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A new posterior sampler for Bayesian
structural vector autoregressive models

Martin Bruns
School of Economics, University of East Anglia

Michele Piffer
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We develop an importance sampler for sign restricted Bayesian structural vector
autoregressive models. The algorithm nests as a special case the sampler associ-
ated with the popular Normal inverse Wishart Uniform prior, while allowing to
move beyond such prior in medium sized models. We then propose a prior on
contemporaneous impulse responses that provides flexibility on the magnitude
and shape of the impact responses. We illustrate the quantitative relevance of the
choice of the prior in an application to US monetary policy shocks. We find that
the real effects of monetary policy shocks are stronger under our proposed prior
than in the Normal inverse Wishart Uniform setup.

Keywords. Sign restrictions, Bayesian inference, monetary policy shocks.

JEL classification. C11, C32, E50.

1. Introduction

Bayesian Structural Vector Autoregressive (B-SVAR) models are popular in empirical
macroeconomics. However, there is an ongoing search in the literature for efficient pos-
terior samplers for such models. Such efficient algorithms exist to explore the posterior
distribution when the prior is restricted to the so-called Normal inverse Wishart Uni-
form (NiWU) prior (Uhlig (2005) and Rubio-Ramirez, Waggoner, and Zha (2010)). How-
ever, it is not clear how one should sample from the posterior distribution when the prior
does not fall within the NiWU special case. Demand for such samplers has increased
since it was documented that the NiWU prior can impose unintended features on key
statistics of the model (Baumeister and Hamilton (2015) and Wolf (2020)).

This paper develops an importance sampler for underidentified SVARs, for exam-
ple, SVARs that identify structural shocks using sign restrictions. To address the main
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challenge of importance samplers, namely the choice of a suitable proposal function,
our sampler builds on two key features. First, the sampler is set up in two stages, ini-
tially on the reduced form parameters and then on the mapping from the reduced form
to the structural parameters. Second, for both stages it generates proposal draws from
the posterior distribution associated with the NiWU prior. While importance samplers
for SVARs have been explored in the past (Sims and Zha (1998), Leeper, Sims, Zha, Hall,
and Bernanke (1996) and Zha (1999)), the established practice of generating proposal
draws directly for the structural parameters using Normal or t-distributions has been
documented to perform poorly (Waggoner and Zha (2003)). We show that building the
sampler in two steps using proposal draws from the posterior associated with the NiWU
prior leads to a good performance of importance samplers in B-SVARs.

Our sampler nests the sampler from the NiWU approach as a special case. We
show that our sampler recovers the same posterior distribution as the Dynamic Striated
Metropolis–Hastings (DSMH) algorithm by Waggoner, Wu, and Zha (2016), yet with less
computational effort. The DSMH algorithm is designed for a wider class of models than
the SVAR models, is more computionally demanding and requires comparatively more
involved coding, but works well to establish a benchmark. We use Monte Carlo simula-
tions to document that our sampler works efficiently, and to illustrate its key properties.

We then apply our sampler to study the implications of using the NiWU prior in-
stead of a different prior. Prior beliefs on structural parameters in underidentified mod-
els matter also asymptotically. Since more than one prior distribution can be used to
model any given set of sign restrictions, the question arises to what extent the results
are driven by the data and the sign restrictions, or by the specific prior distribution used
to model the sign restrictions (Baumeister and Hamilton (2015)). Having developed an
algorithm that can handle a different prior from the NiWU prior, we specify a set of sign
restrictions in an application to US monetary policy shocks, and compare the posterior
distribution when modeling the same sign restrictions using different priors. To do so,
we formulate a new flexible prior which the researcher can use to express prior beliefs
on contemporaneous impulse responses. One advantage of our prior is that it provides
flexibility not only on the sign, but also on the magnitude and shape of the contempo-
raneous impulse responses.

We build the above application on the model by Caldara and Herbst (2019), who
identify monetary policy shocks using an external instrument. We use their five-variable
model and apply standard sign restrictions up to 3 months from the shock. We simulate
a monetary contraction that increases the policy rate by 25 basis points. We find that
the NiWU prior implies a posterior suggesting a 9 basis points impact increase in the
unemployment rate. We show that changing from the NiWU prior can make a signifi-
cant difference for the results. For example, applying the same sign restrictions with our
alternative prior leads to estimate an impact effect that is 50% higher, that is, up to a
13 basis points of an increase in unemployment. Similarly, the NiWU prior can lead to
a posterior distribution suggesting a relatively strong role of monetary policy shocks in
driving the forecast error variance of the policy rate (up to 35%). Modeling the same sign
restrictions with our prior can lead to an effect up to 30% lower for at least half a year,
suggesting a stronger role for the systematic component of monetary policy.
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A SVAR model potentially allows for sign restrictions over related but conceptually
very different dimensions. Kilian and Lütkepohl (2017) take the view that applied re-
searchers can frequently express prior beliefs on impulse responses. Baumeister and
Hamilton (2015, forthcoming) show cases in which sign restrictions are naturally ex-
pressed on the contemporaneous response of the variables of the model, for instance,
structural elasticities. Baumeister and Hamilton (2018) propose a hybrid approach that
jointly accommodates sign restrictions on both the impulse responses and the structural
relations among variables. Our algorithm works in any of the above scenarios. We derive
and then apply our algorithm to a case featuring only sign restrictions on the impulse
responses for illustrative simplicity. Our additional contribution of a new prior distri-
bution on the sign, shape, and magnitude of the contemporaneous impulse responses
can be used jointly with restrictions on the contemporaneous relations, substituting the
prior in Baumeister and Hamilton (2018) with our prior. It should be stressed that, be-
ing an importance sampler, our sampler can work well in some applications and poorly
in others, and it is unlikely to work in large models or in relatively small samples. Our
prior only provides flexibility on the contemporaneous impulse responses. See Canova,
Kociecki, and Piffer (2023) for an approach offering flexibility on the shape over multiple
horizons of the impulse response.

The paper also relates to the active literature on posterior sampling in B-SVARs. Ko-
ciecki, Rubaszek, and Ca’Zorzi (2012) and Chan (2022) show that direct sampling can
be used in recursive B-SVARs. Kociecki (2010) works with prior beliefs on impulse re-
sponses, but works under the recursive identification approach. Arias, Rubio-Ramírez,
and Waggoner (2018) develop an importance sampler for sign and zero restrictions.
Their approach converges back to the NiWU prior when only sign restrictions are con-
sidered, which is the case of interest for our paper. Korobilis (2022) proposes a new al-
gorithm for sign restrictions using a factor structure for the shocks. We follow the more
traditional specification of SVARs, and use an accept/reject feature to introduce sign re-
strictions on contemporaneous and future horizons of the impulse responses. We relate
to Giacomini, Kitagawa, and Uhlig (2019) and Giacomini and Kitagawa (2021) in stress-
ing the mapping from reduced form to structural parameters, but we concentrate on a
single prior. Others have focused on how to shrink posterior bands associated with the
NiWU prior; see, for instance, Antolín-Díaz and Rubio-Ramírez (2018), Amir-Ahmadi
and Drautzburg (2021), and Volpicella (2021).

The paper is organized as follows. Section 2 outlines the methodology proposed.
Section 3 shows a simulation exercise based on the estimated bivariate VAR model by
Baumeister and Hamilton (2015). Section 4 presents the empirical application to US
monetary policy shocks. Section 5 concludes.

2. The methodology

In this section, we present the structural VAR model, discuss how different prior beliefs
relate to each other in SVARs, and outline our posterior sampler. Last, we propose one
possible prior distribution that can be used with our approach. As notation, we use cap-
ital letters for matrices, lower case letters for scalars, and lower case in bold for vectors.
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2.1 The model

The structural VAR(p) model for the k × 1 vector yt in the so-called B-form (see, e.g.,
Uhlig (2005)) is given by

yt =π0 +
p∑
l=1

�lyt−l +Bεt ,

εt ∼N(0, Ik ),

(1)

with p the number of lags of the model, π0 an intercept, and εt a k× 1 vector of struc-
tural shocks, whose covariance matrix is normalized to the identity matrix. The matrix
� = [π0,�1, � � � ,�p] is of dimension k×m with m = kp+ 1, and collects the intercept
and the autoregressive parameters of the model. Matrix B in equation (1) captures the
contemporaneous effects of one-standard-deviation shocks, while future horizons of
the impulse responses can be calculated using equation (1) recursively. Alternatively, the
SVAR can be specified by highlighting the relation between reduced form and structural
parameters, as in Rubio-Ramirez, Waggoner, and Zha (2010) and Arias, Rubio-Ramírez,
and Waggoner (2018),

yt =π0 +
p∑
l=1

�lyt−l + ut , (2)

ut ∼N(0, �), (3)

ut = h(�)Qεt , (4)

with h(�) a factorization of � satisfying h(�)h(�)′ = �, for example, the Cholesky factor-
ization. Equations (2)–(3) capture the reduced form VAR, while equation (4) shows the
mapping from structural to reduced form shocks.Q is an orthogonal matrix.

