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S.1. Likelihood function of the model

To derive the likelihood function of the model, start from equation (1) of the paper,
which we rewrite here for convenience:

yt =�wt +Bεt , εt ∼N(0, Ik ). (S.1)

yt is a k× 1 vector of variables, εt is a k× 1 vector of structural shocks, wt is an m× 1
vector of lagged variables and the constant, with m = kp + 1, � is a k × m matrix of
reduced form parameters, and B is a k × k matrix of structural parameters. Write the
model in compact form as

Y =�W +BE,

where Y = [y1, � � � , yt , � � � , yT ] and E = [ε1, � � � , εt , � � � , εT ] are k×T matrices of data and
shocks, and W = [w1, � � � , wt , � � � , wT ] is an m× T matrix of data. Then make use of the
formula vec(ABC ) = (C ′ ⊗A) · vec(B) (see Lütkepohl (2005), Mathematical Appendix)
and rewrite the model as

ỹ=Zπ + (IT ⊗B)ε̃, ε̃∼N(0, ITk ),

with ỹ= vec(Y ) and ε̃= vec(E) of dimension kT × 1 and

Z = (
W ′ ⊗ Ik

)
,

of dimension kT ×mk. Themk× 1 vector π = vec(�) stacks the columns of� vertically.
Lastly, rewrite the model as

ỹ=Zπ + ũ, ũ ∼N(
0,

(
IT ⊗BB′)),
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with ũ= (IT ⊗B)ε̃ the VAR innovations. Define the estimators

�̂T = YW ′(WW ′)−1
,

π̂T = vec(�̂T ) = ((
WW ′)−1

W ⊗ Ik
)
ỹ,

�̂T = (Y − �̂TW )(Y − �̂TW )′

T −m .

The likelihood function of model (S.1) can be written in (π, B) as

p(Y |π, B) = (2π )−
kT
2

∣∣det
(
IT ⊗BB′)∣∣− 1

2 e−
1
2 (ỹ−Zπ )′(IT⊗BB′ )−1(ỹ−Zπ )

∝ ∣∣det(B)
∣∣−T e− 1

2 (ỹ−(W ′⊗IT )π )′(IT⊗(BB′ )−1 )(ỹ−(W ′⊗IT )π )

∝ ∣∣det(B)
∣∣−T e− 1

2 {ỹ′(IT⊗(BB′ )−1 )ỹ+π′(WW ′⊗(BB′ )−1 )π−2π′(W⊗(BB′ )−1 )ỹ}

∝ ∣∣det(B)
∣∣−T e− 1

2 {π ′(WW ′⊗(BB′ )−1 )π−2π′(WW ′⊗(BB′ )−1 )π̂T+ỹ′(IT⊗(BB′ )−1 )ỹ},

where the last step uses

2π ′(W ⊗ (
BB′)−1)

ỹ= 2π ′(WW ′ ⊗ (
BB′)−1)((

WW ′)−1
W ⊗ Ik

)
ỹ

= 2π ′(WW ′ ⊗ (
BB′)−1)

π̂T .

In the reduced form parameters (π, �), the likelihood function is written as

p(Y |π, �) = (2π )−
kT
2

∣∣det(�)
∣∣− T

2 e−
1
2 (ỹ−Zπ )′(IT⊗�)−1(ỹ−Zπ )

∝ ∣∣det(�)
∣∣− T

2 e−
1
2 {π ′(WW ′⊗�−1 )π−2π′(WW ′⊗�−1 )π̂T+ỹ′(IT⊗�−1 )ỹ}.

S.2. The independent NiWU approach

This Appendix provides the derivations of the posterior distribution under an indepen-
dent NiWU prior. We report the results for a variety of specifications, including the case
of a flat prior on π and a generalized improper inverse Wishart prior on �. This facil-
itates the discussion in the paper, in which the exact specification of the NiWU prior
for the proposal draws can be selected freely in order to improve the performance of
the importance sampler. The derivations are relatively standard in the literature and are
provided here for completeness. For a more general discussion, see Canova (2007), Koop
and Korobilis (2010), and Kilian and Lütkepohl (2017). As in the paper, we use notation
p(·) and pNiW U ,i(·) for the densities for our general prior and for the special case of the
independent NiWU prior, respectively. We also differentiate between algorithms that in-
troduce sign restrictions, that is, p̃(·), p̃NiW U ,i(·), or do not introduce sign restrictions,
that is, p(·), pNiW U ,i(·), as this difference is important for our sampler.
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S.2.1 Improper flat and generalized inverse Wishart prior

We first consider the prior beliefs

p̃NiW U ,i(π, �,Q) ∝ I{π, �,Q} ·pNiW U ,i(π, �,Q), (S.2)

pNiW U ,i(π, �,Q) = pNiW U ,i(π ) ·pNiW U ,i(�) ·pNiW U ,i(Q),

pNiW U ,i(π ) ∝ 1,

pNiW U ,i(�) ∝ ∣∣det(�)
∣∣ c2 · e− 1

2 trace[�−1S],

pNiW U ,i(Q) =UO(k) ∝ 1. (S.3)

The prior on π is an improper flat prior. The prior on � is a generalized version of the
standard inverse Wishart distribution in that it is a proper inverse Wishart with d = −(c+
k+ 1) degrees-of-freedom only if c ≤ −(2k+ 1), p(�). The above prior implies the joint
posterior distribution

p̃NiW U ,i(π, �,Q|Y ) ∝ I{π, �,Q} ·pNiW U ,i(π, �,Q|Y ),

pNiW U ,i(π, �,Q|Y ) = pNiW U ,i(π, �|Y ) ·pNiW U ,i(Q|Y , π, �),

pNiW U ,i(π, �|Y ) ∝ ∣∣det(�)
∣∣ c2 · e− 1

2 trace[�−1S]
∣∣det(�)

∣∣− T
2

· e− 1
2 {π ′(WW ′⊗�−1 )π−2π′(WW ′⊗�−1 )π̂T+ỹ′(IT⊗�−1 )ỹ},

pNiW U ,i(Q|Y , π, �) = pNiW U ,i(Q) =UO(k) ∝ 1.

(S.4)

Since

π ′(WW ′ ⊗�−1)π − 2π ′(WW ′ ⊗�−1)π̂T + ỹ′(IT ⊗�−1)ỹ
= π ′V ∗−1

π π − 2π ′V ∗−1

π μ∗
π + ỹ′(IT ⊗�−1)ỹ

= (
π −μ∗

π

)′
V ∗−1

π

(
π −μ∗

π

) + ỹ′(IT ⊗�−1)ỹ−μ∗′
πV

∗−1

π μ∗
π

= (
π −μ∗

π

)′
V ∗−1

π

(
π −μ∗

π

) + ỹ′(IT ⊗�−1)ỹ− π̂ ′
T

(
WW ′ ⊗�−1)π̂T ,

given

V ∗
π = (

WW ′)−1 ⊗�,

μ∗
π = π̂T ,

equation (S.4) can be rewritten as

pNiW U ,i(π, �|Y ) ∝ ∣∣det
(
V ∗
π

)∣∣− 1
2 · e− 1

2 (π−μ∗
π )′V ∗−1

π (π−μ∗
π )

· ∣∣det
(
V ∗
π

)∣∣ 1
2 · ∣∣det(�)

∣∣ c2 · ∣∣det(�)
∣∣− T

2

· e− 1
2 {trace[�−1S]+ỹ′(IT⊗�−1 )ỹ−π̂′

T (WW ′⊗�−1 )π̂T }.
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Using formula vec(A)′(D ⊗ B) vec(C ) = tr(A′BCD′ ) (see Abadir and Magnus (2005,
Chapter 10)) to rewrite

ỹ′(IT ⊗�−1)ỹ= trace
[
Y ′�−1Y

] = trace
[
�−1YY ′],

π̂ ′
T

(
WW ′ ⊗�−1)π̂T = trace

[
�̂′
T�

−1�̂TW W
′] = trace

[
�−1�̂TW W

′�̂′
T

]
,

noticing that

YY ′ − �̂TW W ′�̂′
T = (Y − �̂TW )(Y − �̂TW )′

= (Y − �̂TW )(Y − �̂TW )′
T −m
T −m

= �̂T (T −m),

and using the result

det
(
V ∗
π

) = ∣∣det
(
WW ′)∣∣k · ∣∣det(�)

∣∣m,

one can simplify pNiW U ,i(π, �|Y ) as

pNiW U ,i(π, �|Y ) ∝ ∣∣det
(
V ∗
π

)∣∣− 1
2 · e− 1

2 (π−μ∗
π )′V ∗−1

π (π−μ∗
π )

· ∣∣det(�)
∣∣m2 · ∣∣det(�)

∣∣ c2 · ∣∣det(�)
∣∣− T

2

· e− 1
2 trace[�−1(S+�̂T (T−m))]

∝ ∣∣det
(
V ∗
π

)∣∣− 1
2 · e− 1

2 (π−μ∗
π )′V ∗−1

π (π−μ∗
π )

· ∣∣det(�)
∣∣− (T−m−c−k−1)+k+1

2 · e− 1
2 trace[�−1(S+�̂T (T−m))].

