology VAR that includes growth rates
of labor productivity, real GDP per capita, real stock prices per capita, and total factor
productivity. These are the baseline variables used in Ramey (2016). The data runs from
1947Q3–2015Q2. Again, I estimate a VAR(16) and use that to generate the data. Select
results are presented in Figure 4. Similar to the fiscal VAR, there is little to no efficiency
gain, if not a slight efficiency loss, from using the LP GLS estimators relative to LP OLS
for this DGP. The VAR estimators are more efficient, particularly at longer horizons, but
again the VARs have severe coverage distortions, where by horizon 15, most impulse re-
sponses had coverage rates drop below 50%. The LP estimators have coverage of at least

15Alternatively, I could also generate the model using LP to estimate the Wold coefficients up to q hori-
zons out and generate data based off of that MA(q). Unfortunately, it would be more cumbersome since it
would require more choices in the setup, and hence more robustness checks.
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Figure 4. Coverage rates for 95% confidence intervals and average length for technology VAR.

90% for essentially all impulse responses at all horizons, with the occasional response
dipping into the mid to high 80s.

Though including more lags may help protect against truncation bias when calibrat-
ing the VAR, it could be the case that it still does not accurately approximate the true
DGP, making empirically calibrated VAR Monte Carlos not that informative about what
may occur in practice. As an alternative, I include an estimated structural model. The
following is the standard 3 equation New Keynesian model of a short term interest rate,
output, and inflation from An and Schorfheide (2007). Select results are presented in
Figure 5. All of the estimators generally had at least 90% coverage for all parameters. The
average length for the LP GLS estimators are quite a bit shorter than the LP OLS estima-
tor, and they are competitive with the VAR bootstrap. The average length of the analytic
VAR confidence intervals are much wider than the bootstrap VAR confidence intervals
and even the LP GLS intervals.

As discussed earlier, Monte Carlos are only as informative about what may occur
in practice as they are good approximations of actual DGP. Another way to analyze the
impact truncation bias may have on inference would be to generate data from theoret-
ical models that have notoriously given VARs trouble. One theoretical model shown to
have potential truncation bias issues is the standard medium scale DSGE model aug-
mented with news shocks about future productivity from Sims (2012). The model is too

Figure 5. Coverage rates for 95% confidence intervals and average length for the 3-equation
New Keynesian model.
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Figure 6. Coverage rates for 95% confidence intervals and average length for medium scale
DSGE model augmented with news.

detailed to be expanded on here, but details can be found in Sims (2012).16 Select results
are presented in Figure 6. With the exception of the analytical VAR estimator, all of the
estimators have below nominal coverage throughout, though coverage rates are compa-
rable for most of those estimators. In terms of efficiency, the analytical VAR is the least
efficient, but this is probably due in part to the analytical VAR sometimes having proper
coverage while the other estimators do not. The LP GLS bootstrap estimators are more
efficient than LP OLS, with large efficiency gains coming at longer horizons. The analyt-
ical LP GLS estimator is the most efficient of the LP estimators, but it also has the worst
coverage. The VAR bootstrap estimator is the most efficient of them all, but arguably has
the worst coverage.17

It is well known that VARs have trouble approximating real business cycle models
(RBC) with technology shocks and long-run restrictions (see Chari, Kehoe, and McGrat-
tan (2008), Poskitt and Yao (2017), and references therein). For the final DGP, I estimate
the VARMA(1, 1) from the RBC model used in Poskitt and Yao (2017). Specific details of
the RBC model can be found in Poskitt and Yao (2017), but the VARMA(1, 1) is

yt+1 =A1yt + εt+1 +M1εt , εt ∼ N(0, �),

where

A1 =
[

0.9413 1.0446
0.0006 0.8045

]
, M1 =

[
−0.2498 −0.9173
−0.1924 0.7065

]
,

� =
[

0.5186 0.4058
0.4058 0.4009

]
× 10−3.

