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Appendix A: First-order conditions from the estimated model

Household’s problem

Household solves the following constrained optimization problem. It maximizes its
value function

V (Kt−1, It−1, Bt ) = max
Ct ,Lt ,Bt+1,It ,Kt ,Ut

u(Ct , Lt , Bt+1 )(1−βt )(Et[V (Kt , It , Bt+1 )1−γ]) βt
1−γ ,

where

u(Ct , Lt , Bt+1 ) = (Ct − hCt−1 )e−τ0
L1+τ
t

1+τ e
ζB,t

Bt+1
RtPtZ

∗
t ,

subject to the following constraints:

Kt = Kt−1
(
1 − δ(Ut )

) + [
1 − S(It/It−1 )

]
It ,

S(It/It−1 ) = ϕI
2

(
It/It−1 − eμ∗

ϒ
)2

,

δ(Ut ) = δ0 + δ1(Ut −Uss ) + δ2

2
(Ut −Uss )2,

PtCt + Pt
(
eζϒ,t ϒt

)−1
It +Bt+1/Rt = PtDt + PtWtLt +Bt + PtKt−1r

k
t Ut − PtTt .

From the household’s optimization problem, we can derive the following first-order
intertemporal condition:

1 =Et
[
Mt+1

Pt

Pt+1

]
Rt + 1

Z∗
t

ζBe
ζ̃B,t (Ct − hCt−1 ), (18)

Francesco Bianchi: francesco.bianchi@jhu.edu
Howard Kung: hkung@london.edu
Mikhail Tirskikh: mtirsk@amazon.com

© 2023 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE1979

mailto:francesco.bianchi@jhu.edu
mailto:hkung@london.edu
mailto:mtirsk@amazon.com
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://qeconomics.org
https://doi.org/10.3982/QE1979


2 Bianchi, Kung, and Tirskikh Supplementary Material

where

Mt+1 = 1 −βt+1

1 −βt βt
(

Vt+1(
EtV

1−γ
t+1

) 1
1−γ

)1−γ

×
(
u(Ct+1, Lt+1, Bt+2 )
u(Ct , Lt , Bt+1 )

)−1(u′
1(Ct+1, Lt+1, Bt+2 )
u′

1(Ct , Lt , Bt+1 )

)
(19)

is the stochastic discount factor.
The intratemporal condition is

Wt = τ0L
τ
t (Ct − hCt−1 ).

The first-order conditions of the household with respect to a capital utilization choice
and investment decision result in the following two equations, respectively:

rkt
δ′(Ut )

[
1 − ϕI

2

(
It

It−1
− eμ∗

ϒ

)2

−ϕI
(
It

It−1
− eμ∗

ϒ

)
It

It−1

]

+Et
[
Mt+1

rkt+1

δ′(Ut+1 )
ϕI

(
It+1

It
− eμ∗

ϒ

)
I2
t+1

I2
t

]
= (
eζϒ,t ϒt

)−1
,

and

rkt
δ′(Ut )

=Et
[
Mt+1

(
rkt+1Ut+1 + rkt+1

δ′(Ut+1 )

(
1 − δ(Ut+1 )

))]
.

Intermediate firm’s problem

Intermediate firm i maximizes the present value of current and future cash flows:

V (i)(Pi,t−1 ) = max
Pi,t ,Ki,t ,Li,t

{
Di,t +Et

[
Mt+1V

(i)(Pi,t )
]}

,

subject to the following constraints:

PtDi,t = Pi,tXi,t − PtWtLi,t − Ptrkt Ki,t − PtG(Pi,t , Pi,t−1, Yt ),

Xi,t = Yt(Pi,t/Pt )
− 1+λp,t

λp,t ,

Xi,t = Kαi,t
(
entLit

)1−α
,

G(Pi,t , Pi,t−1, Yt ) = φR
2

(
Pi,t

�κπss �
1−κπ
t−1 Pi,t−1

− 1
)2

Yt .

The first-order condition of the intermediate firm with respect to the price setting deci-
sion is given by

(
1 − 1 + λp,t

λp,t

)(
Pi,t
Pt

)− 1+λp,t
λp,t Yt

Pt
+Wt Li,t1 − α

(
1 + λp,t

λp,t

)(
Pi,t
Pt

)−1 1
Pt
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−φR
(

Pi,t

�κπss �
(1−κπ )
t−1 Pi,t−1

− 1
)
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�κπss �
(1−κπ )
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+Et
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Combining the first-order conditions of the intermediate firm with respect to the capital
and labor choice, we get

rkt = α

1 − αWt
Li,t
Ki,t

.