It then follows that the prior beliefs in equations (S.2)–(S.3) imply

p̃NiW U ,i(π, �,Q|Y ) ∝ I{π, �,Q} ·pNiW U ,i(π, �,Q|Y ),

pNiW U ,i(π, �,Q|Y ) = pNiW U ,i(π|Y , �) ·pNiW U ,i(�|Y ) ·pNiW U ,i(Q|Y , π, �),

pNiW U ,i(�|Y ) = iW (
S∗, d∗), (S.5)

pNiW U ,i(π|Y , �) =φ(
μ∗
π , V ∗

π

)
, (S.6)

pNiW U ,i(Q|Y , π, �) = pNiW U ,i(Q) =UO(k) ∝ 1,

d∗ = T −m− c− k− 1,

S∗ = S + �̂T (T −m),

μ∗
π = π̂T ,

V ∗
π = (

WW ′)−1 ⊗�,
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with iW (·, ·) and φ(·, ·) the probability density functions of the inverse Wishart and
the Normal distribution, respectively. While in the independent NiWU prior it is usu-
ally pNiW U ,i(�|Y , π ) rather than pNiW U ,i(�|Y ) to be inverse Wishart, it is shown above
thatpNiW U ,i(�|Y ) is inverse Wishart ifpNiW U ,i(π ) ∝ 1.pNiW U ,i(�|Y ) is a proper inverse
Wishart distribution as long as

d∗ ≥ k,

or equivalently,

c ≤ T −m− 2k− 1,

T ≥ c+m+ 2k+ 1.

The mode of pNiW U ,i(�|Y ) can be computed as follows:

log
[
pNiW U ,i(�|Y )

] ∝ T −m− c
2

· log
(∣∣det

(
�−1)∣∣) − 1

2
trace

[
�−1(S + �̂T (T −m)

)]
,

d log
[
pNiW U ,i(�|Y )

]
d�−1 = T −m− c

2
�− 1

2

(
S + �̂T (T −m)

) = 0,

�mode = 1
T −m− c S + T −m

T −m− c �̂T .

In footnote 2 of the paper, we use this result for c = −(d+ k+ 1).
Different algorithms can be used to explore the joint posterior distribution, depend-

ing on whether the analysis is done only for the reduced-form parameters without sign
restrictions on the corresponding structural parameters (pNiW U ,i(π, �|Y )), or on struc-
tural parameters under sign restrictions (p̃NiW U ,i(π, �,Q|Y )). In the former case, the
algorithm used to explore pNiW U ,i(π, �|Y ) is

Algorithm A: pNiW U ,i(π, �|Y )

(i) draw �(d) from an iW(S∗, d∗ ), equation (S.5);

(ii) draw π(d) from a N(μ∗
π , V ∗

π ), equation (S.6), using V ∗
π associated with �(d);

(iii) store (π(d), �(d) );

(iv) repeat steps (i)–(iii) until a desired number of draws n1 is stored.

In the latter case, the algorithm used to explore p̃NiW U ,i(π, �,Q|Y ) is

Algorithm B: p̃NiW U ,i(π, �,Q|Y )

(i) draw �(d) from an iW(S∗, d∗ ), equation (S.5);

(ii) draw π(d) from a N(μ∗
π , V ∗

π ), equation (S.6), using V ∗
π associated with �(d);

(iii) draw Q(d) from the (Haar) uniform distribution using the algorithm by Rubio-
Ramirez, Waggoner, and Zha (2010);

(iv) compute the structural statistics of interest associated with (π(d), �(d),Q(d) ):
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(iv,a) if the restrictions are satisfied, store (π(d), �(d),Q(d) );

(iv,b) if the restrictions are not satisfied, move back to step 1;

1. repeat steps (i)–(iv) until a desired number of draws n1 is stored.

Both algorithms rely on direct sampling. By construction, Algorithm A delivers marginal

draws from pNiW U ,i(�|Y ) in equation (S.5) and conditional draws for π from the Nor-

mal distribution (S.6). The same is not true for Algorithm B, because the accept/reject

part of the algorithm potentially tilts the Normal inverse Wishart distribution for (π, �).

In the paper, we use Algorithm A to generate proposal draws for our sampler because

we must be in a position to evaluate the distribution of the proposal draws in the impor-

tance sampler. We use Algorithm B as a term of comparison to the NiWU approach in

Section 4.3 of the paper.

S.2.2 Independent normal and generalized inverse Wishart prior

We now discuss the case of prior beliefs

p̃NiW U ,i(π, �,Q) ∝ I{π, �,Q} ·pNiW U ,i(π, �,Q), (S.7)

pNiW U ,i(π, �) = pNiW U ,i(π ) ·pNiW U ,i(�) ·pNiW U ,i(Q),

pNiW U ,i(π ) =φ(μπ , Vπ ),

pNiW U ,i(�) ∝ ∣∣det(�)
∣∣ c2 · e− 1

2 trace[�−1S],

pNiW U ,i(Q) =UO(k) ∝ 1. (S.8)

Compared to Section S.2.1, the density on π is proper. The above prior implies the joint

posterior distribution

p̃NiW U ,i(π, �,Q|Y ) ∝ I{π, �,Q} ·pNiW U ,i(π, �,Q|Y ),

pNiW U ,i(π, �,Q|Y ) = pNiW U ,i(π, �|Y ) ·pNiW U ,i(Q|Y , π, �),

pNiW U ,i(π, �|Y ) ∝ ∣∣det(�)
∣∣ c2 · e− 1

2 trace[�−1S]

· ∣∣det(Vπ )
∣∣− 1

2 · e− 1
2 (π−μπ )′V −1

π (π−μπ )
∣∣det(�)

∣∣− T
2

· e− 1
2 {π ′(WW ′⊗�−1 )π−2π′(WW ′⊗�−1 )π̂T+ỹ′(IT⊗�−1 )ỹ}

∝ ∣∣det(�)
∣∣ c2 · e− 1

2 trace[�−1S]

· e− 1
2 {π ′V −1

π π−2π′V −1
π μπ+μ′

πV
−1
π μπ } · ∣∣det(�)

∣∣− T
2

· e− 1
2 {π ′(WW ′⊗�−1 )π−2π′(WW ′⊗�−1 )π̂T+ỹ′(IT⊗�−1 )ỹ},

pNiW U ,i(Q|Y , π, �) = pNiW U ,i(Q) =UO(k) ∝ 1.

(S.9)
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Since

π ′(V −1
π +WW ′ ⊗�−1)π − 2π ′(V −1

π μπ + (
WW ′ ⊗�−1)π̂T ) + ỹ′(IT ⊗�−1)ỹ+μ′

πV
−1
π μπ

=π ′V ∗−1

π π − 2π ′V ∗−1

π μ∗
π + ỹ′(IT ⊗�−1)ỹ+μ′

πV
−1
π μπ

= (
π −μ∗

π

)′
V ∗−1

π

(
π −μ∗

π

) + ỹ′(IT ⊗�−1)ỹ+μ′
πV

−1
π μπ −μ∗′

πV
∗−1

π μ∗
π ,

with

V ∗
π = (

V −1
π +WW ′ ⊗�−1)−1

,

μ∗
π = V ∗

π

(
V −1
π μπ + (

WW ′ ⊗�−1)π̂T )
,

equation (S.9) can be rewritten as

pNiW U ,i(π, �|Y ) ∝ ∣∣det
(
V ∗
π

)∣∣− 1
2 · e− 1

2 (π−μ∗
π )′V ∗−1

π (π−μ∗
π )

· ∣∣det
(
V ∗
π

)∣∣ 1
2 · ∣∣det(�)

∣∣ c2 · ∣∣det(�)
∣∣− T

2

· e− 1
2 {trace[�−1S]+ỹ′(IT⊗�−1 )ỹ−μ∗′

π V
∗−1
π μ∗

π }

∝ ∣∣det
(
V ∗
π

)∣∣− 1
2 · e− 1

2 (π−μ∗
π )′V ∗−1

π (π−μ∗
π )

· ∣∣det
(
V ∗
π

)∣∣ 1
2 · ∣∣det(�)

∣∣− T−c
2

· e− 1
2 {trace[�−1S]+ỹ′(IT⊗�−1 )ỹ−μ∗′

π V
∗−1
π μ∗

π }.

Lastly, we can derive

pNiW U ,i(�|Y ,�) ∝ ∣∣det(�)
∣∣ c2 · e− 1

2 trace[�−1S]

· ∣∣det(�)
∣∣− T

2 · e− 1
2 {π ′(WW ′⊗�−1 )π−2π′(WW ′⊗�−1 )π̂T+ỹ′(IT⊗�−1 )ỹ}

∝ ∣∣det(�)
∣∣ c2 · e− 1

2 trace[�−1S]

· ∣∣det(�)
∣∣− T

2 · e− 1
2 {π ′(WW ′⊗�−1 )π−2π′(W⊗�−1 )ỹ+ỹ′(IT⊗�−1 )ỹ}

∝ ∣∣det(�)
∣∣− T−c

2 · e− 1
2 trace[�−1(S+YY ′+�WW ′�′−2YW ′�′ )]

∝ ∣∣det(�)
∣∣− (T−c−k−1)+k+1

2 · e− 1
2 trace[�−1(S+(Y−�W )(Y−�W )′ )].

