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This appendix describes some important details regarding aspects of the spec-
ification and the estimation of the model used in Amisano and Tristani (2022).
The Appendix is available at the following URL: https://sites.google.com/site/
gianniamisanowebsite/.

Appendix A: Model details

A.1 The household problem

The optimization problem is

maxVt =
{

(1 −β)u1−ψ
t +β(

EtV
1−γ
t+1

) 1−ψ
1−γ } 1

1−ψ , ψ, γ �= 1,

where ut is shorthand for u{Ct(j) − h�tCt−1, 1 −Nt(j)}, subject to

PtCt(j) + EtQt,t+1Wt+1(j) ≤Wt(j) +wt(j)Nt(j) +
∫ 1

0
�t(i) di− Tt ,

and

Nt(j) =Lt
(
wt(j)
wt

)−θw,t

,

where the choice variables are ws and cs .
The Bellman equation is

J(Wt ) = max
{

(1 −β)u1−ψ
t +β[

EtJ1−γ(Wt+1 )
] 1−ψ

1−γ } 1
1−ψ

−�t
[
PtCt + EtQt,t+1Wt+1 −Wt −wtNt −

∫ 1

0
�t(i) di+ Tt

]
.

Using the aggregator function,

U = {
(1 −β)u1−ψ

t +βv1−ψ
t

} 1
1−ψ
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for vt ≡ [EtJ1−γ(Wt+1, Ct )]
1

1−γ , define

Uu,t = (1 −β)
{

(1 −β)u1−ψ
t +βv1−ψ

t

} ψ
1−ψ u−ψ

t ,

Uv,t = β
{

(1 −β)u1−ψ
t +βv1−ψ

t

} ψ
1−ψ v−ψ

t .

The FOCs include

Uu,tuc,t =�tPt ,

uN ,tUu,t
∂Nt(j)
∂wt(j)

= −�t
[
Nt(j) +wt(j)

∂Nt(j)
∂wt(j)

]
,

and state-by-state

Uv,t
[
EtJ1−γ(Wt+1 )

] γ
1−γ J−γ(Wt+1 )JW (Wt+1 ) =�tQt,t+1

plus envelope

JW (Wt ) =�t .
Use the shorthand Jt = J(Vt ) and Jt+1 = J(Vt+1 ), the FOCs can be rewritten as

�tPt

uc,t
=Uu,t ,

uN ,t

uc,t
= 1 − θw,t

θw,t

wt(j)
Pt

,

Qt,t+1 =Uv,t
[
EtJ

1−γ
t+1

] γ
1−γ J−γ

t+1
�t+1

�t
,

or

Qt,t+1 = β
([

EtJ
1−γ
t+1

] 1
1−γ

Jt+1

)γ−ψu−ψ
t+1

u
−ψ
t

uc,t+1

uc,t

1

t+1

.

Using the definition of μw,t , we obtain, as in the text,

−uN ,t

uc,t
= μw,t

wt(j)
Pt

and

Qt,t+1 = β
[

Et

(
Jt+1

Jt

)1−γ] γ−ψ
1−γ (

Jt+1

Jt

)−(γ−ψ)(ut+1

ut

)−ψuc,t+1

uc,t

1

t+1

.

A.2 Detrending

Given the stochastic trend Bt , define a detrended variable as x̃t ≡ xt/Bt . It follows that
we can rewrite the conditions above as

− ũN ,t

uc,t
= θw,t − 1

θw,t

w̃t(j)
Pt

,
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J̃
1−ψ
t = (1 −β)ũ1−ψ

t +β[
Et�

1−γ
t+1 J̃

1−γ
t+1

] 1−ψ
1−γ ,

ũt = u
(
C̃t(j) − hC̃t−1, 1 −Nt(j)

)
,

Qt,t+1 = β
([

Et J̃
1−γ
t+1 �

1−γ
t+1

] 1
1−γ

J̃t+1�t+1

)γ−ψ(
ũt+1

ũt

)−ψuc,t+1

uc,t

1


t+1�
ψ
t+1

.

A.3 Expected excess holding period returns

Define zero-coupon bond prices as

Bt,1 = Et[Qt,t+1],

Bt,2 = Et[Qt,t+1Bt+1,1],

� � �

Bt,n = Et[Qt,t+1Bt+1,n−1]

and note that the 1-period zero-coupon yield on the n-period bond, In,t , is defined as

1

(It,n )n
= Bt,n

or to second order

ît,n = −1
n
b̂t,n.

Expected holding period returns on a n-period bonds are

HPRn,t = EtBn−1,t+1

Bn,t
.

Excess holding period returns are defined as XHPRn,t =HPRn,t/It , where HPRn,t

is the return on holding a bond of maturity n for one period given by HPRn,t =
EtBn−1,t+1/Bn,t .

A.3.1 Second-order approximation In the text, we use the second-order approxima-
tion of expected holding period returns.

From the definition ofHPRn,t , denoting the approximated holding period return as
ĥn,t , we obtain

ĥn,t + 1
2
ĥ2
n,t = Et b̂n−1,t+1 − b̂n,t + 1

2
Et b̂2

n−1,t+1 + 1
2
b̂2
n,t − b̂n,tEt b̂n−1,t+1.

Using first-order terms to evaluate ĥ2
n,t , we obtain

ĥn,t = −b̂n,t + Et b̂n−1,t+1 + 1
2

Vart b̂n−1,t+1.

Similarly, for bond prices Bt,n = Et[Qt,t+1Bt+1,n−1] we obtain

b̂t,n = b̂t,1 + Et b̂t+1,n−1 + 1
2

Vart b̂t+1,n−1 + Covt[b̂t+1,n−1, q̂t,t+1].
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Using this expression, expected holding period returns can be written as ĥn,t = ît −
Covt[b̂t+1,n−1, q̂t,t+1] and holding period returns in excess of the short rate are

ĥn,t − ît = −Covt[b̂t+1,n−1, q̂t,t+1].

Note that we only need a first-order approximation to evaluate the covariance.
The stochastic discount factorQt,t+1 can be rewritten as

�̃t ≡ ũ−ψ
t uc,t ,

Dt ≡ Et J̃
1−γ
t+1 �

1−γ
t+1 ,

Qt,t+1 = βD
γ−ψ
1−γ
t

J̃
γ−ψ
t+1

�̃t+1

�̃t

1


t+1�
γ
t+1

,

and approximated as

q̂t,t+1 = �̂̃λt+1 − π̂t+1 −ψξ̂t+1 + γ−ψ
1 − γ d̂t − (γ−ψ )̂̃jt+1.