Appendix B: Equilibrium conditions

1. Household’s value function:

Vt = u(Ct , Lt , Bt+1 )(1−βt )(Et[V 1−γ
t+1

]) βt
1−γ ,

u(Ct , Lt , Bt+1 ) = (Ct − hCt−1 )e−τ0
L1+τ
t

1+τ e
ζB,t

Bt+1
RtPtZ

∗
t ,

where βt = (1 + β̂eb̃t )−1.

2. Stochastic discount factor:

Mt+1 = 1 −βt+1

1 −βt βt
(

Vt+1(
EtV

1−γ
t+1

) 1
1−γ

)1−γ

×
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)
.

3. Household’s first-order intertemporal condition:

1 = Et
[
Mt+1

Pt

Pt+1

]
Rt + 1

Z∗
t

ζBe
ζ̃B,t (Ct − hCt−1 ).

4. Household’s first-order condition with respect to the labor supply choice:

Wt = τ0L
τ
t (Ct − hCt−1 ).

5. Household’s first-order conditions with respect to the capital utilization choice and
the investment decision:
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6. Capital accumulation:

Kt = Kt−1
(
1 − δ(Ut )

) + [
1 − S(It/It−1 )

]
It ,

S(It/It−1 ) = ϕI
2

(
It/It−1 − eμ∗

ϒ
)2

,

δ(Ut ) = δ0 + δ1(Ut −Uss ) + δ2

2
(Ut −Uss )2.

7. Intermediate firms’ first-order condition with respect to the price setting decision:(
1 − 1 + λp,t

λp,t

)
Yt

Pt
+Wt Lt

1 − α
(

1 + λp,t

λp,t

)
1
Pt

−φR
(

�t

�κπss �
(1−κπ )
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− 1
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�κπss �
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+Et
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8. Intermediate firms’ first-order condition with respect to the capital and labor
choice:

rkt = α

1 − αWt
Lt

Kt
,

whereKt =UtKt−1.

9. Production function:

Yt =Kαt
(
entLt

)1−α
,

where �nt = μ+ xt .
10. Modified Taylor rule:

ln
(
Rt

R∗
)

= ρr ln
(
Rt−1

R∗
)

+ (1 − ρr )

(
ρπ ln

(
�t

�sse
π∗

)
+ ρy ln

(
Ŷt

Ŷss

))
+ σRεR,t ,

where Ŷt ≡ Yt/Z∗
t is the detrended output.

11. Resource constraint:

Yt =Ct +
(
eζϒ,t ϒt

)−1
It + φR

2

(
�t/

(
�κπss �

1−κπ
t−1

) − 1
)2
Yt +Gt .

12. Government spending:

logGt+1 − logGss = ρg(logGt − logGss ) + σgεg,t+1.

13. Preference shock:

b̃t+1 = ρβb̃t + σβ,ξDt+1
εβ,t+1, εβ,t+1 ∼N(0, 1).
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14. Liquidity shock:

ζ̃B,t+1 = ρζB ζ̃B,t + σζBεζB ,t+1, εζB ,t+1 ∼N(0, 1).

15. Shock to the relative price of the investment good:

ζϒ,t+1 = ρϒζϒ,t + σζϒεζϒ,t+1, εζϒ,t+1 ∼N(0, 1).

16. Markup shock:

logλp,t − logλp = ρχ(logλp,t−1 − logλp ) + σχεχ,t , εχ,t ∼N(0, 1).

17. TFP growth shock:

xt = ρxxt−1 + σx,ξSt
εx,t , εx,t ∼N(0, 1).

Appendix C: Details about the solution method

This section provides more details about our log-linearization approach. As explained
in the main text, our approach is quite common in the asset pricing and macro-finance
literatures (e.g., Jermann (1998), Lettau (2003), Backus, Routledge, and Zin (2010), Uhlig
(2010), Dew-Becker (2012), Malkhozov (2014), and Bianchi, Ilut, and Schneider (2018)).
This Appendix is meant to provide more details about the method in order to make the
paper self-contained. In particular, we aim to make the following points:

1. The method can be characterized as a guess-and-verify approach. This is because
once the model is log linearized and solved, with or without risk-adjustment, the
variables of the model follow a linear process in logs and are therefore log normal
in levels. Thus, the method exploits this property of the solution when log lineariz-
ing the model and implements a risk-adjusted log linearization. This affects only
the equilibrium conditions in which an expectational term appears. Note that log
normality does not affect the rest of the log-linearized equations. When introduc-
ing stochastic volatility, the process becomes conditionally log normal. We explain
how this affects the method and the quality of the approximation below.