It then follows that the prior beliefs in equations (S.7)–(S.8) imply

p̃NiW U ,i(π, �,Q|Y ) ∝ I{π, �,Q} ·pNiW U ,i(π, �,Q|Y ),

pNiW U ,i(π, �,Q|Y ) = pNiW U ,i(π|Y , �) ·pNiW U ,i(�|Y ) ·pNiW U ,i(Q|Y , π, �),

pNiW U ,i(π|Y , �) =φ(
μ∗
π , V ∗

π

)
, (S.10)

pNiW U ,i(�|Y ,�) = iW (
S∗, d∗), (S.11)
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pNiW U ,i(�|Y ) ∝ ∣∣det
(
V ∗
π

)∣∣ 1
2 · ∣∣det(�)

∣∣− T−c
2

· e− 1
2 {trace[�−1S]+ỹ′(IT⊗�−1 )ỹ−μ∗′

π V
∗−1
π μ∗

π },

pNiW U ,i(Q|Y , π, �) = pNiW U ,i(Q) =UO(k) ∝ 1,

V ∗
π = (

V −1
π +WW ′ ⊗�−1)−1

,

μ∗
π = V ∗

π

(
V −1
π μπ + (

WW ′ ⊗�−1)π̂T )
,

d∗ = T − c− k− 1,

S∗ = S + (Y −�W )(Y −�W )′.

Contrary to Section S.2.1, S∗ is now a function of π, although this is not made explicit in
the notation. Note that pNiW U ,i(�|Y ,�) is a proper inverse Wishart distribution as long
as

d∗ ≥ k,

or equivalently, as long as

c ≤ T − 2k− 1,

T ≥ c+ 2k+ 1.

Contrary to Section S.2.1, drawing directly from pNiW U ,i(�|Y ) is now not possible and a
Gibbs sampler is needed, but pNiW U ,i(�|Y ) can still be evaluated.

As in Section S.2.1, different algorithms can be used to explore the joint poste-
rior distribution, depending on whether the analysis is done only on reduced form
parameters without accounting for the indirect restrictions from sign restrictions on
the corresponding structural parameters (pNiW U ,i(π, �|Y )) or by also considering sign
restrictions (p̃NiW U ,i(π, �,Q|Y )). In the former case, the algorithm used to explore
pNiW U ,i(π, �|Y ) is

Algorithm C : pNiW U ,i(π, �|Y )

(i) select a starting value for �(0);

(ii) draw π(d) from a N(μ∗
π , V ∗

π ), equation (S.10), using (μ∗
π , V ∗

π ) associated with �(d−1);

(iii) draw �(d) from an iW(S∗, d∗ ), equation (S.11), using S∗ associated with π(d);

(iv) if the n2 burn-in draws have been generated, store (π(d), �(d) );

(v) repeat steps (ii)–(iv) until a desired number of draws n3 is stored.

In the latter case, the algorithm used to explore p̃NiW U ,i(π, �,Q|Y ) is

Algorithm D: p̃NiW U ,i(π, �,Q|Y )

(i) select some starting candidate value for �(0);

(ii) draw π(c) from a N(μ∗
π , V ∗

π ), equation (S.10), using (μ∗
π , V ∗

π ) associated with �(d−1);

(iii) draw �(c) from an iW(S∗, d∗ ), equation (S.11), using S∗ associated with π(c);
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(iv) draw Q(c) from the (Haar)uniform distribution using the algorithm by Rubio-
Ramirez, Waggoner, and Zha (2010);

(v) compute the structural statistics of interest associated with (π(c), �(c),Q(c) ):

(v a) if the restrictions are satisfied, set(
π(d), �(d),Q(d)) = (

π(c), �(c),Q(c));

(v b) if the restrictions are not satisfied, move back to step 2;

(vi) if the n2 burn-in draws have been passed already, store (π(d), �(d),Q(d) );

(vii) repeat steps (ii)–(v) until a desired number of draws n3 is stored.

Both algorithms rely on Gibbs sampling. As for Algorithms A and B, we use Algorithm C
to generate proposal draws for our sampler, because we must be in a position to evaluate
the marginal distribution associated with the proposal draws for �.

S.3. Np(B) approach proposed in the paper

In this section, we provide the derivations of the posterior distribution for the approach
proposed in the paper. We then discuss the diagnostics procedures we use to assess the
performance of our importance sampler.

S.3.1 Derivations

We first provide the derivations for the more general case of the priors from equations
(19a)–(19d) in the paper, and then discuss two common special cases.

S.3.1.1 General case Start from the prior distribution

p̃(π, B) ∝ I{π, B} ·p(π, B)

∝ I{π, B} ·p(π|B) ·p(B),

with

p(π|B) =φ(μπ , Vπ ),

where φ(·, ·) is the probability density function of a Normal distribution and μπ and Vπ
can be a function of B. The joint posterior distribution then equals

p̃(π, B|Y ) ∝ I{π, B} ·p(π, B|Y )

∝ I{π, B} ·p(π, B) ·p(Y |π, B)

∝ I{π, B} ·p(B)

· (2π )−
mk

2
∣∣det(Vπ )

∣∣− 1
2 e−

1
2 (π−μπ )′V −1

π (π−μπ )

· (2π )−
kT
2

∣∣det(B)
∣∣−T e− 1

2 (ỹ−Zπ )′(IT⊗BB′ )−1(ỹ−Zπ ). (S.12)
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As is standard in the literature, we rewrite equation (S.12) as

p̃(π, B|Y ) ∝ I{π, B} ·p(π, B|Y )

∝ I{π, B} ·p(π|Y , B) ·p(B|Y ),

and exploit analytical results for p(π|Y , B). Define

�(B) = (
IT ⊗BB′),

and rewrite p(π, B|Y ) as

p(π, B|Y ) = κ · e− 1
2 [(π−μπ )′V −1

π (π−μπ )+(ỹ−Zπ )′�(B)−1(ỹ−Zπ )], (S.13)

with κ a term that includes elements which are not a function of π. As done also in
Section S.2.2, factorize the terms in the exponent of (S.13) as

(π −μπ )′V −1
π (π −μπ ) + (ỹ−Zπ )′�(B)−1(ỹ−Zπ )

=π ′V −1
π π − 2π ′V −1

π μπ +μ′
πV

−1
π μπ

+ ỹ′�(B)−1ỹ− 2π ′Z′�(B)−1ỹ+π ′Z′�(B)−1Zπ

=π ′[V −1
π +Z′�(B)−1Z

]
π − 2π ′[V −1

π μπ +Z′�(B)−1ỹ
]

+ ỹ′�(B)−1ỹ+μ′
πV

−1
π μπ

= (
π −μ∗

π

)′
V ∗−1

π

(
π −μ∗

π

) + ỹ′�(B)−1ỹ+μ′
πV

−1
π μπ −μ∗′

πV
∗−1

π μ∗
π ,

with

V ∗
π = [

V −1
π +Z′�(B)−1Z

]−1

= (
V −1
π + [

WW ′ ⊗ (
BB′)−1])−1

,

μ∗
π = V ∗

π · [V −1
π μπ +Z′�(B)−1ỹ

]
= V ∗

π · (V −1
π μπ + [

W ⊗ (
BB′)−1]

ỹ
)

= V ∗
π · (V −1

π μπ + [
WW ′ ⊗ (

BB′)−1]
π̂T

)
.

The joint posterior distribution can now be written as

p̃(π, B|Y ) ∝ I(π, B) · ∣∣det
(
V ∗
π

)∣∣− 1
2 · e− 1

2 (π−μ∗
π )′V ∗−1

π (π−μ∗
π )︸ ︷︷ ︸

p(π|Y ,B)=φ(μ∗
π ,V ∗

π )

·p(B) · ∣∣det(B)
∣∣−T · ∣∣det

(
V ∗
π

)∣∣ 1
2 · ∣∣det(Vπ )

∣∣− 1
2

· e− 1
2 {ỹ′(IT⊗(BB′ )−1 )ỹ−μ∗′

π V
∗−1
π μ∗

π+μ′
πV

−1
π μπ }.
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It follows that

p̃(π, B|Y ) ∝ I{π, B}p(π|Y , B) ·p(B|Y ),

p(π|B, Y ) =φ(
μ∗
π , V ∗

π

)
,

p(B|Y ) ∝ p(B) · ∣∣det(B)
∣∣−T · ∣∣det(Vπ )

∣∣− 1
2 · ∣∣det

(
V ∗
π

)∣∣ 1
2

· e− 1
2 {ỹ′(IT⊗(BB′ )−1 )ỹ−μ∗′

π V
∗−1
π μ∗

π+μ′
πV

−1
π μπ }.

(S.14)

While not explicit in the notation, μ∗
π and V ∗

π are a function of B.
Our algorithm requires being able to evaluate the probability distribution on (�,Q)

implied by a distribution on B. To compute such transformations through the change of
a variable theorem, define functions f1(·), f2(·), f3(·) as

B= f1(�,Q) = h(�)Q,

�= f2(B) = BB′,

Q= f3(B) = h(
f2(B)

)−1
B,

with h(�) the Cholesky decomposition of �, or any other unique decomposition. Re-
ferring now more rigorously to probability distributions on B and (�,Q) as pB(B) and
p�,Q(�,Q), we obtain

p�,Q(�,Q) = v{B→�,Q} ·pB
(
f1(�,Q)

)
,

pB(B) = v{�,Q→B} ·p�,Q
(
f2(B), f3(B)

)
,

with v{·→·} the volume elements in the mapping from B to (�,Q) or vice versa (see
Casella and Berger (2021) for the definition of the volume element). We compute
v{B→�,Q} and v{�,Q→B} using the results in Bibby, Kent, and Mardia (1979) (Chapter 2)
and Mathai and Haubold (2008) (Chapter 11):1

v{B→�,Q} = ∣∣det(�)
∣∣− 1

2 ,

v{�,Q→B} = ∣∣det(B)
∣∣.