Model (1) parametrizes the SVAR in (�, B), while model (2)–(4) parametrizes the
SVAR in (�, �,Q), where it holds that

B= h(�)Q, (5)

�= BB′, (6)

Q= Bh(
BB′)−1

. (7)

Other parametrizations exist, for instance, the A-form and the AB-form (Amisano and
Giannini (2012)and Arias, Rubio-Ramírez, and Waggoner (2018)). No parametrization is
better than others, although each parametrization better highlights some features of the
model and not others.1 Common estimators for (�, �) are �̂T = YW ′(WW ′ )−1 and �̂T =
(Y−�̂TW )(Y−�̂TW )′

T−m , with Y = [y1, � � � , yT ],W = [w1, � � � , wT ], wt = (1, yt−1, � � � , yt−p )′.

1Structural VARs can also be specified in matrixA= B−1 rather than in B (see, e.g., Sims and Zha (1998)).
Whether the model is more conveniently expressed in A or B (or even in a combined form) depends on
whether the identifying restrictions introduced by the researcher are more naturally expressed on the con-
temporaneous relation among variables or on the contemporaneous effects of the shocks, respectively. Re-
strictions imposed on one form might not be apparent in the other form, due to the nonlinearities in the
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2.2 Priors and posteriors

Because the model admits more than one parametrization, prior beliefs formulated on
one parametrization imply prior beliefs on the other parametrization (Baumeister and
Hamilton (2015)). The same holds for the posterior, a point that plays a crucial role in our
sampler. We first discuss the case in which priors do not impose any sign restriction, as
this simplifies the discussion and highlights the intuition behind our sampler. We then
generalize the analysis to sign restrictions.

The illustrative case of no sign restrictions Define π = vec(�) of dimension km × 1,
where vec(·) is the vectorization operator stacking columns vertically. Consider the prior

p(π, B) = p(π|B) ·p(B), (8)

p(π|B) =φ(μπ , Vπ ), (9)

p(B), (10)

with φ(μπ , Vπ ) the probability density function of the Normal distribution with ex-
pected value μπ and variance Vπ , which can depend on B. p(π, B) is restricted to imply
a Normal p(π|B). By contrast, p(B) is freely selected by the researcher. Because of the
mapping (6)–(7), the prior p(π, B) from (8)–(10) implies prior beliefs p(π, �,Q). Such
joint prior can be decomposed in different ways, including

p(π, �,Q) = p(π|�,Q) ·p(Q|�) ·p(�),

p(π|�,Q) =φ(μπ , Vπ ),

p(Q|�), (11)

p(�). (12)

p(π|�,Q) is by construction Normal and coincides with p(π|B) from (9). p(Q|�), p(�)
from (11)–(12) are not free; they are implied by (10).

The priors p(π, B) and p(π, �,Q) from equations (8)–(12) are effectively two differ-
ent sides of the same prior. One can, for instance, numerically explorep(π, B) directly by
drawing from p(B) and p(π|B) or indirectly by drawing from p(�), p(Q|�), p(π|�,Q),
and then mapping the draws from (π, �,Q) to (π, B) using (5). Which one is numer-
ically less costly needs to be assessed on a case-by-case basis. Define p(π, B|Y ) and
p(π, �,Q|Y ) the joint posterior distributions associated with the joint priors p(π, B)
and p(π, �,Q). p(π, B|Y ) and p(π, �,Q|Y ) are effectively two sides of the same poste-
rior, so either can be used to explore the posterior.

mapping from one to another. Going through the publications of all top five journals and the Journal of
Monetary Economics between 1998 and 2017, we found that around 13% of the total number of issues
checked included at least one application of Structural Vector Autoregressive models. Of the total num-
ber of SVAR applications that we found, approximately 15% specify the model in the A form, 76% specify
the model in the B form, and 9% specify the model in the hybrid AB form. The detailed list is available at
https://drive.google.com/open?id=1aTAi4bCveThY2RxEYUhDY0E29kO5xLC0.

https://drive.google.com/open?id=1aTAi4bCveThY2RxEYUhDY0E29kO5xLC0
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The prior (8)–(12) nests the popular Normal-inverse-Wishart-(Haar)Uniform
(NiWU) prior as a special case. We use notation pNiW U ,c(·) to refer to the special case
of the conjugate NiWU prior, which starts from the parametrization (π, �,Q) and intro-
duces the priors

pNiW U ,c(π, �,Q) = pNiW U ,c(π|�,Q) ·pNiW U ,c(Q|�) ·pNiW U ,c(�), (13)

pNiW U ,c(π|�,Q) = pNiW U ,c(π|�) =φ(μπ , V̄π ⊗�), (14)

pNiW U ,c(Q|�) = pNiW U ,c(Q) =UO(k) ∝ 1, (15)

pNiW U ,c(�) = iW (S, d). (16)

pNiW U ,c(π|�) is restricted to the Normal density. pNiW U ,c(Q|�) is restricted to the
(Haar)Uniform distribution, which we indicate with UO(k), where pNiW U ,c(Q|�) =
pNiW U ,c(Q) in the absence of sign restrictions. pNiW U ,c(�) is restricted to the inverse
Wishart density, with iW (S, d) indicating the corresponding probability density func-
tion. Because of the mapping from (5), the joint prior (13)–(16) implies a prior on (π, B),

pNiW U ,c(π, B) = pNiW U ,c(π|B) ·pNiW U ,c(B),

pNiW U ,c(π|B) =φ(μπ , Vπ ), (17)

pNiW U ,c(B). (18)

Since pNiW U ,c(π|�) from (14) is Normal, pNiW U ,c(π|B) from (17) is Normal and coin-
cides with pNiW U ,c(π|�). pNiW U ,c(B) from (18) is not free. It is implied by (15)–(16), and
it can be characterized analytically; see, for instance, Kociecki (2017) and Arias, Rubio-
Ramírez, and Waggoner (2018). pNiW U ,c(π, �,Q) and pNiW U ,c(π, B) are two equiva-
lent representations of the same NiWU prior, and are associated with the posteriors
pNiW U ,c(π, �,Q|Y ), pNiW U ,c(π, B|Y ). Because of the conjugate nature of the prior,
pNiW U ,c(π|Y , B) is Normal and pNiW U ,c(�|Y ) is inverse Wishart. The conjugate ver-
sion of the NiWU prior simplifies the exposition, but we will consider the independent
version of the prior further below, replacing notation NiW U ,c with NiW U ,i.

To introduce the key steps of the sampler, suppose we need to generate draws from
p(B), but cannot directly draw from it. An alternative consists of indirectly drawing from
p(B) by sequentially drawing from p(�), p(Q|�), and then mapping draws from (�,Q)
into B. The same can be said for the posterior, where draws for p(B|Y ) can, in principle,
be generated indirectly from p(�|Y ), p(Q|Y , �). Our paper analyzes to what extent the
special case of a NiWU prior can be used in an importance sampler that uses draws from
pNiW U ,c(�|Y ), pNiW U ,c(Q|Y , �), or their equivalent under an independent prior (which
can both be drawn from at a low computational cost), as proposal draws for p(�|Y ),
p(Q|Y , �).

We begin with the relationship between the priors p(�) and pNiW U ,c(�). If p(B) co-
incides with pNiW U ,c(B), then p(�) and pNiW U ,c(�) coincide, and p(�) is an inverse
Wishart. If p(B) is sufficiently close to pNiW U ,c(B), then p(�) and pNiW U ,c(�) are sim-
ilar, and p(�) is approximately an inverse Wishart. One could then in principle explore
p(�) using an importance sampler with proposal draws from pNiW U ,c(�). If, instead,
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p(B) is sufficiently different from pNiW U ,c(B), then p(�) and pNiW U ,c(�) might dif-
fer enough that proposal draws from pNiW U ,c(�) do not work in an importance sam-
pler aimed at exploring p(�). However, since � is identified, the posterior distributions
p(�|Y ) and pNiW U ,c(�|Y ) will be similar in a large sample even if the priors are not, be-
cause priors for identified parameters are known to vanish as the sample size increases.
Whether proposal draws from pNiW U ,c(�|Y ) are suitable in an importance sampler for
p(�|Y ) depends on the specific prior p(B) and on the application. But the fact that
p(�|Y ) and pNiW U ,c(�|Y ) converge to the same mass point as the sample size increases
suggests an importance sampler for p(�|Y ) that builds on the convenient special case
of pNiW U ,c(�|Y ).2

Consider now the relationship between the posterior p(Q|Y , �) and the prior
pNiW U ,c(Q). p(Q|Y , �) is not necessarily flat in the parameter space of orthogonal ma-
trices. However, the (Haar) Uniform prior pNiW U ,c(Q) by construction explores the full
parameter space of orthogonal matrices. Hence, exploring p(Q|Y , �) using pNiW U ,c(Q)
is generally feasible. The computational cost depends on the application. Before further
inspecting the above intuition we generalize the exposition and discuss the posterior
sampler in detail.

