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1. Introduction

Rational expectations (RE) is the workhorse approach for modeling expectations in
DSGE models, and it has been the dominant framework in macroeconomic modeling
for several decades since the work of Muth (1961) and Lucas (1972). The RE paradigm
is a model-consistent approach where, by construction, agents’ expectations are on av-
erage confirmed by the realizations of the model. Nevertheless, some drawbacks of RE
models have been highlighted in recent literature. One of these shortcomings is match-
ing the persistence of macroeconomic variables. To do so, RE models typically need to
be augmented by highly persistent exogenous shocks or other sources of persistence
such as consumption habits and indexation in prices and wages. Agents in RE models
are assumed to know a large number of state variables, shocks, and parameters to form
their expectations. In medium- and large-scale DSGE models, such assumptions lead
to implausibly large information sets. Some studies have also highlighted the failure of
RE models to match expectations data from standard surveys (Coibion, Gorodnichenko,
and Kamdar (2018)).

In this paper, we propose a Behavioral Learning Equilibrium (BLE) as a plausible
and parsimonious alternative to RE that matches persistence and fits with survey data.
A BLE is one of the most parsimonious misspecification equilibria, where agents use a
simple forecasting model because the economy is too complex to fully understand its
structure. Along a BLE, agents forecast the states of the economy by simple, but optimal
univariate AR(1) rules.1 The AR(1) rules are optimal in the sense that the mean and the
first-order autocorrelation of all forecasts coincide with the actual mean and the first-
order autocorrelation of the realizations.

Hommes and Zhu (2014) applied the BLE concept in the simplest framework of a lin-
ear univariate model driven by autocorrelated shocks. In this paper, we extend it to mul-
tivariate linear systems and provide a method for approximating and estimating a BLE in
a general setup. We use Bayesian methods to estimate BLE in the medium-scale Smets–
Wouters (2007) DSGE model and compare the in-sample fit and the out-of sample fore-
casting performance to the Rational Expectations Equilibrium (REE) benchmark and al-
ternative learning models. An advantage of the BLE model, relative to adaptive learning
models, is that it places significantly more restrictions on the agents’ forecasting model.
As argued in Gaus and Gibbs (2018), adaptive learning models typically achieve an im-
provement in model fitness by breaking the cross-equation restrictions of the underly-
ing REE model. A BLE disciplines the degree of breaking cross-equation restrictions, but
still achieves significant improvement in model fitness.

1Different types of misspecification equilibria have been proposed in the literature. A nonexhaustive list
includes Restricted Perceptions Equilibria (RPE), which generally refer to underparameterized forecasting
rules (see, e.g., Sargent (1991), Evans and Honkapohja (2001), Branch (2004), Adam (2007), Bullard, Evans,
and Honkapohja (2008), Lansing (2009), Branch and Evans (2010), Lansing and Ma (2017), Audzei and Slo-
bodyan (2022), and Natural Expectations (Fuster, Laibson, and Mendel (2010)) where agents use autoregres-
sive models with lower orders than implied by the correct model. The closest misspecification equilibrium
to our work is that of Consistent Expectations Equilibria (CEE) (Hommes and Sorger (1998)), where agents
use a simple linear AR(1) rule in a nonlinear model.
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One of the appealing features of RE models is that they remove all parameters and
degrees of freedom associated with expectations. RE are model-consistent and are de-
termined by the structural parameters. A BLE is also subject to a set of restrictions and,
therefore, it is parameter-free and completely pinned down by structural parameters.
In this sense, a BLE is an equilibrium model where the parameters of the AR(1) rules
have been set optimally akin to a REE. The models differ in terms of the information set
of agents’ knowledge about the underlying system.2 In the linearized DSGE framework,
REE and BLE are both linear equilibrium models but they satisfy different fixed-point
conditions. While REE assumes perfect knowledge of the underlying multivariate linear
structure, BLE imposes observable consistency restrictions that the first two moments,
the mean and the first-order autocorrelation, must satisfy. These conditions imply that
the optimal AR(1) rules are unbiased and their forecast errors are uncorrelated with pre-
dictor variables, but these observable restrictions are less strong than the perfect fixed-
point conditions for model-consistent REE.

Our paper makes theoretical and empirical as well as policy contributions. In terms
of theoretical contributions, we derive existence conditions of BLE in a general linear
framework and stability conditions for a natural learning process of BLE, the sample
autocorrelation (SAC-)learning. We then apply these results to the simplest New Keyne-
sian (NK) model (Woodford (2003a)), show that the Taylor principle is sufficient for the
existence of a BLE and study its E-stability under SAC-learning.

In terms of an empirical application, we use the Smets–Wouters (2007) DSGE model
as a test ground for a horse race between BLE, REE, several constant-gain recursive least
squares models (pseudo MSV, AR(2), and VAR(1)), and SAC-learning by comparing the
models across a multitude of dimensions. In particular, we compare the models in terms
of in-sample fitness and pseudo out-of-sample forecasting performance. We further dis-
cuss their performance to match short-term inflation expectations by estimating the
models with data from the Survey of Professional Forecasters (SPF). We find that the
BLE model generally improves upon the REE benchmark in terms of both in-sample fit-
ness and pseudo out-of-sample forecasting performance, while learning models tend to
outperform the equilibrium models BLE and REE. Among the learning models, we find
that SAC-learning yields the best model fitness and matches short-term inflation survey
expectations data well.

In terms of policy application, we investigate optimal smoothing within the class
of standard Taylor rules and find that optimal interest rate smoothing is substantially
lower in the BLE model than in the REE model. This result extends to SAC-learning, while
the pseudo MSV-learning model yields an optimal smoothing degree closer to the REE
benchmark. This suggests that when expectations are persistent and backward-looking,
as in the case of BLE, the central bank does not need to introduce more persistence and
history-dependence through interest rate smoothing, as in the case of REE. We show
that the deployment by agents of simple backward-looking rules to forecast macroeco-
nomic aggregates makes the interest rate dependent on past data, and thus adds history

2We introduce BLE by taking the microfoundations of DSGE models as given. We elaborate further on
this point in Section 2 where BLE is formally introduced.
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dependence in policy rate setting. When agents are purely forward-looking instead, as
in REE, interest rate smoothing is necessary in order for policy-rate decisions to become
history dependent.3

At the time of the writing of this paper, major central banks like the Federal Reserve
and the European Central Bank are reviewing their strategies. The fear of failing to an-
chor inflation expectations well has led central banks to broaden the range of models
used for the analysis of monetary policy transmission. In particular, the analysis of mon-
etary policy transmission is deemed necessary in models where expectations are no
longer rational but feature bounded rationality and backward-looking behavior.4 This
reveals that our analysis lies at the heart of current policy debates since we estimate
one of the most prominent models in central banking by accounting for various types of
learning as a deviation from the rational expectations benchmark.

The paper is organized as follows. Section 2 focuses on theory. It introduces the main
concepts of BLE in a general n-dimensional setup, presents the existence and stabil-
ity conditions of BLE in a multivariate linear framework, applies BLE in the baseline
3-equation NK model, and presents a numerical method to approximate an E-stable
BLE. Section 3 is an empirical application using the Smets–Wouters NK model to run
a horse race between different equilibrium and learning models using a Bayesian esti-
mation methodology. Section 4 discusses a policy application of optimal interest rate
smoothing, comparing the equilibrium and some of the learning models. Finally, Sec-
tion 5 concludes.

Related literature

Applications of adaptive learning in macroeconomic models have been of great interest
to policymakers and academics alike. Our paper contributes to this growing line of liter-
ature; see, for example, Evans and Honkapohja (2001), Branch and Evans (2006), Bullard
(2006), Woodford (2013), and Angeletos and Lian (2016) for extensive reviews.5

A shortcoming of REE models that has received attention in the literature is their
failure to generate realistic expectation dynamics and being at odds with data coming
from survey expectations. For example, Canova and Gambetti (2010) revisit the great
moderation period and examine the role of expectations using reduced form methods.
By using data from SPF, they find an important role for expectations that did not sub-
stantially change over time. Adam and Padula (2011) estimate a forward-looking New

3In the literature on the design of optimal monetary policy under rational expectations, history depen-
dence is also obtained through price level targeting instead of inflation targeting. For a more detailed dis-
cussion, see Giannoni (2014) and the references therein.

4In her speech on September 30, 2020, at the ECB and its watchers XXI conference, Christine Lagarde
alluded to the relevance of models that depart from the rational expectations assumption by stating, “while
make-up strategies may be less successful when people are not perfectly rational in their decisions—which is
probably a good approximation of the reality we face—the usefulness of such an approach could be exam-
ined.”

5There is a large body of literature on the analysis of learning in macroeconomic models (see Huang,
Liu, and Zha (2009), Marcet and Nicolini (2003), Sargent, Williams, and Zha (2009) and Williams (2003),
among others.) In this paper, we restrict ourselves to the literature on the analysis of monetary policy under
learning.
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Keynesian Phillips Curve (NKPC) using data from the SPF (Croushore (1993)) as a proxy
for expected inflation and obtain reasonable estimates for the slope of the NKPC, which
is an improvement over the REE model. Along similar lines, Del Negro and Eusepi (2011)
use inflation expectations as an observed variable in their model estimations and find
evidence that the survey of expectations contains information not explained by other
macroeconomic variables. Gennaioli, Ma, and Shleifer (2016) show, by using survey ex-
pectations, that corporate investment plans depend on CFOs’ expectations of earnings
growth. Forecast errors in CFOs’ expectations are predictable, which provides evidence
in support of small extrapolative forecasting rules. Fuhrer (2017) shows that embedding
survey data into DSGE models helps in several directions, such as reducing reliance on
ad hoc sources of persistence like habit and indexation. A common feature in these stud-
ies is that they document the shortcomings of REE models along the expectations di-
mension and argue for the usefulness of incorporating data from survey expectations
into these models.

Much of the literature on adaptive learning focuses on dynamics under MSV-
learning of a correctly specified model (see, e.g., Marcet and Sargent (1989), Evans and
Honkapohja (2001), Milani (2007)) and studies conditions under which the learning pro-
cess converges on the underlying REE. Orphanides and Williams (2004) study monetary
policy under MSV-learning and find that optimal policy is typically more aggressive to
inflation under learning. Milani (2007, 2011) considers the estimation of the baseline NK
model and finds that the model fit is improved under learning, while the dependence
on some structural parameters such as habit and indexation is substantially reduced.
Berardi and Galimberti (2017) consider model specifications with time-varying gains
under MSV-learning and find higher estimates for the gain parameter on inflation.

In a related study, Gaus and Gibbs (2018) consider models with Euler-equation
learning (Evans and Honkapohja (2003)) and infinite-horizon learning (Preston (2005))
to compare with the REE benchmark. They document that introducing adaptive learn-
ing in DSGE models leads to a near-universal improvement in model fit, while the esti-
mated parameter bands remain mostly unchanged compared to REE. Gaus and Gibbs
(2018) then compare their learning models to fixed beliefs (FB) models and show that
much of the improved model fit is due to relaxing the cross-equation restrictions of
REE. Our approach complements and extends their analysis in several dimensions. First,
Gaus and Gibbs (2018) do not consider misspecified rules but use FB with a correctly
specified forecasting function (the MSV solution) with fixed parameters, which they set
equal to the estimated REE belief parameters. Our BLE concept with an AR(1) forecast-
ing rule is one of the most parsimonious misspecified rules (using only a constant [the
mean] and the lagged state variable, and no exogenous shocks). Second, we introduce a
fixed-beliefs equilibrium, where the parameters of the AR(1) rule are optimized using the
behavioral restrictions imposed by BLE, namely that the mean and first-order autocorre-
lations are correct. Hence, we study whether the behavioral equilibrium cross-equation
restrictions of a BLE improve the model fit. Third, BLE comes with a natural learning
scheme: SAC-learning. Therefore, we can disentangle the empirical fit of the behavioral
BLE restrictions and its SAC-learning process and study whether learning adds to im-
proving the empirical fit.
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A growing number of papers also consider small and/or misspecified forecasting
rules as a convenient alternative to RE and MSV-learning. Lansing (2009) constructs a
consistent expectations equilibrium (CEE), similar in spirit to our BLE concept, where
agents use the optimal Kalman gain within their class of misspecified models. Along
similar lines, Lansing and Ma (2017) use a CEE concept to study exchange rate dynamics.
Fuster, Hebert, and Laibson (2010, 2012) and Fuster, Laibson, and Mendel (2010) study
natural expectations characterized by an underestimation of the degree of mean rever-
sion, which arises when agents use lower-order autoregressive models than is warranted
by the correct data generating process. As such, when applied to models of higher-order
autoregressive processes, a BLE may be seen as the simplest case of natural expecta-
tions. Ormeño and Molnár (2015) investigate whether an adaptive learning model can
fit the macroeconomic and survey data simultaneously and find that this is true only
when small forecasting rules are considered. The most relevant study for this paper is
Slobodyan and Wouters (2012a), where the authors show that an AR(2) forecasting rule
under Kalman gain learning substantially improves the model fit without a large ef-
fect on parameter estimates. As such, this paper can be seen as extending their work
in several directions, where we disentangle the effects of the fixed-equilibrium beliefs,
the timing of expectations and the learning algorithm on the model fit. Audzei and Slo-
bodyan (2022) consider a model where agents use misspecified models, and they are
allowed to evaluate and change their forecasting models over time. They find that in
some parameter regions, agents find it optimal to use their choice of a (misspecified)
AR(1) rule. Gelain, Iskrev, Lansing, and Mendicino (2019) investigate hybrid expecta-
tions in the Smets and Wouters (2007) model, where some agents use moving average
rules. Hommes and Lustenhouwer (2019) consider a NK model under heterogeneous
expectations, with fundamentalists who believe in the target of the central bank versus
agents with naive expectations who believe in a random walk. Along similar lines, some
studies investigate ARIMA type forecasting rules in an experimental setup with human
subjects and find evidence of small forecasting rules; see, for example, Adam (2007),
Beshears, Choi, Fuster, Laibson, and Madrian (2013), and Assenza, Heemeijer, Hommes,
and Massaro (2021).