We can then compute the joint and marginal posterior distributions on (�,Q) implied
by equation (S.14).

Consider first p�,Q(�,Q|Y ). It holds that

p�,Q(�,Q|Y ) ∝ v{B→�,Q} ·pB
(
f1(�,Q)|Y

)
∝ ∣∣det(�)

∣∣− 1
2 · ∣∣det(�)

∣∣− T
2 · ∣∣det(Vπ )

∣∣− 1
2 · ∣∣det

(
V ∗
π

)∣∣ 1
2

· e− 1
2 {ỹ′(IT⊗�−1 )ỹ−μ∗′

π V
∗−1
π μ∗

π+μ′
πV

−1
π μπ } ·pB

(
f1(�,Q)

)
1When zero restrictions are introduced, the volume elements must be evaluated numerically; see Arias,

Rubio-Ramírez, and Waggoner (2018).
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∝ ∣∣det(�)
∣∣− T+1

2 · ∣∣det(Vπ )
∣∣− 1

2 · ∣∣det
(
V ∗
π

)∣∣ 1
2

· e− 1
2 {ỹ′(IT⊗�−1 )ỹ−μ∗′

π V
∗−1
π μ∗

π+μ′
πV

−1
π μπ } ·pB

(
h(�)Q

)
,

p�(�|Y ) ∝
∫
O(k)

p�,Q(�,Q|Y )dQ

∝ ∣∣det(�)
∣∣− T+1

2 · ∣∣det(Vπ )
∣∣− 1

2 · ∣∣det
(
V ∗
π

)∣∣ 1
2

· e− 1
2 {ỹ′(IT⊗�−1 )ỹ−μ∗′

π V
∗−1
π μ∗

π+μ′
πV

−1
π μπ }

·
∫
O(k)

pB
(
h(�)Q

)
dQ,

with O(k) the space of orthogonal matrices of dimensions k × k. The integral∫
O(k)pB(h(�)Q)dQ is a function of � and coincides with integrating the prior distri-

bution p(B) along the subspace B(�) defined as the parameter space of B such that BB′
equals a constant value �. For a given value of �d , we approximate the integral using the
following simulation-based method:

Algorithm E :

(i) draw a matrixQc from the algorithm by Rubio-Ramirez, Waggoner, and Zha (2010);

(ii) compute Bc = h(�d )Qc ;

(ii,a) if Bc satisfies the sign restrictions on B, proceed to step 3;

(ii,b) if Bc does not satisfy the sign restrictions on B, move back to step 1;

(iii) storeQi =Qc ;

(iv) repeat steps (i)–(iv) until m2 draws {Qi}
m2
i=1 are stored, and save the number of gen-

erated drawsm3(�d ) required to obtain the necessarym2 draws.

(v) compute

∫
O(k)

pB
(
h(�d )Q

)
dQ≈

m2∑
i=1

pB
(
h(�d )Qi

)
m3(�d )

.

Our algorithm also requires evaluating the conditional distribution p(Q|�) implicit

in p(B). Note that

p�,Q(�,Q) = v{B→�,Q} ·pB
(
h(�)Q

)
,

p�(�) =
∫
O(k)

v{B→�,Q} ·pB
(
h(�)Q

)
dQ,

pQ|�(Q|�) = p�,Q(�,Q)

p̃�(�)
(S.15)
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= v{B→�,Q} ·pB
(
h(�)Q

)∫
O(k)

v{B→�,Q} ·pB
(
h(�)Q

)
dQ

= pB
(
h(�)Q

)∫
O(k)

pB
(
h(�)Q

)
dQ

,

and the same holds for the posterior,

pQ|Y ,�(Q|Y , �) = p�,Q|Y (�,Q|Y )

p�|Y (�|Y )

= v{B→�,Q} ·pB
(
h(�)Q

)∫
O(k)

v{B→�,Q} ·pB
(
h(�)Q

)
dQ

= pB
(
h(�)Q

)∫
O(k)

pB
(
h(�)Q

)
dQ

(S.16)

= pQ|�(Q|�). (S.17)

To appreciate the usefulness of this result (S.17) for our sampler, consider two matrices
(B1, B2 ) that imply the same matrix �,

B1 = h(�)Q1, (S.18)

B2 = h(�)Q2. (S.19)

Equations (S.15) and (S.16) imply that

pQ|�(Q1|�)

pQ|�(Q2|�)
= pQ|Y ,�(Q1|Y , �)

pQ|Y ,�(Q2|Y , �)
= pB

(
h(�)Q1

)
pB

(
h(�)Q2

) = p(B1 )
p(B2 )

.

Hence, evaluating pQ|�(Q|�) and pQ|Y ,�(Q|Y , �) along different values ofQ and condi-
tioning on the same � only requires evaluating the prior distributionpB(h(�)Q) = p(B).
We use this result in Stage B of our algorithm to map draws fromp(�|Y ) into draws from
p(B|Y ). The above result is intuitive. Conditioning on�, if the posterior favorsB1 overB2

defined in equations (S.18)–(S.19), it is because the prior does the same by the same pro-
portion, that is, p(B2|Y )

p(B1|Y ) = p(B2 )
p(B1 ) . Hence, in our algorithm, mapping draws from p(�|Y )

into draws fromp(B|Y ) only requires evaluatingp(B). For completeness, the paper uses
notation p(Q|Y , �) rather than the equivalent p(Q|�).

The above intuition is used in the analysis of Figure 4 of the paper, which is generated
as follows:

Algorithm F :

(i) select the conditioning value �̄ and compute the Cholesky decomposition Bc =
h(�̄);
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(ii) draw Q(d) from the (Haar) uniform distribution using the algorithm by Rubio-
Ramirez, Waggoner, and Zha (2010);

(iii) compute B(d) = Bc ·Q(d), verify if the sign restrictions are satisfied, checking up to
sign and permutations of the columns of B(d) by appropriately adjusting the sign
and ordering of the columns ofQ(d), if necessary;

(iii,a) if the sign restrictions are satisfied, proceed to step 4;

(iii,b) if the sign restrictions are not satisfied, move back to step 2;

(iv) compute θ(d) = atan(
Q(d)

21

Q(d)
11

), with Q(d)
ij the (i, j) entry of Q(d)

11 and with atan the in-

verse tangent function evaluated at Q2,1
Q1,1

, so that Q(θ) = Q(d), with the Q(θ) the
Givens rotation matrix

Q(θ) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
;

(v) compute w(d) as the prior p(B) evaluated in B(d);

(vi) store (θ(d), w(d) );

(vii) repeat steps (ii)–(vi) until a desired number of draws n4 is stored;

(viii) resample {θ(d)}n4
d=1 with replacement using weights {w(d)}n4

d=1.

S.3.1.2 Case 1: Flat prior on π The first special case used in the paper (equation (27))
consists of the limit case in which the prior distribution p(π|B) becomes flat and im-
proper (V −1

π = 0). Such prior distribution is used in the literature either to reflect unin-
formative priors, or to introduce a Minnesota prior through dummy observations (see
Doan, Litterman, and Sims (1984), Del Negro and Schorfheide (2011)). Under the prior,

p̃(π, B) = I{π, B} ·p(π, B),

p(π, B) = p(π ) ·p(B),

p(π ) ∝ 1,

p(B),

the key results from Section S.3.1.1 simplify to

p̃(π, B|Y ) ∝ I{π, B} ·p(π|B, Y ) ·p(B|Y ),

p(π|B, Y ) =φ(
μ∗
π , V ∗

π

)
,

p(B|Y ) ∝ p(B) · ∣∣det(B)
∣∣−(T−m) · e− 1

2 trace[(BB′ )−1�̂T (T−m)], (S.20)

p(�|Y ) ∝ v{B→�,Q} · ∣∣det(�)
∣∣− T−m

2 · e− 1
2 trace[�−1�̂T (T−m)] ·

∫
O(k)

pB
(
h(�)Q

)
dQ

∝ ∣∣det(�)
∣∣− T−m+1

2 · e− 1
2 trace[�−1�̂T (T−m)] ·

∫
O(k)

pB
(
h(�)Q

)
dQ, (S.21)
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V ∗
π = (

WW ′)−1 ⊗BB′,

μ∗
π = π̂T .

We use equation (S.21) to compute weights w(�(d) )stage A in the Appendix of the paper.
The mode of p(�|Y ) is computed as

log
[
p(�|Y )

] ∝ T −m+ 1
2

· log
(∣∣det

(
�−1)∣∣) − 1

2
trace

[
�−1�̂T (T −m)

]
+ log

(∫
O(k)

pB
(
h(�)Q

)
dQ

)
,

d log
[
p(�|Y )

]
d�−1 = T −m+ 1

2
�− 1

2
�̂T (T −m) + d

d�−1 log
(∫

O(k)
pB

(
h(�)Q

)
dQ

)
= 0;

hence, the mode is implicitly defined by

�= T −m
T −m+ 1

�̂T − 2
T −m+ 1

d

d�−1 log
(∫

O(k)
pB

(
h(�)Q

)
dQ

)
,

a result used in footnote 2 of the paper.

S.3.1.3 Case 2: Prior independence The second special case used in the paper (equa-
tion (28)) consists of a Normal distribution for π that features independence from B. It
is frequently used to introduce the flexible Minnesota prior, compared to the Minnesota
prior modeled through dummy variables.