Expanding d̂t it follows that, to first order,

q̂t,t+1 = �̂̃λt+1 −ψξ̂t+1 − π̂t+1 − (γ−ψ)
(̂
ξt+1 +̂̃jt+1 − Et [̂ξt+1 +̂̃jt+1]

)
.

We therefore obtain

ĥn,t − ît = −Covt
[
b̂t+1,n−1, �̂̃λt+1 −ψξ̂t+1 − π̂t+1 − (γ−ψ)(ξ̂t+1 +̂̃jt+1 )

]
.

We now expand ̂̃λt+1 for the specific case of the Trabandt and Uhlig (2011) form for
temporary utility, which we use in the paper. We have

�̃t = (C̃t − hC̃t−1 )−ψ
(
1 −η(1 −ψ)N

1+ 1
φ

t

)ψ
,

and to first order

̂̃λt = − ψ

1 − ĥ̃ct +ψ h

1 − ĥ̃ct−1 −ψ
(

1 + 1
φ

)
n

1 − n l̂t

for n≡ η(1 −ψ)N1+ 1
φ .

Using this expression in the excess holding period return, we obtain

ĥn,t − ît
= Covt

[
b̂t+1,n−1, − ψ

1 − ĥ̃ct+1 −ψ
(

1 + 1
φ

)
n

1 − n l̂t+1 −ψξ̂t+1 − π̂t+1

− (γ−ψ)(ξ̂t+1 +̂̃jt+1 )

]
.
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Define the first-order approximation of variable v as Fvx̂t . Then (note that we use Fj
to denote the first-order approximation of the infinite sum ξ̂t+1 +̂̃jt+1)

ĥn,t − ît = Covt

[
FBn−1 x̂t+1,

(
ψ

1
1 − hFc +ψ

(
1 + 1

φ

)
n

1 − nFl +ψFξ + Fπ + (γ−ψ)Fj

)
x̂t+1

]
.

It follows that

ĥn,t − ît

= Et

[
F ′
Bn−1

x̂t+1x̂
′
t+1

(
ψ

1
1 − hFc +ψ

(
1 + 1

φ

)
n

1 − nFl +ψFξ + Fπ + (γ−ψ)Fj

)′]

− EtF ′
Bn−1

x̂′
t+1Et

[̂
x′
t+1

(
ψ

1
1 − hFc +ψ

(
1 + 1

φ

)
n

1 − nFl +ψFξ + Fπ + (γ−ψ)Fj

)′]
,

and using the law of motion for x̂t+1,

ĥn,t − ît = σ̃2FBn−1 Et
[
ut+1u

′
t+1

]
×

(
ψ

1
1 − hFc +ψ

(
1 + 1

φ

)
n

1 − nFl +ψFξ + Fπ + (γ−ψ)Fj

)′
.

A.4 Term premia

We define returns under the expectations hypothesis using the assumption that future
returns are discounted using the short-term rate, rather than the stochastic discount
factor. Bond prices under the expectations hypothesis are therefore

BEHt,n = 1
It

Et
[
BEHt+1,n−1

]
with 1-period yields defined as

1(
IEHt,n

)n = BEHt,n .

The term premium for maturity n, TPt,n is

TPt,n = It,n

IEHt,n
.

A.5 Firms’ optimization problem

Under Rotemberg prices, firm j maximizes real profits

max
P
j
t

Et
∞∑
s=t
Qt,s

[
P
j
sY

j
s

Ps
− ws

Ps

(
Y
j
s

As

) 1
α − ζ

2

(
P
j
s

P
j
s−1

− (

∗
sπ,s

)1−ι

ιs−1

)2

Ys

]
,



6 Amisano and Tristani Supplementary Material

subject to the total demand for its output

Yt(j) =
(
Pt(j)
Pt

)−θ
Yt ,

and to the production function

Yt(j) =AtLαt (j),

where Lt is the labor index defined above.
The FOC is

0 = (1 − θ)

(
P
j
t

Pt

)−θ
Yt

1
Pt

+ θ

α

wt

Pt

(
Yt

At

) 1
α
(
P
j
t

Pt

)− θ
α−1 1

Pt

− ζ
(
P
j
t

P
j
t−1

− (

∗
sπ,t

)1−ι

ιt−1

)
Yt

1

P
j
t−1

+ EtQt,t+1ζ

(
P
j
t+1

P
j
t

− (

∗
sπ,t+1

)1−ι

ιt

)
Yt+1

P
j
t+1

P
j
t

1

P
j
t

,

or noting that all firms will set the same price and expressing variables in detrended
form,

(θ− 1)Ỹt + ζ
(

t −

(

∗
sπ,t

)1−ι

ιt−1

)
Ỹt
t

= θ

α

w̃t

Pt

1

Z
1
α
t

Ỹ
1
α
t + EtQt,t+1ζ

(

t+1 − (


∗
sπ,t+1

)1−ι

ιt

)
Ỹt+1�t+1
t+1.

A.6 Equilibrium

Equilibrium is described by the following system:

• households

�tPt

uc,t
= (1 −β)ũ−ψ

t J̃
ψ
t ,

− ũN ,t

uc,t
= θw,t − 1

θw,t

w̃t

Pt
,

J̃
1−ψ
t = (1 −β)ũ1−ψ

t +β[
Et�

1−γ
t+1 J̃

1−γ
t+1

] 1−ψ
1−γ ,

ũt = u(C̃t − hC̃t−1, 1 −Nt ),

Qt,t+1 = β[
Et J̃

1−γ
t+1 �

1−γ
t+1

] γ−ψ
1−γ J̃

ψ
t

J̃
γ
t+1�

γ
t+1

�t+1

�t
;
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• firms

(θ− 1)Ỹt = −ζ(
t − (

∗
sπ,t

)1−ι

ιt−1

)
Ỹt
t + θ

α

w̃t

Pt

1

Z
1
α
t

Ỹ
1
α
t

+ EtQt,t+1ζ
(

t+1 − (


∗
sπ,t+1

)1−ι

ιt

)
Ỹt+1�t+1
t+1;

• market clearing

Ỹt = C̃t + G̃t + ζ

2

(

t −

(

∗
sπ,t

)1−ι

ιt−1

)2
Ỹt ,

Nt = Ỹ
1
α
t Z

− 1
α

t ;