There is much literature on optimal monetary policy rules when agents are learning.
Evans and Honkapohja (2003, 2006) analyze the effects of learning on stability when
monetary policy is conducted according to optimal policy rules under discretion and
commitment and show that forward looking rules, where the policymaker observes and
incorporates agents’ expectations, can solve the problem of instability due to learning.6  

Orphanides and Williams (2005) show that adaptive learning increases inflation persis-
tence, which warrants a stronger policy response to inflation in order to mitigate the
effects. Along similar lines, Preston (2006) reports that when monetary policy responds
to private agents’ learning behavior and decision rules, instability problems associated

6In their seminal paper, Bullard and Mitra (2002) examine the stability of the REE under variants of the
standard Taylor rule and show that even when the system displays a unique, stable equilibrium under ra-
tional expectations, the parameters of the policy rule have to be chosen appropriately to ensure stability
under learning.
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with learning dynamics are largely avoided. Finally, Gaspar, Smets, and Vestin (2010) an-
alyze how the optimal inflation and output trade-off changes when agents learn adap-
tively and show that the optimal targeting rule under learning resembles the optimal
rule under commitment with rational expectations. Our contribution to this discussion
in the literature is that we restrict our focus on a specific interest rate rule that captures
the trade-off between interest rate smoothing and inflation/output gap stabilization and
analyze how this trade-off changes under learning. Contrary to the literature, we expand
the loss function of the central bank with an interest rate stabilization objective. We then
derive numerically the coefficients capturing the trade-off between smoothing and in-
flation/output gap stabilization that minimizes the loss function for various weights of
the interest rate stabilization objective, both under learning and under rational expec-
tations. We show that interest rate fluctuations are more costly under learning since the
central bank has to give up on inflation and output stabilization faster as the weight on
interest rate stabilization rises.

2. BLE in a multivariate framework

Hommes and Zhu (2014) introduced BLE in the simplest setting, a one-dimensional lin-
ear stochastic model driven by an exogenous linear stochastic AR(1) process. In this pa-
per, we generalize BLE to n-dimensional (linear) stochastic models driven by exogenous
linear stochastic AR(1) processes of multiple shocks. To ease the exposition, we initially
follow the presentation in Hommes and Zhu (2014) but generalize their 1-dimensional
model to an n-dimensional framework. In addition, most macroeconomic models in-
clude lagged state variables through features such as interest rate smoothing, habit
formation in consumption, investment adjustment costs, or indexation in prices and
wages. Therefore, we further extend the model adding lagged state variables.

Let the law of motion of the economy be given by the stochastic difference equation

xt = F
(
xet+1, xt−1, ut , vt

)
, (2.1)

where xt is an n × 1 vector of endogenous variables denoted by [x1t , x2t , � � � , xnt ]′ and
xet+1 is the expected value of x at date t + 1. Expectations may be nonrational. The map
F is a continuous n-dimensional vector function, ut is a vector of exogenous stationary
variables, and vt is a vector of white noise disturbances.

Agents are boundedly rational and do not know the exact form of the actual law
of motion (2.1). They only use a simple, parsimonious forecasting model, a univariate
AR(1) process for each variable to be forecasted.7 Thus, agents’ perceived law of motion
(PLM) is assumed to be the simplest VAR model with minimum parameters, that is, a
restricted VAR(1) process

xt =α+β(xt−1 −α) + δt , (2.2)

7As shown in Enders (2008), parameter uncertainty increases as the model becomes more complex, and
hence an estimated AR(1) model may forecast a real ARMA(2,1) process better than an estimated ARMA(2,1)
model. Numerous empirical studies show that overly parsimonious models with little parameter uncer-
tainty can provide better forecasts than models consistent with the more complex actual data-generating
process (e.g., Nelson (1972), Stock and Watson (2007), Clark and West (2007)).
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where α is a vector denoted by [α1, α2, � � � , αn]′, β is a diagonal matrix8 denoted by⎡⎢⎢⎢⎢⎣
β1 0 · · · 0
0 β2 · · · 0
...

. . .
...

0 0 · · · βn

⎤⎥⎥⎥⎥⎦
with βi ∈ (−1, 1), and {δt } is a white noise process; α is the unconditional mean of xt ,
and βi is the first-order autocorrelation coefficient of variable xi. Given the perceived
law of motion (2.2), the 2-period ahead forecasting rule for xt+1 that minimizes the
mean-squared forecasting error is

xet+1 = α+β2(xt−1 −α). (2.3)

Combining the expectations (2.3) and the law of motion of the economy (2.1), we obtain
the implied actual law of motion (ALM),

xt = F
(
α+β2(xt−1 −α), xt−1, ut , vt

)
. (2.4)

In the case where the ALM (2.4) is stationary, let the variance-covariance matrix � (0) :=
E[(xt − x)(xt − x)′] and the first-order autocovariance matrix � (1) := E[(xt − x)(xt+1 −
x)′], where x is the mean of xt . Let � be the diagonal matrix in which the ith diagonal
element is the variance of the ith process, that is, � = diag[γ11(0), γ22(0), � � � , γnn(0)],
where γii(0) is the ith diagonal entry of � (0). Let L be the diagonal matrix in which
the ith diagonal element is the first-order autocovariance of the ith process, that is,
L = diag[γ11(1), γ22(1), � � � , γnn(1)], where γii(1) is the ith diagonal entry of � (1). Let G
denote the diagonal matrix in which the ith diagonal element is the first-order autocor-
relation coefficient of the ith process xi,t . Hence,

G= L�−1. (2.5)

Behavioral learning equilibrium (BLE) Extending on Hommes and Zhu (2014) and us-
ing the definitions of coefficients and matrices above, the concept of BLE is generalized
as follows.

Definition 2.1. A vector (μ, α, β) where μ is a probability measure, α is a vector, and
β is a diagonal matrix with βi ∈ (−1, 1) (i = 1, 2, � � � , n) is called a Behavioral Learning
Equilibrium (BLE) if the following three conditions are satisfied:

S1 The probability measureμ is a nondegenerate invariant measure for the stochastic
difference equation (2.4);

8Chung and Xiao (2013) also argue that the simple AR(1) model is more likely to prevail in reality because
agents typically have restricted knowledge about the underlying system. In addition, short-term forecasts
based on an AR(1) model are often better than more general VAR models because in more general VAR
models too many parameters need to be estimated. Hence, coefficient uncertainty increases, leading to a
deterioration in forecasting performance.
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S2 The stationary stochastic process defined by (2.4) with the invariant measure μ
has an unconditional mean α, that is, the unconditional mean of xi is αi (i =
1, 2, � � � , n);

S3 Each element xi for the stationary stochastic process of x defined by (2.4) with the
invariant measure μ has the unconditional first-order autocorrelation coefficient
βi (i= 1, 2, � � � , n), that is, G= β, withG defined in (2.5).

In other words, a BLE is characterized by two natural observable consistency re-
quirements: the unconditional means and the unconditional first-order autocorrela-
tion coefficients generated by the actual (unknown) stochastic process (2.4) coincide
with the corresponding statistics for the perceived linear VAR(1) process (2.2), as given
by the parameters α and β. This means that in a BLE, agents correctly perceive the
two simplest and most important statistics, the mean and first-order autocorrelation
(i.e., persistence) of each relevant variable of the economy, without fully understanding
its structure and recognizing all explanatory variables and cross-correlations. A BLE is
parameter-free, as the two parameters of each linear forecasting rule are pinned down
by simple and observable statistics. Hence, agents do not fully understand the (linear)
structure of the stochastic economy, that is, they do not observe the shocks and do not
take the cross-correlations of state variables into account. Rather they use a parsimo-
nious, but optimal univariate AR(1) forecasting rule for each state variable. A simple BLE
may be a plausible outcome of the coordination process of expectations of a large pop-
ulation.9

Furthermore, along a BLE the orthogonality condition

E
[
xi,t − αi −βi(xi,t−1 − αi )

] = 0,

E
{[
xi,t − αi −βi(xi,t−1 − αi )

]
xi,t−1

} = E
{[
xi,t − αi −βi(xi,t−1 − αi )

]
(xi,t−1 − αi )

} = 0

is satisfied. That is, the forecast αi + βi(xi,t−1 − αi ) is the linear projection of xi,t on the
vector (1, xi,t−1 )′. For each variable, agents cannot detect the correlation between the
forecasting error xi,t−αi−βi(xi,t−1 −αi ) and the vector (1, xi,t−1 )′ in the forecast model.
The linear projection produces the smallest mean-squared error among the class of lin-
ear forecasting rules (e.g., Hamilton (1994)). Therefore, for each variable, agents use the
optimal forecast within their class of univariate AR(1) forecasting rules (Branch (2004)).

Notice that BLE is introduced by taking as given the law of motion of the economy.
In other words, we do not derive the microfoundations of the model under BLE assump-
tions, but rather take the REE-consistent law of motion as given and introduce the new
equilibrium concept. In principle, resolving the microfoundations could generate differ-
ences in the law of motion. In this paper, we abstract away from these considerations.10

9Laboratory experiments within the NK framework provide empirical support of the use of simple uni-
variate AR(1) forecasting rules to forecast inflation and output gap (Adam (2007), Pfajfar and Žakelj (2014),
Assenza et al. (2021)). See also Hommes (2021) for a recent survey of laboratory evidence for simple forcast-
ing heuristics such as AR(1) rules. In Section 3.4, we will see that BLE also fits well with SPF data.

10For example, Hommes and Zhu (2014) solve for the microfoundations of a simple New Keynesian
model and find that the reduced-form equation has a slightly different functional form; see the Online
Appendix, Section 3.
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Sample autocorrelation learning In the above definition of BLE, agents’ beliefs are de-
scribed by the linear forecasting rule (2.3) with parameters α and β fixed at their optimal
values. However, the parameters α and β are usually unknown to agents. In the adap-
tive learning literature, it is common to assume that agents behave like econometricians
using time series observations to estimate the parameters as new observations become
available. Following Hommes and Sorger (1998), we assume that agents use sample au-
tocorrelation learning (SAC-learning) to learn the parameters αi and βi, i = 1, 2, � � � , n.
That is, for any finite set of observations {xi,0, xi,1, � � � , xi,t }, the sample average is given
by

αi,t = 1
t + 1

t∑
k=0

xi,k, (2.6)

and the first-order sample autocorrelation coefficient is given by

βi,t =

t−1∑
k=0

(xi,k − αi,t )(xi,k+1 − αi,t )
t∑

k=0

(xi,k − αi,t )2

. (2.7)

Hence, αi,t and βi,t are updated over time as new information arrives. It is easy to check
that independently of the choice of the initial values (xi,0, αi,0, βi,0 ), it always holds that
βi,1 = −1

2 and that the first-order sample autocorrelation βi,t ∈ [−1, 1] for all t ≥ 1. Sim-
ilar to Hommes and Zhu (2014), we define

Ri,t = 1
t + 1

t∑
k=0

(xi,k − αi,t )2.

Then SAC-learning is equivalent to the following recursive dynamical system:11⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi,t = αi,t−1 + 1
t + 1

(xi,t − αi,t−1 ),

βi,t = βi,t−1 + 1
t + 1

R−1
i,t

[
(xi,t − αi,t−1 )

(
xi,t−1 + xi,0

t + 1
− t2 + 3t + 1

(t + 1)2 αi,t−1

− 1

(t + 1)2xi,t

)
− t

t + 1
βi,t−1(xi,t − αi,t−1 )2

]
,

Ri,t =Ri,t−1 + 1
t + 1

[
t

t + 1
(xi,t − αi,t−1 )2 −Ri,t−1

]
.