The case of sign restrictions Define I{π, B} and I{π, �,Q} two indicator functions tak-
ing value 1 if the structural parameters associated with (�, B) or (�, �,Q) satisfy the
intended restrictions. This allows introducing restrictions on contemporaneous as well
as future horizons of the impulse responses, on the stationarity of the model, and more.
We work with the class of priors

p̃(π, B) = I{π, B} ·p(π, B), (19a)

p(π, B) = p(π|B) ·p(B), (19b)

p(π|B) =φ(μπ , Vπ ), (19c)

p(B). (19d)

p(π, B) is restricted to imply a Normal density p(π|B). By contrast, p(B) is freely se-
lected by the researcher. The prior p(π, B) implies prior beliefs p(π, �,Q), which we
omit here for convenience. As in the previous section, p(π, B) and p(π, �,Q) are effec-
tively two sides of the same prior. In its more general independent form, the special case

2Section S.3.1.2 in the Supplementary Material shows that when the prior p(π, �) simplifies to p(π ) ∝ 1,
the mode of the posterior (12) is implicitly defined by

�= T −m
T −m+ 1

�̂T − 2
T −m+ 1

d

d�−1 log
(∫

O(k)
pB

(
h(�)Q

)
dQ

)
.

As the sample size increases, the mode approaches �̂T , which approaches the population moment �0 =
E(utu′

t ). Similarly, if proposal draws are generated from the posterior associated with a conjugate Nor-
mal inverse Wishart prior that is flat in π, the mode of the proposal distribution equals 1

d+T+k+1−mS +
T−m

d+T+k+1−m�̂T , which also approaches �̂T (Section S.2.1). This result is not new: since � is identified, as
the sample size increases, differences in prior beliefs on � become irrelevant in the posterior, provided the
priors are strictly positive in the neighborhood of �0 (Poirier (1998)).
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of the NiWU prior uses

p̃NiW U ,i(π, �,Q) = I{π, �,Q} ·pNiW U ,i(π, �,Q), (20a)

pNiW U ,i(π, �,Q) = pNiW U ,i(π|�,Q) ·pNiW U ,i(Q|�) ·pNiW U ,i(�), (20b)

pNiW U ,i(π|�,Q) = pNiW U ,i(π ) =φ(μπ , Vπ ), (20c)

pNiW U ,i(Q|�) = pNiW U ,i(Q) =UO(k) ∝ 1, (20d)

pNiW U ,i(�) = iW (S, d). (20e)

pNiW U ,i(π, �,Q) implies a specific prior pNiW U ,i(π, B), which we omit here for conve-
nience. pNiW U ,i(π, �,Q) and pNiW U ,i(π, B) are effectively two sides of the same prior,
which is a special case of the prior associated with p(π, �,Q) and p(π, B). Contrary to
p(π, B) and p(π, �,Q), the distributions p̃(π, B) and p̃(π, �,Q) only attach positive
probability mass to the part of the parameter space in which the additional restrictions
are satisfied, for instance, on the stationarity of the model or on the sign of the response
at longer horizons.3

We now discuss the posterior distributions associated with the generic priorp(π, B).
As we show in the Supplementary Material, the prior distributionp(π, B) from equation
(19) leads to the posterior

p̃(π, B|Y ) ∝ I{π, B} ·p(π, B|Y ), (21)

p(π, B|Y ) = p(π|Y , B) ·p(B|Y ),

p(π|Y , B) =φ(
μ∗
π , V ∗

π

)
,

p(B|Y ) ∝ p(B) · ∣∣det(B)
∣∣−T · ∣∣det(Vπ )

∣∣− 1
2 · ∣∣det

(
V ∗
π

)∣∣ 1
2

· e− 1
2 {ỹ′(IT⊗(BB′ )−1 )ỹ−μ∗′

πV
∗−1
π μ∗

π+μ′
πV

−1
π μπ }. (22)

The terms ỹ, μ∗
π , and V ∗

π are defined in Section S.3.1.1 of the Supplementary Material,
where (μ∗

π , V ∗
π ) are a function of B, even though not made explicit by the notation. This

is the joint distribution of interest that we aim to draw from. However, p(B|Y ) is not
the density function of a known family of probability distributions. Conditioning on B,
draws from p(π|Y , B) are straightforward, while mapping draws from p(π, B|Y ) into
p̃(π, B|Y ) requires an accept/reject procedure. The posterior (21)–(22) implies a poste-
rior on (π, �,Q),

p̃(π, �,Q|Y ) = I{π, �,Q} ·p(π, �,Q|Y ), (23)

p(π, �,Q|Y ) = p(π|Y , �,Q) ·p(Q|Y , �) ·p(�|Y ),

3Note that, in general, p̃(π|B) = p̃(π,B)∫
π p̃(π,B)dπ

�= p(π|B), p̃(B) = ∫
π p̃(π, B)dπ �= p(B), and q̃(Q) =∫

π

∫
� q̃(π, �,Q)d�dπ �= pNiW U ,i(Q), where the difference depends on terms that depend on B (for the

first 2 inequalities) and on Q (for the last one). It is important to work with the distributions p(·) rather
than p̃(·) because the algorithm requires the analytical evaluation of the implied prior and posterior dis-
tributions, which in turns allows for reweighting in the importance sampler. We refer to Section S.2 in the
Supplementary Material (Bruns and Piffer (2023)) for a further discussion.
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p(π|Y , �,Q) =φ(
μ∗
π , V ∗

π

)
,

p(Q|Y , �) ∝ pB
(
h(�)Q

)
∫
O(k)

pB
(
h(�)Q

)
dQ

,

p(�|Y ) ∝ ∣∣det(�)
∣∣− T+1

2 · ∣∣det(Vπ )
∣∣− 1

2 · ∣∣det
(
V ∗
π

)∣∣ 1
2

· e− 1
2 {ỹ′(IT⊗�−1 )ỹ−μ∗′

π V
∗−1
π μ∗

π+μ′
πV

−1
π μπ } ·

∫
O(k)

pB
(
h(�)Q

)
dQ, (24)

with pB(·) = p(B); see the Supplementary Material for the derivations. p(B|Y ) and
p(�,Q|Y ) are effectively two sides of the same posterior. One can draw from p(B|Y )
indirectly by drawing from p(�|Y ), p(Q|Y , �), and then mapping draws from (�,Q)
into B.

The posterior from equations (23)–(24) admits the posterior associated with the in-
dependent NiWU prior as a special case. When p(B) is restricted to the special case
implied by the independent NiWU prior, the posterior on (π, �,Q) reduces to

p̃NiW U ,i(π, �,Q|Y ) = I{π, �,Q} ·pNiW U ,i(π, �,Q|Y ),

pNiW U ,i(π, �,Q|Y ) = pNiW U ,i(π|Y , �,Q) ·pNiW U ,i(Q|Y , �) ·p(�|Y ),

pNiW U ,i(π|Y , �,Q) =φ(
μ∗
π,i, V

∗
π

)
, (25)

pNiW U ,i(Q|Y , �) = pNiW U ,i(Q) =UO(k) ∝ 1,

pNiW U ,i(�|Y , π ) = iW (
S∗, d∗). (26)

The posterior moments μ∗
π,i, V

∗
π , S∗, d∗ are defined in Section S.2 of the Supplemen-

tary Material, where S∗ depends on π and μ∗
π,i, V

∗
π depend on �. In general, draws

from pNiW U ,i(�|Y ) require running a Gibbs sampler on (25) and (26). Section S.2 of
the Supplementary Material shows that pNiW U ,i(�|Y ) is an inverse Wishart distribu-
tion in the special case in which pNiW U ,i(π|�,Q) ∝ 1, further simplifying the analysis.
We omit the posterior pNiW U ,i(π, B|Y ) for convenience. Contrary to pNiW U ,i(π, B) and
pNiW U ,i(π, �,Q), the distributions p̃NiW U ,i(π, B) and p̃NiW U ,i(π, �,Q) only attach pos-
itive probability mass to the part of the parameter space in which the sign restrictions are
satisfied. SinceQ does not enter the likelihood function and sincepNiW U ,i(π, �,Q) does
not necessarily satisfy the sign restrictions, it holds that pNiW U ,i(Q|Y , �) = pNiW U ,i(Q).

2.3 The posterior sampler

We aim to draw from p(B|Y ) from equation (22) using an importance sampler that
draws from p(�|Y ), p(Q|Y , �) using proposal draws from pNiW U ,i(�|Y ), pNiW U ,i(Q|Y ,
�). At a general level, our importance sampler can be summarized in the following steps:

Stage A: draws from p(�|Y ):

(i) Generate proposal draws from pNiW U ,i(�|Y );
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(ii) evaluate the weights

wstage A = p(�|Y )
pNiW U ,i(�|Y )

,

(iii) if the effective sample size associated with wstage A is satisfactory, reweight the
draws from pNiW U ,i(�|Y ) into draws from p(�|Y );

Stage B: from p(�|Y ) to p(B|Y ):

(iv) for each draw from p(�|Y ) generate proposal draws from pNiW U ,i(Q|Y , �);

(v) evaluate weights

wstage B = p(Q|Y , �)
pNiW U ,i(Q|Y , �)

,

(vi) if the effective sample size associated with wstage B is satisfactory, reweight the
draws from pNiW U ,i(Q|Y , �) into draws from p(Q|Y , �);

(vii) map the draws from p(�|Y ), p(Q|Y , �) into a draw from p(B|Y );

(viii) draw from p(π|Y , B).