2. To understand why the solution without risk adjustment already implies log nor-
mality, it is important to notice that all shocks are specified in logs. Thus, when
taking a log-normal approximation, the solution of the model implies a linear pro-
cess in logs with Gaussian innovations. Note that when the variance of a shock in-
creases, the mean of the shock is unchanged. The mean of the exponential of the
shock would change, but this is not what is used in the log-linear approximation.
Thus, without the risk-adjusted log linearization, the increase in the variance of the
shocks would translate into an increase in the variance of the variables expressed in
logs, but it would not have first-order effects. The mean of the level of the variables
would change, but this is not how we measure the effects of uncertainty. For ex-
ample, the mean of log consumption would not be affected, so we would conclude
that there are no effects of uncertainty on consumption. Importantly, the mean
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of consumption in levels would change independently from using or not the risk-
adjusted log linearization.

3. The solution with risk-adjustment allows us to take into account the effects of un-
certainty on the economy. As explained above, the method exploits the fact that
even without risk adjustment, the log-linearized solution implies that the variables
have a log-normal distribution (i.e., they are linear in log deviations from the de-
terministic steady state). While the risk-adjusted log linearization allows us to take
into account the effects of uncertainty, the effects of uncertainty are not automat-
ically large in this setting. Instead, the effects of uncertainty depend on the model
and the estimated parameters. In the paper, we show that nominal rigidities and
Epstein–Zin preferences are important. Below we consider a very simple example
to make the same point in an even simpler setting.

C.1 A simple model

To illustrate the points above and the approximation method used in the paper, consider
the simple Fisherian model:

Rt =Et[It/�t+1],

where Rt is the gross real interest rate (the notation here is different with respect to the
paper), It is the gross nominal interest rate, and�t+1 = Pt+1/Pt is the gross inflation rate.
Assume a Taylor rule for the nominal interest rate:

It/I = (�t/�)ψπ ,

and a normal process for the log of the real interest rate:

log(Rt ) = rt ∼N
(
0, σ2

r

)
.

Thus, in this simple model, the real interest rate follows an exogenous process. Further-
more, rt is approximately equal to the net real interest rate: log(Rt ) = log(1 + rt ) ∼= rt . The
assumption that the exogenous shock specified in logs follows a Normal distribution is
standard in the applied macro literature, where all shocks are specified as log deviations
from a steady state. In this case, the steady state for the log of the real interest rate is
zero. The mean of the gross real interest Rt depends on σ2

r , however, note that σ2
r does

not affect the mean of rt .
In the zero (net) inflation deterministic steady state, we have

�= 1, R= 1, I = 1.

The standard log approximation would give us:

rt = it −Et[πt+1],

it = ψππt ,
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where all variables are now expressed in logs. Given that all variables are zero in the
steady state, the lower case letters also denote log deviations from steady state. The so-
lution to the model is given by

πt = ψ−1
π rt +ψ−1

π Et[πt+1]

= ψ−1
π rt +ψ−2

π Et[rt+1] + · · ·
= ψ−1

π rt ,

where we have used the fact that the one-step-ahead expected value of the real interest
rate is zero. Note that in this case, changes in the variance of the exogenous shock (σ2

r )
do not affect the solution. However, given that πt is a linear transformation of the nor-
mally distributed shock, rt , it also has a normal distribution. Thus, �t is log normal and
its mean depends on the variance of rt . Note that this is true even if we have used the
standard log linearization without risk-adjustment. But, again, this is not how we assess
the effects of uncertainty. We work with logs and we look at the behavior of πt , not �t .
With standard log linearization, there are no effects of σ2

r on the mean of πt . Thus, we
conclude that in the standard log-linear approximation approach, we cannot capture
the effects of uncertainty on inflation, despite that the mean of gross inflation varies
with σ2

r .
Now, consider the risk-adjusted log linearization used in the paper. As explained

above, πt is a linear transformation of a normal variable (rt ), so it also has a normal
distribution. Thus,�t has a log-normal distribution. We can then use a guess-and-verify
approach and use a risk-adjusted log linearization that takes into account that the solu-
tion satisfies log normality. We then have

rt = it −Et[πt+1] − 0.5Vt[πt+1],

it = ψππt .