Under the prior,
p̃(π, B) ∝ I{π, B} ·p(π, B),

p(π, B) = p(π ) ·p(B),

p(π ) =φ(μπ , Vπ ),

p(B),

the key results from Section S.3.1.1 simplify to

p̃(π, B|Y ) ∝ p(π|B, Y ) ·p(B|Y ) · I(π, B),

p(π|B, Y ) =φ(
μ∗
π , V ∗

π

)
,

p(B|Y ) ∝ p(B) · ∣∣det(B)
∣∣−T · ∣∣det

(
V ∗
π

)∣∣ 1
2 · e− 1

2 {ỹ′(IT⊗(BB′ )−1 )ỹ−μ∗′
π V

∗−1
π μ∗

π },

p(�|Y ) ∝ v{B→�,Q} · ∣∣det(�)
∣∣− T

2 · ∣∣det
(
V ∗
π

)∣∣ 1
2 · e− 1

2 {ỹ′(IT⊗�−1 )ỹ−μ∗′
π V

∗−1
π μ∗

π }

·
∫
O(k)

pB
(
h(�)Q

)
dQ (S.22)

∝ ∣∣det(�)
∣∣− T+1

2 · ∣∣det
(
V ∗
π

)∣∣ 1
2 · e− 1

2 {ỹ′(IT⊗�−1 )ỹ−μ∗′
π V

∗−1
π μ∗

π }

·
∫
O(k)

pB
(
h(�)Q

)
dQ,
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V ∗
π = (

V −1
π + [

WW ′ ⊗ (
BB′)−1])−1

,

μ∗
π = V ∗

π · (V −1
π μπ + [

WW ′ ⊗ (
BB′)−1]

π̂T
)
.

We use equation (S.22) to compute weights w(�(d) )stage A in the Appendix of the paper.

S.3.2 Diagnostics for the importance sampler

Stage B of the importance sampler uses an importance function that features positive
mass everywhere in the support of the target function p(Q|�). Accordingly, the favor-
able condition highlighted by Geweke (1989) in his equation (5) holds, ensuring that the
variance of the estimators constructed on the parameters of interest is finite (see also
Robert and Casella (2013), Chapter 3). However, this condition does not hold for Stage
A of the algorithm, which hence requires ensuring that the nonnormalized importance
weights {wi}Ni=1 of sizeN have a finite variance. In order to assess whether the variance of
the weights in Stage A is bounded, we employ a graphical procedure and two diagnostic
tests proposed by Koopman, Shephard, and Creal (2009). We discuss these approaches
in the rest of this section, and refer to Figure S.3 and Table S.6 for the results of the diag-
nostics associated with the application in the paper.

S.3.2.1 Graphical assessment A measure frequently used to assess the quantitative im-
portance of outliers in importance weights (and hence possible concerns about the
finiteness of the variance) is the recursively estimated variance of the weights. De-
fine this estimated variance as {vi}Ni=1, where vi = Var(w1:i ) is the variance of the first i
weights. If outliers do not raise quantitatively relevant concerns, {vi}Ni=1 should converge
smoothly toward a constant. If, instead, individual outliers dominate the recursive vari-
ance, the plot will reveal large jumps. Jumps in {vi}Ni=1 are indicative of an unbounded
variance of the weights.

S.3.2.2 Diagnostic tests In addition to using graphical illustrations, we employ the
more formal testing procedures by Koopman, Shephard, and Creal (2009) to assess the
quantitative relevance of outliers. Koopman, Shephard, and Creal (2009) propose a Wald
test and a score test to test

H0 : the variance is finite

against

H1 : the variance is unbounded.

To set the stage, note that the problematic part of {wi}Ni=1 is the excessively large weights.
It is therefore natural to consider only those weights that are larger than a certain thresh-
old u. After specifying u, generate a new random variable

Zi =wi − u if wi > u.

Then, if {wi}Ni=1 are i.i.d. random draws from the same random variable, then as shown
by Pickands (1975), for large N and u the new sequence of random variables {Zi}ni=1
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approximates a generalized Pareto distribution with density function

f (z|ξ, β) = 1
β

(
1 + ξ z

β

)− 1
ξ−1

. (S.23)

The attractive feature of this distribution is that the finiteness of the variance can directly
be assessed: if ξ≤ 0.5, the variance of Zi exists, otherwise it is unbounded.

In practice, the threshold u plays a crucial role. We follow Arias, Rubio-Ramírez,
and Waggoner (2018) and use five different threshold values, v1 = 0.5N , v2 = 0.6N ,
v3 = 0.7N , v4 = 0.9N , and v5 = 0.99N and set uj = w(vj ), where w(i) are the ordered
weights, that is, w1 ≤ w(2) ≤ · · · ≤ w(N ). To make the tests operational, we use the null
and alternative hypotheses

H0 : ξ= 0.5,

H1 : ξ > 0.5.

Wald test The log likelihood function based on the generalized Pareto distribution in
(S.23) equals

log f (z|β, ξ) = −n · log(β) −
(

1 + 1
ξ

) n∑
i=1

log
(
1 + ξβ−1zi

)
. (S.24)

To construct the test statistic, we need to numerically maximize (S.24) with respect to β
and ξ to obtain βMLE and ξMLE, and then construct a test statistic to test for ξ = 0.5. In
practice, we follow these steps:

1. numerically maximize the unrestricted log likelihood function given in (S.24) to
obtain βMLE and ξMLE;

2. construct the test statistic as

t =
√

n

3β̂MLE

(
ξ̂MLE − 1

2

)
.

The statistic t has an approximate standard normal distribution for n→ ∞. Large values
indicate that ξ exceeds 0.5, which is indicative of unbounded weight variance. Therefore,
we rejectH0 of finite variance of the weights if t exceeds the critical value obtained from
the standard normal distribution.

Score test In order to construct a score test, we need to maximize (S.24) under the null
hypothesis of ξ= 0.5. We follow these steps:

1. Numerically maximize (S.24) with respect to β under the restriction ξ = 0.5 to ob-
tain βMLE,r ;
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2. since the test statistic is based on the score function of ξ, differentiate (S.24) with
respect to ξ and set ξ= 0.5 and β= βMLE,r . This gives 2

ŝ
ξ
r = 4

n∑
i=1

log
(

1 + zi

2βMLE,r

)
− 6

n∑
i=1

zi

2βMLE,r + zi
;

3. compute

sξ∗ = 1√
2n
ŝ
ξ
r .

Since sξ∗ → N(0, 1) for n→ ∞, we reject H0 of finite weight variances if sξ∗ exceeds the
critical values obtained from a standard normal distribution.

S.4. The dynamic striated Metropolis–Hastings algorithm by Waggoner,
Wu, and Zha (2016)

We assess the performance of our sampler by exploring the posterior distribution not
only through our sampler, but also using the Dynamic Striated Metropolis–Hastings
(DSMH) algorithm developed by Waggoner, Wu, and Zha (2016). While being more de-
manding, the DSMH algorithm is designed to explore distributions that are potentially
irregularly shaped, and hence, offers a valid benchmark against which to compare the
draws from our sampler. We use the DSMH algorithm to explore p(B|Y ) from equa-
tion (22) in the paper, and then use the accept/reject steps 7–8 from our algorithm
to convert draws from p(B|Y ) into draws from the ultimate distribution of interest
p̃(B|Y ) = ∫

p̃(π, B|Y )dπ. Section S.4.1 briefly discusses the DSMH sampler, while Sec-
tion S.4.2 discusses the convergence criteria that we use to assess the performance of
the posterior chains.

S.4.1 The DSMH sampler

The key intuition behind the Dynamic Striated Metropolis–Hastings sampler is that one
does not immediately explore sample the distribution of interest, which might feature
an irregular shape and multiple peaks, but a simpler function. The draws from this start-
ing function are then progressively used to approach the distribution of interest. Define
θ the vector including the parameters of interest, and define the function fλ(θ) as

fλ(θ) = f s(θ) · (f i(θ)
)λ · (f d(θ)

)1−λ
,

with tempering parameter λ ∈ [0, 1]. f s(θ), f i(θ), and f d(θ) are selected such that
fλ=1(θ) coincides with the kernel of the probability distribution that one ultimately
wants to explore. As λ increases from 0 to 1, fλ(θ) progressively introduces the elements
of f i(θ) and drops the elements of f d(θ).

Waggoner, Wu, and Zha (2016) specify f s(θ), f i(θ), and f d(θ) in order to initialize
the algorithm from the prior distribution behind their posterior of interest. Alternatively,

2There is a typing error in Koopman (p. 4) in the corresponding equation.
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one could depart from Waggoner, Wu, and Zha (2016) and specify f s(θ), f i(θ), and f d(θ)
to initialize the algorithm from pNiW U ,i(B|Y ), which we defined in the paper as the pos-
terior distribution on B associated with the NiWU approach.3 To illustrate that both ap-
proaches are feasible, we initialize the bivariate simulation exercise in Section 3 at the
prior while using the distribution associated with the NiWU approach for the monetary
policy application in Section 4. In our applications, the sampler is required for either
four or twenty-five parameters, which is well within the range of parameters in which
the Dynamic Striated Metropolis–Hastings sampler performs efficiently.