To become operational, the above algorithm requires specifying the distributions gen-
erating proposal draws in stages A and B.

Stage A of the algorithm requires proposal draws from pNiW U ,i(�|Y ), that is, the
marginal posterior distribution associated with the NiWU prior. One can in principle
adjust the specification of the NiWU prior behind pNiW U ,i(�|Y ) to improve the behav-
ior of wstage A. In doing so, one can select whether the NiWU prior is specified in the
independent form (as in equation (20)) or in its conjugate form (as in the previous illus-
tration, equations (13)–(16)), adjust the hyperparameters of the Normal and the inverse
Wishart distributions, or employ improper priors. The only requirements are to be able
to evaluate pNiW U ,i(�|Y ) and to draw from it, either using a Gibbs sampler (in the in-
dependent case) or using direct sampling (in the conjugate case or in the independent
case under a flat prior on π). In addition, the specification of the NiWU prior behind the
posterior proposal function pNiW U ,i(�|Y ) can change depending on the specific prior
p(π, B) used in the analysis. We will focus our analysis on two commonly used special
cases, which are

Case 1 : p(π, B) = p(π ) ·p(B), p(π ) ∝ 1, (27)

Case 2 : p(π, B) = p(π ) ·p(B), p(π ) =φ(μπ , Vπ ). (28)

In the Appendix of the paper, we show that it is possible to specify the NiWU prior be-
hind pNiW U ,i(�|Y ) differently for Case 1 and Case 2 such that, for both cases, wstage A =

p(�|Y )
pNiW U ,i(�|Y )

= ∫
O(k)pB(h(�)Q)dQ, which can be computed numerically. Note that the

computation ofwstage A has simplified since several terms in p(�|Y ), pNiW U ,i(�|Y ) can-
cel out. This considerably simplifies the computation of the weights in Stage A of the
sampler and increases the corresponding effective sample size. In both cases, the NiWU
prior for the proposal draws is specified in its independent form.
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Stage B of the algorithm maps draws for p(�|Y ) into B using draws for Q. However,
draws fromQmust reflectp(Q|Y , �), notpNiW U ,i(Q|Y , �). SincepNiW U ,i(Q|Y , �) coin-
cides with the uniform distribution in the space of orthogonal matrices, it is potentially
a suitable proposal distribution for the target distribution p(Q|Y , �). In Section S.3 of
the Supplementary Material, we show that, conditioning on some � = �̄ and for two
generic matrices Q1, Q2 associated with B1 = h(�̄)Q1 and B2 = h(�̄)Q2, it holds that
p(Q2|Y ,�̄)
p(Q1|Y ,�̄)

= p(B2 )
p(B1 ) , that is, the ratio of the prior distribution on B. For each draw from

p(�|Y ), one can use an importance sampler that draws Q from the Haar measure and
reweights using weights that only require evaluating p(B). The weights for Stage B are
also necessary to evaluate the integral in equation (24) in Stage A (see Section S.3 in
the Supplementary Material). Last, an accept/reject adjustment can be added to ensure
that only draws satisfying the restrictions are stored, accounting also for possible sign
restrictions on future horizons of the impulse response.

All in all, the algorithm to draw from p̃(π, B|Y ) is

Algorithm: Sign restrictions
Stage A: draws from p(�|Y ):

(i) Generate m1 proposal draws {�(d)}m1
d=1 representative of pNiW U ,i(�|Y ) through ei-

ther direct sampling or Gibbs sampling, using

Case 1 : �|Y ∼ iW
(
S∗, d∗), or

Case 2 : �|Y ,�∼ iW
(
S∗, d∗), π|Y , �=φ(

μ∗
π , V ∗

π

)
,

through Algorithms A or C discussed in Section S.2 of the Supplementary Material,
with (S∗, d∗, V ∗

π , μ∗
π ) specified in Table A.1 in the Appendix of the paper, with S∗, d∗

differing depending on Case 1 or Case 2 and S∗ a function of π only under Case 2;

(ii) for each �(d),

(ii,a) extract one matrixQc using the algorithm by Rubio-Ramirez, Waggoner, and
Zha (2010);

(ii,b) compute the candidate matrixBc = h(�(d) )Qc . IfBc satisfies the sign restric-
tions on B, store

(
Qi

(
�(d)), Bi

(
�(d)), wi

(
�(d))stage B) = (

Qc , Bc , wstage B
dc

)
,

with w
stage B
dc equal to p(B) evaluated at Bc , otherwise move back to step

(ii,a);

(ii,c) repeat steps (ii,a)–(ii,b) untilm2 draws {Qi(�(d) ), Bi(�(d) ), wi(�(d) )stage B}m2
i=1

are stored. Store the number of attempts m3(�(d) ) required to generate m2

successful draws. Compute the absolute effective sample size

ESSB
abs

(
�(d)) =

(∑
i

(
wi

(
�(d))stage B)2

)−1

;



1232 Bruns and Piffer Quantitative Economics 14 (2023)

(ii,d) compute

w
(
�(d))stage A = p

(
�(d)|Y

)
pNiW U ,i

(
�(d)|Y

) =
∫
O(k)

pB
(
h
(
�(d))Q)

dQ

≈

m2∑
i=1

wi
(
�(d))stage B

m3
(
�(d)) ,

and compute the relative effective sample size

ESSA
rel =

(∑
d

(
w

(
�(d))stage A

/
∑
d

(
w

(
�(d))stage A))2)−1

; (29)

(iii) generate a new set {�(d)}m4
d=1 by drawing from {�(d)}m1

d=1 with replacements using
weights {w(�(d) )stage A}m1

d=1;

Stage B: from p(�|Y ) to p(π, B|Y ):

(iv) randomly select a candidate draw �c from {�(d)}m4
d=1 generated in step (iii);

(v) randomly select one matrix Bc out of the set {Bi(�c )}m2
i=1 stored from step (ii) using

weights {wi(�c )stage B}m2
i=1;

(vi) compute (μ∗
π , V ∗

π ) associated with Bc and generate one draw πc from p(π|Y , B) =
φ(μ∗

π , V ∗
π );

(vii) if I{πc , Bc } = 1, store (πc , Bc ), otherwise move back to step (iv);

(viii) repeat untilm5 draws are successfully generated.

We design the algorithm in two stages to stress that Stage B should be carried out
only if the 1 +m1 Effective Sample Sizes ESSA

rel, {ESSB
abs(�(d) )}m1

d=1 are sufficiently high.
Importance sampler diagnostics can then be used to assess the performance of the sam-
pler. Figure S.1 in the Supplementary Material reports the statistics that document the
performance of our sampler in the applications of the paper, and Section S.3.2 discusses
a number of additional diagnostic tests.

2.3.1 A discussion of the sampler The literature has explored how to sample numer-
ically from the posterior of Bayesian SVAR models when the prior distribution differs
from the NiWU prior. Kociecki, Rubaszek, and Ca’Zorzi (2012) show that for recursive
Bayesian SVARs, the posterior distribution can be decomposed in a way that allows for
direct sampling. However, this is not the case for the more general non-recursive (or
even unrestricted) SVAR, for which a numerical procedure is required to sample from
the posterior. This latter point has been known at least since Sims and Zha (1998) and is
due to the Jacobian term involving the determinant of the contemporaneous structural
parameters (|det(B)|−T in equation (22)). This term drops out under the recursive struc-
ture with normalized diagonal entries, as in Kociecki, Rubaszek, and Ca’Zorzi (2012), but
it does not in a more general framework.

Importance samplers have been tried in the literature to tackle the above problem.
Early contributions take as proposal distribution a Normal or t-distribution centered at
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the mode of the nonstandard posterior; see Sims and Zha (1998), Leeper et al. (1996),
and Zha (1999). However, Waggoner and Zha (2003) show that this type of importance
samplers work inefficiently in SVAR models. We differ from the above specifications of
an importance sampler by setting the proposal distribution equal to the posterior dis-
tribution associated with the special case of an independent NiWU prior. Our algorithm
effectively resamples the posterior draws from the NiWU approach and makes them rep-
resentative of the posterior distribution associated with the prior beliefs p(π, B) from
our approach. By construction, when p(B) is restricted to the value associated with the
independent NiWU prior, all weights in the importance sampler equal 1, leading to the
special case of the posterior sampler for the NiWU approach.

We found that a similar idea is used in Canova and Pérez Forero (2015). They use a
Metropolis–Hastings sampler rather than an importance sampler, but they too generate
proposal draws by exploiting the information of a posterior distribution. While we use
the exact posterior distribution associated with the independent NiWU prior, they use
an approximate posterior that arises in the artificial special case in which the Jacobian
term is left out from the joint posterior distribution. Similar to us, they do not approxi-
mate the target distribution with a Normal or t-distribution centered at the mode of the
target distribution. An alternative to the approach by Canova and Pérez Forero (2015) is
to use a standard random walk Metropolis–Hastings (Baumeister and Hamilton (2015,
2018, 2019)).