(2.8)

The actual law of motion under SAC-learning is therefore given by

xt = F
(
αt−1 +β2

t−1(xt−1 −αt−1 ), xt−1, ut , vt
)
, (2.9)

11The system in (2.8) is a decreasing gain algorithm, where all observations receive equal weight and,
therefore, the weight of the latest observation decreases as the sample size grows. There is also a constant
gain correspondence of SAC-learning, where past observations are discounted at a geometric rate. This can
be obtained by replacing the weights 1

t+1 by some (small) positive constant κ. See the Online Appendix to
Hommes and Zhu (2014) for further details.
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with αi,t , βi,t as in (2.8). In Hommes and Zhu (2014), F is a one-dimensional linear func-
tion. In this paper, F may be an n-dimensional linear vector function and includes the
lagged term xt−1.

2.1 Main results in a multivariate linear framework

Assume that a reduced form model is an n-dimensional linear stochastic process xt
driven by an exogenous VAR(1) process ut . More precisely, the actual law of motion of
the economy is given by the linear system

xt = F
(
xet+1, xt−1, ut , vt

) = b0 + b1x
e
t+1 + b2xt−1 + b3ut + b4vt , (2.10)

ut = a+ ρut−1 + εt , (2.11)

where xt is an n×1 vector of endogenous variables, b0 and a are vectors of constants, b1,
b2, and b4 are n×nmatrices of coefficients, b3 is an n×mmatrix, ρ is anm×mmatrix, ut
is anm×1 vector of exogenous variables, which is assumed to follow a stationary VAR(1)
as in (2.11), and vt is an n×1 vector of i.i.d. stochastic disturbance terms with mean zero
and finite absolute moments and with variance-covariance matrix 	v. Hence, all of the
eigenvalues of ρ are assumed to be inside the unit circle. In addition, εt is assumed to be
anm× 1 vector of i.i.d. stochastic disturbance terms with mean zero and finite absolute
moments. εt is independent of vt , and its variance-covariance matrix is 	ε.

Rational expectations equilibrium

Assume that agents are rational. The perceived law of motion (PLM) corresponding to
the minimum state variable REE of the model is

x∗
t = c0 + c1x

∗
t−1 + c2ut + c3vt . (2.12)

Assuming that shocks ut are observable when forecasting xt+1, the 1-step ahead forecast
is

Etx
∗
t+1 = c0 + c2a+ c1x

∗
t + c2ρut , (2.13)

and the corresponding actual law of motion is

x∗
t = b0 + b1

(
c0 + c2a+ c1x

∗
t + c2ρut

) + b2xt−1 + b3ut + b4vt . (2.14)

The REE is the fixed point of

c0 − b1c1c0 − b1c0 = b0 + b1c2a, (2.15)

c1 − b1c
2
1 = b2, (2.16)

c2 − b1c1c2 − b1c2ρ = b3, (2.17)

c3 − b1c1c3 = b4. (2.18)
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A straightforward computation (see Appendix A.1 in the Online Supplementary Mate-
rial (Hommes, Mavromatis, Özden, and Zhu (2023)) shows that the mean of the REE x∗
satisfies

x∗ = (I − b1 − b2 )−1[b0 + b3(I − ρ)−1a
]
, (2.19)

where I denotes a conformable identity matrix throughout the paper. In the special case
of ρ = ρI and b2 = 0, the rational expectations equilibrium x∗

t satisfies12

x∗
t = (I − b1 )−1b0 + (I − b1 )−1b1(I − ρb1 )−1b3a+ (I − ρb1 )−1b3ut + b4vt . (2.20)

Thus, its unconditional mean is

x∗ =E(
x∗
t

) = (1 − ρ)−1(I − b1 )−1[b0(1 − ρ) + b3a
]
. (2.21)

Its variance-covariance matrix is

	x∗ = E
[(
x∗
t − x∗)(x∗

t − x∗)′]
= (

1 − ρ2)−1
(I − ρb1 )−1b3	ε

[
(I − ρb1 )−1b3

]′ + b4	vb
′
4. (2.22)

Furthermore, the first-order autocovariance is

	x∗x∗
1
= E

[(
x∗
t − x∗)(x∗

t+1 − x∗)′]
= ρ

(
1 − ρ2)−1

(I − ρb1 )−1b3	ε

[
(I − ρb1 )−1b3

]′
. (2.23)

The first-order autocorrelation of the ith-element x∗
i of x∗ is the ith diagonal element of

matrix 	x∗x∗
1

divided by the corresponding ith diagonal element of matrix 	x∗ . Further-
more, if 	v = 0, then the first-order autocorrelation of the ith element xi of x is equal
to ρ. In this case, the persistence of the ith variable x∗

i in the REE coincides exactly with
the persistence of the exogenous driving force ui,t . That is, in this case the persistence in
the REE only inherits the persistence of the exogenous driving force.

Existence of BLE

Assume that agents are boundedly rational and do not recognize that the economy is
driven by an exogenous VAR(1) process ut but use simple univariate AR(1) rules to fore-
cast the state xt of the economy. Given that agents’ perceived law of motion is a restricted
VAR(1) process as in (2.2), the actual law of motion is linear and given by

xt = b0 + b1
[
α+β2(xt−1 −α)

] + b2xt−1 + b3ut + b4vt , (2.24)

with ut given in (2.11). If all eigenvalues of b1β
2 + b2 for each βi ∈ [−1, 1], 1 ≤ i ≤ n lie

inside the unit circle, then the system (2.24) of xt is stationary, and hence its mean x and
first-order autocorrelation G exist.

12Note that ρ is a matrix while ρ is a scalar number, throughout the paper.



Quantitative Economics 14 (2023) Behaviorial learning equilibria 1413

The mean of xt in (2.24) is computed as

x= (
I − b1β

2 − b2
)−1[

b0 + b1α− b1β
2α+ b3(I − ρ)−1a

]
. (2.25)

Imposing the first consistency requirement of a BLE on the mean, that is, x = α, and
solving for α yields

α∗ = (I − b1 − b2 )−1[b0 + b3(I − ρ)−1a
]
. (2.26)

Comparing this with (2.19), we conclude that in a BLE the unconditional mean α∗ coin-
cides with the REE mean. That is to say, in a BLE the state of the economy xt fluctuates
on average around its RE fundamental value x∗.

Consider the second consistency requirement of a BLE on the first-order autocorre-
lation coefficient matrix β of the PLM. The second consistency requirement yields

G(β) = β, (2.27)

where G = L�−1, as in (2.5), and β are diagonal matrices. Since the actual law of
motion in (2.24) is linear, the diagonal matrix G(β) may be computed explicitly (see
Appendix A.2). For convenience, let Gi denote the ith diagonal element of the ma-
trix G in (2.5). Assuming that all of the eigenvalues of b1β

2 + b2 for each βi ∈ (−1, 1)
(i= 1, 2, � � � , n) lie inside the unit circle, using the theory of stationary linear time series,
Gi(β1, β2, � � � , βn ) ∈ (−1, 1) and is a continuous function with respect to (β1, β2, � � � , βn )
and other model parameters (see Appendix A.2).13 Based on Brouwer’s fixed-point the-
orem for (G1,G2, � � � ,Gn ), β∗ = (β∗

1, β∗
2, � � � , β∗

n ) exists with each β∗
i ∈ [−1, 1], such that

G(β∗ ) = β∗. We conclude with the following.14

Proposition 1. If all eigenvalues of b1β
2 + b2 for each βi ∈ [−1, 1] are inside the unit

circle, at least one behavioral learning equilibrium (α∗, β∗ ) exists for the economic system
(2.24) with α∗ = (I − b1 − b2 )−1[b0 + b3(I − ρ)−1a] = x∗.

Stability under SAC-learning

Next, we study the stability of BLE under SAC-learning. The ALM of the economy under
SAC-learning is given by{

xt = b0 + b1
[
αt−1 +β2

t−1(xt−1 −αt−1 )
] + b2xt−1 + b3ut + b4vt ,

ut = a+ ρut−1 + εt ,
(2.28)

13For example, refer to the expression (3.9) in Hommes and Zhu (2014) for the special 1-dimensional
case n= 1 and b2 = 0. In Section 2.2, we consider the NK model with two forward-looking variables, and in
Appendix A.5 we compute the (complicated) expressions ofG1(β1, β2 ) andG2(β1, β2 ) explicitly.

14The Schur–Cohn criterion theorem provides necessary and sufficient conditions for all eigenvalues to
lie inside the unit circle (see Elaydi (2005)). For specific models, one may find sufficient conditions that are
independent of β to guarantee that all eigenvalues of b1β

2 + b2, for each βi ∈ [−1, 1], are inside the unit
circle. For example, in the case of the NK model, the Taylor principle is a sufficient condition to ensure that
all eigenvalues of b1β

2 + b2 lie inside the unit circle for all βi ∈ [−1, 1] (see Section 2.2.2, Corollary 1, and
Appendix A.4).



1414 Hommes, Mavromatis, Özden, and Zhu Quantitative Economics 14 (2023)

with αt , βt updated based on the realized sample average and sample autocorrelation as
in (2.8). Appendix A.3 shows that the E-stability principle applies and that stability under
SAC-learning is determined by the associated ordinary differential equation (ODE):15

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dα

dτ
= x(α, β) −α

= (
I − b1β

2 − b2
)−1[

b0 + b1α− b1β
2α+ b3(I − ρ)−1a

] −α,
dβ

dτ
=G(β) −β,

(2.29)

where x(α, β) is the mean given by (2.25) and G(β) is the diagonal first-order autocor-
relation matrix. A BLE (α∗, β∗ ) corresponds to a fixed point of the ODE (2.29). Moreover,
a BLE (α∗, β∗ ) is locally stable under SAC-learning if it is a stable fixed point of the ODE
(2.29). Therefore, we have the following property of SAC-learning stability.

Proposition 2. A BLE (α∗, β∗ ) is locally stable (E-stable) under SAC-learning if:

(i) all eigenvalues of (I − b1β
∗2 − b2 )−1(b1 + b2 − I ) have negative real parts, and

(ii) all eigenvalues of DGβ(β∗ ) have real parts less than 1, where DGβ is the Jacobian
matrix with the (i, j)-th entry ∂Gi

∂βj
.

Proof. See Appendix A.3.16

Recall from the discussion above that Gi(β1, β2, � � � , βn ) ∈ (−1, 1), so that at least
one BLE exists. Proposition 2 states when the BLE is E-stable under SAC-learning.

2.2 Application of BLE in the baseline NK model

In this section, before considering an empirical assessment of BLE, we apply our results
within the framework of a standard NK model along the lines of Gali (2008) and Wood-
ford (2003a), in order to provide an analytical comparison between BLE and REE. Con-
sider a simple version without price indexation and habit persistence linearized around
the zero inflation steady state, given by{

yt = yet+1 −ϕ(
rt −πet+1

) + uy,t ,

πt = λπet+1 + γyt + uπ,t ,
(2.30)

where yt is the output gap, πt is the inflation rate, and yet+1 and πet+1 are expected out-
put gap and expected inflation, respectively. The absence of lagged state variables al-
lows us to derive some analytical results in order to compare the BLE to the REE in this

15See Evans and Honkapohja (2001) for a discussion and mathematical treatment of E-stability.
16The Routh–Hurwitz criterion theorem provides sufficient and necessary conditions for all the n eigen-

values having negative real parts (see Brock and Malliaris (1989)).
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framework. The terms uy,t , uπ,t are stochastic shocks and are assumed to follow AR(1)
processes

uy,t = ρyuy,t−1 + εy,t , (2.31)

uπ,t = ρπuπ,t−1 + επ,t , (2.32)

where ρi ∈ [0, 1) and {εi,t } (i= y, π) are two uncorrelated i.i.d. stochastic processes with
zero mean and finite absolute moments with corresponding variances σ2

i .
The first equation in (2.30) is an IS curve that describes the demand side of the econ-

omy. In an economy of rational or boundedly rational agents, it is a linear approximation
of a representative agent’s Euler equation. The parameterϕ> 0 is related to the elasticity
of intertemporal substitution in the consumption of a representative household, while
its inverse denotes relative risk aversion. The second equation in (2.30) is the NKPC,
which describes the aggregate supply relation. This is obtained by averaging all firms’
optimal pricing decisions. The parameter γ is related to the degree of price stickiness in
the economy, and the parameter λ ∈ [0, 1) is the subjective discount factor of the repre-
sentative household.

We supplement the equations in (2.30) with a standard Taylor-type policy rule, which
represents the behavior of the monetary authority in setting the nominal interest rate:

rt =φππt +φyyt , (2.33)

where rt is the deviation of the nominal interest rate from the value that is consistent
with inflation at target and output at the steady state. The parametersφπ ,φy , measuring
the response of rt to the deviation of inflation and output from long run steady states,
are assumed to be nonnegative.

