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This paper provides estimation and inference methods for conditional average
treatment effects (CATE) characterized by a high-dimensional parameter in both
homogeneous cross-sectional and unit-heterogeneous dynamic panel data set-
tings. In our leading example, we model CATE by interacting the base treatment
variable with explanatory variables. The first step of our procedure is orthogo-
nalization, where we partial out the controls and unit effects from the outcome
and the base treatment and take the cross-fitted residuals. This step uses a novel
generic cross-fitting method that we design for weakly dependent time series and
panel data. This method “leaves out the neighbors” when fitting nuisance com-
ponents, and we theoretically power it by using Strassen’s coupling. As a result,
we can rely on any modern machine learning method in the first step, provided
it learns the residuals well enough. Second, we construct an orthogonal (or resid-
ual) learner of CATE—the lasso CATE—that regresses the outcome residual on the
vector of interactions of the residualized treatment with explanatory variables.
If the complexity of CATE function is simpler than that of the first-stage regres-
sion, the orthogonal learner converges faster than the single-stage regression-
based learner. Third, we perform simultaneous inference on parameters of the
CATE function using debiasing. We also can use ordinary least squares in the last
two steps when CATE is low-dimensional. In heterogeneous panel data settings,
we model the unobserved unit heterogeneity as a weakly sparse deviation from
Mundlak’s (1978) model of correlated unit effects as a linear function of time-
invariant covariates and make use of L1-penalization to estimate these models.
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We demonstrate our methods by estimating price elasticities of groceries based
on scanner data. We note that our results are new even for the cross-sectional
(i.i.d.) case.

Keywords. Orthogonal learning, residual learning, CATE, dynamic panel data,
time series, mixing, cross-fitting, neighbors-left-out.
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1. Introduction

Inference on heterogeneous treatment effects is an important problem (see, e.g., Athey
and Imbens (2016), Chernozhukov, Demirer, Duflo, and Fernández-Val (2017), Wager
and Athey (2018), Davis and Heller (2020), Banerjee et al. (2021)). Estimating these ef-
fects involve an inherent trade-off between flexibility and precision. On the one hand,
discovering heterogeneity requires flexible models for the effects (e.g., by considering
many groups). On the other hand, flexible models produce noisy estimates that are not
useful for making decisions (e.g., the noise can result from having too few observations
per group). To resolve this trade-off, empiricists decide how to create groups after mak-
ing multiple attempts, a subjective, labor-intensive method that is prone to erroneous
inference.

This paper contributes a method for the estimation and inference of heterogeneous
treatment effects in a panel data set with many potential controls and unobserved unit
heterogeneity, which addresses many of the challenges listed above. Our key results are
new even to the cross-sectional settings. Thus, we first consider the cross-sectional case
and the following leading example as our model to explain the key ideas. Suppose Y is
an outcome, and P is a vector of treatment variables (e.g., polynomials in price), and X

are controls. Suppose that the conditional expectation function is partially linear in P ,
as in Robinson (1988), namely,

Y = e0(X ) +β0(X )′P +U , E[U | P , X] = 0.

Here, e0(X ) is the conditional average outcome in the “untreated” state (P = 0),
and β0(X ) describes the conditional average treatment effect under the standard con-
ditional ignorability/exogeneity conditions. We can orthogonalize the outcome and
treatment with respect to controls X , obtaining the residuals Ỹ = Y − E[Y | X] and
P̃ = P − E[P|X], and then observe that the CATE function satisfies the equation:

Ỹ = β0(X )′P̃ +U .

Therefore, we can learn the CATE function from this regression equation if we can learn
the residuals Ỹ and D̃ well using modern machine learning methods. In fact, under cer-
tain conditions, we prove that our rate of learning the CATE function would be the same
as if we knew the true residuals, which is an oracle-type property. Moreover, we show
this under both high-level and low-level regularity conditions.

Our approach consists of approximating β0(X ) by a linear combination of terms of
a dictionary of transformation K =K(X ) of X , which includes a constant of 1,

β0(X ) ≈K′β0,
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If dimension d = dim(β0 ) is low, that is, d is much smaller than the sample size n, we can
learn β0 using least squares at the rate

√
d/n provided the expectation functions E[Y | X]

and E[P | X] are learnable at fast enough rates. If β0 is high-dimensional and sparse, we
will rely on lasso to learn the CATE function at the rate

√
s logd/n where s = ‖β0‖0 is the

number of nonzero entries of β0. Finally, we will use debiased lasso methods to perform
Gaussian inference on the components of β, including constructing simultaneous con-
fidence bands using fast (Gaussian) bootstrap methods. We call these new approaches
above the orthogonal lasso and debiased orthogonal lasso. In addition, we also explore
the use of grouped lasso methods to enforce the exclusion or inclusion of groups of vari-
ables.

Our paper considers the dynamic panel data setting arising in many empirical ap-
plications. This setup makes the problem a lot more challenging. First, all variables
above will be doubly-indexed by unit i = 1, � � � , N and time t = 1, � � � , T , and controls
can include lagged values of outcomes, for example, and we will need to introduce unit-
specific effects in the model above judiciously. We add the unit-specific effects to the
conditional expectations of Yit and Pit , and we model individual effects as linear func-
tions of time-invariant covariates plus fixed effects that are approximately sparse. This
constriction allows for the overall individual effect to be “dense” while providing enough
convenience to make estimation results work. The strategy above is motivated by Mund-
lack’s and Chamberlain’s approach to viewing and modeling fixed effects as correlated
random effects.

Our construction uses cross-fitting (CF) to estimate nonparametric reduced forms
on a subset of data and construct the residuals (or scores) on another subset. In the i.i.d.
setting, CF removes the overfitting biases that can arise from using complex nonpara-
metric methods such as machine learning methods (see, e.g., Belloni, Chernozhukov,
and Hansen (2010), Zheng and van der Laan (2010), Chernozhukov et al. (2018) for re-
cent examples and Hasminskii and Ibragimov (1979), Schick (1986) for early, classical
uses). For regular CF methods to work in a time series or unit-heterogeneous dynamic
panel data, the number of periods T must be very large relative to the number of units N .
We choose an alternative path and introduce a “neighbors-left-out” (NLO) cross-fitting
method that applies to weakly dependent data. The NLO approach ensures that the first-
stage and the second-stage samples are approximately independent. We provide exact
bounds on the approximation error via Strassen’s coupling. These results are of inde-
pendent interest and apply beyond our context.