Note that Vt[πt+1] = σ2
π is a constant that depends on the volatility of the real inter-

est and the policy parameter ψπ . We can then start with a guess on its value, solve the
model, and then replace σ2

π with the value implied by the solution. The solution now
becomes

πt =ψ−1
π rt +ψ−1

π Et[πt+1] + 0.5ψ−1
π σ

2
π .

Solving forward, we have

πt = ψ−1
π rt + 0.5

ψ−1
π

1 −ψ−1
π

σ2
π

= ψ−1
π rt + 0.5

ψ−1
π

1 −ψ−1
π

Vt
[
ψ−1
π rt+1

]
= ψ−1

π rt + 0.5
ψ−1
π

1 −ψ−1
π

[
ψ−2
π σ

2
r

]
,
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where we have used the factσ2
π = Vt[πt+1] = Vt[ψ−1

π rt+1] =ψ−2
π σ

2
r . Now, if we varyσ2

r , the
mean of net inflation,πt , also varies. But, interestingly, this is not because we are varying
the level of the real interest rate: The shock to rt only presents a change in variance, while
its mean is still zero. In other words, the mean of the log of the gross real interest rate, rt ,
is not changing.

Instead, the effect on the level of inflation is endogenous and depends on how
strongly the nominal interest rate reacts to inflation. To see this, note that as we increase
the response to inflation in the Taylor rule, the variance of the real interest rate becomes
less and less relevant for average inflation. Consistent with the fact that shocks to rt are
in levels, while shocks to σ2

r is a second moment shock, the importance of the latter de-
cays faster. As an example, suppose that we double the size of the response to inflation
from 2 to 4:

πt = ψ−1
π rt + 0.5

1
ψπ − 1

[
ψ−2
π σ

2
r

]
= 0.5rt + 0.125σ2

r ,

πt = 0.25ψ−1
π rt + 0.125

1
2ψπ − 1

[
ψ−2
π σ

2
r

]
= 0.25ψ−1

π rt + 0.015625
[
σ2
r

]
the response to rt is cut in half, while the response is divided by 8.

C.2 Adding regime changes

In the presence of Markov-switching volatility regimes, the model solution is log nor-
mal conditional on the regime. In this subsection, we discuss in more detail how our
approximation method compares to the one by Bansal and Zhou (2002).

To study the difference between the two approaches, consider a univariate Markov-
switching process:

zt+1 = cξt+1 + azt + σξt+1εt+1, (20)

where ξt+1 denotes the volatility regime at time t + 1. The solution of the model, pre-
sented in the main text, has this form. When we log linearize the system of model equa-
tions, we are facing log linearization equations of the following form:

Et
[
ezt+1

]
.

We first summarize the approach in Bansal and Zhou (2002), where they utilize condi-
tional log normality of the process in equation (20). In particular,

Et
[
ezt+1|ξt+1

] = eEt[zt+1|ξt+1]+0.5 Vart[zt+1|ξt+1].

Therefore, using the law of iterated expectations,

Et
[
ezt+1

] = Et
[
Et

[
ezt+1|ξt+1

]]
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= Et
[
eEt[zt+1|ξt+1]+0.5 Vart[zt+1|ξt+1]]

= Et
[
e
cξt+1 +azt+0.5σ2

ξt+1
]
.

To proceed forward, Bansal and Zhou (2002) use an approximation: e
cξt+1 +azt+0.5σ2

ξt+1 ≈
1 + cξt+1 + azt + 0.5σ2

ξt+1
. This procedure implies a linearization under the expectation

sign. Due to this approximation, the expectation becomes linear in the MS constant,
cξt+1 , and the final expression does not depend on the volatility of cξt+1 . Indeed,

Et
[
ezt+1

] = Et
[
Et

[
ezt+1 |ξt+1

]]
≈ Et

[
1 + cξt+1 + azt + 0.5σ2

ξt+1

]
= 1 +Et[cξt+1 ] + azt + 0.5Et

[
σ2
ξt+1

]
. (21)

Next, we compare this procedure with our log-linearization and risk-adjustment ap-
proach. We approximate Et[ezt+1 ] as if zt+1 is log normally distributed (note that process
in equation (20) implies only conditional log normality, so our procedure is an approxi-
mation):

Et
[
ezt+1

] ≈ eEt[zt+1]+0.5 Vart[zt+1] ≈ 1 +Et[zt+1] + 0.5 Vart[zt+1].