More precisely, in our applications θ contains the entries of B. Consider for sim-
plicity Case 1, which leads to the posterior of interest p(B|Y ) from equation (S.20). One
could sample p(B|Y ) by setting

f s(θ) = p(B),

f i(θ) = ∣∣det(B)
∣∣−(T−m) · e− 1

2 [(BB′ )−1�̂T (T−m)], (S.25)

f d(θ) = 1.

This specification follows Waggoner, Wu, and Zha (2016) in initializing the algorithm at
the prior distribution behind the posterior distribution of interest. Alternatively, one can
start from a function that allows exploiting the computational advantage of the NiWU
approach. While it is hard to analytically derive the posterior distribution of the draws
delivered by Algorithm B in Section S.2.1 due to the accept/reject part of the algorithm,
the following modification of Algorithm A:

Algorithm A-bis:

(i) draw �(d) from iW(S∗, d∗ ), equation (S.5);

(ii) draw π(d) from N(μ∗
π , V ∗

π ), equation (S.6), using V ∗
π associated with �(d);

(iii) drawQ(d) using the algorithm by Rubio-Ramirez, Waggoner, and Zha (2010);

(iv) store (π(d), �(d),Q(d) );

(v) repeat steps 1–4 until a desired number of draws n1 is stored,

delivers draws from the joint distribution

p(B|Y ) ∝ v�,Q→B ·p(�|Y ) · 1

∝ ∣∣det(B)
∣∣ · ∣∣det

(
BB′)∣∣− T−m−c

2 · e− 1
2 [(BB′ )−1(S+�̂T (T−m))]

∝ ∣∣det(B)
∣∣−(T−m−c−1) · e− 1

2 [(BB′ )−1(S+�̂T (T−m))]. (S.26)

For c = −1 and S = 0 (the same values used for the proposal draws for Case 1 in our
algorithm, see the Appendix of the paper), equation (S.26) is very similar to equation

3A similar idea is explored by Mlikota and Schorfheide (forthcoming), who, like us, implement sequential
sampling starting from a posterior distribution of a convenient form rather than from the prior.
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(S.25), suggesting to start the DSMH from draws from Algorithm A-bis and then setting

f s(θ) = ∣∣det(B)
∣∣−(T−m) · e− 1

2 [(BB′ )−1�̂T (T−m)],

f i(θ) = p(B),

f d(θ) = 1.

Once the functions f s(θ), f i(θ), and f d(θ) are specified, define the target function

log
[
fλh(θ)

] = log
[
f s(θ)

] + λh · log
[
f i(θ)

] + (1 − λh ) · log
[
f d(θ)

]
,

as the logarithm of the tempered function fλh(θ) at stage h, with h = 1, � � � ,H and H
the total number of stages. To the extent that, among other requirements, a sufficient
number of stages is used, the target function at stage h− 1 is close to the target function
at stage h. This makes the draws representative of the target function at stage h − 1, a
useful point of departure to numerically explore the target distribution at stage h. Within
this sequential approach, Waggoner, Wu, and Zha (2016) propose sampling log[fλh(θ)]
using a modified Metropolis–Hastings algorithm.4 In the general stage h, the algorithm
can be summarized in the following steps:

(i) start stage h with N ·G draws {θ(h−1)
d }N·G

d=1 , which are representative of the target

distribution at stage h−1. If h= 1, then {θ(0)
d }N·G

d=1 are drawn from Algorithm A-bis,
otherwise they are computed at the end of stage h− 1;

(ii) evaluate the function log[f i(θ)] at each {θ(h−1)
d }N·G

d=1 and group draws {θ(h−1)
d }N·G

d=1
intoM “striations” (subsets), depending on the corresponding value of log[f i(θ)];

(iii) for each {θ(h−1)
d }N·G

d=1 , compute weights ω̃d = fλh (θ(h−1)
d )

fλh−1 (θ(h−1)
d )

. As with importance sam-

pling techniques,ωd = ω̃d∑N·G
d=1 ω̃d

, d = 1, � � � ,N ·G allow reweighting the draws from

the previous stage such that they become representative of the target distribution
of the current stage, provided that the effective sample size does not shrink exces-
sively;

(iv) use {θ(h−1)
d ,ωd }N·G

d=1 to compute numerically the variance�h of the target function
at stage h;

(v) explore the target function log[fλh(θ)] as follows. For each group g, set the initial
draw θold to a random draw from {θ(h−1)

d }N·G
d=1 , extracted with replacement using

{ωd }N·G
d=1 . Then, with probability p, set θnew = θold +θshock with θshock a multivari-

ate zero-mean normal random variable with variance ch ·�h, while with probabil-
ity 1−p set θnew to a randomly extracted draw from the subset of {θ(h−1)

d }N·G
d=1 from

the striation associated with function log[f i(θ)] evaluated at θold. Accept θnew

4See, for example, Herbst and Schorfheide (2014) for an alternative approach to sequential Monte Carlo
samplers.
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with probability min{1,
fλh (θnew )
fλh (θold ) } if θnew was generated from the random walk ex-

traction, and with probability min{1,
fλh (θnew )
fλh−1 (θold )

fλh (θold )
fλh−1 (θnew ) } if θnew was randomly

selected from the striations at the previous stage. Continue forN · τ iterations;

(vi) store one every τ draws for each group and collect theN ·G draws {θ(h)
d }N·G

d=1 . Use

{θ(h)
d }N·G

d=1 to initialize the next stage h+1. Ifh=H, the last stage has been reached,

and {θ(h)
d }N·G

d=1 are interpreted as posterior draws from the desired distribution.

Following Waggoner, Wu, and Zha (2016), we set p = 1/(10τ). We then set the pa-
rameter ch at each stage following the guidance discussed by Waggoner, Wu, and Zha
(2016) in Appendix A, ensuring, within each stage, an acceptance ratio between 0.20
and 0.30 from a preliminary Metropolis–Hastings algorithm with K iterations. We fol-
low Waggoner, Wu, and Zha (2016) and set the number of stages H at 50, using their
suggested progression for the tempering parameter λh. It remains to calibrate the num-
ber of groups G, the effective number of iterations N within each group, the number K
affecting the number of iterations KG for the calibration of the parameter ch, the fre-
quency τ at which draws stored, and the number of striations M . We set (G,K,M , τ)
as indicated in Table S.1. We then set an initial value for N and progressively increase it
within each stage if this is needed to ensure that the convergence criteria discussed in
the next section confirm that the draws at stage h have converged to the distribution of
the target function at stage h for at least 90% of the parameters in θ. For each applica-
tion, multiple convergence diagnostics are used in each of the 50 stages of the sampler.
The diagnostics results are not reported.

S.4.2 Convergence criteria used for the DSMH algorithm

Consider the chain {θd }N·G
d=1 , with θd = (θ1,d , � � � , θj,d , � � � , θκ,d )′ of dimension κ× 1. We

employ four convergence criteria in order to assess if the chain has converged in distri-
bution, namely the converge criteria developed by Geweke (1992), by Raftery and Lewis
(1992), by Gelman and Rubin (1992), and by Brooks and Gelman (1998). Intuitively, the
criteria used operate by assessing whether the series has excessive autodependence
(which indicates that the draws are not from a stationary distribution) and whether it
depends on the starting point (which indicates that the chain is not long enough).

The convergence criteria that we use can be classified according to two main fea-
tures. First, whether the convergence of each parameter is assessed in isolation from
the remaining κ − 1 parameters or jointly (i.e., whether the object of interest is θj,d or
θd). Second, whether the series of N · G draws are considered in a long chain from a
single starting value or in multiple chains from multiple starting points (i.e., whether
the object of interest is {θj,d }N·G

d=1 or {θj,d }Nd=1, {θj,d }2N
d=N+1, � � � , {θj,d }N·G

d=(G−1)N+1 for uni-

variate chains, and {θd }N·G
d=1 or {θd }Nd=1, {θd }2N

d=N+1, � � � , {θd }N·G
d=(G−1)N+1 for multivariate

chains). The statistic by Brooks and Gelman (1998) considers the multidimensional ob-
jects, while the remaining criteria consider univariate objects. The criteria by Geweke
(1992) and Raftery and Lewis (1992) consider single chains, while the criteria by Gelman
and Rubin (1992) and Brooks and Gelman (1998) consider multiple chains. For a detailed
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comparative review of convergence criteria for Markov Chain Monte Carlo mechanisms,
see Cowles and Carlin (1996) and Brooks and Roberts (1998).

Geweke (1992) The univariate approach by Geweke (1992) assesses the convergence of
each parameter of the series in isolation, using the series {θj,d }N·G

d=1 for each parameter j.
The assessment is based on a comparison of means across different parts of the chain.
If the means are close to each other, the procedure detects convergence.

To run the test, we proceed in four steps:

(i) extract the first 10% and the last 40% of the draws of {θj,d }N·G
d=1 , that is, {θj,d }0.10·N·G

d=1
and {θj,d }N·G

d=0.60·N·G;

(ii) for each subseries, compute the mean and the standard deviation and call them
μ̂first, μ̂last, �̂first, and σ̂last;

(iii) compute the test statistic

CD= μ̂first − μ̂last

σ̂first√
0.1NG

+ σ̂last√
0.4NG

.

Under the conditions mentioned in Geweke (1992), CD has an asymptotic stan-
dard normal distribution;

(iv) compute the p-value.

The final statistic of the test is the p-value associated with the statistic CD. A p-value
below the significant level indicates that the null hypothesis of convergence, captured
by the equality of means across the chain can be rejected, and hence, that the series has
not converged.