• policy rule

It =
(

∗
sπ,t
�
ψ
t

β

)1−ρI( 
t


∗
sπ,t

)ψ
(
Ỹt

Ỹ

)ψY
I
ρI
t−1e

ηt+1 ,

ln
∗
sπ,t

= sπ,t ln
∗
sπ,H

+ (1 − sπ,t ) ln
∗
sπ,L

;

• shocks

�t =�1−ρξ
�
ρξ
t−1e

ε
ξ
t , ε

ξ
t+1 ∼N(0, σξ ),

G̃t = (gỸ )1−ρgG̃ρgt−1e
ε
g
t , ε

g
t+1 ∼N(0, σg ),

μw,t+1 = μ1−ρμ
w (μw,t )ρμe

ε
μ
t+1 , ε

μ
t+1 ∼N(0, σμ ),

Zt =Zρzt−1e
εzt , εzt+1 ∼N(0, σz,sz,t ),

ηt+1 = eεηt+1 , ε
η
t+1 ∼N(0, ση,sη,t );

• standard deviations

σz,sz,t = σz,0sz,t + σz,1(1 − sz,t ),

ση,sη,t = ση,0sη,t + ση,1(1 − sη,t );

• C−1, I−1,
−1 given.

A.7 Numerical implementation

For the numerical implementation of the model, we scale the maximum value function
by a constant κ to increase accuracy. Define a dummy variable D̃t = Et�

1−γ
t+1 J̃

1−γ
t+1 /κ

1−γ .

It follows that κ1−γD̃t = Et�
1−γ
t+1 J̃

1−γ
t+1 . This implies

D̃t =
Et�

1−γ
t+1 J̃

1−γ
t+1

κ1−γ ,

J̃
1−ψ
t = (1 −β)ũ1−ψ

t +βκ1−ψD̃
1−ψ
1−γ
t ,
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Qt,t+1 = β
(
κD̃

1
1−γ
t

J̃t+1

)γ−ψ(
ũt+1

ũt

)−ψuc,t+1

uc,t

1

�
γ
t+1

1

t+1

.

A.8 Functional forms

We rely on the Trabandt and Uhlig (2011) form for temporary utility, that is,

ut = (Ct − h�tCt−1 )
(
1 −η(1 −ψ)N

1+ 1
φ

t

) ψ
1−ψ .

As a result,

w̃t

Pt
=
ηψ

(
1 + 1

φ

)
(C̃t − hC̃t−1 )N

1
φ
t

1 −η(1 −ψ)N
1+ 1

φ
t

θw,t

θw,t − 1
,

J̃
1−ψ
t = (1 −β)(C̃t − hC̃t−1 )1−ψ(

1 −η(1 −ψ)N
1+ 1

φ
t

)ψ +βκ1−ψD̃
1−ψ
1−γ
t ,

Qt,t+1 = β
(
κD̃

1
1−γ
t

J̃t+1

)γ−ψ(
C̃t+1 − hC̃t
C̃t − hC̃t−1

)−ψ(
1 −η(1 −ψ)N

1+ 1
φ

t+1

1 −η(1 −ψ)N
1+ 1

φ
t

)ψ 1

�
γ
t+1

1

t+1

,

(θ− 1)Ỹt = −ζ(
t − (

∗
sπ,t

)1−ι

ιt−1

)
Ỹt
t + θ

α

w̃t

Pt

(
Ỹt

Zt

) 1
α + · · ·

+ EtQt,t+1ζ
(

t+1 − (


∗
sπ,t+1

)1−ι

ιt

)
Ỹt+1�t+1
t+1.

A.9 Elasticity of intertemporal substitution

We compute the elasticity of intertemporal substitution of consumption as the elasticity
of consumption to a change in the real interest rate holding labor supply constant.

Define the “consumption surplus” ←→c t ≡ C̃t − hC̃t−1. The first-order approximation
to the nominal stochastic discount factor

Qt,t+1 = β
(
κD̃

1
1−γ
t

J̃t+1

)γ−ψ(←→c t+1←→c t

)−ψ(
1 −η(1 −ψ)N

1+ 1
φ

t+1

1 −η(1 −ψ)N
1+ 1

φ
t

)ψ 1

�
γ
t+1

1

t+1

can be written asS1

q̂t,t+1 = −ψ�←̂→c t+1 −ψ
(

1 + 1
φ

)
n

1 − n�N̂t+1 −ψξ̂t+1 − π̂t+1

− (γ−ψ)
(̂
ξt+1 +̂̃jt+1 − Et [̂ξt+1 +̂̃jt+1]

)
,

where

̂̃jt + ξ̂t = ∞∑
i=0

(
β�1−ψ)i

Et

[̂
ξt+i +

(
1 −β�1−ψ)(←̂→c t+i − ψ

1 −ψ
(

1 + 1
φ

)
n

1 − nN̂t+i
)]

.

S1In these derivations, κ= 1.
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As a result,

q̂t,t+1 = −ψ�←̂→c t+1 −ψ
(

1 + 1
φ

)
n

1 − n�N̂t+1 −ψξ̂t+1 − π̂t+1,

and the real rate is

r̂t =ψEt�
←̂→c t+1 +ψ

(
1 + 1

φ

)
n

1 − nEt�N̂t+1 +ψEt ξ̂t+1.

Rearranging terms

←̂→c t = − 1
ψ
r̂t + Et

←̂→c t+1 + 1
ψ

(
1 + 1

φ

)
n

1 − nEt�N̂t+1 + Et ξ̂t+1,

so that the long-run elasticity of substitution EIS, that is, the elasticity which is obtained
after households have adjusted their consumption habits, takes the usual value

EIS = 1
ψ

.

Note that, in the absence of habits, this expression boils down to the usual value 1/ψ.
To compute the short-run elasticity, we rewrite the consumption surplus in terms of

the underlying consumption levels to obtain

̂̃ct = − 1
ψ

1 − h
1 + hr̂t +

1
1 + hEt̂ c̃t+1 + h

1 + ĥ̃ct−1

+ 1 − h
1 + h

(
1 + 1

φ

)
n

1 − nEt�N̂t+1 + 1 − h
1 + hEt ξ̂t+1.