Substituting the Taylor-type policy rule (2.33) for (2.30) and writing the model in
matrix form gives {

xt =Bxet+1 +Cut ,

ut = ρut−1 + εt ,
(2.34)

where xt = [yt , πt ]′, ut = [uy,t , uπ,t ]′, εt = [εy,t , επ,t ]′, B = 1
1+γϕφπ+ϕφy

[ 1 ϕ(1−λφπ )
γ γϕ+λ(1+ϕφy )

]
,

C= 1
1+γϕφπ+ϕφy

[ 1 −ϕφπ
γ 1+ϕφy

]
, ρ = [ ρy 0

0 ρπ

]
.

Before turning to BLE, we first consider the Rational Expectations Equilibrium (REE).

2.2.1 Rational expectations equilibrium Comparing the NK model (2.34) with the gen-
eral framework summarized by (2.10) and (2.11), we note that a = 0, b0 = 0, and b2 = 0.
The REE fixed point in (2.15)–(2.18) is then simplified to

(I −B)ξ = 0, (2.35)

η = Bηρ+ C. (2.36)

Bullard and Mitra (2002) show that the REE is unique (determinate) if and only if γ(φπ −
1) + (1 − λ)φy > 0. The REE is then the stable stationary process with mean

x∗ = 0. (2.37)
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In the symmetric case ρi = ρ for i= {y, π}, the REE x∗
t satisfies

x∗
t = (I − ρB)−1Cut . (2.38)

Thus, its covariance is

	x∗ = E
(
x∗

t − x∗)(x∗
t − x∗)′ = (

1 − ρ2)−1
(I − ρB)−1C	ε

[
(I − ρB)−1C

]′
. (2.39)

Furthermore, the first-order autocorrelation of the i-element xi of x is equal to ρ. That
is, in this case the persistence of the REE coincides exactly with the persistence of the
exogenous driving force ut , and the first-order autocorrelations of output gap and infla-
tion are the same, that is, symmetric, equal to the autocorrelation in the driving force.
Therefore, in the baseline NK model without habits in consumption and price indexa-
tion, inflation, and output gap inherit the persistence of the shocks under RE.

2.2.2 Behavioral learning equilibrium As in the general setup in Section 2, we assume
that agents are boundedly rational and use simple univariate linear rules to forecast the
output gap yt and inflation πt of the economy. Therefore, we deviate from Bullard and
Mitra (2002) in two important ways: (i) our agents cannot observe or do not use the ex-
ogenous shocks ut , and (ii) agents do not fully understand the linear stochastic structure
and do not take into account the cross-correlation between inflation and output. Rather,
our agents learn simple univariate AR(1) forecasting rules for inflation and output gap,
as in (2.2). However, these AR(1) rules indirectly, in a boundedly rational way, take ex-
ogenous shocks and cross-correlations of endogenous variables into account as agents
learn the two parameters of each AR(1) rule consistent with the observable sample av-
erages and first-order autocorrelations of the state variables inflation and output gap.17

The actual law of motion (2.34) becomes{
xt = B

[
α+β2(xt−1 −α)

] +Cut ,

ut = ρut−1 + εt .
(2.40)

For the actual law of motion (ALM) (2.40), the REE determinacy condition γ(φπ −
1) + (1 − λ)φy > 0 implies that the ALM is stationary for all β (see Appendix A.4). Thus,
the means and first-order autocorrelations are

x = (
I −Bβ2)−1(

Bα−Bβ2α
)
,

G(α, β) =
[
G1(βy , βπ ) 0

0 G2(βy , βπ )

]
=

[
corr(yt , yt−1 ) 0

0 corr(πt , πt−1 ))

]
.

For the NK model in this section without any lagged state variables, focusing on
the symmetric case with ρy = ρπ = ρ, we can obtain expressions for G1(βy , βπ ) and
G2(βy , βπ ), which are provided in Appendix A.5. The resulting expressions depend
on eight parameters ϕ, λ, γ, φy , φπ , ρ, σ2

π , and σ2
y . Having analytical expressions for

17The use of a simple AR(1) rule is supported by evidence from the learning-to-forecast laboratory ex-
periments in the NK framework in Adam (2007), Pfajfar and Žakelj (2014), and Assenza et al. (2021).
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G1(βy , βπ ) and G2(βy , βπ ) allows us to narrow down the existence and stability con-
ditions in this special case. Hence, using Proposition 1 and Proposition 2 we have the
following properties for the NK model.

Corollary 1. Under the Taylor rule (2.33), if γ(φπ − 1) + (1 − λ)φy > 0, then at least
one BLE (α∗, β∗ ) exists, where α∗ = 0 = x∗.

Corollary 2. Under the Taylor rule (2.33) and the condition γ(φπ − 1) + (1 − λ)φy >
0, a BLE (α∗, β∗ ) is locally stable under SAC-learning if all eigenvalues of DGβ(β∗ ) =
( ∂Gi∂βj

)β=β∗ have real parts less than 1.

Proof. See Appendix A.6.

These results serve as a useful starting point to discuss some properties of BLE in a
baseline setup. For the general n-dimensional case, we rely on a numerical algorithm to
approximate a BLE, which is explained in Section 2.3.

To illustrate the typical output-inflation dynamics under BLE, we present a calibra-
tion exercise for empirically plausible parameter values. As in the Clarida, Gali, and
Gertler (1999) calibration, we fix ϕ = 1, λ = 0.99. We fix γ = 0.04, which lies between
the calibrations γ = 0.3 in Clarida, Gali, and Gertler (1999) and γ = 0.024 in Wood-
ford (2003a). For the exogenous shocks, we set the ratio of shocks σπ

σy
= 0.5, which is

within the possible range suggested in Fuhrer (2006). We consider the symmetric case
ρy = ρπ = ρ= 0.5, with weak persistence in the shocks. The baseline parameters on the
policy response to inflation deviation and output gap are in line with much of the liter-
ature, φπ = 1.5, φy = 0.5 (see, e.g., Fuhrer (2006, 2010)). At these parameter values, the
two eigenvalues of the Jacobian matrix DGβ(β∗ ) are 0.5012±0.7348i (with real parts less
than 1), which implies that the BLE is E-stable under SAC-learning based on our theo-
retical results. The numerical results shown below are robust across a range of plausible
parameter values.

Figure 1 illustrates the unique E-stable BLE (β∗
y , β∗

π ) = (0.9, 0.9592). In order to ob-
tain (β∗

y , β∗
π ), we numerically compute the corresponding fixed-point β∗

π(βy ), satisfy-
ing G2(βy , β∗

π ) = β∗
π for each βy , and the corresponding fixed-point β∗

y(βπ ), satisfying
G1(β∗

y , βπ ) = β∗
y for each βπ , as illustrated in Figure 1. Hence, their intersection point

(β∗
y , β∗

π ) satisfiesG1(β∗
y , β∗

π ) = β∗
y andG2(β∗

y , β∗
π ) = β∗

π .
A striking feature of the BLE in this setup is that the first-order autocorrelation coef-

ficients of output gap and inflation (β∗
y , β∗

π ) = (0.9, 0.9592) are substantially higher than
those at the REE, that is, the persistence is much higher than the persistence ρ(= 0.5) of
the exogenous shocks. We refer to this phenomenon as persistence amplification. Agents
fail to recognize the exact linear structure and cross-correlations of the economy but
rather learn to coordinate the mean and the first-order autocorrelations of inflation and
output gap on simple univariate AR(1) rules consistent with simple observable statistics.
As a result of this self-fulfilling mistake, shocks to the economy are strongly amplified.

Figure 2 illustrates how these results depend on the persistence ρ of the exogenous
shocks. The figure shows the BLE, that is, the first-order autocorrelations β∗

y of the out-
put gap and β∗

π of inflation, as a function of the parameter ρ. This figure clearly shows
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Figure 1. A unique BLE (β∗
y , β∗

π ) = (0.9, 0.9592) obtained as the intersection point of the
fixed-point curves β∗

π(βy ) and β∗
y (βπ ). The BLE exhibits strong persistence amplification com-

pared to REE (red dot, with ρ= 0.5). Parameters are: λ= 0.99, ϕ= 1, γ = 0.04, ρ= 0.5, φπ = 1.5,
φy = 0.5, and σπ

σy
= 0.5.

the persistence amplification along BLE, with much higher persistence than under RE,
for all values of 0 < ρ < 1. Especially for ρ ≥ 0.5, we have β∗

y , β∗
π ≥ 0.9, implying that

the output gap and inflation have significantly higher persistence than the exogenous
driving forces. Figure 2 (right plot) also illustrates the volatility amplification under BLE
compared to REE. For the output gap, the ratio of variances σ∗2

y,BLE/σ
∗2
y,REE reaches a peak

of about 2.5 for ρ≈ 0.75, while for inflation the ratio of variances σ∗2
π,BLE/σ

∗2
π,REE reaches

its peak at about 3.5 for ρ≈ 0.65.

2.3 How to find an E-stable BLE

This section discusses how to appproximate a BLE. The perceived mean values α∗ of a
BLE are characterized by the same unconditional means as the underlying REE. There-
fore, without loss of generality we may assume α∗ = 0. The first-order autocorrelation

Figure 2. BLE (β∗
y , β∗

π ) as a function of the persistence ρ of the exogenous shocks. (a) β∗
i

(i = y, π) with respect to ρ; (b) the ratio of variances (σ∗2
y,BLE/σ

∗2
y,REE, σ∗2

π,BLE/σ
∗2
π,REE) of the BLE

(β∗
y , β∗

π ) w.r.t. the REE. Parameters are: λ= 0.99, ϕ= 1, γ = 0.04, φπ = 1.5, φy = 0.5, σπσy = 0.5.
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coefficients β∗ in a BLE are functions in terms of the structural parameters μ, which sat-
isfy the nonlinear equilibrium conditionsG(β∗, μ) = β∗ in (2.27), without a closed-form
solution. In this section, we use the concept of Iterative E-stability (Evans (1985)) to find
E-stable BLE for a given set of structural parameters μ.

Iterative E-stability is a simple fixed-point iteration to evaluate the mapping from
perceived first-order autocorrelations β to the actual first-order autocorrelations G(β,
μ). Given some initial conditions β(1), the iteration works as follows:

β(k+1) =G(
β(k), μ

)
, 1 ≤ k≤N , (2.41)

where k denotes the current iteration index, N is the total number of iterations, and μ

denotes the vector of structural parameters. A BLE (0, β∗ ) is locally stable under (2.41)
if all eigenvalues of DGβ(β∗ ) lie inside the unit circle. This is known as the iterative E-
stability condition. There is a simple connection between E-stability and iterative E-
stability of β∗: The former requires that the real parts of all eigenvalues ofDGβ(β∗ ) must
be less than one. The latter requires that all eigenvalues of DGβ(β∗ ) lie inside the unit
circle. It follows that iterative E-stability is a stronger condition than E-stability, which
leads to the following corollary.

Corollary 3. Iterative E-stability of β∗ implies E-stability of β∗. Therefore, if the itera-
tion in (2.41) converges, it converges to an E-stable BLE.

The details of the iteration procedure are discussed in Appendix B. Other practical
issues in the context of estimation such as the initial values β(1) and the number of fixed-
point iterations N can also be found in Appendix B.18 An advantage of using this ap-
proach as an equilibrium approximation method is that it can only converge to E-stable
equilibria, which eliminates all E-unstable equilibria without additional computational
steps. As a result, a BLE that converges with (2.41) is guaranteed to be stable under learn-
ing algorithms such as constant gain recursive least squares and SAC-learning.

3. Empirical application: The Smets–Wouters model

In this section, we estimate the BLE model for the canonical Smets and Wouters (2007)
NK model (henceforth referred to as SW07) and consider a horse race between BLE, REE,
and a variety of constant-gain Euler-equation learning models that have been used in
the literature.19

We refer to BLE and REE as equilibrium models, where agents’ PLM coefficients are
fixed at their equilibrium values: the REE is pinned down by the fixed-point conditions
in (2.15)–(2.18), whereas the BLE is pinned down by the fixed-point condition in (2.27).
In this respect, the main difference between REE and BLE concerns knowledge about the

18Fixed-point iteration algorithms of this type have been used as an eductive learning approach in earlier
literature (see, e.g., DeCanio (1979), Bray (1982), Evans (1985)).

19Alternatively, one could consider constant-gain infinite horizon learning as in Preston (2005). In this
paper, we only focus on Euler-equation learning models. A comparison of Euler-equation and infinite-
horizon learning can be found in Gaus and Gibbs (2018).
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underlying system. In a REE, agents have perfect structural knowledge of the model. In a
BLE, agents do not know the cross-correlations among the variables and do not observe
the shocks but use parsimonious univariate AR(1) rules and know the correct mean and
first-order autocorrelation coefficients.