Raftery and Lewis (1992) The approach by Raftery and Lewis (1992), like the one by
Geweke (1992), investigates one long univariate chain of draws for one parameter in
isolation, {θj,d }N·G

d=1 . The main objects of interest are the quantiles of the probability dis-
tribution for the parameter j. The method assesses if the chain is long enough to get
precise estimates of quantiles of this distribution.

To define the notion of closeness, three values have to be specified by the user: s,
q, and r. If the interest lies in qj,0.025, the 0.025 quantile of the posterior of a parameter
θj , then q = 0.025. If one exerts 95% of the posterior draws to lie in an interval of +/−
0.0125 around the true 0.025 quantile, then s = 0.95 and r = 0.0125. These specifications
are standard for output from a MCMC chain. The implementation of the algorithm for
each parameter j proceeds in 4 steps:

(i) transform {θj,d }N·G
d=1 into a dichotomous random variable Zd :

Zd =
{

1 if θj,d < q0.025,

0 otherwise;
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(ii) write the matrix of transition probabilities for Zd conditioning on the previous
state,

P =
[

1 − α α

β 1 −β

]
,

with α = P(Zd+1 = 1|Zd = 0) and β = P(Zd+1 = 0|Zd = 1). The unconditional
probabilities of being in one state or another are

π0 = P(θj,d < q0.025 ) = P(Zd = 0) = β

α+β ,

π1 = P(θj,d ≥ q0.025 ) = P(Zd = 1) = 1 −π0 = α

α+β ;

(iii) approximate the probability that a draw of the parameter is smaller than the
quantile of interest as

P(θj,d < q0.025 ) ≈ Z̄NG,j = 1
NG

NG∑
d=1

Zd .

As shown by Raftery and Lewis (1992), Z̄NG is approximately normally distributed
with mean q0.025 and variance 1

NG
(2−α−β)αβ

(α+β)3 ;

(iv) compute the optimal length of the chain as the length that ensures P(q − r ≤
Z̄NG ≤ q+ r ) using

n∗ = (2 − α−β)αβ

(α+β)3

{�−1
(

1
2

(s+ 1)

)
r

}2

.

The key statistic of the test is n∗, which has an intuitive interpretation: it is the mini-
mum number of draws we need for the desired level of accuracy of the quantile q (given
by r and s). If N · G is lower than n∗, this suggests that the chain length needs to be
increased.

Gelman and Rubin (1992) The convergence diagnostic by Gelman and Rubin (1992)
uses multiple univariate chains, {θj,d }Nd=1, {θj,d }2N

d=N+1, � � � , {θj,d }N·G
d=(G−1)N+1. If the

chains have converged, then they should not depend on starting values any more.
The convergence statistic is based on a comparison of between-sequence variance and
within-sequence variance. The procedure consists of four steps:

(i) compute the variance of the mean of each sequence (“between-sequence vari-
ance”) as

B= 1
G− 1

G∑
g=1

(θ̄j, ·,g − θ̄j )2,

where θ̄j, ·,g is the mean of θj,d within the gth chain and θ̄j is the mean across all
chains for parameter j.
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(ii) compute the mean across sequences of the variances within sequence (the
“within-sequence variance”) as

W = 1
G(N − 1)

G∑
g=1

N∑
n=1

(θj,n,g − θ̄j, ·,g )2;

(iii) estimate the overall variance as

V̂ = σ̂2+ + B

G
,

with

σ̂2+ = N − 1
N

W +B;

(iv) compute the statistic

R̂= V̂

W
.

The key statistic of the test is R̂. As a rule-of-thumb, R̂ should be below 1.2 to assert
that the chain has converged.

Brooks and Gelman (1998) The statistic by Brooks and Gelman (1998) is a multivariate
extension of Gelman and Rubin (1992) and requires different chains of a multivariate
series, {θd }Nd=1, {θd }2N

d=N+1, � � � , {θd }N·G
d=(G−1)N+1. Intuitively, as in the test by Gelman and

Rubin (1992), the approach by Brooks and Gelman (1998) builds the analysis by compar-
ing the between-chain and within-chain variances. The test builds on the multivariate
extension of the steps used for the approach by Gelman and Rubin (1992):

(i) compute the variance of the mean of each sequence (“between-sequence vari-
ance”) as

D= 1
G− 1

G∑
g=1

(θ̄g − θ̄)(θ̄g − θ̄)′;

(ii) compute the mean across sequences of the variances within sequence (the
“within-sequence variance”) as

W = 1
G(N − 1)

G∑
g=1

N∑
n=1

(θn,g − θ̄g )(θn,g − θ̄g )′;

(iii) estimate the overall variance as

V̂ = N − 1
N

W +
(

1 + 1
G

)
D;
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(iv) compute the (scalar) distance measure between these two matrices as

R̂mult = N

N − 1
+ G+ 1

G
λ1,

where λ1 is the largest eigenvalue of the matrixW −1D.

The final statistic of the test is R̂mult. As for the approach by Gelman and Rubin (1992),
the rule-of-thumb prescribes that R̂mult is below 1.2 in order to assert convergence.

S.5. Our prior distribution

In this section, we show that our prior can be viewed as a generalization of the general-
ized Normal prior by Arias, Rubio-Ramírez, and Waggoner (2018). Consider first the case
of no sign restrictions as in Section (2.5) of Arias, Rubio-Ramírez, and Waggoner (2018).
We use notation pNiW U (·) to indicate that the derivations are the same irrespectively of
whether the NiWU prior is specified in its conjugate form (as in Arias, Rubio-Ramírez,
and Waggoner (2018)) or in its independent form. Define A = B−1. The joint inverse
Wishart Uniform distribution,

pNiW U (�,Q) = pNiW U (�) ·pNiW U (Q)

∝ ∣∣det(�)
∣∣− d+k+1

2 · e− 1
2 trace[�−1S] · 1, (S.27)

implies the following distributions for B and for A:

pNiW U (B) ∝ v�,Q→B · ∣∣det
(
BB′)∣∣− d+k+1

2 · e− 1
2 trace[(BB′ )−1S]

∝ ∣∣det(B)
∣∣ · ∣∣det(B)

∣∣−(d+k+1) · e− 1
2 trace[(BB′ )−1S]

∝ ∣∣det(B)
∣∣−(d+k) · e− 1

2 trace[B′−1B−1S]

∝ ∣∣det(B)
∣∣−(d+k) · e− 1

2 trace[B−1SB′−1]

∝ ∣∣det(B)
∣∣−(d+k) · e− 1

2 vec(B−1′
)′(Ik⊗S) vec(B−1′

),

pNiW U (A) ∝ vB→A · ∣∣det
(
A−1)∣∣−(d+k) · e− 1

2 vec(A′ )′(Ik⊗S) vec(A′ )

∝ ∣∣det(A)
∣∣−2k · ∣∣det(A)

∣∣d+k · e− 1
2 vec(A′ )′(Ik⊗S) vec(A′ )

∝ ∣∣det(A)
∣∣d−k · e− 1

2 vec(A′ )′(Ik⊗S) vec(A′ ).

(S.28)

Equation (S.28) is the generalized Normal distribution from Arias, Rubio-Ramírez, and
Waggoner (2018) and coincides with their equation (2.8), adjusted for the different no-
tation (i.e., A=A′). It is constant in Q, that is, pNiW U (A1 ) = pNiW U (A2 ) for A2 =QA1.
This holds immediately when inspecting equation (S.27) jointly with the fact that v�,Q→B

does not depend onQ, or noticing that

pNiW U (QA) ∝ ∣∣det(QA)
∣∣d−k · e− 1

2 vec((QA)′ )′(Ik⊗S) vec((QA)′ )

∝ ∣∣det(A)
∣∣d−k · e− 1

2 trace[(QA)S(QA)′]
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∝ ∣∣det(A)
∣∣d−k · e− 1

2 trace[QASA′Q′]

∝ ∣∣det(A)
∣∣d−k · e− 1

2 trace[A′Q′QAS]

∝ ∣∣det(A)
∣∣d−k · e− 1

2 trace[A′AS] = pNiW U (A).

Hence, pNiW U (Q|�) is constant in the entire space O(k). When instead sign restrictions
are introduced, it is constant in a subspace of O(k) that depends on �.

Consider now our prior distribution. Consider first the case in which no sign restric-
tions are introduced. Define

Vb =
(
ψ2

2

1.962 · Ik ⊗ diag
([
γ2

1, � � � , γ2
i , � � � , γ2

k

]′))
=C−1 ⊗D−1,

C = 1.962

ψ2
2

Ik,

D= diag
([

1

γ2
1

, � � � ,
1

γ2
i

, � � � ,
1

γ2
k

]′)
.