We use our method to estimate heterogeneous price elasticities on grocery data as
an empirical application. This data set consists of textual descriptions of the products,
prices, and daily aggregate sales for each (store, product, distribution channel) combi-
nation. We posit a partially linear specification where the (log) sales are the dependent
variable, and lags of log prices and log sales and current product characteristics are the
control variables. Assuming that the residual between the price tomorrow and its ex-
pectation today is exogenous, we use this variation to identify price elasticities. The ap-
proximate sparsity assumption helps us to rule out implausible values of price elastici-
ties. Our estimates are broadly consistent with findings in Chevalier, Kashyap, and Rossi
(2003).
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All of the above constitute the principal contributions of the paper. In what fol-
lows, we describe the relations to the literature and mention some additional exten-
sions and contributions. First, the paper contributes to modern literature on estima-
tion and model selection in high-dimensional settings using debiased (orthogonal) ma-
chine learning (e.g., Hasminskii and Ibragimov (1979), Schick (1986), Belloni, Cher-
nozhukov, and Hansen (2010), Zheng and van der Laan (2010), Belloni, Chernozhukov,
and Hansen (2011), Belloni, Chernozhukov, and Kato (2014), Zhang and Zhang (2014),
van der Geer, Bühlmann, Ritov, and Dezeure (2014), Chernozhukov et al. (2018), and ref-
erences therein) by considering the high-dimensional CATE function as the focus of in-
ference. Prior literature has mainly focused inference on low-dimensional or many tar-
get parameters without leveraging the model to help residualization (e.g., Belloni, Cher-
nozhukov, and Kato (2014), Belloni, Chernozhukov, Chetverikov, and Wei (2019)). While
our results are new, even for cross-sectional settings, our results cover the dynamic panel
data settings.

We provide general theoretical guarantees for orthogonal lasso methods that apply
to any case where residuals are learned well enough in a preliminary step using general
machine learning methods. In cross-sectional settings, this automatically allows a wide
range of high-quality machine learning tools with rigorous guarantees. In panel data
settings, we rely on lasso and verify that we can learn the residuals well using lasso-
based methods with weakly sparse individual effects, relying here upon in Kock and
Tang (2019). We expect that other machine learning methods are potentially amenable
to handling dynamic panel data settings, which is the subject of future work. In this
work, we abstract away from clustering (Chiang (2018) and Chiang, Kato, Ma, and Sasaki
(2019)), but it would be good to extend the present results in this direction.

In a related paper to ours, Nie and Wager (2020) establishes that the oracle rate
of learning of CATE function is possible in a cross-sectional setting, proposing a simi-
lar residual regression approach. Our paper is independent, and we circulated the pa-
per around the same time as theirs (both in December of 2017 in ArXiv). Moreover, we
provide not only the oracle learning rates but also statistical inference results and also
cover the dynamic panel data setting. On the other hand, rate results of Nie and Wager
(2020) apply to nonlinear learners of the CATE function. A more recent work than ours is
Oprescu, Syrgkanis, and Wu (2018), which develops orthogonal forest methods. Specif-
ically, they apply generalized random forest to regress outcome residual on treatment
residual interacted with a forest function of controls. They also provide some inferential
results. Finally, alternative approaches to handling heterogeneous and/or continuous
treatment effects are discussed in Ura (2018), Wager and Athey (2018), Semenova and
Chernozhukov (2021), Jacob, Härdle, and Lessmann (2019), Fan, Hsu, Lieli, and Zhang
(2019), Zimmert and Lechner (2019), Colangelo and Lee (2020), Klosin (2021).

To conduct inference on high-dimensional parameters of the CATE function, we
combine the approach of Zhang and Zhang (2014) and van der Geer et al. (2014) with
the Cai, Liu, and Luo’s (2011) approach to matrix inversion. The inference step can
also be carried out by the methods of Javanmard and Montanari (2014) and the dou-
ble lasso method (Belloni, Chernozhukov, and Hansen (2014), Chernozhukov, Hansen,
and Spindler (2015)), but we focus on the former. We rely on fast (Gaussian) bootstrap
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to perform simultaneous inference based on many debiased lasso estimators, relying
upon (Chernozhukov, Chetverikov, and Kato (2014, 2017, 2019)) and suitably extending
some results to our settings. Finally, we build on (Mundlak (1978), Chamberlain (1982))
and contribute to the panel data literature that develops various approaches to handling
heterogeneity, for example, Kock (2016b), Manresa (2016), Lu and Su (2016), Su, Shi, and
Phillips (2016), Moon, Shum, and Weidner (2018), Kock and Tang (2019), Bonhomme,
Lamadon, and Manresa (2019a,b), Gao and Li (2019), Chen, Fernandez-Val, and Weid-
ner (2020), Lu and Su (2020) among many others; see Fernandez-Val and Weidner (2018)
for a recent overview.

Structure of the paper

Section 2 introduces the model and outlines the strategy. Section 3 gives definitions of
estimators and outlines some theoretical results. Section 4 states our theoretical results
under general high-level conditions about the first stage. Section 5 verifies the high-level
conditions focusing on the panel data settings. Section 6 gives an empirical application,
and Section 7 concludes. Appendix A in the Online Supplementary Material (Semen-
ova, Goldman, Chernozhukov, and Taddy (2023)) presents and results on independence
couplings. Appendix B develops concentration results for weakly-dependent panel data.
Appendix C presents the results for high-dimensional CLT for weakly dependent data.
Appendix D contains proofs for Section 4, and Appendix E for Section 5. Appendix F
contains tail bounds for empirical rectangular matrices in operator norm. Appendix G
contains the analysis of OLS used in stage 3 of our inference procedure.

2. The set up

Here, we present the model, explain how we handle unit level heterogeneity, and outline
the overall inferential strategy.

Model

Our starting point is the structural equation model

Yit = β0(Xit , Pit ) + e0(Xit ) + ξEi +Uit , (2.1)

where i = 1, 2, � � � , N and t = 1, 2, � � � , T . Here,

• Yit is a scalar outcome of unit i at time t;

• Pit ∈ Rdp is a vector of treatment or policy variables;

• Xit ∈ RdX is a vector of predetermined variables, including possibly the lags of Pit

and Yit ;

• ξEi is an unobserved outcome unit fixed effect;

• Mi = {Mit }Tt=1 is a a collection fixed variables;
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• Xit can include known functions Mi, for example, time averages M̄i of Mi.

The stochastic shock Uit is assumed to satisfy the following sequential conditional exo-
geneity condition:

E[Uit | Pit , Xit , �it ] = 0, ∀(i, t ), (2.2)

where the filtration

�it = {(Xit ′ , Pit ′ , Yit ′ )
t−1
t′=1

}
(2.3)

is the filtration that consists of predetermined variables for unit i prior to period t. Here,
we view Mi = {Mit }Tt=1’s as a fixed realization of strictly exogenous variables that can be
time-varying. These variables are strictly exogenous, meaning that their entire trajec-
tory has been predetermined relative to all other variables in the model and relative to
stochastic shocks Uit ’s.

Remark 2.1 (Fixed Effects). Throughout the paper, we assume that

{Mi, ξi}
N
i=1 are fixed.

We view this approach as (essentially) equivalent to treating these variables as random
initially and then performing the analysis conditional on their realized values.1

Remark 2.2 (Important Notation Remark). Note that below we will be reassigning nota-
tion Xit ← t(Xit ) to denote variables that have been obtained as transformations of the
original variables Xit via some mapping t. Examples of transformations include powers
and their interactions. We then shall make other modeling assumptions to model the
observable unit-level heterogeneity.