Our approach is also related to Algorithm 3 in Arias, Rubio-Ramírez, and Waggoner
(2018). The importance sampler in Arias, Rubio-Ramírez, and Waggoner (2018) is only
required for the case in which zero restrictions are introduced. When only sign restric-
tions are used, their approach converges back to the NiWU prior, from which, instead,
we aim to depart in the case of sign restrictions. We also use an independent NiWU prior,
while they use a conjugate NiWU prior. While the case of both sign and zero restrictions
has attracted interest (see, for instance, Binning (2013) and Kociecki (2017)), our paper
concentrates on the case of sign restrictions, and moves beyond the NiWU prior. An-
other difference is that the weights in Arias, Rubio-Ramírez, and Waggoner (2018) are
computed directly on the posterior densities on the structural parameters (in line with
the importance sampler by Sims and Zha (1998), Leeper et al. (1996), and Zha (1999)),
while we prefer building the sampler in two steps.

Contrary to all the contributions mentioned above, we also use the more general
Dynamic Striated Metropolis–Hastings (DSMH) algorithm by Waggoner, Wu, and Zha
(2016) to study if our algorithm correctly samples the posterior distribution of inter-
est. The DSMH algorithm is much more demanding both in terms of coding and in
terms of computational time. However, it is designed to handle potentially irregularly
shaped posterior distributions and a large number of parameters. We use the DSMH al-
gorithm to approximate the true posterior distribution in each application, and use it as
a benchmark to assess the performance of our sampler. We refer to Waggoner, Wu, and
Zha (2016) for a detailed discussion of the DSMH algorithm and to Table S.1 in the Sup-
plementary Material for the values of the tuning parameters we use in our applications.
In our applications, our algorithm takes around 6 minutes for the bivariate applications
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and 30 minutes for the five-variate applications. The DSMH algorithm took 2 hours for
the bivariate applications and up to 8 hours in the five-variate applications.4

2.4 Proposing one possible prior p(B)

The previous section develops an approach that is general in the prior distribution p(B)
on contemporaneous impulse responses. We conclude the section on the methodology
by discussing one possible prior specification for p(B). This can be used in applications
in which sign restrictions are either introduced only on contemporaneous impulse re-
sponses (B), or in applications that combine these restrictions with prior beliefs on the
contemporaneous relation among variables (B−1), following Baumeister and Hamilton
(2018).

Specifying prior beliefs p(B) is challenging. While a researcher might have beliefs
about the sign of the entries of B, the actual prior p(B) will effectively model beliefs also
about the magnitude of the responses, which can be harder to express. As an example,
one may entertain the belief that an exogenous, one-standard-deviation monetary in-
crease in the interest rate decreases inflation, but lacks prior beliefs on the scale of such
a decrease. If, instead, one does have beliefs on both the sign and the magnitudes of B,
it is not yet clear which type of prior is more suitable to model such beliefs.

To overcome this challenge, we propose a prior specification that builds on the Min-
nesota prior. With the Minnesota prior, one first approximates a reasonable scale si of
each variable variable yi using a training sample, setting si equal to the standard devi-
ation of the residual of univariate AR(1) processes estimated on each variable, or equal
to the standard deviation of the variable (see, e.g., the discussion in Canova (2007) and
Kilian and Lütkepohl (2017)). Bayesian shrinkage is then introduced through a set of hy-
perparameters that shrink the elements in π toward the random walk or the white noise
process, taking the relative scale of the variables into account.

We extend this approach as follows. Call bij the entry of B capturing the effect of a
one-standard-deviation shock j to variable i, and call γi the reasonable scale of such
effect. γi can be set equal to the same statistic si from the the Minnesota prior. Alterna-
tively, one can use the training sample to estimate � and then set γi = �̂0.5

ii,training since it
can be shown that the covariance restrictions �= BB′ imply

−�0.5
ii ≤ bij ≤ �0.5

ii ,

with�ii the ith element of the diagonal of�.5 Given {γi}ki=1, we setp(B) = ∏
i

∏
j p(bij|γi,

ψ1, ψ2 ), with p(bij|γi, ψ1, ψ2 ) = φ(μij , σ2
ij ). If no sign restriction is imposed on bij , set

μij = 0 and σij = ψ2γi/1.96, so that the distribution is symmetric around 0, with 95%
prior mass in the space (−ψ2γi, ψ2γi ). If bij is restricted to be positive (or negative),

4All codes are run on Matlab on a computer with an Intel i7-7700K 4.2 GHz Quad Core processor and
64 GB RAM.

5Given �= BB′, the equations corresponding to the diagonal elements of � are �ii = b2
i1 + b2

i2 + · · · + b2
ik.

Since �ii is nonnegative and since b2
ij ≥ 0, each element bij must satisfy −�0.5

ii ≤ bij ≤ �0.5
ii . See also equation

(33) in Baumeister and Hamilton (2015).
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Figure 1. Illustration of our prior p̃(B). Note: Three examples of our prior using different hy-
perparameters ψ1, ψ2.

start from a Normal distribution with μij = ψ1γi (or μij = −ψ1γi) and calibrate the vari-
ance such that the truncated Normal has 95% prior mass in the space (0, ψ2γi ) (or

(−ψ2γi, 0)). Our prior can be viewed as a generalization of the generalized Normal prior
in Arias, Rubio-Ramírez, and Waggoner (2018); see Section S.5 of the Supplementary
Material.

The advantage of our prior is that the researcher sets a plausible upper bound γi for
the effect of the shock, and then introduces Bayesian shrinkage through the hyperpa-
rameters ψ1 and ψ2. ψ1 controls for the first moment of the prior, ψ2 controls for the
second moment. This grants flexibility not only on the sign restrictions introduced, but
also on the expected magnitude of the response. Figure 1 shows, as an illustration, three
separate priors used in the application from Section 4. It reports the prior on the im-
pact effect of a one-standard-deviation monetary shock on the unemployment rate. The
hyperparameters (ψ1, ψ2 ) give the researcher flexibility on the prior introduced, taking
into account the reasonable scale γi.6

3. Monte Carlo simulation

In this section, we provide further clarification on how our sampler works. We inspect
graphically the proposal and the target distributions of each stage of our importance
sampler. We study how the posterior distribution sampled with our sampler approxi-
mates the true posterior distribution, which is proxied using the DSMH algorithm.

6Other papers in the literature introduce priors directly on the impulse responses rather than the VAR
parameters. Plagborg-Møller (2019) uses DSGE models to inform a joint prior over the structural moving
average representation of the model. Kociecki (2010) proposes a set of joint Normal priors for the impulse
responses at several horizons, where the prior mean and variance are informed either by previous results
in the empirical literature or by DSGE models. Ferreira, Miranda-Agrippino, and Ricco (2023) develop a
Bayesian local projection approach using priors centered around VAR estimates from a training sample.
Baumeister and Hamilton (2018) partly use prior beliefs on impulse responses modelled with asymmetric
t-distributions. Canova, Kociecki, and Piffer (2023) express beliefs about the shape of the impulse responses
across multiple horizons.
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3.1 The setup of the exercise

We build our illustrative simulation exercise on the bivariate model by Baumeister and
Hamilton (2015), who identify the effects of labor demand and supply shocks in the US.
We use ordinary least squares estimates (π̂, �̂) in a reduced form VAR model to gener-
ate the pseudo dataset Yd . We then specify the prior distribution p(π, B) and explore
the posterior distribution p(π, B|Yd ) using two alternative algorithms: the DSMH algo-
rithm and our algorithm. We then compare the two posterior distributions graphically,
taking the distribution sampled with the DSMH algorithm as the true posterior distri-
bution associated with Yd . We first use a single pseudo dataset Yd to illustrate most of
the intuitions behind our sampler, and then repeat the analysis over multiple simulated
data {Yd }Dd=1.7

The estimates (π̂, �̂) are obtained from the dataset and model specification by
Baumeister and Hamilton (2015), who use data on the growth rates of the US real la-
bor compensation and of total employment. The model includes a constant and 8 lags,
and covers the period 1970Q1 through 2014Q4. For each replication, we generate 680
observations, initializing the data from the estimated unconditional mean. We discard
the first 100 observations to make the data less dependent on the initial point, and store
the next 100 observations to use as a training sample. We then divide the remaining 480
observations into four pseudo datasets, including up to the first 60, 120, 240, and 480
observations. We use the same training sample for all datasets to improve the compari-
son, and to avoid an unreasonably short training sample for the dataset of smaller size.
We use simulated datasets of different size to study the performance of our sampler also
in relatively small samples.

We specify the joint prior distribution as follows. We use an independent Normal
prior on π, using conventional values for the hyperparameters of the variance from
Canova (2007) (Case 2 from equation (28)). We specify p(B) as from Section 2.4, set-
ting ψ1 = 0.8 and ψ2 = 1.5, using γi = �̂0.5

ii,training with �̂training the estimate of � on the
training sample. We then introduce sign restrictions on the contemporaneous impulse
responses. We identify labor demand and supply shocks as the structural shocks that
move wages and employment in the same and in the opposite direction, respectively.
All estimated models include a constant term and 8 lags, in accordance with the data
generating process.