Our paper aims to distinguish the long-run equilibrium effects from the transient
effects of learning. Adaptive learning models deviate from equilibrium models by intro-
ducing time-varying beliefs. Rather than fixing the belief coefficients at the equilibrium
values, learning models allow the agents to act like econometricians and update their
belief coefficients every period as new observations become available. Below we first in-
troduce some notation to make an explicit distinction between equilibrium models BLE
and REE and adaptive learning models. We then discuss the learning models that are
used in our estimation exercise.

Equilibrium models

The REE and BLE models differ in terms of equilibrium computation. Once the equilib-
rium is solved for, each model can be represented as a recursive linear system

Xt = Â+ B̂Xt−1 + Ĉηt , (3.1)

with Xt = [x′
t , u

′
t ]

′, the vector of endogenous variables and exogenous AR(1) shocks, ηt ,
the vector of i.i.d. shocks, B̂, Ĉ, conformable matrices in terms of structural parame-
ters, and Â, a vector of constants. BLE and REE differ in terms of B̂ and Ĉ, since they
satisfy different fixed-point conditions. Derivations of the matrices for both models are
provided in Appendix C.1.

Adaptive learning models

In adaptive learning models, agents act like econometricians and update the belief coef-
ficients of their PLM in every period as new observations become available. We consider
a variety of learning models:

• SAC-learning, as described in Section 2, is the natural learning process of a BLE
model where agents use a univariate AR(1) rule for every variable and update their
beliefs about the mean and persistence in every period as new observations become
available. Agents’ PLM and the associated 2-step ahead expectations every period
are given by {

xt =αt−1 +βt−1(xt−1 −αt−1 ),

Etxt+1 =αt−1 +β2
t−1(xt−1 −αt−1 ),

(3.2)

where the coefficients αt−1 and βt−1 are updated every period using SAC-learning
(2.6)–(2.7) or in recursive form (2.8).

• AR(2)-learning with constant gain least squares is a univariate learning rule used in
Slobodyan and Wouters (2012a). Agents use the following algorithm to update their
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beliefs for every forward-looking variable xi,t−1:{
Ri,t =Ri,t−1 + γ(

Yi,tY
′
i,t −Ri,t−1

)
,

θi,t = θi,t−1 + γR−1
i,t Yi,t(xi,t − θi,t−1Yi,t ),

(3.3)

with θi,t = [αi,t , β1,i,t , β2,i,t ], Yi,t = [1, xi,t−1, xi,t−2]′, andRi,t the perceived variance
of the variable xi,t .20 A potential advantage of this PLM over the AR(1) rule is that it
can generate an extrapolation bias in beliefs, where the most recent observation re-
ceives more weight relative to its AR(1) counterpart and the second lagged variable
gets negative weight.21

• Pseudo MSV-learning with constant-gain least squares where agents use the cor-
rectly specified functional form associated with a REE, namely the MSV solution of
the model, but are uncertain about its parameters. Their PLM and the associated
2-step ahead expectations at period t are given by{

xt = γ0,t−1 + γ1,t−1xt−2 + γ2,t−1ut−1,

Etxt+1 = γ0,t−1 + γ1,t−1xt−1 + γ2,t−1ρut−1,
(3.4)

which depends on both state variables xt−1 and exogenous AR(1) shocks ut−1.
Agents’ learning algorithm assumes the same functional form as in (3.3) in multi-
variate form: {

Rt =Rt−1 + γ(
YtY

′
t −Rt−1

)
,

θt = θt−1 + γR−1
t Yt(xt − θt−1Yt ),

(3.5)

whereYt consists of a 15×1 vector of endogenous variables, exogenous shocks, and
an intercept. θt is a 15 × 15 matrix of PLM coefficients.22

• VAR(1)-learning with constant gain least squares where agents use only the state
variables. This has been referred to as limited information learning (Xiao and Xu
(2014)) in the literature and corresponds to a restricted version of the MSV-learning
model described above. In VAR(1)-learning, agents use the following PLM and 2-
step ahead expectations: {

xt = γ0,t−1 + γ1,t−1xt−2,

Etxt+1 = γ0,t−1 + γ1,t−1xt−1.
(3.6)

20A generalization of the SAC-learning algorithm to other types of PLMs, such as AR(2), is undertaken in
Branch, Evans, and McGough (2014). In this paper, we apply this learning method to AR(1)-learning only
and use the standard constant-gain recursive least squares for other learning models.

21Empirical evidence in favor of such an extrapolation bias has been found in, for example, Fuster,
Hebert, and Laibson (2010) and Bordalo, Gennaioli, Ma, and Shleifer (2020). An assessment of alternative
theoretical approaches that support extrapolating expectations, with an initial underreaction to shocks fol-
lowed by a delayed overreaction, can be found in Angeletos, Huo, and Sastry (2021).

22This corresponds to 7 state variables, 7 exogenous shocks, and the intercept in the context of the SW07
model. The government spending shock gt in the model is highly correlated with output yt . Therefore, we
exclude gt from agents’ regression model (3.5) when estimating the model in practice, which improves the
performance of the pseudo-MSV learning model.
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Agents’ learning algorithm assumes the same functional form as in (3.5), where Yt
consists of an 8 × 1 vector of endogenous variables and an intercept. θt is an 8 ×
8 matrix of PLM coefficients. This specification helps us bridge the gap between
univariate AR(1)–AR(2) models and the REE-consistent knowledge. Compared to
BLE, VAR(1) takes the cross-correlations into account, while BLE uses univariate
AR(1) rules.

Similar to the equilibrium models, learning models can be represented as a recursive
linear system after plugging in the expectations:

Xt = Ât−1 + B̂t−1Xt−1 + Ĉt−1ηt , (3.7)

with time-varying matrices B̂t−1, Ĉt−1 and perceived mean vector Ât−1, where the time
variation comes from agents’ PLM coefficients. Derivations of the matrices for all learn-
ing models are provided in Appendix C.2.

3.1 Estimation methodology and other practical issues

Timing of expectations and the Kalman filter Both BLE and REE equilibrium models
admit a multivariate linear structure and, therefore, the likelihood function can be eval-
uated using standard Kalman filter recursions. For the learning models, we assume a
sequential timing of intraperiod events as follows:

1. Shocks ut are realized.

2. Expectations Etxt+1 are formed based on the previous period’s state variables xt−1,
exogenous shocks ut−1, and belief coefficients θt−1.

3. State variables xt are realized.

4. Belief coefficients θt are updated based on period t realizations of xt and shocks ut .

This structure assumes that expectations and belief coefficients are predetermined be-
fore the state variables are realized. This is known as t − 1 timing of expectations in
the literature. The advantage of this approach is that it allows for a conditionally linear
model structure and, therefore, the likelihood function for learning models can be eval-
uated using the standard Kalman filter. Similar assumptions have been used elsewhere
in the literature to make use of standard likelihood methods, such as Milani (2005), Slo-
bodyan and Wouters (2012a, 2012b), and Jääskelä and McKibbin (2010). The details of
the Kalman filter recursions are discussed in Appendix D.

The timing structure of expectations in our learning models differs from the t-timing
of expectations that is often assumed in REE models. In a REE, expectations and state
variables are jointly realized, that is, agents fully internalize period t information when
forming their expectations.23 In our paper, we abstract away from these considerations

23Previous studies in the literature such as Milani (2005) and Slobodyan and Wouters (2012b) have used
predetermined belief coefficients together with a joint determination of expectations and state variables.
While this approach still admits a conditionally linear structure that can be used with a Kalman filter, it in-
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and use the term pseudo MSV-learning to make a clear distinction between our ap-
proach and learning with fully rational knowledge about the structure of the underlying
system.

Note that generally, not all forward-looking and state-variables are observed in the
estimation.24 In cases where agents’ beliefs depend on unobserved state variables, we
assume that they know the Kalman filter estimates of these variables. In other words,
agents and the econometrician have fundamentally different information sets where
agents are implicitly assumed to know the Kalman filter estimates when forming their
expectations. This is a standard assumption when estimating DSGE models, and we do
not account for the uncertainty around unobserved state variables in this paper.

Initial beliefs A practical issue when it comes to estimating adaptive learning mod-
els is the initialization of beliefs. Many studies have shown that initial beliefs matter
when it comes to empirical performance of learning models, for example, Slobodyan
and Wouters (2012b), Berardi and Galimberti (2017), and Gaus and Gibbs (2018), among
others. In particular, Gaus and Gibbs (2018) decompose the improvements associated
with learning models into two components: the role of initial beliefs and the role of time
variation in beliefs. They find that within the class of PLMs that nest the MSV solution in
their model, initial beliefs play a more important role in driving model fitness than the
time variation in beliefs.

Our goal in this paper is not to assess the impact of initial beliefs on the perfor-
mance of learning models. Rather, we are interested in using a reasonable initialization
benchmark for learning models to compare against the equilibrium models BLE and
REE. Therefore, we adopt a practical regression-based approach to initialize the learn-
ing models: we simulate data from our estimated BLE and REE models and run a re-
gression to obtain initial beliefs consistent with the knowledge about the economy as-
sociated with each learning model. For SAC- and AR(2)-learning (models with univariate
learning rules), we use simulated data from BLE to initialize them. For pseudo MSV- and
VAR(1)-learning (models with multivariate learning rules), we use simulated data from
REE. Using an underlying equilibrium concept for belief initialization is consistent with
the approaches in Slobodyan and Wouters (2012a, 2012b). Further, Berardi and Galim-
berti (2017) suggest that equilibrium-related initialization methods result in more ro-
bust parameter estimates and are less prone to small sample size issues compared to
other alternatives.

Projection facilities Another practical matter in learning models is the implementation
of projection facilities. When estimating these models, some parameter and shock com-
binations may lead to updates in learning coefficients that imply explosive dynamics
and unstable outcomes. A standard approach in learning literature is to discard the up-
dates on learning coefficients if the new draws generate explosive dynamics (see, e.g.,

troduces a timing inconsistency for the agents: While their expectations are based on period t information,
their belief coefficients are based on period t − 1. Therefore, we assume t − 1 timing on both ends for all
models considered to have a consistent treatment.

24For example, in the context of the SW07 model, asset prices and real interest rate of capital are unob-
served, whereas consumption, investment, and real wages are only observed in growth rates.
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Milani (2005) and Slobodyan and Wouters (2012b)). In this paper, we follow a similar
approach and discard belief updates that generate unstable ALMs.25

Model, priors, and measurement equations We use quarterly U.S. data over the period
1966:I–2007:IV to estimate the models. We repeat the estimation exercise with two sets
of observable variables with and without inflation survey expectations:

• First, we follow the original Smets and Wouters (2007) model structure and use 7
observable variables: the (log-) difference of real GDP, real consumption, real in-
vestment, real wages, (log-) hours worked, CPI inflation,26 and the federal funds
rate.

• Second, we reestimate the models by additionally including short-term (1-quarter
ahead) inflation expectations from the SPF (Croushore (1993)). This approach fol-
lows Carvalho, Eusepi, Moench, and Preston (2023), where the models are estimated
using short-term inflation expectations data only.27

We treat the model with the original set of observables as our baseline specifica-
tion to evaluate the in-sample and pseudo out-of-sample forecasting performance of
the models. In Section 3.4, we use the reestimation results with inflation expectations to
discuss how the models fit survey data.

Our model follows the original Smets and Wouters (2007) structure with minor de-
viations (see Appendix E for further details). The model consists of 13 equations with 7
forward-looking variables, 7 exogenous AR(1) shocks, and 7 state variables. There are 35
estimated parameters including the constant gain for the adaptive learning models. We
leave further details of the model, measurement equations, and the prior distributions
to Appendix E.

Both equilibrium and adaptive learning models are estimated using a standard
Kalman filter combined with Bayesian likelihood methods. For all models, we first ob-
tain the posterior mode using Sims’ (1999) csminwel algorithm. We use the estimated
posterior as a candidate density to initialize the Monte Carlo Markov Chains (MCMC),
where we use a random-walk Metropolis–Hastings algorithm. For each model, we use
two parallel Markov Chains where the scale coefficient of the covariance matrix is used
to obtain an acceptance ratio between 30 and 45%. Each Markov Chain contains 500,000
draws, where the first half is discarded as a burn-in sample and the second half is used to
compute the posterior moments and Modified Harmonic Mean (MHM) estimates. Fur-
ther details of the Kalman filter and the estimation procedure for both equilibrium and
learning models are outlined in Appendix D.

25Note that for SAC-learning a projection facility is not needed, as the autocorrelation coefficients always
lie in the interval [−1, +1].

26Note that Smets and Wouters (2007) use the GDP deflator as their inflation measure. We use CPI infla-
tion in our estimations in order to make use of the survey data available in the SPF.