The structural function p �→ β0(x, p) encodes the conditional average treatment ef-
fects (CATE). Therefore, we will simply call this function the CATE function. Indeed con-
sider the intervention policy that fixes Pit = p in the structural equation (2.1), inducing
the potential outcome:2

Yit(p) := β0(Xit , p) + e0(Xit ) + ξEi +Uit .

Then we have that

β0(Xit , p1 ) −β0(Xit , p0 ) = E
[
Yit(p1 ) | Xit

]− E
[
Yit(p0 ) | Xit

]
is the CATE resulting from changing policy value from p0 to p1.

1As in the standard panel data modes with fixed effects, we do not formalize this conditioning to reduce
presentation complexity.

2Here, as in Haavelmo (1944), we assume that the structural equation remains invariant under the inter-
vention. Judea Pearl refers to the fact that the structural model implies potential outcomes as the first law
of causal inference.
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In what follows, we will assume that β0(Xit , Pit ) is well approximated by a linear
combination of terms of a dictionary

Dit := D(Xit , Pit )

of transformations of Xit and Pit so that

β0(Xit , Pit ) = D′
itβ0.

Putting things together, we arrive at the partially linear model:

Yit =D′
itβ0 + e0(Xit ) + ξEi +Uit , (2.4)

where the key parameter β0 is interpretable as a causal or treatment effect parameter.
We will refer to Pit and Dit as base and technical treatment vectors, respectively.

In this paper, we focus on a practical case when the complexity of the control func-
tion e0(Xit ) substantially exceeds the complexity of CATE function (see Remark 5.7 for
the formal comparison of complexities).

Reduced forms and orthogonalized equations

To learn the CATE function at its fastest possible rate, we need to partial out controls
from treatments and outcome. Consider the treatment equation:

Dit = di0(Xit ) + Vit , E[Vit |Xit , �it ] = 0, (2.5)

which keeps track of confounding. We assume that the unit-specific treatment reduced
form takes the form:

E[Dit |Xit , �it ] =: d0i(Xit ) = d0(Xit ; ξi ), (2.6)

where ξ = (ξ1, ξ2, � � � , ξN ) denotes a fixed vector of unit-specific fixed treatment-
selection effects. A special case d0i(Xit ) := d0(Xit ) corresponds to no unobserved unit
heterogeneity in treatment. Furthermore, if the function d0(Xit ) is constant itself, there
is no confounding.

Proceeding further, we model the unit-specific outcome reduced form as

E[Yit |Xit , �it ] =: li0(Xit ) = di0(Xit )′β0 + e0(Xit ) + ξEi , (2.7)

where ξE = (ξE1 , ξE2 , � � � , ξEN ) denotes a fixed vector of unit-specific outcome effects.
Given the outcome and treatment reduced forms, we define the treatment and out-

come residuals

Vit := Dit − di0(Xit ), Ỹit := Yit − li0(Xit ). (2.8)

Equations (2.4)–(2.2) imply the following orthogonolized regression equation:

Ỹit = V ′
itβ0 +Uit , E[Uit | Vit , Xit , �it ] = 0. (2.9)

This equation identifies β0 as the coefficient of the best linear projection of Ỹit on Vit .
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Example 2.1 (Linear in Treatment Base Treatment Structure). Define

Dit = PitKit , (2.10)

where Kit := K(Xit ) is a collection of transformations of a subset of variables in Xit , in-
cluding a constant of 1. Suppose there exists a low-dimensional “base” treatment vari-
able Pit whose reduced form is

Pit = p0(Xit ) + ξi + V P
it , E

[
V P
it | Xit , �it

]= 0. (2.11)

Then, (2.5), (2.10), and (2.11) imply

di0(Xit ) =K(Xit )′
(
p0(Xit ) + ξi

)
, Vit =K(Xit )V P

it .

As we will show later, the interactive structure (2.10) simplifies estimation of treatment
residuals.

Unit-level effects

A standard approach to unit-level additive heterogeneity is demeaning or differencing.
Because these operations introduce Nickell (1981) bias in dynamic panels, it requires an
identification strategy based on instrumental variables (e.g., Arellano and Bond (1991)).
Furthermore, differencing out time-invariant covariates may lead to an efficiency loss.

In this paper, we take a fixed effect approach, in which we approximate the vector
of unobserved components of unit effects ξE = (ξEi )Ni=1 by a weakly sparse vector. In-
formally, the weak sparsity assumption requires ξE to be well approximated by a sparse
vector whose number of nonzero components is small. The sparsity assumption allows
us to use lasso methods to consistently estimate them (Kock and Tang (2019)).

The weak sparsity assumption may appear restrictive at the first sight. However, it
does allow for rich forms of overall unit-level effects driven by time-invariant covari-
ates and the “residual” unit effects ξi. To explain this better, consider the following
Mundlack-style model:

e0(Xit ) + ξEi = X̄ ′
itδ

X
0 + M̄ ′

iδ
E
M0 + ξEi︸ ︷︷ ︸
aEi

, (2.12)

where X̄it are time-varying, predetermined covariates and M̄i = 1
T

∑T
t=1 Mit is time av-

erage of fixed covariates. The important difference with Mundlack’s approach is that we
consider ξi’s to be weakly sparse and to condition on the realizations of (M̄i, ξi )Ni=1.3

We note that while the residual effects ξi’s are required to be weakly sparse, the over-
all unit effect ai can actually be dense. Finally, the decomposition aEi = M̄ ′

iδ
E
M0 + ξEi may

not be unique. However, our analysis shows that this nonuniqueness does not prevent

3It would be interesting to consider nonweakly sparse ξ in dynamic panel models, where ξ’s follow some
known distribution (which is generally not compatible with the weak sparsity assumption). We leave this
important direction to future research. Note that Kock (2016a) developed such results for nondynamic
panel data models, which could provide a starting point for such extension.
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Figure 1. Lasso approximation of a correlated random effects model with approximately sparse
deviations. Notes: Dots indicate (Mi, ai ), with the horizontal axis showing values of M̄i and verti-
cal axis the values of ai = M ′

iδ
M
0 +ξi. The lasso estimated unit effects are shown by rombi (Mi, âi ),

where âi :=Miδ̂M + ξ̂i. The time-invariant controls Mi are generated as i.i.d. draws from U[0, 1];
the sparse deviations are ξi = 1/i2, i = 1, 2, � � � , N = 20, T = 1; and δM0 = 1. Here, we show the
realization just for one experiment.

the overall aEi ’s be consistently estimated, as we illustrate in Figure 1, as long as there
exist at least one decomposition with δEM0 and ξE being sufficiently sparse. We provide
a more technical explanation in Remark 5.2.