Then, using law of total covariance, we compute the risk adjustment term, Vart[zt+1]:

Vart[zt+1] = Et
[
Vart[zt+1|ξt+1]

] + Vart
[
Et[zt+1|ξt+1]

]
= Et

[
σ2
ξt+1

] + Vart[cξt+1 + azt ]
= Et

[
σ2
ξt+1

] + Vart[cξt+1 ].

As a result,

Et
[
ezt+1

] ≈ 1 +Et[zt+1] + 0.5
(
Et

[
σ2
ξt+1

] + Vart[cξt+1 ]
)

= 1 +Et[cξt+1 ] + azt + 0.5Et
[
σ2
ξt+1

] + 0.5 Vart[cξt+1 ].

The difference with the approach described in Bansal and Zhou (2002) (see equation
(21)) is the presence of the term, 0.5 Vart[cξt+1 ]. So, our log-linearization and risk- ad-
justment procedure takes into account the uncertainty that comes from the Markov-
switching constant. If we were to disregard this term, the two solutions would be iden-
tical. The presence of this term affects the level of the risk adjustment terms, but it has
very small effect on the model dynamics. To demonstrate this point, we solve the model
ignoring the uncertainty that comes from the Markov-switching constant. Table C.1 re-
ports the moments obtained from such solution and compares them to our benchmark
solution. Figure C.1 plots a simulation of the model and compares it to a simulation of
the model that was solved using our benchmark solution method. It is easy to see that
the two methods return very similar results, especially when it comes to the model dy-
namics at business cycle frequencies, the focus of our paper. More generally, both meth-
ods have their pros and cons. In one case, the effects of what we call endogenous uncer-
tainty, captured by the MS constant are lost. In the other case, conditional log normality
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Table C.1. This table compares moments from the model, solved using our benchmark approx-
imation method (column 2), and an approximation method, that ignores uncertainty about MS
constant (column 3). The table reports volatilities of output (�y), investment (�i), and consump-
tion growth (�c); moments of inflation π, Fed fund rate r and nominal slope of the yield curve.
All variables are annualized.

Benchmark No unc. MS const

Std(�y ) 3.19 3.19
Std(�i) 11.53 11.59
Std(�c) 2.66 2.66
E(π ) 2.02 2.76
Std(π ) 2.41 2.41
E(r ) 2.09 3.32
Std(r ) 3.25 3.26
Slope 0.93 1.03

only holds approximately. We decided to retain the effects of endogenous uncertainty,

but it is important to verify that the approaches do not lead to very different conclu-

sions.

Figure C.1. This figure plots simulation of the model. Blue solid line corresponds to the bench-
mark log-linearization approach, red dotted line corresponds to the approximate solution, that
ignores uncertainty about the MS constant.
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Table D.1. This table reports the proportion of realized Den Haan–Marcet (1994) test statistics
below 5% and above 95% critical values of χ2 distribution. We simulate 20,000 economies for
3500 periods and discard the first 500 observations.

Below 5% Above 95%

Approximate solution 4.47% 6.58%

Appendix D: Accuracy test

To assess the accuracy of the log-linear solution with risk adjustment employed in this
paper, we conduct a Den Haan and Marcet (1994) test for the estimated model. We sim-
ulate 20,000 economies for 3500 periods and drop the first 500 observations using the
posterior mode for the parameter values. We use the conditionally linear policy func-
tions for consumption, the value function, and the nominal interest rate to compute
the time path of the corresponding variables. We then use the original nonlinear Euler
equation (18) to compute the realized Euler equation errors:

errt+1=Mt+1
Pt

Pt+1
Rt+ζBeζ̃B,t

(
Ĉt− 1

�Z∗
t

hĈt−1

)
− 1,

where the stochastic discount factorMt+1 is given by equation (19) and Ĉt = Ct/Z∗
t . Un-

der the null hypothesis that the approximation is exact, the Euler equation (equation
(18)) implies Et(errt+1 ) = 0.

We then compute the Den Haan–Marcet statistic:

DM =
[
T

(
T∑
s=1

(errs )/T

)2]/[
T∑
s=1

(
err2

s

)
/T

]
.