27Carvalho et al. (2023) use their estimates to evaluate the models’ performance in matching long-run in-
flation expectations. Here, we abstract away from a formal evaluation of long-run expectations and discuss
the implications for this only qualitatively.
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3.2 Baseline estimation results

Table 1 shows the posterior mean estimates for all 6 models in our baseline setup. We
discuss the estimation results along two dimensions: model fitness, based on the MHM,
and differences in the estimated parameter values. We introduce Bayes’ factors relative
to the REE benchmark in the last row of the table.28

The overall pattern in model fitness suggests that the BLE model, as well as all learn-
ing models, outperforms the REE benchmark, with all Bayes’ factors exceeding 4. The
BLE model yields a fitness comparable to pseudo MSV- and AR(2)-learning models,
while SAC- and VAR(1)-learning models generate the best outcomes in terms of model
fitness.29 These results suggest that (i) the knowledge about the underlying system on
expectations (BLE vs. REE), in isolation from any learning effects, plays an important
role in driving the model fit, and (ii) learning improves the fit, but the degree of improve-
ments in the learning models depends on the degree of knowledge about the underlying
system that the agents are using. In particular, BLE explains about 75% of the improved
fit under SAC-learninig (Bayes’ factors 6.87 vs. 9.30).

In order to discuss differences in parameter estimates across models, we divide the
parameters into four main buckets: structural parameters that determine endogenous
persistence and slopes in Euler equations and Phillips curves; monetary policy param-
eters that appear in the Taylor rule reaction function; parameters related to steady state
and measurement equations of the model; and shock persistence and standard devia-
tions.

For monetary policy and steady-state groups, we do not observe important differ-
ences in parameter estimates across the models, and all models feature HPD intervals
well within the range of each other. There are some differences in the estimated shock
persistence and structural parameter groups. To understand the intuition behind these
differences, we first cover the main portion of the model that interacts with expecta-
tions.30 The consumption Euler equation in the model is given by{

ct = c1ct−1 + (1 − c1 )Etct+1 + c2(lt −Et lt+1 ) − c3(rt −Etπt+1 ) + εbt ,

εbt = ρbεbt−1 +ηbt ,
(3.8)

with c1 = λ
γ /(1 + λ

γ ), c2 = (σc − 1)(wsslss/css )/(σc(1 + λ
γ )), c3 = (1 − λ

γ )/((1 + λ
γ )σc ). Sim-

ilarly, the investment Euler equation is given by{
it = i1it−1 + (1 − i1 )Et it+1 + i2qt + εit ,
εit = ρiεit−1 +ηit ,

(3.9)

28The Bayes’ factors are computed as the likelihood (MHM) ratio of each model relative to REE, normal-
ized by common logarithm base 10. We use Jeffrey’s guidelines (Greenberg (2012)) to compare the Bayes’
factors, which suggests that a Bayes’ factor larger than 2 can be interpreted as providing decisive support for
the model under consideration, relative to the REE benchmark.

29Our results on pseudo MSV-learning are in line with previous estimates reported in Milani (2007) and
Slobodyan and Wouters (2012b). The Bayes’ factors implied by their results are 2.8 and 5.1, respectively. As
such, our estimate of 4.72 falls within this range.

30The remaining model equations can be found in Appendix E.
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Table 1. Estimation results (posterior means) with 7 observables—no inflation expectations.

Equilibrium Models Learning Models

Pseudo
Parameter REE BLE SAC MSV VAR(1) AR(2)

Structural Parameters
φ (Capital adj. cost) 5.68 2.12 1.38 5.17 2.23 2.21
σc (Inv. elasticity of subs.) 1.3 0.5 0.52 1.69 0.9 0.6
λ (Habit formation) 0.77 0.83 0.71 0.71 0.69 0.8
ξw (Wage Calvo) 0.74 0.72 0.73 0.69 0.71 0.68
σl (Elasticity of labor supply) 1.29 2.5 2.81 1.87 2.29 1.27
ξp (Price Calvo) 0.59 0.71 0.52 0.67 0.61 0.54
ιw (Wage indexation) 0.31 0.14 0.16 0.35 0.2 0.16
ιp (Price indexation) 0.2 0.5 0.46 0.39 0.46 0.33
ψ (Elasticity of capital util.) 0.55 0.5 0.47 0.33 0.47 0.46
φp (Production fixed costs) 1.65 1.41 1.36 1.59 1.54 1.47
α (Capital share of output) 0.17 0.14 0.13 0.18 0.16 0.15

Monetary Policy
φπ (Inflation reaction) 1.51 1.51 1.61 1.46 1.41 1.46
ρ (Smoothing) 0.86 0.91 0.91 0.91 0.92 0.9
φy (Output gap reaction) 0.11 0.11 0.14 0.13 0.11 0.11
φ�y (Output gap growth reaction) 0.15 0.13 0.14 0.13 0.12 0.12

Steady State
π̄ (Inflation S.S.) 0.69 0.77 0.74 0.77 0.77 0.74
β̄ (Discount factor) 0.17 0.27 0.28 0.27 0.26 0.31
l̄ (Hours worked S.S.) 1.2 −0.12 −0.3 −0.62 −1.12 −2.04
γ̄ (S.S. growth rate) 0.4 0.41 0.42 0.41 0.42 0.4

Shock Persistence
ρa (TFP) 0.92 0.93 0.94 0.91 0.93 0.93
ρb (Risk premium) 0.34 0.32 0.46 0.19 0.18 0.4
ρg (Gov. spending) 0.99 0.98 0.97 0.97 0.97 0.97
ρi (Investment) 0.8 0.44 0.55 0.58 0.46 0.5
ρr (Monetary policy) 0.08 0.11 0.1 0.1 0.11 0.11
ρp (Price mark-up) 0.59 0.08 0.12 0.46 0.1 0.07
ρw (Wage mark-up) 0.84 0.3 0.38 0.86 0.13 0.25
ρga (TFP impact on Gov.) 0.5 0.54 0.54 0.54 0.54 0.52

Shock St. Dev.
ηa (Productivity) 0.45 0.48 0.5 0.45 0.46 0.47
ηb (Risk premium) 2.35 4.4 2.57 2.74 3.21 4.24
ηg (Gov. spending) 0.56 0.5 0.49 0.51 0.5 0.5
ηi (Investment) 0.39 1.5 1.55 1.76 1.69 1.58
ηr (Monetary policy) 0.22 0.21 0.21 0.22 0.21 0.21
ηp (Price mark-up) 0.21 0.53 0.53 0.23 0.5 0.53
ηw (Wage mark-up) 0.11 0.58 0.61 0.11 0.58 0.59

constant gain 0.006 0.008 0.024 0.008

(Log-) likl at mode −1069.08 −1049.35 −1043.59 −1055.02 −1049.4 −1043.87
MHM −1143.09 −1127.26 −1121.66 −1132.21 −1122.34 −1130.82
Bayes’ factor 0 6.87 9.30 4.72 9.01 5.33
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with i1 = 1
1+β̄γ , i2 = 1

(1+β̄γ)(γ2φ)
, where β̄= βγ−σc . The price NKPC equation is

{
πt = π1Etπt+1 −π2μ

p
t + εpt ,

ε
p
t = ρpεpt−1 +ηpt ,

(3.10)

with π1 = β̄γ, π2 = (1 − βγξp )(1 − ξp )/[ξp((φp − 1)εp + 1)]. The wage Phillips curve
equation is {

wt =w1wt−1 + (1 −w1 )(Etwt+1 +Etπt+1 ) −w2μ
w
t + εwt ,

εwt = ρwεwt−1 +ηwt ,
(3.11)

with w1 = 1/(1 + β̄γ) and w2 = ((1 − β̄γξw )(1 − ξw )/(ξw(φw − 1)εw + 1)). Finally, the
capital asset pricing equation (Tobin’s q) is

qt = q1Etqt+1 + (1 − q1 )Et rkt+1 − (rt −Etπt+1 ) + 1
c3
εbt , (3.12)

with q1 = β̄(1 − δ). Among the shock persistence terms, investment shock εit and wage
mark-up shock εwt are more persistent under REE compared to BLE and all 4 learning
models. These shocks enter the model through investment Euler equation (3.9) and the
wage Phillips curve (3.11), respectively. The results suggest that both backward-looking
expectations in BLE and time-varying expectations in learning models are able to cap-
ture some of the exogenous persistence in these equations through the expectation
terms. The remaining shocks are comparable across all models in terms of persistence
and volatility.

Among the structural parameters, capital adjustment cost φ and the inverse of the
elasticity of intertemporal substitution σc stand out as the biggest differences among the
models, where both parameters are smaller under the BLE and learning models com-
pared to REE. σc has a two-fold effect: First, it determines the feedback from the real
interest rates (rt − Etπt+1 ) on consumption and Tobin’s q, as shown in (3.8) and (3.12),
respectively. The estimated parameter is smaller in the BLE and learning models, which
translates into a stronger feedback channel. Second, σc determines the relation between
expected change in hours worked (lt−Et lt+1 ) and consumption. σc > 1 implies comple-
mentarity between expected change in hours worked and consumption, whereas σc < 1
implies that they are substitutes. The results suggest that they are complements under
REE and MSV-learning, whereas they are substitutes under BLE and other learning mod-
els. The key driver for these results is how the shocks interact with expectations and
model equations: in REE and pseudo MSV-learning models, the shocks enter the model
equations through the expectation terms, which introduces a positive correlation be-
tween consumption and expected change in hours worked in REE and pseudo MSV-
learning models. When we use an AR(1), AR(2), or VAR(1) information set instead, the
mean reversion in hours worked plays a stronger role and drives the negative correla-
tion between hours worked and consumption. For the remaining structural parameters,
in particular the Calvo probabilities and indexation terms, there are no systematic dif-
ferences between REE, BLE, and learning models.
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Taken together, we find that both BLE and learning models improve the model fit
relative to REE, without substantially affecting most parameter estimates. These results
are consistent with the findings in Jääskelä and McKibbin (2010) and Slobodyan and
Wouters (2012a, 2012b). Our results also complement the analysis in Gaus and Gibbs
(2018), who document that initial beliefs play a more important role in driving the model
fit than the time variation in beliefs within the class of PLMs that take the form of an
MSV solution. We show that similar results hold for AR(1) beliefs that do not nest the
MSV solution. Replacing the REE-consistent PLM with simple AR(1) beliefs (REE vs. BLE)
improves the fit more than introducing time variation in AR(1) beliefs (BLE vs. SAC).

3.3 Pseudo out-of-sample forecasts

In this section, we use the 6 models presented in Table 1 and consider a pseudo out-of-
sample forecasting (POOS) exercise. For each model, we use a rolling-window estima-
tion starting with the 20-year period 1966:I–1986:IV. We reestimate the models at each
quarter by rolling forward the estimation window and compute the associated out-of-
sample forecast errors up to 12 quarters ahead for all observable variables. In learning
models, the initial beliefs are updated every period using the same methodology as in
Section 3.2. As such, we first reestimate the REE and BLE models for each period. Then
we update the initial beliefs for learning models using simulated data from reestimated
REE and BLE models at every period.

We compute the forecast errors associated with each model and report the percent-
age changes in RMSEs relative to REE for the BLE and learning models in Table 2. The
relative RMSEs are computed as the percentage difference in RMSEs between the REE
benchmark and each model: A positive (negative) number in Table 2 reflects the per-
centage gains (losses) in forecasting performance for the associated model relative to
REE. The last column in Table 2 reports a summary statistic for each model using the
uncentered log-determinant of the forecast error covariance matrix of all 7 observable
variables.31

The forecasting performance of both the BLE and learning models relative to REE is
characterized by an inverse U-shaped pattern: All models outperform the REE bench-
mark up to 4Q ahead, resulting in performance gains of up to 17%. The forecasting
performance typically deteriorates at longer horizons, and the forecasts are generally
worse than the REE with 88 and 12-quarter ahead forecasts. These results are consis-
tent with the findings reported in Slobodyan and Wouters (2012b), which compare an
AR(2) model with Kalman-gain learning to the REE benchmark. The results suggest that
cross-restrictions imposed by the REE model are useful particularly over longer hori-
zons, while the BLE and learning models with limited knowledge about the underlying
system provide more accurate forecasts over shorter horizons.

Looking at the relative RMSEs for individual variables reveals that output, consump-
tion, investment, and wage growth forecasts are generally comparable to or better than
REE, both in the short and long run, for both the BLE and learning models, while the

31The summary statistic measure follows the approach in Smets and Wouters (2007).
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Table 2. Percentage differences in RMSEs relative to the rational expectations model. A positive
(negative) number reflects the percentage gains (losses) in forecasting performance relative to
REE.