3.2 Simulation results

A key part of our sampler builds on the intuition that different prior beliefs on � lead
to potentially very similar posterior distributions on �, provided that the sample size

7Alternatively, one could specify the data generating process at the structural level rather than the re-
duced form level, and compare the estimated impulse responses with the underlying true impulse re-
sponses. This alternative exercise starts from a true matrix B̂= h(�̂)Q̃ and generates data using covariance
matrix B̂B̂′ = �̂. However, while the true underlying impulse responses change in Q̃, any alternative orthog-
onal matrix Q �= Q̃ implies the same dataset; hence, it leads to the same estimated impulse responses. This
makes the comparison of the true and the estimated impulse responses arbitrary due to the flexibility in the
selection of Q̃. The aim of our exercise is to document the performance of our sampler, which only requires
generating data, and not taking a stand on the true structure behind the data.
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Figure 2. Prior beliefs and identified parameters.

is not too small. Figure 2 illustrates this point graphically for two parametrizations
of an inverse Wishart distribution prior on �. Parametrization a corresponds to the
one suggested by Kadiyala and Karlsson (1997), while parametrization b is an arbi-
trary parametrization that helps the illustration.8 The posterior distributions are sam-
pled using Algorithm B from Section S.2.1 of the Supplementary Material, which is as-
sociated with the independent NiWU prior pNiW U ,i(π, �) = pNiW U ,i(π ) · pNiW U ,i(�),
pNiW U ,i(π ) ∝ 1, pNiW U ,i(�) = iW (S, d). The figure shows the results associated with a
single pseudo dataset, although the results are unchanged when repeating the exercise.

As shown in the figure, the two parametrizations of the inverse Wishart distribution
imply very different priors for �, one being much tighter than the other (top panel). The
posteriors, instead, are very close to each other already for T = 60 (middle panel), a dif-

8The inverse Wishart distribution pNiW U ,i(�) ∝ | det(�)|−
d+k+1

2 · e− 1
2 trace[�−1S] requires specifying the

hyperparameters (S, d). Following Kadiyala and Karlsson (1997), parametrization a sets d = k + 2 and
S = (d − k − 1) diag([s1, � � � , sk]), with si the standard deviation of the error term in univariate AR(p) pro-
cesses estimated on the training sample. By contrast, parametrization b sets S = 4 · Ik and d = 4 · k.
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Figure 3. Stage A of our sampler: pNiW U ,i(�|Y ) and p(�|Y ).

ference that becomes even more negligible for T = 120 (bottom panel). This confirms
the well-known result that, for identified parameters, differences in prior beliefs van-
ish asymptotically, provided the prior gives non-zero mass in the area that is relevant
asymptotically. This suggests exploring the generic distribution p(�|Y ) using proposal
draws from the convenient distribution pNiW U ,i(�|Y ).

Figure 3 builds on the above intuition and reports the update from stage A of our
sampler for T = 120. A total of m1 = 25,000 proposal draws for stage A are first gener-
ated from the posterior distribution pNiW U ,i(�|Y ) associated with the proposal prior

pNiW U ,i(π ) ∝ 1, pNiW U ,i(�) = | det(�)|−
1
2 . The proposal distribution pNiW U ,i(�|Y ) is al-

ready very close to the target distribution p(�|Y ), a finding further supported by the
relative effective sample size for stage A (ESSA

rel) being 0.9849. Table 1 generalizes the
analysis by progressively increasing the sample size, and then repeating the analysis 50
times. As the table shows, ESSA

rel increases as the sample size increases, which is to be
expected.

We now discuss stage B of the sampler. In stage B, posterior draws from p(�|Y ) are
converted into draws from p(B|Y ) using draws from p(Q|Y , �) = p(Q|�), before intro-
ducing sign restrictions. Since p(Q|Y , �) cannot be drawn from directly, for each draw
of �we draw multiple times from the special case pNiW U ,i(Q|Y , �) = pNiW U ,i(Q|�) and
reweigh in an importance sampler. The bivariate application used in this illustration
helps clarify this step. WhenQ is of dimension 2×2, distributionsp(Q|�),pNiW U ,i(Q|�)
can be shown graphically as the distribution on the rotation angle θ corresponding to
the Givens transformations matrix Q (see, e.g., Fry and Pagan (2011) and Baumeister
and Hamilton (2015)). Figure 4 illustrates this point conditioning on the MLE estima-
tion for �. pNiW U ,i(Q) refers to the distribution on θ associated with the unconditional
Haar measure, which is known to deliver θ ∼ U[−π/2, π/2]. p̃NiW U ,i(Q|�̂) refers to the

Table 1. Relative effective sample size from Stage A.

T = 60 T = 120 T = 240 T = 480

A single dataset 0.9607 0.9902 0.9790 0.9937
Minimum across 50 replications 0.8920 0.9727 0.9870 0.9917

Note: The relative effective sample size is defined in equation (29). See Table A.1 in the Appendix of the paper for the
proposal distributions pNiW U ,i(�|Y ) used in the sampler, and Table S.1 in the Supplementary Material for how we set the
tuning parameters.
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Figure 4. Stage B of our sampler: pNiW U ,i(Q|Y , �) and p(Q|Y , �). Note: θ computed as

θ = atan(
Q(d)

21

Q(d)
11

), with Q(d)
ij the (i, j) entry of Q(d)

11 . See Algorithm F in Section S.3 in the Supple-

mentary Material for the details of the exercise.

distribution on θ associated with Haar distribution conditioning on �̂ and the sign re-

strictions. The distribution p̃(Q|�̂) refers to the distribution on θ associated with our

prior p(B), conditioning on �̂ and the sign restrictions. p̃(Q|�̂) is not flat inQ. However,

since p̃NiW U ,i(Q|�̂) is flat, it gives positive probability mass to the part of the parameter

space that is relevant for p̃(Q|�̂). The relative ESS associated with Figure 4 is 0.7040, and

builds on 500,000 draws ofQ, effectively using 35,202 draws.

Stage B of our sampler applies the logic behind Figure 4 to all posterior draws from

p(�|Y ). For each draw �(d), we store and reweight m2 = 100 draws of Q. The distribu-

tion of {ESSBabs(�(d) )}d=1 is concentrated around 70 (see Figure S.1 in the Supplementary

Material). The multiple importance samplers on Stage B then lead to the update shown

in Figure 5. The comparison to the distribution sampled with the DSMH algorithm con-

firms that our algorithm samples the posterior distribution p̃(B|Y ) correctly. We found

this result to hold for every generated dataset. On average, our algorithm runs in 6 min-

utes, while the DSMH runs in around 2 hours. Figure S.1, Figure S.3, and Table S.6 in the

Supplementary Material report some informative statistics on the performance of our

sampler and the results from standard convergence diagnostics.

Figure 5. Stage B of our sampler: p̃(B) and p̃(B|Y ).
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4. Application to monetary policy shocks

In this section, we apply our methodology to real data. We investigate how US monetary
policy shocks affect the US economy. To do so, we use a SVAR model composed of five
variables, following the model by Caldara and Herbst (2019) closely.

4.1 Model, prior specification, and posterior sampling

The model includes the average federal funds rate over the last week of each month,
the log of manufacturing industrial production, the unemployment rate, the log of the
produced price index for finished goods, and the Baa spread. A constant and 12 lags
of the endogenous variables are included. The model uses the period 1990M1 through
1993M12 as training sample and the period 1994M1 through 2007M7 as estimation sam-
ple.

We set the prior in accordance with Case 1 from equation (27), that is, p(π ) ∝ 1. We
then add dummy variables to model the Minnesota Prior on π as discussed in Del Ne-
gro and Schorfheide (2011). We follow our approach and specify the prior directly on B.
We introduce the sign restrictions that a contractionary monetary policy shock does not
decrease unemployment and corporate credit spreads, and does not increase the fed-
eral funds rate, industrial production, and prices. We introduce these restrictions in the
month when the shock hits, and up to 3 months after the shock. We model the priorp(B)
as discussed in Section 2.4. We set γi = �̂0.5

ii,training and use ψ1 = 0.8 and ψ2 = 1.5 in the
baseline specification. This gives prior probability mass also above the estimated upper
bound for bij , making the prior less dogmatic. Last, given that the model is partially iden-
tified, we impose nonrepetition of the sign of the identified column of B compared to its
remaining columns. Due to the shortness of the training sample relative to the number
of parameters of the model, �̂training is estimated with a VAR including one lag.

As in the illustration from Section 3, we sample the posterior distribution using
both the dynamic striated Metropolis–Hastings algorithm and our algorithm, always
checking graphically that the results for p̃(B|Y ) are virtually identical. The sampler
delivers a relative effective sample size for Stage A of 0.8013, and the distribution of
{ESSBabs(�(d) )}d=1 is concentrated around 40 draws. The computational time of our sam-
pler is 30 minutes, while the DSMH algorithm took approximately 8 hours. Figure S.1,
Figure S.3, and Table S.6 in the Supplementary Material report selected statistics on the
performance of our sampler and the results from convergence diagnostics.