The short-run elasticity of substitution EIS is therefore

EIS = 1
ψ

1 − h
1 + h ,

which again boils down to 1/ψ when h = 0. Note that, since h > 0, it is always the case
that EIS < EIS.

A.10 Model with equity prices

In the version of the model in which we take equity prices into account, the household’s
budget constraint becomes

PtCt(j) + EtQt,t+1Wt+1(j) +
∫ 1

0
Et�

j
t+1(i)PSt (i) di≤ Wt(j) + (1 + τw )wt(j)Nt(j) − Tt ,

where total nominal household wealth Wt(j) is given by

Wt(j) =Wt(j) +
∫ 1

0
�
j
t (i)

(
PSt (i) + Ptδt(i)

)
di,
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that is, it includes two components. The first component, as before, is a complete portfo-
lio of state-contingent bondsWt(j) yielding a return EtQt,t+1Wt+1(j) in t+ 1. The second
component are cum-dividend shares in each firm in the economy, where �jt (i) is the
household’s portfolio holding of shares in firm i, PSt (i) is the share price, and δt(i) is the
dividend.

The first-order conditions will now include the choice of the shares in each firm i,

Uv,t
[
EtJ1−γ(Vt+1 )

] γ
1−γ J−γ(Vt+1 )JV (Vt+1 )

(
PSt+1(i) + Pt+1δt+1(i)

) =�tPSt (i)

or, using the same definitions as above

PSt (i)
Pt

=Qt,t+1

(
PSt+1(i)

Pt+1
+ δt+1(i)

)

t+1.

Aggregate real dividend payments and aggregate real market capitalization can be
defined as

PSt =
∫ 1

0
PSt (i) di,

δt =
∫ 1

0
δt(i) di

so that the detrended, real stock market value p̃St = pSt /Bt (where pSt ≡ PSt /Pt and δ̃t =
δt/Bt ) is given by

p̃St =Qt,t+1�t+1
(
p̃St+1 + δ̃t+1

)

t+1.

Equilibrium dividends can be obtained from households’ total income

δ̃t = Ỹt − (1 + τw )
w̃t

Pt

(
Ỹt

Zt

) 1
α

.

The ex ante nominal return on equity Ie,t = Et
pSt+1+δt+1

pSt

t+1 can be rewritten in terms

of detrended variables as

Ie,t = Et
p̃St+1 + δ̃t+1

p̃St
�t+1
t+1.

We define the equity premium in terms of nominal returns as ERPnt = Ie,t/It or

ERPnt = 1
It

Et
p̃St+1 + δ̃t+1

p̃St
�t+1
t+1.

Note that in the nonstochastic steady state

ERPn = 0.
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In the impulse responses, we also use the ex ante real interest rate R̄t defined as

R̄t = It

Et
t+1
.

Appendix B: Model estimation

B.1 Data definition and sources

The macroeconomic data series we use for estimation are obtained from FRED S2 and
their mnemonics and original sources are as follows:

• Civilian Non-inst. Population: CNP16OV;

• Real GDP: GDPC1;

• Real PCE: PCECC96;

• Nominal PCE: PCEC;

• Effective Federal Funds Rate: FFR.

The data on continuously compounded yields on 3-year (SVENY03) and 10-year
(SVENY10) zero-coupon bonds come from Gürkaynak, Sack, and Wright (2007).S3

B.2 Prior specification details

For the φ parameter, we rely on a normal prior centred around 1.0, a value in between
macro estimates and micro estimates of the Frisch elasticity of labor supply (see, e.g.,
the evidence reviewed in Chetty, Guren, Manoli, and Weber (2011)). We use a shifted
Gamma distribution for ψ and γ, to ensure that ψ, γ > 1. We center the distribution of ψ
around a value above but close to 1. For the γ parameter, which contributes to shape risk
aversion, we use a very large standard deviation whose prior 95% confidence set goes
from 2 to 30. The habit parameter has a beta prior centered around 0.5. Finally, for βwe
use a relatively tight prior with a mean of 0.9985. This is consistent with assumptions
made in models with growth; see, for example, Christiano, Motto, and Rostagno (2014).

For the long run parameter�, we rely on a more dogmatic prior. We use a tight prior
centred around an annualized value of 2%, which is consistent with the average per-
capita U.S. GDP/GNP growth from the 1870s to the 1950s; see Maddison (2003).

The price adjustment cost ζ is typically calibrated based on the implied frequency
of adjustment of prices in linearized models. In our model, however, the relationship is
more complex due to both the nonlinearity of the model and the presence of steady-
state inflation. We therefore center the prior around 15, which is roughly consistent, for
example, with the value used in Schmitt-Grohé and Uribe (2004), but allow for a rela-
tively large standard deviation. For inflation indexation, we rely on a beta prior centered
around 0.5.

S2https://fred.stlouisfed.org/
S3https://www.federalreserve.gov/data/yield-curve-tables/feds200628.csv

https://fred.stlouisfed.org/
https://www.federalreserve.gov/data/yield-curve-tables/feds200628.csv
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The elasticity of intratemporal substitution θ, which is weakly identified, is set dog-
matically at 6. Similarly, we set the steady-state gross wage mark-up μw to 1.2.

B.3 Likelihood computation

Solving the model to second order, we obtain the reduced-form system of equations,

yot+1 = ky,j + Fx̂t+1 + 1
2

(
Iny ⊗ x̂′

t+1
)
Ex̂t+1 +Dvt+1, (S1)

x̂t+1 = kx,i + Px̂t + 1
2

(
Inx ⊗ x̂′

t

)
Gx̂t + σ̃�iwt+1, (S2)

st �MS(Q), (S3)

where

ky,j = ky,st+1=j ,

kx,i = kx,st=i,

�i = �(st = i).

and Q is the transition probability matrix associated with the Markov switching (MS)
process st .

The vector yot includes all observable variables, and vt+1 and wt+1 are measurement
and structural shocks, respectively. In this representation, as shown in Amisano and Tris-
tani (2011), the regime switching variables affect the system by changing the intercepts
ky,j , kx,i, and the loadings of the structural innovations �i (we indicate here with i the
value of the discrete state variables at t and with j the value of the discrete state variables
at t + 1).