The literature in general only calculates the bias in the impulse responses for these mod-
els and does not analyze coverage or average length of different estimation methods, so
this analysis will be informative about the properties of different estimators for these
models. In order to impose long-run restrictions for LP, one must decide on the max

16Specifically, “The Full Model with One Period Anticipation” is used.
17Though not shown here, simply including 2 years worth of lags improves coverage for all estimators.
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Figure 7. Coverage rates for 95% confidence intervals and average length for RBC VARMA.

horizon to be used when calculating the long-run restrictions.18 There is a dearth of re-
search on the topic, and the problem will not be solved in this paper. To choose the max
horizon to be used when calculating the long-run restrictions, I used the ad hoc method
of calculating the cumulative impulse responses (of the true Wold coefficients) at dif-
ferent horizons, and gauging how many horizons it takes for the cumulative impulse
responses to essentially converge to the true long-run cumulative impulse responses.
Taking into account that the sample size for the DGP is 250, I decided on using a max
horizon of 150.19 Due to it already being well established, this DGP can cause trunca-
tion bias issues. I do not do lag length selection and just include 2 years worth of lags.20

Hours response to a technology shock is presented in Figure 7.
All of the estimators had below nominal coverage for at least the first couple of hori-

zons. The LP GLS bootstrap estimators have close to above nominal coverage the rest
of the way while the VAR bootstrap and analytical VAR estimator essentially have cover-
age distortions throughout. The analytical LP GLS and LP OLS estimators perform worse
than the LP GLS bootstrap estimators in terms of coverage. The VAR estimators have the
shortest average length for all of the estimators, followed by the analytical LP GLS esti-
mator. The LP GLS bootstrap estimators are more efficient than the LP OLS estimator
for all but the first 3 horizons.

In summary, I find that the LP GLS bootstrap estimators are the best at minimizing
downside risks. They were generally more efficient than the LP OLS estimator (unless the
LP OLS estimator was underestimating uncertainty).21 The analytical LP GLS estimator
did not perform as well as its bootstrap counterparts, but it was generally more efficient
than LP OLS. The VAR bootstrap is the most efficient out of the estimators, but cover-
age can vary widely depending on the DGP. As highlighted in the empirically calibrated

18This is not an issue with the VAR since the long-run cumulative impulse response can be calculated
with just the estimated VAR coefficients.

19Decreasing the max horizon made coverage worse for a couple of the impulse responses at some of the
earlier horizons (e.g., 1–4), but the qualitative results were not sensitive to using 60, 70, or 100 horizons for
example.

20Poskitt and Yao (2017) show that popular lag length criteria are essentially worthless when it comes to
this DGP. Monte Carlo evidence indicates that there are sever coverage distortions for all estimators when
using AIC, BIC, and HQIC.

21There were cases where the OLS estimator had shorter confidence intervals, but the coverage was be-
low the nominal level.
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Monte Carlos, it can easily be the case that the VAR has truncation bias issues that leads
to poor coverage rates. Performance of the analytical VAR varied widely, sometimes hav-
ing excessive average confidence interval length, comparable or greater than LP OLS.

6. Concluding remarks

I show that the autocorrelation process of LP residuals can be written as a VMA process
of the Wold errors and impulse responses, and I derive a consistent GLS estimator for
LP. In Monte Carlo simulations, I show that estimating LP with GLS can lead to more
efficient estimates than LP OLS. The efficiency of LP GLS relative to LP OLS is not proved
uniformly in this paper, though it is shown for the homoskedastic AR(1) case.

The results in this paper have many potential extensions. Since the autocorrelation
process for the horizon h LP is shown to be a VMA(h− 1) process of the Wold errors and
impulse responses, this could be used to improve LP OLS bootstrapping. This knowl-
edge could also be used to avoid choosing a HAC procedure and associated difficult-
to-interpret tuning parameters for LP OLS by rearranging the score as was done in the
GLS case. It may also be useful to extend LP GLS to a nonlinear (in the variables) or
nonparametric setting. One potential solution would be to extend polynomial LP, which
are motivated by a nonlinear version of the Wold representation (see Jordà (2005, Sec-
tion 3) for more details). If one does not want to make assumptions about the functional
form or the model, the second potential solution would be to extend nonparametric LP.
Lastly, since LP are direct multistep forecasts, the results in this paper have the potential
to improve the forecast accuracy of direct multistep forecasts.
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