Under no sign restrictions, the prior density p̃(B) discussed in Section 2.4 of the paper
equals

p̃(B) = p(B)

=
∏
i

∏
j

p(bij|μij , σij )

=
∏
i

∏
j

φ

(
0,

ψ2
2

1.962 · γ2
i

)

∝ ∣∣det(Vb )
∣∣− 1

2 · e− 1
2 vec(B)′V −1

b vec(B)

∝ ∣∣det(C ⊗D)
∣∣ 1

2 · e− 1
2 vec(B)′(C⊗D) vec(B)

∝ ∣∣det(C )
∣∣ k2 · ∣∣det(D)

∣∣ k2 · e− 1
2 vec(B)′(C⊗D) vec(B)

∝
(

1.96
ψ2

) k
2 ·

k∏
i=1

γ
− k

2
i · e− 1

2 trace[B′DBC ′]

∝
(

1.96
ψ2

) k
2 ·

k∏
i=1

γ
− k

2
i · e−

1
2 trace[B′DB 1.962

ψ2
2

]

∝
(

1.96
ψ2

) k
2 ·

k∏
i=1

γ
− k

2
i · e−

1
2

1.962

ψ2
2

trace[DBB′]
,

which impliesp(B) = p(BQ), that is, p(Q|�) = p̃(Q|�) are flat inQ, as in the NiWU case.
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Consider now the case with sign restrictions. Define

Vb = (
Ik ⊗ diag

([
s2

1, � � � , s2
i , � � � , s2

k

]′))
= Ik ⊗D−1,

D= diag
([

1

s2
1

, � � � ,
1

s2
i

, � � � ,
1

s2
k

]′)
,

e =ψ1 · (ιk ⊗ [γ1, � � � , γi, � � � , γk]′
) · vec

(
sign(B)

)
,

with si calibrated as explained in Section 2.4 of the paper and sign(B) a matrix whose ij
entry equals sign(bij ), the sign restriction on bij . The prior density p̃(B) equals

p̃(B) ∝ I{B} ·p(B),

p̃(B) =
∏
i

∏
j

p̃(bij|μij , σij )

=
∏
i

∏
j

I{bij }φ
(
ψ1γi · sign(bij ), s2

i

)

∝ I{B} · ∣∣det(Vb )
∣∣− 1

2 · e− 1
2 (vec(B)−e)′V −1

b (vec(B)−e)

∝ I{B} · ∣∣det(Ik ⊗D)
∣∣ 1

2 · e− 1
2 (vec(B)−e)′(Ik⊗D)(vec(B)−e)

∝ I{B} · ∣∣det(D)
∣∣ k2 · e− 1

2 (vec(B)−e)′(Ik⊗D)(vec(B)−e)

∝ I{B} · ∣∣det(D)
∣∣ k2 · e− 1

2 {vec(B)′(Ik⊗D) vec(B)−2 vec(B)′(Ik⊗D)e+e′(Ik⊗D)e}

∝ I{B} · ∣∣det(D)
∣∣ k2 · e− 1

2 vec(B)′(Ik⊗D) vec(B) · evec(B)′(Ik⊗D)e

∝ I{B} · ∣∣det(D)
∣∣ k2 · e− 1

2 trace[DBB′] · evec(B)′(Ik⊗D)e,

which implies p(B) �= p(BQ), unless ψ1 = 0, under which vec(B)′(Ik ⊗ D)e = 0 and
p(BQ) = p(B), ∀Q. Hence, in general, our prior implies distributions p(Q|�), p̃(Q|�)
that are not flat in the parameter space of orthogonal matrices.
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S.6. Additional tables and figures

Table S.1. Tuning parameters used in the algorithms.

Figure 6
Figure 7

Figure 3 Figure 8
Discussion of Table 1 Table 2

Algorithm the algorithm Figure 2 Figure 5 Figure 4 Table 3

A Section S.2.1 n1 m1 m1

B Section S.2.1 n1 20,000 20,000

C Section S.2.2 n2

n3

D Section S.2.2 n2

n3

Our Section 2.3 m1 25,000 50,000
m2 100 100
m4 m1 m1

m5 20,000 20,000

F Section S.3.1.1 n4 50,000

DSMH Section S.4 H 50 50
G 10 10
initialN 20,000 50,000
K 100 100
M 10 10
τ 10 10
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Figure S.1. Performance of our algorithm. Note: For each subfigure, the plot to the left shows
the weights w(�(d) )stage A from Stage A of the sampler. The middle plot shows the effective sam-
ple size ESSBd = (

∑
i(wi(�

(d) )stage B )2 )−1 computed, for each of the m1 draws of �, out of the m2

generated and stored draws for (Q, B). The plot to the right shows for each of them4 draws gen-
erated in step 4 how many times it was stored in step 8. Overall, the weights from Stage A are very
balanced and correspond to a relative effective sample size of 0.9849 and 0.8013. The effective
number of draws used in Stage B is relatively large, and the resampling from Stage B does not
excessively use any specific draw of �.
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Figure S.2. Update on B.
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Table S.4. Comparison of forecast error variance decompositions (pointwise median). Robust-
ness for ψ1 = 1, ψ2 = 2.

0 1 2 3 4 5 6 7 8 9 10 11 12

Using the NiWU prior, f0

Fed F. 0.36 0.28 0.22 0.17 0.14 0.12 0.10 0.09 0.09 0.08 0.08 0.08 0.08
IP 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.19 0.20 0.21 0.21 0.22 0.22
Unempl. 0.12 0.13 0.14 0.15 0.17 0.18 0.18 0.19 0.20 0.21 0.22 0.22 0.23
PPI 0.12 0.12 0.12 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.16 0.16 0.17
Baa S. 0.06 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Using our prior, f1

Fed F. 0.28 0.21 0.16 0.12 0.10 0.08 0.07 0.07 0.07 0.06 0.06 0.07 0.07
IP 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.28 0.29 0.29 0.30 0.30
Unempl. 0.17 0.19 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.30
PPI 0.18 0.17 0.18 0.18 0.18 0.19 0.19 0.20 0.20 0.21 0.21 0.22 0.22
Baa S. 0.09 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Ratio of our prior to NiWU prior, 100 · (f1/f0 − 1) (percent)
Fed F. −22 −25 −27 −29 −29 −29 −27 −24 −22 −20 −18 −16 −14
IP 55 54 53 51 49 47 45 43 42 40 38 36 35
Unempl. 42 43 43 42 40 39 38 37 35 34 33 32 31
PPI 48 47 45 43 42 40 39 37 37 36 34 33 32
Baa S. 45 42 41 39 38 38 36 35 34 34 34 33 32

Note: Pointwise median forecast error decompositions using the NiWU prior (top panel) or our prior (middle panel), to-
gether with the percent difference between the two (bottom panel).
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Table S.5. Comparison of forecast error variance decompositions (pointwise median). Robust-
ness for ψ1 = 0.6, ψ2 = 1.2.

0 1 2 3 4 5 6 7 8 9 10 11 12

Fed F. 0.36 0.27 0.21 0.17 0.14 0.11 0.10 0.09 0.08 0.08 0.08 0.08 0.08
IP 0.13 0.15 0.15 0.16 0.17 0.18 0.19 0.20 0.20 0.21 0.21 0.22 0.22
Unempl. 0.12 0.13 0.14 0.16 0.17 0.18 0.19 0.20 0.20 0.21 0.22 0.22 0.23
PPI 0.12 0.12 0.12 0.12 0.13 0.13 0.14 0.14 0.15 0.15 0.15 0.16 0.16
Baa S. 0.06 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Using our prior, f1

Fed F. 0.28 0.21 0.16 0.12 0.10 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07
IP 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.29 0.29 0.30 0.30
Unempl. 0.20 0.22 0.24 0.26 0.27 0.28 0.29 0.31 0.31 0.32 0.33 0.34 0.34
PPI 0.17 0.17 0.17 0.18 0.18 0.19 0.19 0.20 0.20 0.21 0.21 0.21 0.22
Baa S. 0.10 0.11 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Ratio of our prior to NiWU prior, 100 · (f1/f0 − 1) (percent)
Fed F. −21 −25 −27 −28 −28 −28 −26 −24 −21 −19 −16 −14 −11
IP 57 53 51 49 47 45 43 42 41 39 38 37 35
Unempl. 73 69 66 64 62 61 58 56 54 52 51 49 49
PPI 47 46 45 43 42 41 41 39 38 37 36 35 34
Baa S. 71 65 63 61 59 58 57 56 55 53 51 50 49

Note: Pointwise median forecast error decompositions using the NiWU prior (top panel) or our prior (middle panel), to-
gether with the percent difference between the two (bottom panel).
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Figure S.3. Diagnostics on the importance weights, graphical assessment. Note: The graph
shows the recursive variance {vi}Ni=1, where vi = Var(w1:i ) computed using demeaned and stan-
dardized weights.
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Table S.6. Diagnostics on the importance weights in Stage A of our sampler: tests.

Simulation exercise from Section 3, T = 120, single pseudo data set
u 0.5N 0.6N 0.7N 0.9N 0.99N
Wald −46.3176 −45.0236 −42.5017 −30.7455 −13.6695
Score −18.0855 −15.5888 −13.0071 −7.35923 −2.42388

Application to monetary policy shocks, Section 4
u 0.5N 0.6N 0.7N 0.9N 0.99N
Wald −50.6431 −45.959 −40.0677 −23.1004 −6.99473
Score −20.62 −17.5873 −15.0084 −8.09104 −2.62551

Note: Reported are the test statistics. The null hypothesis implies finite weight variance. The corresponding critical values
above which the null hypothesis is rejected are 1.65 for the Wald test and 1.65 for the score test. The corresponding p-values
are close to 1 in all cases.

Figure S.4. Monetary policy shocks: Impulse responses, comparison to posterior associated
with NiWU prior. Note: Pointwise median and 68% credible bands. The monetary shock is nor-
malized to imply an impact 25 basis points increase in the policy rate. Dashed lines report the
case under the NiWU prior.
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