For the unit-level heterogeneity in treatment, we can proceed similarly. This strategy
works especially well in conjunction with linear structures such as Example 2.1, where
the same approach as above applies, swapping ξEi for ξi, so that

p0(Xit ) + ξi = X̄ ′
itδ

P
0 + M̄ ′

iδ
P
M0 + ξi︸ ︷︷ ︸
aPi

, (2.13)

where aPi is the overall unit-level effect, consisting of a dense part M̄ ′
iδ

P
M0 plus a weakly

sparse deviation ξi from it.
Additive unit heterogeneity works well for linear models such as in Example 2.1. On

the other hand, purely additive fixed effects are not well suited for binary or discrete
treatments.4 In the latter case, empirical researchers may proceed as follows: supposing
Pit is binary, we model

Pit = �
(
ξi + X̄ ′

itβ+ M̄ ′
iδ
)+ V P

it , E
[
V P
it |Xit , �it

]= 0,

where z → �(z) is the link function such as logit that forces the logical range restric-
tion on the conditional expectation function. The fixed effects here are naturally non-
additive (though additive inside the link function). Then here one can still impose ap-
proximate sparsity on ξ = (ξi )Ni=1 and apply lasso-penalized logistic regression to esti-
mate such models in practice. We expect that the results of Kock and Tang (2019) extend
to this case, but this requires its own formal analysis that we leave to future work.

4For example, in the binary case, the conditional expectation function of Pit is naturally bounded by 0
and 1, but the additive fixed effects model does not naturally respect this range.
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The above discussion is still somewhat abstract. We thus present the following con-
crete example that illustrates the flexibility of the proposed framework. In this example,
the lasso-based methods are particularly helpful for both estimation of reducted forms
and residuals. We will use this example to illustrate the plausibility of regularity condi-
tions that we invoke later in the paper.

Example 2.2 (Linear Panel Vector Autoregression With High-Dimensional Controls and
Unit Effects). The following example is the special case of Example 2.1:

Yit = PitK
′
itβ0 + e0(Xit ) + ξEi +Uit

= PitK
′
itβ0 +

L∑
l=1

Yi,t−lδ
EE
0l +

L∑
l=1

Pi,t−lδ
EP
0l + X̄ ′

it δ̄
E
0 + M̄ ′

iδ
E
M0 + ξEi +Uit

= PitK
′
itβ0 +X ′

itδ
E
0 + ξEi +Uit , (2.14)

Pit = p0(Xit ) + ξi + V P
it

=
L∑
l=1

Pi,t−lδ
PP
0l +

L∑
l=1

Yi,t−lδ
PE
0l + X̄ ′

it δ̄
P
0 + M̄ ′

iδ
P
M0 + ξi + V P

it

= X ′
itδ

P
0 + ξi + V P

it . (2.15)

In this example, the outcome responds to the current and past values of the treatment
as well as past values of outcomes; a set of covariates and unit effects provide further
shifts. Likewise, the treatment is assigned in response to current and past values of the
treatment as well as past values of outcomes; and a set of covariates and unit effects
provide further shifts.

Estimation and inference strategy

We are primarily interested in the high-dimensional sparse regime, where the number
of technical treatments d is large

d = dim(Dit ) = dim(β0 ) 
NT ,

but only a small number s � NT of them has nonzero effect:5

‖β0‖0 = s, (2.16)

Importantly, the identity and the number of the nonzero coefficients is unknown.

Algorithm 1. In this high-dimensional regime, our estimation and inference approach
have the following steps:

(1) Estimate the residuals Ỹit and Vit using machine learning with cross-fitting.

5We can relax this exact sparsity assumption to approximate/weak sparsity as in Belloni, Chernozhukov,
and Kato (2014). We chose a simpler assumption given the complexity of the rest of the analysis.
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(2) Estimate the CATE function by lasso-penalized regression of estimated Ỹit on Vit .

(3) Perform Gaussian inference parameters of the CATE function using debiased
lasso.

In the last step, more specifically, we are performing inference on classes of the lin-
ear functionals of parameters β0 of the CATE function D′

itβ0. In cross-sectional settings,
a wide variety of machine learning methods provably apply to carry out step 1. In panel
data settings, carrying out step 1 requires a judicious mix of modeling structures and
machine learning methods that can handle fixed effects. Structures such as Example 2.1
and lasso with penalized fixed effects work provably well for this purpose. Other meth-
ods potentially apply, but this remains to be proven. Moreover, for step 1 we have to de-
sign cross-fitting to respect the panel data structure. The last step uses debiasing most
similar to that of van der Geer et al. (2014), but other methods such as double lasso can
also be used to carry out debiasing. The next section provides formal definitions of esti-
mation steps focusing on the dynamic panel data case.

If Dit is low-dimensional, namely,

d � NT ,

the sparsity assumption is not required. The steps (2) and (3) are replaced by linear re-
gression estimated by ordinary least squares.

Algorithm 2. If d �NT , we perform the following steps:

(1′) Estimate the residuals Ỹit and Vit using machine learning with cross-fitting.

(2′) Estimate the CATE function by linear regression of estimated Ỹit on Vit .

(3′) Perform Gaussian inference on parameters of the CATE function using OLS.

This covers many practical cases, and is a very attractive applied option. We point
our, however, that even in this regime, if the sparsity condition s � d holds, the orthog-
onal lasso methods can outperform OLS in terms of accuracy of estimating the CATE
function. Furthermore, we also note that the OLS method is not designed to handle the
model selection problem. Indeed, typically researchers combine OLS with prior model
selection step, which can lead to well-known inferential problems Leeb and Potcher
(2005). The debiased orthogonal lasso explicitly addresses the model selection issue and
provides rigorous theoretical guarantees for inference.

3. Cross-fitting with time series, estimation, and inference

In this section, we introduce the neighbor-excluding cross-fitting method that is gen-
erally applicable to weakly dependent time series or panel data. We also provide a key
theoretical support for this method using Strassen’s coupling. In this section, we also
write down details of some estimators, focusing on the dynamic panel data case. We
also informally preview theoretical results.
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Notation

In the remainder, we use notation Wit to refer to the data vector on unit i at time t; W·,t
the data vector on all units at time t, and so on. The data and all other random ele-
ments are defined on the underlying probability space (�, F , P) that has been enriched
to carry an independent standard uniform random variable. We assume that all random
variables are random vectors in Euclidean spaces (the coupling result below applies to
random variables taking values in Polish space). We denote the total variation of a signed
measure v the space (�, F ) as

‖v‖TV := supv(A) − v
(
Ac
)
,

where the supremum is taken over all measurable sets A.

3.1 Cross-fitting for weakly dependent data

Cross-fitting (CF) reduces overfitting biases from fitting the model’s nonparametric
components via machine learning. In the i.i.d. settings, CF uses a one subsample to es-
timate nonparametric components (e.g., expectation functions) and its complement to
compute the sample average of i.i.d. residuals (depending on these functions). As a re-
sult, CF plays an essential role in modern debiased inference in semiparametric mod-
els; see, e.g., Belloni, Chernozhukov, and Hansen (2010), Zheng and van der Laan (2010),
Chernozhukov et al. (2018) for recent examples and Hasminskii and Ibragimov (1979)
and Schick (1986) for early, classical uses of simpler sample-splitting methods for debi-
ased inference.