Under the null hypothesis, this statistic has a chi-squared distribution. We obtain 20,000
statistics, one for each simulated economy and we check how many of them are above
the 95% and below the 5% chi-squared critical values. Table D.1 shows that the percent-
ages of realized test statistics below 5% and above 95% critical values of a χ2 distribu-
tion are very close to the theoretical ones. This result shows that our log-linearization
approach with risk adjustment terms provides a good approximation of the model solu-
tion.

Appendix E: Informational content of the term structure

Given the importance of demand- and supply-side uncertainty for term premia move-
ments, the use of bond yield data in our estimation is crucial for identifying the over-
all effects of uncertainty and distinguishing between the two types of uncertainty. Fig-
ures E.1 and E.2 plot the impulse response functions for demand and supply uncertainty
shocks from our benchmark estimation using term structure data (solid line) and an es-
timation without using term structure data (dashed line). Interestingly, the estimated
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Figure E.1. Effects of demand-side uncertainty when removing the term structure. This figure
plots the impulse responses to a demand-side uncertainty shock based on the benchmark esti-
mation (solid line) and in an alternative estimation without the term structure (dashed line).

Figure E.2. Effects of supply-side uncertainty when removing the term structure. This figure
plots the impulse responses to a supply-side uncertainty shock based on the benchmark estima-
tion (solid line) and in an alternative estimation without the term structure (dashed line).
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effects of demand-side uncertainty are significantly amplified using term structure data
than without, while the effects are muted for supply-side uncertainty. As demand-side
uncertainty is more important for nominal term premia compared to supply-side un-
certainty, including term structure data in the estimation therefore increases the relative
importance of demand-side uncertainty.

Figure E.3 illustrates that the inclusion of term structure data in the estimation af-
fects the timing, duration, and importance of uncertainty shocks. In particular, compar-
ing this figure with Figure 6, it is evident that using term structure data provides valu-
able information for the role of uncertainty in explaining business cycle fluctuations.
When the term structure is not included, periods of high uncertainty have a shorter du-

Figure E.3. Uncertainty-driven fluctuations in an estimated model without the term structure.
The figure plots selected variables from the simulation of the model estimated without asset
pricing data. The simulation only considers the effects of uncertainty based on the estimated
regime sequence (all Gaussian shocks are set to zero in this simulation). Top left panel: simulated
path of GDP, expressed in log deviations from steady state, and slope of the yield curve, expressed
as a difference between 5-year yield and 1-year yield. Top right panel: simulated dynamic of
nominal term premium in the model, expressed as a difference between 5-year nominal yield
and an expected average yield on 1-quarter nominal bond over the next 20 quarters. Middle
left panel: simulated slope of the yield curve and slope of the yield curve observed in the data.
The subsequent panels plot the model-implied path of GDP, consumption, and investment in
response to changes in uncertainty and the cyclical components of the corresponding series in
the data (obtained using bandpass filter). Units on the y-axis for macro variables are percentage
points (model and data). Units on the y-axis for term premium and slope are annualized percent
(data and model).
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Table E.1. This table reports results from the model estimated without using asset price data.
The left panel reports nominal and real term premia conditional on the uncertainty regime. The
term premium in the model is computed as the difference between 5-year yield and the expected
average yield on the 1-quarter bond over the next 20 quarters. The right panel reports the uncon-
ditional slopes of the corresponding term structures, defined as the difference between yields on
5-year and 1-quarter bonds. Values are annualized percent.

Term Premia

Preference Unc. Low Low High High
TFP growth Unc. Low High Low High Average Slope

Nominal Term Premium 0.15 1.06 0.17 1.09 0.46
Real Term Premium 0.04 1.01 0.07 1.03 0.33

ration and produce smaller effects. Furthermore, in the 1991 recession there is no vis-
ible effect from the increase in demand-side uncertainty, consistent with the impulse
responses from Figure E.1. Overall, when the term structure is not included, liquidity
shocks become more important for explaining business cycle fluctuations as they ac-
count for around 18% and 4% of investment and consumption volatility, respectively,
compared to 2.36% and 0.79% in the benchmark estimation. On the other hand, the es-
timation excluding the term structure also implies a counterfactual yield curve, as the
unconditional nominal slope is only 0.46%, with most of the nominal spread coming
from the real curve (see Table E.1). This result is due to the fact that demand shocks are
a key source of inflation risk premia, but when term structure data is excluded, the role
of demand shocks is significantly reduced as illustrated in Figure E.1. Thus, the term
structure encodes important information about uncertainty and macroeconomic fluc-
tuations while disciplining the relative importance of liquidity shocks. The joint esti-
mation exploits the strong relation between the slope of the yield curve, business cycle
fluctuations, and uncertainty.
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Appendix F: Effects of government spending uncertainty