To compute the approximate likelihood, at any point in time we first linearize the
two quadratic terms around the conditional mean of the continuous state variables con-
ditional on the prevailing regime. As a result, the two equations above can be rewritten
as

yot+1 = k̃(i,j)
y,t+1 + F̃ (i,j)

t+1 x̂t+1 +Dvt+1,

x̂t+1 = k̃(i)
x,t + P̃(i)

t x̂t +�iwt+1,

where

k̃
(i,j)
y,t+1 = k̃y,j + 1

2

(
Iny ⊗ x̂(i)′

t+1|t

)
Ex̂(i)

t+1|t −�i,t+1x̂
(i)
t+1|t ,

F̃
(i,j)
t+1 = F +�i,t+1x̂

(i)
t+1|t =E

(
xt+1|yo

1:t
, st = i, θ

)
,

�i,t+1 =

⎡
⎢⎢⎣
∂

(
1
2

(
Iny ⊗ x̂′

t+1
)
Ex̂t+1

)
∂x̂t+1

⎤
⎥⎥⎦
x̂t+1=x̂(i)

t+1|t

,
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k̃(i)
x,t = k̃x,i + 1

2

(
Inx ⊗ x̂(i)′

t|t

)
Gx̂(i)

t|t −�i,t x̂(i)
t|t ,

P̃(i)
t = P +�i,t x̂(i)

t|t =E(
x̂t|yo1:t

, st = i, θ
)
,

�i,t =

⎡
⎢⎢⎣
∂

(
1
2

(
Inx ⊗ x̂′

t

)
Gx̂t

)
∂x̂t

⎤
⎥⎥⎦
x̂t=x̂(i)

t|t

for regime-dependent intercepts k̃(i,j)
y,t+1, k̃(i)

x,t and slope coefficients F̃ (i,j)
t+1 , P̃(i)

t . We then
apply Kim’s (1994) approximate filter to forecast

x̂
(i,j)
t+1|t = k̃(i)

x,t + P̃(i)
t x̂

(i)
t|t = x̂(i)

t+1|t ,

Q
(i,j)
t+1|t = P̃(i)

t Q
(i,j)
t|t P̃

(i)′
t +�i�′

i =Q(i)
t+1|t ,

and update the vector of continuous state variables

x̂
(j)
t+1|t+1 =

m∑
i=1

x̂
(i,j)
t+1|t+1 ×p(st = i|st+1 = j, y

1:t+1
),

Q
(j)
t+1|t+1 =

m∑
i=1

[(
x̂

(i,j)
t+1|t+1 − x̂(j)

t+1|t+1

)(
x̂

(i,j)
t+1|t+1 − x̂(j)

t+1|t+1

)′ +Q(i,j)
t+1|t+1

]
×p(st = i|st+1 = j, y

1:t+1
),

and then update the regime probabilities

p(st+1 = j, st = i|y1:t
) = pij,t+1|t = pij ×p(st = i|y1:t

),

and

p(st+1 = j, st = i|yt+1
) = pij,t+1|t ×

p(yt+1|y
t
, st+1 = j, st = i)

p(yt+1|y
t
)

,

p(st+1 = j|y
1:t+1

) =
m∑
i=1

p(st+1 = j, st = i|y1:t+1
),

p(st = i|st+1 = j, y
1:t+1

) =
p(st+1 = j, st = i|y1:t+1

)

p(st+1 = j|y
1:t+1

)
,

p(yt+1|y
1:t

) =
m∑
i=1

m∑
j=1

p(yt+1|y
1:t

, st+1 = j, st = i) ×p(st+1 = j, st = i|y1:t
).

The conditional log-likelihood is obtained as

logL=
T∑
t=1

logp(yt+1|y1:t ).
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B.3.1 Accuracy of likelihood computations As mentioned in Section 4.3 of the paper,
the version of the model that receives most support from the data is the one in which
the standard deviations of measurement errors are estimated (the baseline version in
Table 2 in the paper). It turns out that the estimated values of these parameters are too
small to be compatible with likelihood computations via Sequential Monte Carlo (SMC).
For this reason, we decided to compute the likelihood by using the approximation based
on the Extended Kalman Filter and the Kim filter (EKF + Kim) just described above. In
order to informally measure the properties of our EKF + Kim approximation, we con-
sider the model with calibrated measurement errors standard deviations, for which like-
lihood evaluation by SMC is possible, and we use θ̂, the posterior mean of the parame-
ters estimated with the EKF + Kim approximation, as a reference to compare the likeli-
hood computations based on SMC and on our EKF + Kim approximation.

In order to describe the SMC algorithm that we use to compute the likelihood, let us
define:

• x(i)
t , i = 1, 2, � � � ,N , a swarm of particles each drawn from each distribution condi-

tional on data and observations up to time t (y1:t ), that is, p(xt|y1:t , θ̂). Note that xt
denotes the full vector of state variables, discrete and continuous.

• p(xt|xt−1, θ̂), the conditional state density implied by the state equations using θ̂ as
parameters.

• p(yt|xt , θ̂) ,the conditional density of observable variables implied by the measure-
ment equations.

• p̃(xt|xt−1, y1:t , θ̂) = p̃(xt|xt−1, yt , θ̂) the state density obtained running the EKF
while conditioning on xt .

The SMC algorithm works as follows:

• draw x(i)
0 , i= 1, 2, � � � ,N , from its ergodic distribution;

• for each t = 1, 2, � � � , T ,
– draw x(i)

t , i= 1, 2, � � � ,N from p̃(xt|x
(i)
t−1, y1:t , θ̂);

– assign each particle the weightw(i)
t = p(x(i)

t |x(i)
t−1, θ̂)×p(yt |x

(i)
t , θ̂)

p̃(x(i)
t |x(i)

t−1,yt , θ̂)
and resample the par-

ticles using those weights;

At each point in time, the sample mean (across particles) of the weights is a consistent
estimate of p(yt|yt−1, θ̂), the conditional likelihood of each observation; the product of
these terms over the sample is the SMC likelihood evaluation. At each point in time,
the sample mean (across particles) of the terms p̃(yt|xt − 1(i), θ̂), that is, the conditional
density of observable variables obtained conditioning on the state at t− 1 and using the
EKF, provides a consistent estimate of the conditional likelihood that does not rely on
the Kim filter approximation, but still uses the stepwise EKF linearization. We call the
resulting likelihood “EKF + SMC.”
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Table B.1. Likelihood computations comparisons: correla-
tions between Kim + EKF, EKF + SMC, full SMC methods.