In cross-sectional cases, we create partitions into folds and their complements by
sampling folds randomly from the data. In the time-series case, there is only one di-
mension to split on. In the unit-heterogeneous panel settings, we can only split by time
dimension so that unit-specific effects are estimated for all units on every partition. In
both cases, two contiguous time splits may not be independent.6 Here, we introduce a
“neighbors-left-out” (NLO) cross-fitting method that applies to weakly dependent data.
Whenever the data are weakly dependent, the NLO approach ensures that the first- and
the second-stage samples are approximately independent. We give exact bounds on the
approximation error by independent blocks via Strassen’s coupling below.

Definition 3.1 (Folds and Their Quasi-Complements for Weakly Dependent Data).
Consider partition of {1, � � � , T } into adjacent blocks {Mk}Kk=1,

{1, � � � , T } = {M1, � � � , MK },

6For example, if we cut a panel into two halves, we end up with two dependent data blocks. We can,
in principle, make this approach work under beta-mixing by recognizing that the dependence has a van-
ishing effect on statistics that are sample averages of a.s. bounded random variables. However, such ap-
proach would require the number of time periods (i.e., the length of the panel) to be sufficiently large (i.e.,
logN/T = o((NT )−1/2 )). We avoid assuming these additional unpleasant conditions by using the NLO ap-
proach.



Quantitative Economics 14 (2023) Inference on heterogeneous treatment effects 483

where each block has length Tk ≥ Tblock := T/(K − 1)� for each k, such that K ≥ 3. Let
N (k) denote k and its immediate neighbors in {1, � � � , K}. Define the quasi-complement
of Mk as Mqc

k = {M1, � � � , MK } \ {Ml : l ∈ N (k)}, and the corresponding data blocks
Bk = {W·,t : t ∈ Mk} and B

qc
k = {W·,t : t ∈ Mqc

k }.

The construction creates quasi-complementary sets with the left-out-neighbors.
Since we use the quasi-complementary sets to fit the nonparametric nuisance func-
tions, we recommend K ≥ 10, to ensure that at least 70% of data is used for this task.
To clarify the construction further, consider the following example: suppose we have
K = 10 blocks {Mk}10

k=1 of adjacent time stamps t ∈ {1, � � � , T }, each of size Tblock, so that
T = KTblock. Then the first quasi-complementary set Mqc

1 consists of {Mk}10
k=3, the sec-

ond set Mqc
2 consists of {Mk}10

k=4, the third set Mqc
3 consists of {M1} ∪M10

k=5, the fourth
set Mqc

4 consists of {Mk}2
k=1 ∪M10

k=6, . . . , and the final set Mqc
10 consists of {Mk}8

k=1.
The following is the application of the NLO cross-fitting method above in our con-

text.

Algorithm 3 (NLO Cross-Fitted Residuals). (1) Construct blocks (Bk, Bqc
k ) for k =

1, � � � , K using Definition 3.1; (2) For each k, compute estimators of reduced forms using
quasi-complementary sets, namely,

d̂ik(·) = d̂ik
(·, Bqc

k

)
, l̂ik(·) = l̂ik

(·, Bqc
k

)
, i = 1, 2, � � � , N .

(3) Obtain the estimated residuals:

̂̃Yit := Yit − l̂ik(Xit ), V̂it := Dit − d̂ik(Xit ), i = 1, 2, � � � , N . (3.1)

In the case of the base treatment structure of Example 2.1, the last step reduces to

V̂ P
it = Pit − p̂ik(Xit ), and V̂it := K(Xit )V̂ P

it , i = 1, 2, � � � , N ,

since we first construct p̂ik(Xit ) and then set d̂ik(Xit ) =K(Xit )p̂ik(Xit ).

3.2 Theoretical support for the NLO cross-fitting method

To explain the benefits of the construction, we define some notation. Suppose X and
Y are random elements on the same Polish space. Define their dependence coefficient
(the beta-mixing coefficient) as

γ(X , Y ) = 1
2
‖PX ,Y − PX × PY ‖TV,

where PV denotes the distribution of the random element V . The dependence coeffi-
cient vanishes if and only if X and Y are independent.

We also make use of the following coupling result of Strassen (1965) for underlying
spaces being Polish:

min
{

P(X �= Y ) : X ∼ PX , Y ∼ PY

}= 1
2
‖PX − PY ‖TV. (3.2)
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(Note that the problem above is the optimal transportation problem for 0–1 cost; see
Villani (2007) for discussion).

The following result follows from the application of Strassen’s coupling (3.2) and
Lemma 2.11 of Dudley and Philipp (1983).7

Lemma 3.1 (Independent Coupling for NLO Data Blocks via Strassen). By suitably en-
riching probability space, we can construct B̃k and B̃

qc
k that are independent of each other

and that have the same marginal distributions as Bk and B
qc
k such that

P
{(
Bk, Bqc

k

) �= (B̃k, B̃qc
k

)}= 1
2
‖PBk,Bqc

k
− PBk

× PB
qc
k

‖TV =: γ
(
Bk, Bqc

k

)
,

where PBk,Bqc
k

is the distribution of (Bk, Bqc
k ) and PBk

× PB
qc
k

is the distribution of

(B̃k, B̃qc
k ).

If the data sequence (W·,t : t ≥ 1) is beta-mixing in t, we have that γ(Bk, Bqc
k ) → 0,

since the blocks are separated by T/(K − 1)� → ∞ periods as T → ∞. Thus, under
beta-mixing, by using the NLO-cross-fitting, we can replace each block and its quasi-
complement with independent blocks, with the probabilistic error determined by the
speed of mixing of the weakly dependent time series. Since we generally obtain the
nuisance parameter estimates using quasi-complements, NLO-CF allows us to treat
these estimates as if (essentially) independent from the data used to compute semi-
parametric scores (residuals in our context).

3.3 First-stage estimators for learning residuals in panel data

In this section, we give examples of the first-stage reduced form estimators for dynamic
panel data, focusing on the models with base treatment structure (2.10). We rely heavily
on the results of Kock and Tang (2019) in this stage.

Example 3.1 (First-Stage Treatment Lasso and Reduced Form). Consider the model
(2.11) with a single base treatment. Suppose

pi0(Xit ) = X ′
itδ

P
0 + ξi. (3.3)

Here, to save notation, we reassign Xit to denote the dictionary of transformations of
original controls Xit , that is, Xit ← t(Xit ), where the map t(·) generates the dictionary
and Xit ∈ RdX .

7Note that Strassen’s couping also underlies the Berbee coupling, Berbee (1987), for real-valued random
variables. We extend Berbee coupling to random vectors or, more general, random variables taking values
in complete, separable metric spaces in the Appendix, and then use it to obtain concentration results.
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For the first-stage treatment penalty level λP = CP

√
NT log3(dX +N ) for some con-

stant CP , define the k-fold specific estimator:

(
δ̂Pk , ξ̂k

)= arg min
δP ,ξ

N∑
i=1

∑
t∈Mqc

k

(
Pit −X ′

itδ
P − ξi

)2

+ 2λP
∥∥δP∥∥1 + 2

λP√
N

‖ξ‖1, k= 1, � � � , K. (3.4)

(Note that here and below the subscript index k in ξ̂k serves to indicate the k-specific
estimator of the vector of fixed effects ξ, which is not to be confused with the index i that
enumerates the elements of the vector ξ.)