Figure F.1. The figure plots selected variables from the counterfactual simulation of the model
with government spending uncertainty shocks (all Gaussian shocks, preference uncertainty
shocks, and TFP uncertainty shocks are set to zero in this simulation). The government spending
uncertainty in this simulation follows the estimated regime sequence for the preference uncer-
tainty. In the low uncertainty regime, the volatility of government spending shock is assumed to
be equal to its unconditional value obtain in the estimation of the model. In the high uncertainty
regime, the volatility of government spending shock is assumed to be two times higher than the
estimated value. Top left panel: simulated path of GDP, expressed in log deviations from steady
state, and slope of the yield curve, expressed as a difference between 5-year yield and 1-year
yield. Top right panel: simulated dynamic of nominal term premium in the model, expressed as
a difference between 5-year nominal yield and an expected average yield on 1-quarter nominal
bond over the next 20 quarters. Middle left panel: simulated slope of the yield curve and slope
of the yield curve observed in the data. The subsequent panels plot the model-implied path of
GDP, consumption, and investment in response to changes in uncertainty and the cyclical com-
ponents of the corresponding series in the data (obtained using bandpass filter). Units on the
y-axis for macro variables are percentage points (model and data). Units on the y-axis for term
premium and slope are annualized percent (data and model).
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Figure F.2. Responses to government spending uncertainty shock. This figure plots impulse
responses to a two-times increase in the volatility of government spending shocks. The govern-
ment spending uncertainty is assumed to follow the estimated regime sequence for the prefer-
ence uncertainty. The gray areas represent 90% credible sets. The impulse responses are com-
puted as the change in the expected path of the corresponding variables when the volatility
regime changes. The figure plots impulse responses of consumption, investment, GDP, infla-
tion, Fed funds rate (1-quarter nominal interest rate), the slope of the yield curve expressed as
the difference between 5-year and 1-year nominal yields, nominal term premium defined as the
difference between 5-year nominal yield and an expected average yield on 1-quarter nominal
bond over the next 20 quarters, the real term premium defined as the difference between 5-year
real yield and an expected average yield on 1-quarter real bond over the next 20 quarters, the real
slope expressed as the difference between 5-year and 1-year real yields. The units of the y-axis
are percentage deviations from a steady state (values for inflation, interest rates, and term pre-
mia are annualized). Units on the x-axis are quarters.
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Appendix G: Summary statistics

Table G.1. Mean and standard deviation of macroeconomic variables and bond yields in the
model and in the data. The model moments are computed analytically from the model solu-
tion. Values are annualized percentages. Reported standard deviations for the model take into
account observational errors.

Model Data

Mean Std. Dev. Mean Std. Dev.

GDP 0.53 3.33 1.08 2.29
Inflation 2.02 2.42 2.62 1.63
FFR 2.09 3.25 3.73 2.93
Investment 0.53 12.16 0.82 6.48
Consumption 0.53 2.91 1.42 1.55
Price of investment −2.10 1.62 −2.03 1.78
1-year yield 2.18 3.13 3.82 2.84
2-year yield 2.37 2.99 4.10 2.88
3-year yield 2.60 2.88 4.34 2.85
4-year yield 2.82 2.78 4.57 2.81
5-year yield 3.02 2.69 4.73 2.74

Table G.2. Mean and standard deviation of macroeconomic variables and bond yields in the
model and in the data. The model moments are computed analytically from the model solution.
Values are annualized percentages. Reported standard deviations for the model do not take into
account observational errors.

Model Data

Mean Std. Dev. Mean Std. Dev.

GDP 0.53 3.19 1.08 2.29
Inflation 2.02 2.41 2.62 1.63
FFR 2.09 3.25 3.73 2.93
Investment 0.53 11.53 0.82 6.48
Consumption 0.53 2.66 1.42 1.55
Price of investment −2.10 1.62 −2.03 1.78
1-year yield 2.18 3.13 3.82 2.84
2-year yield 2.37 2.99 4.10 2.88
3-year yield 2.60 2.88 4.34 2.85
4-year yield 2.82 2.78 4.57 2.81
5-year yield 3.02 2.69 4.73 2.74
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