Horizon �yt �ct �invt �wt πt rt lt Summary

BLE
1Q −0.48 8.11 0.92 4.86 17.91 22.62 18.59 12.28
2Q −2.75 19 −6.93 2.62 27.28 30.92 15.75 13.71
4Q 1.27 23.52 −1.66 1.7 34.15 29.66 3.09 17.05
8Q 10.8 23.59 2.13 −1.27 −6.15 7.51 −5.61 0.14
12Q 6.75 15.94 0.04 −6.66 −32.4 −13.06 0.95 −6.77

pseudo MSV
1Q −3.59 5.86 −10.7 0.12 −11.6 1.77 10.91 2.55
2Q −5.49 12.37 −15.4 −1.46 −10.9 8.48 12.09 4.2
4Q 1.57 19.44 −5.64 −4.81 −21 3.35 5.46 6.32
8Q 9.86 15.95 3.82 0.82 −70.5 −18.63 6.48 −4.23
12Q 2.4 3.11 2.12 1.33 −91.4 −36.07 4.2 −9.07

SAC
1Q 4.08 2.06 1.56 −2.83 21.82 19.06 17.65 9.36
2Q 3.64 9.91 −3.18 −3.32 29.16 26.28 17.37 11.53
4Q 7.79 16.72 −0.39 −0.13 33.45 22.87 9.9 14.86
8Q 12.8 18.97 2.68 0.17 4.87 2.8 9.1 2.84
12Q 5.68 8.46 1.52 −0.4 −29.1 −16.96 15.36 −4.7

pseudo-VAR(1)
1Q −1.24 10.72 −1.11 2.06 17.16 18.16 13.41 8.7
2Q −2.85 15.48 −6.4 0.4 14.9 26.13 12.25 8.05
4Q 1.83 21.56 −6.65 1.09 3.74 21.61 1.75 6.88
8Q 13.3 21.48 0.49 0.92 −19.7 −2.85 −7.48 −2.43
12Q 11.2 10.82 8 0.2 −41.2 −31.27 8.78 −4.24

AR(2)
1Q −1.41 4.79 0.57 −5.44 10.98 16.62 15.52 7.63
2Q −5.98 14.4 −6.51 −6.59 26.36 21.05 9.95 10.72
4Q −2.62 20.47 −3.9 −3.98 30.92 12.42 −7.58 13.25
8Q 6.84 21.27 1.81 0.64 −0.24 −24.67 −24.23 −0.26
12Q 3.12 12.9 1.55 0.08 −35 −58.67 −17.48 −9.3

trade-off between the short and long run is driven mainly by inflation and interest rate
forecasts. With the exception of the pseudo MSV model, all models outperform inflation
and interest rate forecasts of REE in the short run, while they are outperformed in the
long run.

An important takeaway from the POOS exercise is that the forecasting performance
of the BLE model is competitive with learning models, and both BLE and learning mod-
els improve the forecasting performance relative to REE up to 4 quarters ahead. This
suggests that when deviating from the REE benchmark, both the time variation in be-
liefs and the degree of knowledge about the underlying system imposed on the agents
play an important role. In the next section, we extend the baseline estimation results
reported in Table 1 to incorporate short-term inflation survey expectations.
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3.4 Inflation expectations

In this section, we extend the baseline estimation results reported in Table 1 to incor-
porate short-term inflation expectations. In particular, we use 1-quarter ahead inflation
expectations from the SPF for the U.S. For each model, we use the following identity to
link the model-implied inflation expectations to the data:{

πSPF
t+1 = Etπt+1 +ηπexp

t , (3.13)

with πSPF
t+1 referring to the SPF forecasts, Etπt+1, the model-implied 2-step ahead infla-

tion expectations, and η
πexp
t , an IID measurement error. We use the same estimation

period 1966:I–2007:IV. Since SPF data is only available from 1983:III onwards, we treat
inflation expectations as unobserved for the earlier sample period 1966:I–1982:II.32

Table 3 reports the estimation results and posterior means for all models. The pa-
rameter estimates are generally in line with those in Table 1, suggesting that the inclu-
sion of short-term inflation expectations data does not lead to substantial differences in
the model structure. Some notable exceptions among the structural parameters include
the Calvo probabilities, price and wage indexations, and the elasticity of labor supply.
These parameters interact directly with inflation expectations through the price and
wage NKPCs (3.10) and (3.11), respectively. In particular, for the REE model, the wage
NKPC becomes steeper (lower-wage Calvo parameter, ξw), while the price NKPC be-
comes flatter (higher-price Calvo parameter, ξp). The same pattern is also evident for
the pseudo MSV-learning model as regards the price NKPC, while the changes in the
respective parameter estimates in the BLE and the other learning models are negligible.

The Bayes’ factors in Table 3 with expectations survey data are significantly larger
than those in Table 1 without survey expectations: while the Bayes’ factors in Table 1
without inflation expectations range between 4.72 and 9.30, the range in Table 3 in-
creases to 35.47–53.54. This suggests that the gap in model fitness relative to the REE
benchmark widens for the BLE and all learning models. The results on learning models
suggest that time-varying dynamics help to capture the expectation dynamics better,
which is consistent with the findings in Carvalho et al. (2023), Slobodyan and Wouters
(2012a, 2012b), and Ormeño and Molnár (2015). A novelty of our results is that the BLE
model, an equilibrium model with fixed beliefs, is competitive with learning models
even after inflation expectations survey data are included as observables. BLE explains
about 80% of the improved fit of SAC-learning (Bayes’ factors 42.74 vs. 53.54).

To understand how well the models fit inflation expectations data, we show the
model-implied inflation expectations against survey data in Figure 3 and some cor-
relation statistics in Table 4.33 A noticeable feature of both BLE and learning models
is that they imply high inflation expectations during the 1970s and 1980s in the high

32In this paper, we only consider an analysis of survey data on inflation expectations. Since we consider
a deviation from rational expectations for all forward-looking variables in our BLE and learning models, a
similar analysis can also be extended to expectations on aggregate consumption, investment, and all other
forward-looking variables depending on the availability of data. We leave these considerations to future
work and only focus on inflation dynamics in this paper.

33For model-implied expectations, we refer to Etπt+1 in (3.13) in the absence of any measurement errors.



Quantitative Economics 14 (2023) Behaviorial learning equilibria 1431

Table 3. Estimation results (posterior means) with 8 observables, including 1-quarter ahead
inflation expectations.

Equilibrium Models Learning Models

Pseudo
Parameter REE BLE SAC MSV VAR(1) AR(2)

Structural Parameters
φ (Capital adj. cost) 5.04 1.36 1.84 4.78 3.37 2.49
σc (Inv. elasticity of subs.) 1.4 0.51 0.68 0.98 0.79 0.63
λ (Habit formation) 0.71 0.75 0.72 0.69 0.74 0.77
ξw (Wage Calvo) 0.45 0.73 0.68 0.63 0.68 0.73
σl (Elasticity of labor) 2.89 1.9 2.24 1.72 1.31 1.64
ξp (Price Calvo) 0.86 0.72 0.6 0.82 0.55 0.56
ιw (Wage indexation) 0.12 0.22 0.22 0.15 0.32 0.31
ιp (Price indexation) 0.22 0.4 0.28 0.52 0.19 0.24
ψ (Elasticity of capital util.) 0.44 0.49 0.5 0.49 0.47 0.52
φp (Production fixed costs) 1.71 1.42 1.53 1.56 1.55 1.51
α (Capital share of output) 0.2 0.14 0.16 0.17 0.16 0.15

Monetary Policy
φπ (Inflation reaction) 1.61 1.56 1.5 1.51 1.66 1.46
ρ (Smoothing) 0.85 0.9 0.9 0.9 0.9 0.89
φy (Output gap reaction) 0.11 0.11 0.13 0.08 0.13 0.12
φ�y (Output gap growth reaction) 0.16 0.14 0.13 0.11 0.13 0.13

Steady State
π̄ (Inflation S.S.) 0.8 0.84 0.63 0.49 0.77 0.72
β̄ (Discount factor) 0.25 0.24 0.26 0.29 0.26 0.26
l̄ (Hours worked S.S.) 1.32 −0.52 −0.2 2.37 0.86 −1.08
γ̄ (S.S. growth rate) 0.45 0.42 0.43 0.53 0.28 0.4

Shocks
ρa (Productivity) 0.95 0.94 0.95 0.99 0.99 0.93
ρb (Risk premium) 0.19 0.31 0.39 0.2 0.15 0.19
ρg (Gov. spending) 0.97 0.98 0.98 0.98 0.95 0.98
ρi (Investment) 0.72 0.43 0.66 0.56 0.49 0.09
ρr (Monetary policy) 0.07 0.1 0.1 0.12 0.09 0.1
ρp (Price mark-up) 0.04 0.1 0.17 0.12 0.12 0.18
ρw (Wage mark-up) 0.97 0.33 0.38 0.87 0.18 0.1
ρga (TFP impact on Gov.) 0.56 0.56 0.53 0.58 0.53 0.54

Shock St. Dev.
ηa (TFP) 0.45 0.48 0.47 0.47 0.48 0.47
ηb (Risk premium) 2.14 2.87 3.16 2.57 3.3 3.6
ηg (Gov. spending) 0.57 0.5 0.5 0.51 0.5 0.51
ηi (Investment) 0.45 1.51 1.61 1.66 1.64 1.58
ηr (Monetary policy) 0.22 0.21 0.21 0.21 0.21 0.21
ηp (Price mark-up) 0.39 0.4 0.39 0.36 0.35 0.38
ηw (Wage mark-up) 0.18 0.56 0.57 0.47 0.56 0.58
ηπexp (Inflation expectations) 0.21 0.23 0.18 0.17 0.25 0.23

constant gain 0.044 0.005 0.03 0.006

(Log-) likl at mode −1045.22 −977.92 −959.1 −981.96 −992.44 −990.68
MHM −1156.11 −1057.68 −1032.82 −1074.43 −1072.53 −1067.11
Bayes’ factor 0 42.74 53.54 35.47 36.3 38.65
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Figure 3. Model implied inflation expectations (blue), CPI inflation (black), and expectations
from the SPF (red).

inflation/pre-Great Moderation era, without using any input on survey expectations
over that period. This pattern is absent in the RE model, which is characterized by a more
stable pattern for inflation expectations over the high inflation period. To distinguish
how well each model tracks inflation survey expectations over the period where expecta-
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Table 4. Correlations between survey- and model-generated inflation
expectations and expectation errors. πSPF

t+1 denotes 1-quarter ahead infla-
tion expectations from the SPF. Etπt+1 denotes model-implied 1-quarter
ahead inflation expectations. πdata

t+1 denotes realized inflation at period
t + 1.

Correlation Between SPF
and Model-Implied

Inflation Expectations

Correlation Between Realized
and Model-Implied Inflation

Expectation Errors

Model corr(πSPF
t+1 , Etπt+1 ) corr(πdata

t+1 −πSPF
t+1 , πdata

t+1 −Etπt+1 )

SAC 0.857 0.946
AR(2) 0.69 0.87
VAR(1) 0.371 0.798
BLE 0.496 0.837
REE 0.61 0.17
Pseudo MSV 0.59 0.818

tions data is available, we report two statistics for each model in Table 4. The first column
reports the correlation between survey expectations πSPF

t+1 and model-implied inflation
expectations Etπt+1. SAC- and AR(2)-learning models yield the highest correlations and
improve upon the REE benchmark, whereas the BLE, pseudo MSV-, and VAR(1)-learning
models yield lower values compared to REE. Hence, in terms of capturing the level of in-
flation expectations, the REE benchmark is competitive and outperforms BLE and two
of the learning models. The shortcoming of the REE model is its failure to capture ex-
pectation errors: in the second column of Table 4, we report the correlation between
empirical inflation expectation errors πdata

t+1 − πSPF
t+1 (the difference between realized in-

flation and survey expectations) and model-implied expectation errors πdata
t+1 − Etπt+1

(the difference between realized inflation and model-implied inflation expectations). In
this case, the REE benchmark yields a low correlation with 0.17, whereas BLE and learn-
ing models all yield higher values ranging between 0.8 and 0.95. Looking at both Tables 3
and 4 suggests that the SAC-learning model has the best fit in terms of inflation survey
expectations.

To understand the dynamics around inflation expectations and distinguish the
marginal contribution of learning dynamics, we plot the perceived mean and perceived
persistence coefficients for the BLE and SAC-learning models in Figure 4. The equi-
librium perception of inflation persistence β∗ under the BLE model is 0.74. The time-
varying perception in SAC-learning oscillates around the BLE-consistent value for most
of the sample, starting to decline only after 2000 toward the end of the sample period.
The main difference between BLE and SAC-learning comes from the perceived mean
values; while the equilibrium value under BLE α∗ is fixed at 0, the SAC-learning model
displays a large degree of time variation in the mean. In particular, the high-inflation pe-
riod of the 1970s and 1980s mainly transmits through the perceived mean in the learning
model, which helps capture the inflation expectation dynamics better overall.

Our results are in line with Eusepi and Preston (2018a) and Eusepi, Giannoni, and
Preston (2019), who show that beliefs under a constant-gain infinite-horizon learning
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Figure 4. Belief coefficients αt and βt under SAC-learning, with BLE α∗ = 0 and β∗ = 0.74.

approach fit U.S. data on inflation and interest rate expectations better than a rational
expectations model. Our results confirm that learning dynamics continue to be impor-
tant in capturing expectation dynamics when we replace the MSV-consistent PLM with
an AR(1) heuristic.