Then, for any t ∈ Mk and any i = 1, 2, � � � , N , the base treatment reduced form esti-
mate is

p̂ik(Xit ) = X ′
it δ̂

P
k + ξ̂i,k, k = 1, � � � , K.

The properties of this estimator under weak sparsity assumptions on δP and ξ follow
from Kock and Tang (2019).

Example 3.2 (First-Stage Outcome Lasso and Reduced Form). Consider the outcome
model:

Yit =D′
itβ0 +X ′

itδ
P
0 + ξEi +Uit . (3.5)

Here, to save notation, we reassign Xit to denote the dictionary of transformations of
original controls Xit , that is, Xit ← t(Xit ), where the map t(·) generates the dictionary.

For the first-stage outcome penalty level λE = CE

√
NT log3(dX +N ) for some con-

stant CE , define the k-fold specific estimator:

(
β̌k, δ̂Ek , ξ̂Ek

)= arg min
β,δE ,ξE

N∑
i=1

∑
t∈Mqc

k

(
Yit −D′

itβ−X ′
itδ

E − ξEi
)2

+ 2λE
∥∥(β, δE

)∥∥
1 + 2

λE√
N

∥∥ξE∥∥1. (3.6)

Then, for any t ∈ Mk, the outcome reduced form estimate is

l̂ik(Xit ) = d̂ik(Xit )′β̌k +X ′
it δ̂

E
k + ξ̂Eik, (3.7)

where d̂ik(·) is the treatment reduced form estimate. In what follows, we refer to β̌k as
the preliminary, or the one-stage estimator of β0.

Lemma 5.2 establishes properties of this estimator under weak sparsity assumptions
on δE and ξE , based upon Kock and Tang’s (2019) analysis of dynamic panel data lasso
with weakly sparse unit effects.
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3.4 The second stage: Estimating CATE functions

Here, we describe the second stage estimators.
When Dit is low-dimensional, we can apply ordinary least squares to residuals.

Definition 3.2 (Orthogonal Least Squares). Define

β̂OLS := arg min
β∈Rd

1
NT

N∑
i=1

T∑
t=1

(̂̃Yit − V̂ ′
itβ
)2

. (3.8)

Appendix G in the Online Supplement establishes estimation and inference results
for orthogonal least squares. The rate of convergence is

√
d/NT .

Definition 3.3 (Orthogonal Lasso). Let λβ = Cβ

√
logd/NT and Cβ be a penalty pa-

rameter. Define

β̂L := arg min
β∈Rd

1
NT

N∑
i=1

T∑
t=1

(̂̃Yit − V̂ ′
itβ
)2 + λβ

d∑
j=1

|βj|. (3.9)

Theorem 4.1 provides the near-oracle rates of convergence√
s logd/NT

for the CATE function. We notice that the orthogonal lasso outperforms orthogonal least
squares even in low-dimensional settings when s logd � d �NT , that is, when effective
dimension s of β0 is much smaller than its nominal dimension d.

Remark 3.1 (Key Point of Orthogonalization). By working with estimated residuals, we
attain the quasi-oracle rates of convergence—the rates that result if we knew the true
residuals exactly and used them instead. As a result, the orthogonal lasso also outper-
forms the single-stage outcome regression estimators when the CATE function is much
simpler and, therefore, easier to learn the overall regression function. For example, the
orthogonal lasso outperforms the first-stage outcome lasso when the CATE function is
more sparse than the overall regression function, so the near-oracle rate is much better
than the overall rate. Remark 5.7 below provides a formal statement. The phenomenon
our paper points out is more general and is not specific to using lasso methods used in
the final stage. More recent works than our paper use orthogonalization procedures like
ours to learn the CATE functions for other choices of the final-stage estimator; see, for
example, Kennedy (2020).

Remark 3.2 (Data-Adaptive Penalty Levels). We choose the penalty level for first and
stage estimators of the stated simple form above to simplify theoretical arguments. Rig-
orous and data-adaptive choices of penalty levels λ’s, in particular of the constants CP

and CP , as well as the generalization of �1-penalty to its weighted analog, are discussed
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in, for example, Belloni, Chen, Chernozhukov, and Hansen (2012) and Belloni, Cher-
nozhukov, Fernandez-Val, and Hansen (2017) for the cross-sectional case, and imple-
mented in the hdm R package by Chernozhukov, Hansen, and Spindler (2016). Their
choices likely carry over to the dynamic panel data settings under the conditional se-
quential exogeneity condition.

3.5 The third stage: Debiased inference on parameters of CATE functions

Here, we describe the third stage that performs debiased inference. Due to the bias in-
duced by �1-shrinkage, penalized estimators cannot be used for inference based on the
standard Gaussian approximation. We construct a debiased estimator based on a vari-
ant of van der Geer et al. (2014) and Zhang and Zhang (2014) with a new choice of the
debiasing matrix.

Consider the covariance matrix of residuals

Q = 1
NT

N∑
i=1

T∑
t=1

EVitV
′
it (3.10)

and its inverse Q−1. Define the sample covariance matrix of the residuals as

Q̂ := 1
NT

N∑
i=1

T∑
t=1

V̂it V̂
′
it . (3.11)

Estimate approximate inverse of Q̂ by

�̂ = arg min
�∈Rd×d

‖�‖1 : ‖Q̂�− Id‖∞ ≤ λQ, (3.12)

where

λQ := CQκNT , κNT :=
√

log3(d2 log(NT )
)

logNT/NT , (3.13)

where CQ is a tuning constant. Finally, symmetrize the approximate inverse �̂ as

�̂CLIME = (ω̂CLIME
ij

)
, ω̂CLIME

ij = ω̂ij1{|ω̂ij |<|ω̂ji|} + ω̂ji1{|ω̂ij |>|ω̂ji|}. (3.14)

In other words, between ω̂ij and ω̂ji, we take the one with smaller absolute value to

obtain a symmetric matrix �̂CLIME, as in Cai, Liu, and Luo (2011).

Definition 3.4 (Debiased Orthogonal Lasso). Define

β̂DL : = β̂L + �̂CLIME 1
NT

N∑
i=1

T∑
t=1

V̂it
(̂̃Yit − V̂ ′

it β̂L

)
. (3.15)
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Theorems 4.2 and 4.3 show that
√
NT (β̂DL − β0 ) is approximately distributed as

N(0, �) over rectangular regions. The covariance matrix

� :=Q−1�Q−1 =Q−1 1
NT

N∑
i=1

T∑
t=1

EVitV
′
itU

2
itQ

−1 (3.16)

is estimated by its sample analog

�̂(β̂L ) := Q̂−1 1
NT

N∑
i=1

T∑
t=1

V̂it V̂
′
it

(̂̃Yit − V̂ ′
it β̂L

)2
Q̂−1 =: Q̂−1�̂(β̂L )Q̂−1. (3.17)

This method allows for constructing componentwise and simultaneous confidence in-
tervals for all components of β0. This method also allows for performing inference on
linear functionals a′β0 of β0 (provided that the �1-norm of a is bounded).