Kim + EKF EKF + SMC

EKF + SMC 0.98 –
SMC 0.96 0.98

By comparing the SMC, EKF + SMC, and EKF + Kim likelihood computations, we
can parse the effects of each of the two approximations that we use for likelihood com-
putations (that is using the Kim algorithm with the EKF): the EKF + SMC approach elim-
inates recourse to the Kim’s approximation, while the SMC approach eschews any kind
of approximation. Since the SMC likelihood is computed here only for one set of param-
eter values, we could splurge on the number of particles (N = 500,000) and get a highly
accurate measure of the conditional likelihood p(yt|y1:t−1, θ̂) for each observation in the
sample.

Table B.1 reports the correlation among log likelihood computations throughout the
sample (i.e., log(p(yt|yt−1, θ̂)), t = 1, 2, � � � , T ) across the three methods, and shows very
high, although not perfect correlations. In particular, as Figure B.1 shows, more notable
differences across the methods occur in correspondence with outliers (when the log
likelihood dips down). It is interesting to note that outliers correspond to particularly
large shocks that takes the model away from its stochastic steady state. In these circum-
stances, the quality of the local approximation used to solve the model tends to deterio-
rate as well.

Since the results of our paper are mainly in terms of the model implications for the
latent variables, we thought it would be interesting to compare the filtered latent vari-
ables that we get with our approach with those obtained by using the SMC approach. As

Figure B.1. Likelihood computations: EKF + Kim, EKF + SMC, SMC.
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Figure B.2. Latent variables computations: EKF + Kim versus SMC.

Figure B.2 shows the filtered latent variables are very similar across the two approaches,
in most cases on top of each other. There are a couple of exceptions, namely the lagged
detrended “true” output (lag_y, net of measurement error) and government spending
(G). These differences stem from the combined effect of large shocks on G and large
measurement errors on output which, in turn produce high filtering uncertainty on both
variables.

B.4 MCMC simulation

We start by computing the mode of the posterior distribution of the parameters by using
a two-step approach:

1. we compute a reasonable approximation to the mode by using a simulated anneal-
ing algorithm (Goffe, Ferrier, and Rogers (1994));

2. using the result from the first step as initial value, we then run a gradient based
method (C. Sims’s csminwell) to find the posterior mode.

Having found the posterior mode, we compute the Hessian of the log posterior dis-
tribution at the mode and we use minus the inverse of this matrix as covariance matrix
for a Gaussian distribution in a random walk Metropolis–Hastings algorithm, as custom-
arily done in Bayesian estimation of DSGE models (as described in An and Schorfheide
(2007)). This covariance matrix is scaled to achieve acceptance rates of 50%.
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The MCMC algorithm is run to obtain 440,000 draws, the first 40,000 are discarded
and the remaining ones are thinned (i.e., one every 20 draws is recorded), resulting in
a final posterior sample of 20,000 draws, which is then used in all the computations
reported in the paper.

We find that the resulting posterior sample has good properties in terms of accep-
tance rate and low correlation across draws.

B.5 Unconditional and conditional moments

The computation of first and second unconditional and conditional moments entails
different levels of difficulty, depending on whether the Markov switching processes af-
fect shock variances only (like in the version of the model with a constant inflation tar-
get), or they do affect parameters that enter in the model’s steady state (such as the
model with different regimes on the inflation target). We provide a separate description
of the two cases.

B.5.1 Regime switches affecting shock variances only As we have shown in Section 3.2
of the paper, in this case the quadratic approximation of the model’s solution has
regime-specific intercepts and loading matrices for the shocks, while the linear slope
and quadratic terms are constant. This feature of the solution allows us to compute
first- and second-order moments analytically via a pruning approach, that is, we take
into consideration only linear terms for the computation of second-order moments, and
linear and quadratic terms for the computation of first-order moments. The computa-
tion of unconditional moments works as follows: for each draw of the parameter vector
from the posterior distribution, we compute the state space representation (S1), (S2),
and (S3). From the state space representation, we obtain the unconditional covariance
matrix of state vector shocks as

�ww = σ̃
m∑
i=1

�i�
′
iπi,

where πi are the ergodic state probabilities associated with the transition probability
matrix Q. Taking the state equation stripped of its second-order term, we can obtain
�xx,0, the static covariance matrix of x̂t , as a solution of

Cov(x̂t ) =�xx,0 = P�xx,0P
′ +�ww.

Dynamic covariance matrices are obtained by applying the recursion

Cov(x̂t , x̂t−j ) =�xx,j = P�xx,j−1, j = 1, 2, 3, � � �

and the covariance matrices for the variables in yot are obtained using the corresponding
linear measurement equation:

�yy,0 = Cov
(
yot

) = F�xx,0F
′ +DD′,

�yy,j = Cov
(
yot , yot−j

) = F�xx,jF
′, j = 1, 2, 3, � � � .
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When computing first moments, we take into consideration both first and second order.
To show how first moments are obtained, we rewrite the state space representation in
equivalent form as

yot+1 = ky,j + Fx̂t+1 + 1
2
E vec

(
x̂t+1x̂

′
t+1

) +Dvt+1, (S4)

x̂t+1 = kx,i + Px̂t + 1
2
G vec

(
x̂t x̂

′
t

) + σ̃�iwt+1, (S5)

where E andG are obtained by suitably rearranging the elements of the matrices E and
G, respectively. Taking the unconditional expected value of the two expressions above
yields the first moments:

μy = E
(
yot

) = ky + Fμx + 1
2
E vec(�xx,0 ), ky =

m∑
j=1

ky,jπj ,

μx = E(x̂t ) = [Inx − P]−1
[
kx + 1

2
G vec(�xx,0 )

]
, kx =

m∑
i=1

kx,iπi.

The computation of conditional first- and second-order moment is straightforward.

B.5.2 Regime switching affecting the nonstochastic steady state As we have described
in Section 3.2 of the paper, in this case the second-order approximation is obtained by
including the regime-switching parameter in the state vector and applying perturba-
tion around the state vector’s ergodic mean. The resulting solution can be rewritten ex-
clusively in terms of the continuous states, but the linear slope terms become regime-
specific. In this case, the computations of theoreical moments is more difficult. In prin-
ciple, one could apply a version of the approach used in Bianchi (2016) combined with
pruning. Alternatively, (and this is the approach that we have used in this version of the
paper), we have computed unconditional and conditional moments by suitably simu-
lating a large number of paths for the observable variables subject to pruning and com-
puting the required moments across the different simulations. This approach is compu-
tationally demanding but straightforward to be implemented.