Finally, we informally discuss the models’ ability to capture movements in long-term
inflation expectations, which generally remain firmly anchored in REE models even dur-
ing periods of high and volatile inflation. Our BLE model suffers from the same short-
coming as REE models: since expectations are pinned down purely through the persis-
tence coefficient β∗ and the perceived mean is anchored at α∗ = 0, long-term inflation
expectations remain stable in our BLE model. Given our median estimate of β∗ = 0.74,
expectations beyond 3 years remain firmly anchored regardless of the level of infla-
tion. This is what distinguishes learning models from equilibrium models, where time-
varying belief coefficients, in particular the perceived mean, can generate trend infla-
tion and capture periods of deanchored long-term inflation expectations, as discussed
in Carvalho et al. (2023).34

4. Policy application: Optimal smoothing

In this section, we analyze the monetary policy implications for some of the estimated
models.35 A number of papers in the adaptive learning literature explore optimal mon-
etary policy within the class of standard Taylor rule policies and look into the trade-off

34Gaus and Gibbs (2018) suggest that Euler-equation learning models such as those considered in this
paper produce better short-term inflation expectations. Infinite-horizon learning as in Preston (2005) and
Carvalho et al. (2023) is more in line with long-run inflation expectations. They further note that infinite-
horizon learning tends to improve the model fit more compared to Euler-equation learning. A more com-
prehensive horse race that includes infinite-horizon learning models is beyond the scope of our paper. Fur-
ther note that Carvalho et al. (2023) report substantial improvements in fitting-inflation expectations data
relative to baseline RE with their endogenous-gain learning model. We leave a comparison of this approach
to BLE (and extensions thereof) to future work.

35We leave the VAR(1)- and AR(2)-learning models out of this analysis and focus on the equilibrium mod-
els REE and BLE, against their learning counterparts SAC- and pseudo MSV-learning.
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between inflation/output gap stabilization and central bank learning.36 Our main fo-
cus in this section is the trade-off between interest rate smoothing and output/inflation
stabilization, rather than the trade-off between inflation and output gap stabilization.
Therefore, we fix the reaction coefficients on inflation, output gap and output gap dif-
ference at their estimated values and focus on the interest rate smoothing parameter ρ.
Woodford (2003b) shows that under REE with forward-looking agents, optimal interest
rate smoothing is typically high and close to unity across a wide range of specifications.
In this section, we analyze how these results change with a backward-looking AR(1) rule
under BLE and SAC-learning. Since our focus is on optimal interest rate smoothing, we
use the following modified Taylor rule for monetary policy:

rt = ρrt−1 +φπ
(
(1 − ρ)(πt +φyyy ) +φ�y�yt

) + εrt . (4.1)

In the analysis below, we first fix the reaction parameters in all models at the estimated
values under REE, φy = 0.11, φ�y = 0.15, and φπ = 1.51 in order to abstract away from
any impact that the estimated parameter differences might have on the results. For the
remaining parameters in BLE and REE, we leave the values at their posterior mean as re-
ported in the baseline estimation Table 1. For the SAC- and pseudo MSV-learning cases,
we use the parameter values associated with BLE and REE models, respectively, which
helps us focus on disentangling the effects of learning from equilibrium models in iso-
lation from the differences in the estimated parameter values. Furthermore, in order to
prevent the presence of the projection facility in the learning models from affecting the
optimal policy results, we fix the constant gain value in both models at a value of 0.001,
which is sufficiently small to allow us to simulate the models without any projection
facilities.37

For this exercise, we use a grid of 500 points for the policy parameters ρ in each
model, using a simulation length of 5000 periods in each case. For the BLE specification,
we use N = 200 fixed-point iterations to calculate the equilibrium values β∗ for each
value of the policy parameter, as in the likelihood evaluation in Section 3.2. The number
of periods is sufficient to ensure convergence of the learning parameters. In order to
avoid any effects of the transient learning dynamics, we discard the initial 80% of the
sample in each simulation and use the remaining 20% (1000 periods) to compute the
associated moments of inflation, output gap, and interest rate.

Figure 5 reports the percentage change in the standard deviations of the output gap,
inflation, and interest rate as a function of the interest rate smoothing parameter ρ. Un-
der REE and pseudo MSV-learning models, smoothing is beneficial in terms of stabi-
lizing variation in the output gap, yt , and inflation, πt , up to a point. Under BLE and
SAC-learning specifications, we observe a different pattern where the stabilizing effects

36A nonexhaustive list includes Orphanides and Williams (2005, 2006, 2008), Evans and Honkapohja
(2003), Preston (2006), and Gasteiger (2014).

37Different gain values can also have important implications on the optimal parameters in learning
models, as shown in Orphanides and Williams (2004). Our main focus in this section is how the degree
of knowledge about the underlying system under BLE affects the monetary policy implications relative to
REE. Therefore, we abstract away from such considerations.
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Figure 5. Standard deviations and correlation between inflation and lagged interest rate
(y-axis) as a function of interest rate smoothing ρ (x-axis).

disappear and both inflation and output gap become more volatile as the smoothing pa-
rameter increases. To formalize this, we introduce an ad hoc loss-function E[L] in terms
of the discounted sum of weighted squared inflation, output gap growth, and interest
rate:

E[L] = (1 −ϑ)E

[ ∞∑
t=0

ϑt
[
ωππ

2
t +ωy�y2

t +ωrr2
t

]] =ωπσ2
π +ωyσ2

�y +ωrσ2
r , (4.2)

with ωπ , ωy , and ωr the weights on inflation, the growth of the output gap, and the in-
terest rate, respectively. In this paper, following the approach in Slobodyan and Wouters
(2012a), we model the output gap as the deviation of output ỹt from the underlying pro-
ductivity process εat , that is, yt = ỹt −�pεat with �p the estimated value of production of
fixed costs for each model.

Table 5 reports the optimal smoothing values ρ∗ for 3 combinations of these weights,
where we normalize ωπ = 1. The optimal smoothing ρ∗ under BLE and SAC-learning is
lower than REE and pseudo MSV-learning models for all combinations, and the REE
model always yields the highest optimal ρ∗. Of particular interest is the point where the
weight on nominal interest rate stabilization in the objective funtion is zero, ωr = 0. In
this case, the BLE model implies an optimal smoothing equal to 0.
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Table 5. Optimal smoothing parameter for some cases.

Model ωπ ωy ωr Optimal ρ∗

REE 1 0.048 0 0.91
1 0.048 0.1 0.92
1 0.1 0.1 0.91

BLE 1 0.048 0 0
1 0.048 0.1 0.79
1 0.1 0.1 0.82

SAC 1 0.048 0 0.6
1 0.048 0.1 0.79
1 0.1 0.1 0.77

pseudo MSV 1 0.048 0 0.75
1 0.048 0.1 0.82
1 0.1 0.1 0.84

One reason for this result is that backward-looking agents do not consider the move-
ments in the interest rate when forming their expectations. As the smoothing coefficient
increases, the contemporaneous reaction of the interest rate to inflation and the out-
put gap decreases. Agents do not internalize future movements of the interest rate.38 As
a result, higher smoothing is interpreted as a weaker reaction to inflation and output-
growth fluctuations on their part, which leads to higher volatility in inflation and output
gap. Since agents do not internalize the stabilizing effect of the policy rate smoothing
(as would be the case under REE and pseudo MSV-learning), fluctuations in the policy
rate may become less and less costly, thereby resulting in less smoothing. A similar argu-
ment applies to the SAC learning model. But the main reason behind the substantially
lower smoothing under the BLE and SAC-learning lies in the persistence inherent in the
model when agents are purely backward looking. To see that, consider the 3-equation
purely forward-looking NK model in (2.30) with the following simple Taylor rule, where
for the sake of exposition we assume that the central bank targets inflation only:

it = ρit−1 +φππt . (4.3)

Considering the REE model, by iterating the above interest rate rule backwards and us-
ing the forward-looking Phillips curve, the rule writes as follows:

it = φπγ

1 − ρλ
∞∑
s=0

λsyt+s+1 + φπγρ

1 − ρλ
∞∑
s=0

ρs−1yt−s. (4.4)

38Under rational expectations, agents make forecasts of interest rates into the infinite future. In the BLE
and related learning models, interest rate forecasts play no role. In this adaptive learning model, there is
no transmission mechanism through the term structure of interest rates, only current interest rates matter.
Extending BLE adaptive learning models with a transmission mechanism through the term structure is an
interesting avenue for future research.
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As argued by Giannoni (2014), the optimal monetary policy under commitment in a
purely forward-looking model results in a bounded solution where the endogenous vari-
ables depend not only upon expected future values of disturbances, but also on pre-
determined variables. This means that optimal policy introduces history dependence,
something that is missing in simple interest rate rules without smoothing and pure in-
flation targeting. More importantly, Giannoni (2014) shows that an optimal interest rate
rule that is not only inertial but also superinertial can be derived from the first-order
conditions of the optimal policy problem of the central bank. As (4.4) reveals, interest
rate smoothing, captured by ρ, is necessary in order to introduce history dependence in
a purely forward-looking model. Clearly, setting ρ = 0 in (4.4) shuts down dependence
on past data and makes the rule implicitly purely forward-looking in nature. This is why
the REE requires a higher smoothing parameter.

Let us now consider BLE or SAC learning in the same simple 3-equation NK model
with the above rule (4.3) but now without smoothing (i.e., ρ= 0). In this case, the Phillips
curve after plugging inflation expectations (assuming zero mean in inflation expecta-
tions) takes the following form:

πt = λβπt−1 + γyt . (4.5)

Plugging the above expression in (4.4) and iterating backwards, we get

it =φπγ
∞∑
s=0

(λβ)syt−s. (4.6)

As equation (4.6) reveals, the backward-looking nature of expectations introduces per-
sistence in the model that makes the interest rate depend on current and past infor-
mation only. As such, interest rate smoothing is not necessary, nor does it add further
information in interest rate setting. That explains why our simulations find that zero or
substantially lower smoothing is required under the BLE or SAC learning.

In the literature, the observed rate of interest rate smoothing in the historical data
has been attributed to the presence of forward-looking agents (Woodford (2003b)),
where a high degree of smoothing helps introduce history dependence into agents’ be-
liefs and steers private-sector expectations of future policy in the right direction. High
interest rate smoothing or first difference rules have also been found beneficial in mod-
els with central bank uncertainty and learning about the data or model parameters
(Sack and Wieland (2000)), as well as in studies where both agents and the central bank
use adaptive learning (Orphanides and Williams (2007), Woodford (2013)).39 Our results
here suggest that smoothing is not desirable with boundedly rational agents that use
backward- looking forecasting rules in the absence of central bank learning. Central
bank learning could affect the resulting optimal interest rate inertia in either direction,
in the presence of backward-looking learning rules adopted by the pricate sector of the
economy. We leave a further exploration of this topic to future research.

39Eusepi and Preston (2018b) provide an extensive and very detailed review on the properties of interest
rate rules under imperfect knowledge.
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5. Concluding remarks

In this paper, we generalize the BLE concept with optimal AR(1) beliefs to an n-
dimensional linear stochastic framework and provide an approximation and estimation
method for it. We apply the concept to a simple NK model to derive analytical results and
build intuition. We then estimate BLE in the workhorse Smets and Wouters (2007) model
and compare the in-sample fit and out-of-sample forecasting performance of different
learning models. In this way, we disentangle the effects of the degree of knowledge about
the underlying economy and of learning on the model fit. We find that replacing the
cross-restrictions of REE with those implied by BLE plays an important role in improving
in-sample fitness and pseudo out-of-sample forecasting performance up to 4 quarters.
Introducing learning with AR(1) expectations improves the fitness further, particularly
when the model is reestimated with short-term inflation expectations from survey data.
In particular, SAC-learning with AR(1) beliefs provides the best fit among the constant-
gain learning models considered in this paper when short-term survey data on inflation
expectations are taken into account.

Our work opens up several important avenues of future research. First, our results
call attention to the general class of restricted perceptions equilibria that consider dif-
ferent degrees of misspecification and accompanying solution algorithms to empirically
estimate these equilibria. Second, sample-autocorrelation learning, which is based on a
method-of-moments estimator for the AR(1) rule, should be extended and generalized
as an alternative to the constant-gain recursive least squares learning in order to ac-
count for any class of PLM and to complement the corresponding restricted perceptions
equilibrium concepts. In general, estimation methods of optimal forecasting heuristics
within macroeconomic models seem a plausible and empirically relevant avenue for
future work. Policy analysis under optimal forecasting heuristics is an important appli-
cation of these theoretical and empirical tools. Finally, while the empirical horse race in
this paper is limited to Euler-equation learning models, extending the analysis to other
approaches such as infinite-horizon learning is an important topic for future work.
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