4. Theoretical results on orthogonal lasso

4.1 Consistency of orthogonal lasso

The following assumptions impose regularity conditions on weak dependence, tail be-
havior, and the reduced form estimators.

Assumption 4.1 (Sampling and Asymptotics). (1) The data sequence {{Wit }Tt=1}Ni=1 obeys
the model (2.4) of Section 2. (2) The data on units Wi, · are independent across i, and beta-
mixing at geometric speed with respect to time t, uniformly in i:

γ(q) := sup
t̄≤T ,i≤N

γ
(
{Wit }t≤t̄ , {Wit }t≥t̄+q

)≤ Cκ exp(−κq) (4.1)

for all q ≥ 1, and for some constants Cκ ≥ 0 and κ > 0. (3) The number of time periods T
is large enough, T−1 log(N ) = o(1).

Assumption 4.1 limits the data dependence across time periods with the exponential
mixing step. It is a standard weak dependence condition in the literature (Hahn and
Kuersteiner (2011), Fernandez-Val and Lee (2013)). We incur it to ensure the validity of
inference based on the panel cross-fitting of Definition 3.1. Note that the requirement
on N comes from the relation

γ
(
{W·,t }t≤t̄ , {W·,t }t≥t̄+q

)≤N max
i≤N

γ
(
{Wi,t }t≤t̄ , {Wi,t }t≥t̄+q

)
, (4.2)

which can be found using the union bound.
The next condition ensures identification of the coefficients of the CATE function.

Assumption 4.2 (Identification). Let Q = (NT )−1∑N
i=1
∑T

t=1 EVitV �
it denote the popu-

lation covariance matrix of treatment residuals. Assume that there exist constants Cmin,
Cmax such that 0 <Cmin ≤ min eig(Q) ≤ max eig(Q) ≤ Cmax <∞.



Quantitative Economics 14 (2023) Inference on heterogeneous treatment effects 489

A collection of centered random variables {Xj } ∈ R is said to be uniformly σ2-sub-
Gaussian if

E exp(λXj ) ≤ exp
(
λ2σ2/2

)
, ∀λ ∈ R ∀j. (4.3)

Assumption 4.3 (Sub-Gaussian Tails). The following conditions hold for some constants
0 < ¯σ

2 < σ̄2 < ∞. (1) For j = 1, 2, � � � , d, (Vit )j are σ̄2-sub-Gaussian conditional on Xit ,
�it . (2) Uit is σ̄2-sub-Gaussian conditional on Vit , Xit , �it . (3) Uit is conditionally non-
degenerate, namely, infit E[U2

it|Vit , Xit , �it ] ≥ ¯σ
2 with probability 1.

Assumption 4.4 (Additional Regularity Conditions). We suppose that the true parame-
ter vector has bounded �1-norm: (a)

‖β0‖1 ≤ C̄β

for some finite constant C̄β; (b) and that the number of nonzero coefficients does not in-
crease too quickly:

(s ∨ 1)κNT = (s ∨ 1)
√

log3(d2 log(NT )
)

logNT/NT = o(1).

(c) The tuning constants Cβ and CQ in the penalty levels λβ and λQ are sufficiently large.
(d) The number d → ∞.

Let 1 ≤ i ≤ N be a unit index, and let 1 ≤ j ≤ dP be a component index. We define a
generic nuisance function to be

g(·) = {gij(·)} : X → RN×dP ,

a generic N × dP-matrix, and we let

g0(·) = {gij0(·)} : X → RN×dP

be its true value; here, X is a subset of RN×dX . Let GNT be a sequence of neighborhoods
around g0(·) containing realizations of its generic machine learning estimators ĝ(·) with
probability approaching 1. As the sample size NT increases, we expect the sets GNT

to converge toward g0 in suitable norms. We denote rate of convergence in the mean
square norm as

gNT := max
1≤j≤dP

sup
g∈GNT

(
(NT )−1

T∑
t=1

N∑
i=1

E
(
gij(Xit ) − gij0(Xit )

)2

)1/2

(4.4)

and let gNT ,∞ be a sequence of nonnegative constants such that with probability 1 −
o(1):

max
1≤j≤dP

sup
g∈GNT

sup
it

∣∣gij(Xit ) − gij0(Xit )
∣∣≤ gNT ,∞. (4.5)
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In particular, we specialize the notion as follows:

1. For the technical treatment reduced form, we replace the letters g with d:

• d(·) denotes the parameter and d0(·) the true reduced form for treatment;

• DNT denotes the set containing first-stage estimates d̂(·) of d0(·) w.p. 1 − o(1)

• dNT and dNT ,∞ are rates of convergence of DNT to d0(·);

2. For the outcome reduced form, we replace the letters g with l:

• l(·) denotes the parameter and l0(·) the true value reduced form for outcome;

• LNT denotes the set containing first-stage estimates l̂(·) of l0(·) w.p. 1 − o(1)

• lNT and lNT ,∞ are rates of convergence of LNT to l0(·).

The key assumption on the quality of reduced form estimators is as follows.

Assumption 4.5 (Regularity Conditions and Convergence Rates for Residual Learners).
We suppose that the reduced form estimators obey: l̂(·) ∈ LNT and d̂(·) ∈ DNT such that
dNT , dNT ,∞, lNT , lNT ,∞ decay sufficiently fast:

d2
NT + dNT lNT = o

(
(NT )−1/2), (4.6)

lNT ,∞ = o
(
log−1/2(dNT )

)
, dNT ,∞ = o

(
log−1/2(dNT )

)
. (4.7)

As we discuss in Section 5, this assumption is plausible for the lasso-based first-
stage estimators that we consider and may be plausible for others, too. The condition
of bounded �1-norm can be relaxed to allow for an increasing norm at the cost of some-
what more complicated regularity conditions, as can be seen from the proofs.

Theorem 4.1 establishes the convergence rate of orthogonal lasso in �2 and �1 norm.

Theorem 4.1 (Oracle Rates for Orthogonal Lasso). Suppose Assumptions 4.1–4.5 hold.
Then the orthogonal lasso possesses the following oracle rate guarantees:

(
ENT

(
V ′
it(β̂L −β0 )

)2)1/2 =OP

(√
s logd
NT

)
, ‖β̂L −β0‖1 = OP

(√
s2 logd
NT

)
. (4.8)

Theorem 4.1 is our first main result. It establishes the convergence rate of orthogo-
nal lasso. This rate coincides with the oracle convergence rate, where oracle knows the
first-stage function e0(·) and the unobserved unit effects {ξEi }Ni=1 in the model (2.4) and,
therefore, knows the residuals and uses lasso on these true residuals.