B.6 Impulse response functions

To compute impulse response functions (IRFs), we follow Koop, Pesaran, and Potter
(1996). IRFs can be computed with respect to all shocks hitting the model, either con-
tinuous (the shocks in the state vector wt ) or discrete, that is, the shocks that lead to a
change in the discrete Markov switching process that affects the model. We define εt as
the vector containing all the shocks affecting continuous and discrete states. We com-
pute IRFs to a shock εjt of size δj occurring at time t,using the following algorithm:

• draw θ(i), i= 1, 2, � � � ,M , from the posterior distribution of the parameters;

• compute the state space representation corresponding to θ(i), run the Kalman filter
and draw x̂(i)

t , s(i)
t from their joint posterior distribution conditional on θ(i);
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• draw two histories of shocks ε(i,1)
t+h ε

(i,2)
t+h , h= 0, 1, 2, � � � ,H, which are totally identical

but differ only for the shock εjt , such that

ε(i,2)
jt = ε(i,1)

jt + δj ;

• feed these two histories of shocks to state and measurement equations starting from
x̂(i)
t , s(i)

t , and generate 2 paths

y(i,1)
t+h , y(i,2)

t+h , h= 0, 1, 2, � � � ,H;

the difference between these two path traces the dynamic response of shock δj ;

• the empirical distribution of this difference across draws θ(i) gives the posterior dis-
tribution of the IRFs.

Note that IRFs reported in Figure 7 in the paper are obtained by fixing the state
st+h, h= 0, 1, 2, � � � ,H at the value corresponding to low volatility for all the shocks. IRFs
reported in Figure 5 are obtained by contemplating a one-off shift in volatility, that is,
forcing the process to move to the high volatility state only once at time t.

B.7 Variance decomposition

Forecast Error Variance decomposition (FEVD) is a measure of the importance of the
model’s orthogonal shocks in determining the observed behavior of each variable in the
model at different horizons. Tables B.2, B.3, B.4 report the variance decomposition for
selected model variables at 1, 12, 40 horizons, computed using the posterior mean of
the parameter values. The tables show, among other things, how important is the role of
switches in the technology shock variance on long term rates and the equity premium
at all horizons.

The procedure to compute variance decomposition is straightforward in linear mod-
els and a bit more complicated in nonlinear ones, such as the quadratic MS-DSGE model
used in our paper. In particular, difficulties arise since:

Table B.2. Variance decomposition 1 step ahead.

ξ z pol μ G sπ∗ spol sz meas.err .

πt 5.8 12.5 6.3 36.0 9.8 22.1 4.4 3.2 0.0
�c 58.3 0.0 0.9 1.0 0.3 0.3 0.6 0.6 38.0
�y 37.7 0.0 0.2 1.3 26.9 0.1 0.3 0.2 33.3
r 20.8 5.2 24.7 15.1 8.2 8.1 16.1 1.7 0.0
Rbar t 20.7 7.7 24.3 7.9 4.1 16.3 16.5 2.4 0.0
Rn 0.0 92.2 0.0 0.0 4.4 0.0 0.0 3.3 0.0
EHR40 0.2 35.6 0.1 0.7 10.3 41.2 0.0 11.9 0.0
R40 0.1 37.3 0.0 0.6 8.2 33.2 0.0 0.2 20.3
ERPnt 0.0 0.0 0.0 0.0 0.0 0.0 0.7 99.3 0.0
PiEqbar_real 0.3 72.1 5.2 5.3 6.3 4.5 3.4 2.9 0.0
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Table B.3. Variance decomposition 12 steps ahead.

ξ z pol μ G sπ∗ spol sz meas.err .

πt 5.5 9.0 6.2 26.3 8.4 18.0 12.6 14.0 0.0
�c 53.0 1.7 0.5 6.6 0.5 1.2 1.6 1.8 33.2
�y 38.2 1.2 0.6 7.4 19.2 1.6 1.6 1.3 28.8
r 3.7 15.5 5.0 13.3 15.6 16.2 10.0 20.6 0.0
Rbar t 12.3 5.2 15.2 18.7 5.6 4.2 30.9 7.8 0.0
Rn 0.0 58.6 0.0 0.0 3.8 0.0 0.0 37.6 0.0
EHR40 0.0 42.5 0.1 0.7 6.1 20.3 0.2 30.1 0.0
R40 0.1 49.7 0.1 0.7 6.0 19.3 0.2 21.2 2.8
ERPnt 0.0 0.0 0.0 0.0 0.0 0.0 0.4 99.6 0.0
PiEqbar_real 1.1 44.5 4.6 4.3 3.3 1.5 9.4 31.3 0.0

1. the model is nonlinear;

2. there are shocks in the variances, that is, discrete shocks, beside the usual contin-
uous shocks;

3. there is uncertainty around the latent states, even conditioning on parameter val-
ues.

It is important to notice though, that the nonlinearities generated by quadratic terms
in the model’s solution do not play any role if second-order moments are computed
using an appropriate pruning procedure, that is, taking into consideration only linear
terms. In order to describe how the variance decomposition results contained in the
paper are computed, we define

v(i)(j, h, {S}
) = V (

yit+h|y1:t , θ
(i)
{S}

)

Table B.4. Variance decomposition 40 steps ahead.

ξ z pol μ G sπ∗ spol sz meas.err .

πt 4.9 9.2 6.0 23.0 7.4 17.1 15.1 17.2 0.0
�c 50.0 0.6 1.2 7.4 0.6 1.4 2.6 2.4 33.7
�y 35.3 1.4 0.8 6.6 22.0 0.9 2.6 2.0 28.3
r 3.0 17.4 2.5 10.3 11.6 13.7 7.1 34.5 0.0
Rbar t 11.4 3.7 12.1 16.9 6.0 5.2 32.4 12.4 0.0
Rn 0.0 47.2 0.0 0.0 2.6 0.0 0.0 50.1 0.0
EHR40 0.1 44.3 0.1 0.7 2.7 7.9 0.2 44.2 0.0
R40 0.1 47.4 0.1 0.7 2.7 7.7 0.2 40.2 1.0
ERPnt 0.0 0.0 0.0 0.0 0.0 0.0 0.1 99.9 0.0
PiEqbar_real 0.6 40.1 3.3 2.9 3.5 0.9 7.4 41.3 0.0

Note: π, �y , i, Rbar , Rn , EHR40, R40, ERP , PiEqbar_real denote, respectively, inflation, output growth, the short term
interest rate, the short real rate, the natural rate of interest, the long-run (40-period) rate compatible with the expectation
hypothesis, the actual long-run rate, the equity premium, and the deflated and detrended equity price.
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the conditional variance of yit+h conditional on the parameter vector θ(i) drawn from the
joint posterior distribution, and {S} denotes the set of shocks or sources of randomness
being allowed to be active in the system from t + 1 to t +H, the end of the projection
period.