4.2 Results

Figure 6 shows the impulse responses to a contractionary monetary policy shock, which
has been normalized to increase the federal funds rate by 25 basis points. We report the
pointwise median and 68% credible band up to 4 years after the shock. The exogenous
increase in the policy rate generates a hump-shaped response of industrial production
and unemployment. Industrial production drops by a maximum of 1% 16 months from
the shock, while the unemployment rate increases by up to 17 basis points 15 months
from the shock. Both variables then progressively revert back. Prices decrease, with a
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Figure 6. Monetary policy shocks: Impulse responses. Note: Pointwise median and 68% credi-
ble bands. The monetary shock is normalized to imply an impact 25 basis points increase in the
policy rate.

maximum drop in PPI of 0.65% 17 months from the shock. The response of the Baa
spread is, instead, more sudden. The peak increase in the spread is reached already 2
months from the shock, with an increase of up to 12 basis points. As the systematic com-
ponent of monetary policy then generates a monetary expansion, the economy reverts
back and spreads decrease.

The results from Figure 6 are broadly in line with the existing literature, yet with some
differences. As also in Caldara and Herbst (2019) and Miranda-Agrippino and Ricco
(2021), industrial production and unemployment display a hump-shaped response.
This is remarkable, given that both papers identify the monetary policy shock using an
external instrument, while we use a very different identification approach. Neverthe-
less, some differences emerge in the timing of the response. Caldara and Herbst (2019)
document that both variables reach a peak around 25 months from the shock, while
Miranda-Agrippino and Ricco (2021) find that the peak effects are reached around 11
months from the shock. Our estimates lie in-between, with the peaks reached around
17 months from the shock. Quantitatively, our estimates are larger than Caldara and
Herbst (2019) and Miranda-Agrippino and Ricco (2021). Caldara and Herbst (2019) doc-
ument a peak variation of industrial production and unemployment of 0.5% and 7 ba-
sis points, respectively, while Miranda-Agrippino and Ricco (2021) of 0.37% and 8 basis
points, respectively. All papers document that the Baa spread responds mainly in the
short horizon after the shock.

Figure 7 extends the analysis to forecast error variance decompositions. It reports
the pointwise median and 68% confidence bands up to 4 years from the monetary pol-
icy shocks. We find that monetary policy shocks contribute to the variance of the forecast
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Figure 7. Monetary policy shocks: Forecast error variance decomposition.

error of the policy rate in a quantitatively important manner only in the very short term,
with an impact value of 26%. At longer horizons, the variance decomposition never lies
above 10%. The real economy is affected by monetary policy shocks more in that the
forecast error variance decomposition reaches up to 30% of industrial production and
unemployment rate. The result on PPI is milder, never exceeding 24%. Last, the Baa
spread is found to be only weakly driven by monetary policy shocks in that the corre-
sponding error decomposition never increases above 12%

Caldara and Herbst (2019) document that monetary shock play a nonnegligible role
in explaining the forecast error variance of industrial production and unemployment.
Our approach suggests an even stronger effect. According to Caldara and Herbst (2019),
up to 20% of the forecast error variance of industrial production and unemployment
is explained by monetary shocks, an effect taking place for horizons up to 36 months
from the shock. We find that the highest share of such forecast errors are explained by
the monetary policy shock around 12 months from the shock, with the share increasing
up to 30%. As also in Caldara and Herbst (2019), we stress that posterior uncertainty on
forecast error variance decompositions is high.

4.3 Comparison to NiWU prior

The sign restrictions that we introduce can be modeled using more than one prior distri-
bution. In this last section, we document what happens if the same sign restrictions are
modeled using the NiWU prior. Baumeister and Hamilton (2015) and Wolf (2020) argue
that the NiWU prior can introduce undesired features on key model statistics into the
analysis. Inoue and Kilian (2020) argue that the specific role played by the NiWU prior
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Figure 8. Marginal posterior distribution of the impulse responses. Note: The monetary shock
is normalized to imply an impact 25 basis points increase in the policy rate. See Figure S.4 in the
Supplementary Material for the comparison of pointwise impulse responses.

is irrelevant when the identified set is very tight. We now study how the results from our

application to monetary policy shocks change when introducing the same sign restric-

tions using the NiWU prior. We use the very same model specification and use the same

restrictions, except that p(B) is now effectively replaced with pNiW U ,i(B), the prior dis-

tribution implied by the NiWU prior. We calibrate the hyperparameters of the inverse

Wishart distribution as in Kadiyala and Karlsson (1997). Posterior draws are generated

using Algorithm B from Section S.2.1 of the Supplementary Material.

Figure 8 reports the marginal distribution of the normalized impulse responses on

impact as well as 6 months after the shock. Each plot reports the posterior distribution

associated with our prior, together with the distribution associated with the NiWU prior

and the two corresponding pointwise median values. By construction, the impact effect

on the federal funds rate is the same. The remaining plots suggest a nonnegligible dif-
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Table 2. Comparison of impulse responses (pointwise median).

0 1 2 3 4 5 6 7 8 9 10 11 12

Using the NiWU prior, i0
Fed F. 25.00 17.76 13.03 9.29 6.08 3.17 0.52 −1.92 −4.06 −6.13 −8.00 −9.69 −11.23
IP −0.43 −0.45 −0.47 −0.51 −0.54 −0.57 −0.60 −0.62 −0.65 −0.67 −0.68 −0.70 −0.72
Unempl. 8.60 9.16 9.85 10.45 11.00 11.48 11.88 12.26 12.58 12.88 13.21 13.41 13.59
PPI −0.35 −0.36 −0.37 −0.39 −0.40 −0.42 −0.43 −0.45 −0.46 −0.47 −0.48 −0.49 −0.50
Baa S. 6.09 8.33 8.85 8.76 8.51 8.26 8.00 7.70 7.41 7.13 6.86 6.53 6.22

Using our prior, i1
Fed F. 25.00 16.21 10.62 6.18 2.38 −0.99 −3.99 −6.72 −9.22 −11.52 −13.63 −15.48 −17.17
IP −0.63 −0.64 −0.68 −0.72 −0.75 −0.78 −0.81 −0.84 −0.87 −0.89 −0.91 −0.92 −0.94
Unempl. 12.73 13.22 13.94 14.57 15.12 15.58 16.01 16.39 16.75 17.05 17.30 17.50 17.68
PPI −0.50 −0.51 −0.52 −0.54 −0.55 −0.57 −0.59 −0.60 −0.61 −0.62 −0.63 −0.64 −0.64
Baa S. 8.54 11.38 11.92 11.72 11.33 10.89 10.46 10.04 9.62 9.18 8.74 8.26 7.78

Ratio of our prior to NiWU prior, 100 · (i1/i0 − 1) (percent)
Fed F. 0 −9 −18 −33 −61 −131 −870 250 127 88 70 60 53
IP 47 44 43 42 39 38 37 35 34 33 33 32 31
Unempl. 48 44 42 39 38 36 35 34 33 32 31 30 30
PPI 42 41 41 39 37 36 35 34 33 32 31 30 29
Baa S. 40 37 35 34 33 32 31 30 30 29 27 26 25

Note: Pointwise median impulse responses using the NiWU prior (top panel) or our prior (middle panel), together with the
percent difference between the two (bottom panel).

Table 3. Comparison of forecast error variance decompositions (pointwise median).

0 1 2 3 4 5 6 7 8 9 10 11 12

Using the NiWU prior, f0

Fed F. 0.36 0.28 0.22 0.17 0.14 0.12 0.10 0.09 0.09 0.08 0.08 0.08 0.08
IP 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.20 0.21 0.21 0.22 0.22
Unempl. 0.11 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.22 0.23
PPI 0.12 0.12 0.12 0.12 0.13 0.13 0.14 0.14 0.15 0.15 0.16 0.16 0.16
Baa S. 0.06 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Using our prior, f1

Fed F. 0.27 0.20 0.15 0.12 0.09 0.08 0.07 0.07 0.06 0.06 0.06 0.06 0.07
IP 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.30 0.31 0.31 0.31 0.31
Unempl. 0.20 0.22 0.24 0.25 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.33 0.34
PPI 0.18 0.18 0.19 0.19 0.19 0.20 0.20 0.21 0.21 0.22 0.22 0.22 0.23
Baa S. 0.10 0.11 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Ratio of our prior to NiWU prior, 100 · (f1/f0 − 1) (percent)
Fed F. −24 −28 −30 −32 −33 −32 −30 −27 −26 −23 −20 −17 −14
IP 69 65 63 61 58 56 54 51 50 48 46 44 43
Unempl. 75 72 68 65 63 61 59 56 54 52 51 49 48
PPI 55 55 54 52 50 49 47 45 44 42 40 39 37
Baa S. 72 67 63 61 59 58 57 55 54 52 51 51 50

Note: Pointwise median forecast error decompositions using the NiWU prior (top panel) or our prior (middle panel), to-
gether with the percent difference between the two (bottom panel).
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ference for the remaining variables, with the posterior associated with the NiWU prior
being consistently closer to 0. For instance, the NiWU specification delivers an impact
decrease in unemployment of around 9 basis points while our baseline specification
finds around 13 basis points, suggesting that the effect is 50% stronger. The Baa spread
is then predicted to increase on impact 40% more under the baseline prior than under
the NiWU prior.