As an example, setting S = {0} means that all all shocks in the system (continuous
and discrete) are being switched off, and this is achieved by using θ(i)

{0}, a modified version

of θ(i) to θ(i)
{0} in which the standard deviations of all shocks have been set to zero. In

this case, the conditional variance is determined only by the conditional variance of all
the latent variables (continuous and discrete) at time t, what is usually referred to as
“initial condition.” When we instead define S to be the full set of shocks, we compute
conditional variances using θ(i). These variances are determined by the full structure of
shocks in the model.

In order to describe the portion of forecast variances attributable to each shock, let
us call εkt , k = 1, 2, 3, 4, 5, the continuous shocks in the model, the first three of them
having Markov switching variances.

FEVD coefficients are computed as follows:

• for each value of the parameters θ(i), i = 1, 2, � � � ,M , drawn from the posterior dis-
tribution, we compute the solution for the model and the theoretical h-step ahead
forecast variances of all observed series. This is done using the appropriate pruning,
that is, considering only linear terms. These conditional variances, generated when
all shocks are active, enter in the denominator of the FEVD coefficients. This is the
denominator of any FEVD coefficient and it is indicated as

v(i)(j, h, {all}
) = V (

yit+h|y1:t , θ(i)).

• Starting from θ(i), we set the standard deviations of all shocks (and measurement
errors) to zero, and we obtain θ(i)

{0}. We then compute the associated forecast vari-
ances. This is the portion of variances due to uncertainty around initial conditions:

v(i)(j, h, {0}
) = V

(
yit+h|y1:t , θ

(i)
{0}

)
,

FEVD(i)(j, h, {0}
) = 100 × v(i)(j, h, {0}

)
v(i)(j, h, {all}

) .

• Starting from θ(i)
{0}, for each of the continuous shocks with Markov switching vari-

ances (εkt , k = 1, 2, 3), we first consider the contribution of the shock by setting its
two variances both equal to its low volatility regime value, that is, σ1,k k = 1, 2, 3,
therefore obtaining the vector θ(i)

{0,k}. In this way, we introduce only the kth con-
tinuous shock, but we zero out its variance jumps. We indicate the corresponding
variance as

v(i)(j, h, {0, k}
) = V (

yit+h|y1:t , θ
(i)
{0,k}

)
,

and we isolate the contribution of that shock by netting out the effect of the initial
condition as follows:

v(i)(j, h, {k}
) = v(i)(j, h, {0, k}

) − v(i)(j, h, {k}
)
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and

FEVD(i)(j, h, {k}
) = 100 × v(i)(j, h, {k}

)
v(i)(j, h, {all}

) .

• For each of the shocks with switching variances, we define θ(i)
{0,k,sk} the modification

of θ(i)
{0,k} where the two variances of shock εkt are set to their respective high and low

values. In this way, that shock is allowed to be heteroskedastic. The corresponding
conditional variances are then

v(i)(j, h, {0, k, sk}
) = V (

yit+h|y1:t , θ
(i)
{0,k,sk}

)
,

and we isolate the contribution of the kth shock variance jumps by subtracting the
portion of variance jointly due to the initial condition and to the kth shock when
assumed to be homoskedastic:

v(i)(j, h, {sk}
) = v(i)(j, h, {0, k, sk}

) − v(i)(j, h, {0, k}
)
;

the FEVD of the kth shock Markov switching jumps is hence computed as follows:

FEVD(i)(j, h, {sk}
) = 100 × v(i)(j, h, {sk}

)
v(i)(j, h, {all}

) .

• For each of the 8 continuous shocks without Markov-switching variance, that is, the
mark-up shock εμt , the permanent technology shock εξt , and the 6 measurement
errors (l = 1, 2, � � � , 8), we measure the FEVD contribution by defining θ(i)

{0,l}, that is,

the parameter vector obtained by modifying θ(i)
{0} to allow the standard deviation of

the lth shock shock to be equal to the corresponding value of θ(i). We then compute

v(i)(j, h, {0, l}
) = V (

yit+h|y1:t , θ
(i)
{0,l}

)
and we isolate the effect of shock l by subtracting the effect of the initial condition
as follows:

v(i)(j, h, {l}
) = v(i)(j, h, {0, l}

) − v(i)(j, h, {0}
)

and the corresponding FEVD coefficients are

FEVD(i)(j, h, {l}
) = 100 × v(i)(j, h, {l}

)
v(i)(j, h, {all}

) .

• The FEVD coefficients describe above by construction sum to 1 across all sources of
uncertainty for each variable (initial condition, continuous shocks, measurement
errors, and variance switches).

• These computations are repeated for all draws from the posterior distribution and
results are averaged across draws. In Table 2 of the paper, we report the posterior
means of each FEVD coefficient (one for each variable and for each shock) and the
corresponding 5% and 95% quantiles at different horizons.
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Appendix C: Nonexpected utility, habit persistence, and expected excess

holding period returns

As mentioned in Section 4.4 in the paper, we conjectured that our estimates for strong

habit persistence (h = 0.82) and in support of nonexpected utility specification (γ =
7.14, much above the estimate of ψ = 1.49), are crucially important to determine the

level and volatility of estimated bond excess holding period returns and premia. To con-

firm our conjecture, we run two sensitivity experiments:

1. we compare filtered excess holding period returns using the mean of the posterior

distribution of our parameters (baseline) with those obtained by setting h = 0

(no habits) and keeping all other parameters at their value in the baseline;

2. we compare baseline filtered expected excess holding period returns with those

obtained setting γ = ψ, as in a power utility function, and keeping the other

parameters at their baseline value.

Figure C.1. Filtered expected excess holding period returns: baseline (posterior mean), no
habits, power utility.
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As shown in both panels of Figure C.1, both the no habits and power utility pa-
rameter configurations produce substantial drops in the level and the volatility in ex-
pected excess holding period returns.
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