Table 2 further inspects these differences by reporting the pointwise median re-
sponse of each variable for all horizons up to 1 year from the shock. The top panel shows
the effect associated with the NiWU prior. The middle panel shows the effect from our
baseline specification. The bottom panel reports the percentage difference between the
two. The difference in the results equals up to 50% on impact, and decreases to around
40% in most variables, then stabilizing to around 30%. The sign of the difference re-
mains unchanged for all variables and horizons. Some differences for the federal funds
rate appear large when the federal funds rate response from the NiWU is close to 0.

Table 3 documents the same comparison between prior specifications by showing
the forecast error variance decompositions. The first result is that modeling the very
same sign restrictions with the NiWU approach leads to a larger estimated role for mon-
etary policy shocks in driving the forecast error of the federal funds rate. From the NiWU
approach, up to 36% of the forecast error variance of the federal funds rate is driven by
exogenous variations in the federal funds rate. By contrast, our estimates point to a value
that is lower by 27%, hence suggesting a stronger role for the systematic component of
monetary policy. This difference quantitatively increases for future horizons. Consistent
with the finding on the impulse responses, we then find that forecast error variance on
most of the other variables is around 60% higher under our prior. The differences remain
high also when considering alternative values of the hyperparameters for our prior, as
we document in Table S.2–Table S.5 in the Supplementary Material. All in all, the analysis
suggests that the specific prior distribution used to model a given set of sign restrictions
can have quantitatively relevant implications.

5. Conclusions

The choice of prior distributions is particularly relevant in underidentified Bayesian
structural vector autoregressions, for example, sign restricted SVARs, since the priors
matter even in large samples for this case. In this study, we develop a new posterior sam-
pler, which allows the use of a flexible set of priors in a computationally nonchallenging
way. This sampler is a two-step importance sampler, which exploits the computational
convenience of the NiWU prior to generate proposal draws and maps these into draws
from the posterior of our model in two stages, first on the reduced-form parameters and
then on the structural form. We show that we recover the true posterior, as approximated
by a computationally much more challenging sampler, in a noncostly manner and illus-
trate the importance of the choice of priors for applied researchers in an application to
US monetary policy shocks in the Great Moderation.
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Appendix

Under Case 1 considered in the paper (equation (27)), we generate proposal draws from

�|Y ∼ iW
(
S∗, d∗),

d∗ = T −m− c− k− 1,

S∗ = S + �̂T (T −m).

using Algorithm A discussed in Section S.2.1 of the Supplementary Material. This
marginal posterior is associated with the independent NiWU joint prior

pNiW U ,i(π, �) = pNiW U ,i(π ) ·pNiW U ,i(�),

pNiW U ,i(π ) ∝ 1,

pNiW U ,i(�) ∝ ∣∣det(�)
∣∣ c2 · e− 1

2 trace[�−1S].

with generic hyperparameters (c, S). Despite the independent prior, the posterior
pNiW U ,i(�|Y ) is inverse Wishart because pNiW U ,i(π ) ∝ 1; see Section S.2.1 of the Sup-
plementary Material. The weights in Stage A are then equal to

w
stage A
d = p(�|Y )

pNiW U ,i(�|Y )

=
v{B→�,Q} · ∣∣det(�)

∣∣− T−m
2 · e− 1

2 trace[�−1�̂T (T−m)] ·
∫
O(k)

pB
(
h(�)Q

)
dQ

∣∣det(�)
∣∣− T−m−c

2 · e− 1
2 trace[�−1(S+�̂T (T−m))]

=
∣∣det(�)

∣∣− 1
2 · ∣∣det(�)

∣∣− T−m
2 · e− 1

2 trace[�−1�̂T (T−m)] ·
∫
O(k)

pB
(
h(�)Q

)
dQ

∣∣det(�)
∣∣− T−m−c

2 · e− 1
2 trace[�−1(S+�̂T (T−m))]

= ∣∣det(�)
∣∣− c+1

2 · e 1
2 trace[�−1S] ·

∫
O(k)

pB
(
h(�)Q

)
dQ

=
∫
O(k)

pB
(
h(�)Q

)
dQ, (30)

where the last step follows by setting (c, S) = (−1, 0 · Ik ) in order to reduce the volatility
of the weights. Under Case 2 (equation (28)), we generate proposal draws using a Gibbs
sampler on

π|Y , �∼ N
(
μ∗
π , V ∗

π

)
,

�|Y ,�∼ iW
(
S∗, d∗),

V ∗
π = (

V −1
π +WW ′ ⊗�−1)−1

,
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μ∗
π = V ∗

π

(
V −1
π μπ + (

WW ′ ⊗�−1)π̂T )
,

d∗ = T − c− k− 1,

S∗ = S + (Y −�W )(Y −�W )′,

via Algorithm C discussed in Section S.2.1 of the Supplementary Material. These condi-
tional posteriors are associated with the NiWU joint prior

pNiW U ,i(π, �) = pNiW U ,i(π ) ·pNiW U ,i(�),

pNiW U ,i(π ) =φ(μπ , Vπ ),

pNiW U ,i(�) ∝ ∣∣det(�)
∣∣ c2 · e− 1

2 trace[�−1S].

where the prior mean and variance equal the ones used in our prior p(π ) in equation
(28). As shown in Section S.2.2 of the Supplementary Material, the proposal draws are
representative of the marginal posterior distribution

pNiW U ,i(�|Y ) ∝ ∣∣det
(
V ∗
π

)∣∣ 1
2 · ∣∣det(�)

∣∣− T−c
2 · e− 1

2 {trace[�−1S]+ỹ′(IT⊗�−1 )ỹ−μ∗′
π V

∗−1
π μ∗

π }.

The weights in Stage A are then equal to

w
stage A
d

= p(�|Y )
pNiW U ,i(�|Y )

=
v{B→�,Q} · ∣∣det(�)

∣∣− T
2 · ∣∣det

(
V ∗
π

)∣∣ 1
2 · e− 1

2 {ỹ′(IT⊗�−1 )ỹ−μ∗′
π V

∗−1
π μ∗

π }
∫
O(k)

pB
(
h(�)Q

)
dQ

∣∣det
(
V ∗
π

)∣∣ 1
2 · ∣∣det(�)

∣∣− T−c
2 · e− 1

2 {trace[�−1S]+ỹ′(IT⊗�−1 )ỹ−μ∗′
π V

∗−1
π μ∗

π }

=
∣∣det(�)

∣∣− 1
2 · ∣∣det(�)

∣∣− T
2 · ∣∣det

(
V ∗
π

)∣∣ 1
2 · e− 1

2 {ỹ′(IT⊗�−1 )ỹ−μ∗′
π V

∗−1
π μ∗

π }
∫
O(k)

pB
(
h(�)Q

)
dQ

∣∣det
(
V ∗
π

)∣∣ 1
2 · ∣∣det(�)

∣∣− T−c
2 · e− 1

2 {trace[�−1S]+ỹ′(IT⊗�−1 )ỹ−μ∗′
π V

∗−1
π μ∗

π }

= ∣∣det(�)
∣∣− c+1

2 · e 1
2 trace[�−1S] ·

∫
O(k)

pB
(
h(�)Q

)
dQ

=
∫
O(k)

pB
(
h(�)Q

)
dQ,

as in equation (30), under the hyperparameter values (c, S) = (−1, 0 · Ik ). Table A.1 sum-

marizes these results. The integral term is computed numerically as
∑m2
i=1 pB(h(�)Qi )

m3(�)
, with

m3(�d ) defined as the number of draws required to generate m2 draws satisfying the
candidate sign restrictions on B.
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Table A.1. Proposal prior and posterior distributions for our sampler.

Case 1) p(π ) ∝ 1 (Flat prior or Minnesota prior via dummies observations)

Proposal prior: independent N(flat) + iW Proposal draws for pNiW U ,i(�|Y ): direct sampling

pNiW U ,i(π, �) = pNiW U ,i(π ) ·pNiW U ,i(�) �|Y ∼ iW (S∗, d∗ )
pNiW U ,i(π ) ∝ 1 d∗ = T −m− k
pNiW U ,i(�) ∝ | det(�)|−

1
2 S∗ = �̂T (T −m)

needs T ≥ 2k+m
Case 2) p(π|B) = p(π )N(μπ , Vπ ) (Flexible Minnesota prior)

Proposal prior: independent N + iW Proposal draws for pNiW U ,i(�|Y ): Gibbs sampling

pNiW U ,i(π ) ∼N(μπ , Vπ ) �|Y ,�∼ iW (d∗, S∗ )

pNiW U ,i(�) ∝ | det(�)|−
1
2 d∗ = T − k

S∗ = (Y −�W )(Y −�W )′
needs T ≥ 2k
π|Y , �∼N(μ∗

π , V ∗
π )

V ∗
π = (V −1

π +WW ′ ⊗�−1 )−1

μ∗
π = V ∗

π (V −1
π μπ + (WW ′ ⊗�−1 )π̂T )

Note: Our algorithm requires a proposal distribution pNiW U ,i(�|Y ). The table lists different possible proposal distribu-
tions depending on the corresponding proposal prior pNiW U ,i(�), and reports the corresponding weights for step (ii,d) of our
algorithm. Under both cases, the weights in Stage A of our algorithm equal ∝ ∫

O(k) pB(h(�)Q)dQ.
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