4.2 Estimation of Q−1 and � in high-dimensional setting

To perform statistical inference, we will need to assume approximate sparsity for the in-
verse Q−1 of the covariance matrix of the residuals Q. We will use the following notation.
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For a square matrix A= (aij ), denote

‖A‖1,∞ = max
1≤j≤d

d∑
i=1

|aij|, ‖A‖∞,1 = max
1≤i≤d

d∑
j=1

|aij|.

Assumption 4.6 (Regularity for Estimating Q−1). (a) Let AQ and aQ > 1 be finite con-
stants such that for any column j,(

Q−1
mj

)∗ ≤AQm
−aQ , m, j = 1, 2, � � � , d,

where (Q−1
j )∗ is a nonincreasing rearrangement of (|Q−1

mj |)dm=1. Furthermore, for λQ =
CQκNT ,

λ
1−1/aQ
Q = o

(
s−1 log−1/2 d

)
. (4.9)

Assumption 4.6(a) ensures that the CLIME estimator of Q−1 defined in the equation
(3.14) converges sufficiently fast. If d 
 NT , it requires Q−1 to be approximately sparse
so that it can be consistently estimated with only NT observations. Examples of high-
dimensional matrices Q with an approximately sparse inverse include block diagonal,
Toeplitz, and band matrices.

The following lemma establishes the rate bound for the CLIME estimator of Q−1 for
Q̂ in (3.11). The result holds under mixing dependence and approximate sparsity of Q,
which may be of independent interest.

Lemma 4.1 (Consistency of the CLIME Estimator). Suppose Assumptions 4.1–4.6 hold.
The CLIME estimator converges in �∞-norm and �∞,1-norm,∥∥�̂CLIME −Q−1

∥∥∞ = ∥∥�̂−Q−1
∥∥∞ =OP (λQ ), (4.10)∥∥�̂CLIME −Q−1

∥∥
1,∞ = ∥∥�̂CLIME −Q−1

∥∥∞,1 = OP

(
λQ

1−1/aQ
)
, (4.11)∥∥Id − �̂CLIMEQ̂

∥∥∞ = ∥∥Id − Q̂�̂CLIME
∥∥∞ = OP

(
λQ

1−1/aQ
)
. (4.12)

4.3 Pointwise Gaussian inference with debiased orthogonal lasso

The following theorem establishes validity of Gaussian inference for parameters α′β0,
where α is a fixed vector with bounded �1 norm. This is our second main result.

Theorem 4.2. Let Kα be a finite constant. Suppose Assumptions 4.1–4.6 hold, and the
Lindeberg condition holds for each m> 0:

lim sup
NT→∞

sup
‖α‖2=1,‖α‖1≤Kα

(NT )−1
N∑
i=1

T∑
t=1

E[
(
α′VitUit

)2
1
{∣∣α′VitUit

∣∣>m
√
NT

}
] = 0.

Then the debiased lasso estimator is asymptotically Gaussian:

lim
NT→∞

sup
‖α‖2=1,‖α‖1≤Kα

sup
t∈R

∣∣∣∣P(
√
NTα′(β̂DL −β0 )√

α′�α
< t

)
−�(t )

∣∣∣∣= 0,
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where �(t ) is the CDF of N(0, 1). Moreover, the result continues to hold when � is replaced
by �̂ such that ‖�̂−�‖∞ = oP (1).

The following lemma establishes consistency of the high-dimensional covariance
matrix for the approximate Gaussian distribution of the debiased lasso estimator. No-
tably, the dimension of this matrix can exceed the sample size. Define

γNT := (NT )−1/4 + lNT +√s logd/NT + l2
NT log

(
d2NT

)
. (4.13)

Assumption 4.7 (Conditions for � Estimation). We suppose that the following condition
on the growth of the dimension d holds:

κNT log2(d2NT
)= o(1). (4.14)

and γNT = o(1).

Lemma 4.2 (Consistency of Variance Matrix Estimator). Suppose Assumptions 4.1–4.7
hold. Then the estimator �̂(β̂L ) converges in �∞ norm,∥∥�̂(β̂L ) −�

∥∥∞ =OP

(
γNT + λ

1−1/aQ
Q

)=: OP (ζNT ) = oP (1). (4.15)

4.4 Simultaneous inference

We next present theoretical results on simultaneous inference on many structural coef-
ficients.

Define the following rates:

ρNT :=√
log(dNT )/NT (dNT ,∞ + lNT ,∞ ) + rNT , (4.16)

rNT := d2
NT + dNT lNT + (d2

NT ,∞ + dNT ,∞lNT ,∞
)√

(NT )−1 log(NT ) logd. (4.17)

Assumption 4.8 (Regularity Conditions for Simultaneous Inference on Many Coeffi-
cients). (1) There exists a sequence πUV

NT ≥ 1 so that supit ‖VitUit‖∞ ≤ πUV
NT a.s. and

0 < min
it

∥∥EVitV
′
it

∥∥∞ < ∞.

(2) For some constant c2 : 0 < c2 < 1/4, the following rate conditions hold:

πUV
NT logd log(NT ) log7/2(dNT ) � (NT )1/2−2c2 (4.18)

and log4 d log2(NT ) = o(
√
NT ). (3) The following rate conditions hold:

√
NTρNT + λ

1−1/aQ
Q s log1/2 d = o

(
log−1/2 d log−1/2 NT

)
. (4.19)

Theorem 4.3 establishes high-dimensional Gaussian approximation for a treatment
effect vector β0 and allows to conduct simultaneous inference on its coefficients.
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Theorem 4.3 (Simultaneous Inference on Many Coefficients). Suppose Assumptions
4.1–4.8 with � as in (3.16) and �̂ as in (3.17). Then the following Gaussian approxima-
tion result holds for β̂DL:

sup
R∈R

∣∣P((diag�)−1/2
√
NT (β̂DL −β0 ) ∈ R

)− P(Z ∈R)
∣∣→ 0, (4.20)

where Z ∼N(0, C ) is a centered Gaussian random vector with the covariance matrix

C = (diag�)−1/2�(diag�)−1/2

and R denotes a collection of cubes in Rd centered at the origin. In addition, if

γNT + λ
1−1/aQ
Q = o

(
log−2 d log−1 NT

)
, (4.21)

then, replacing C with Ĉ = (diag �̂)−1/2�̂(diag �̂)−1/2, we also have for Ẑ | Ĉ ∼ N(0, Ĉ ),

sup
R∈R

∣∣P((diag �̂)−1/2
√
NT (β̂DL −β0 ) ∈R

)− P(Ẑ ∈R | Ĉ )
∣∣→P 0. (4.22)

Consequently, for the c1−ξ = (1 − ξ)-quantile of ‖Ẑ‖∞ | Ĉ, we have

P
(
β0,j ∈ [β̂DL,j ± c1−ξ�̂

1/2
jj (NT )−1/2], j = 1, 2, � � � , d

)→ (1 − ξ).

Theorem 4.3 is our third main result. It extends the high-dimensional Gaussian ap-
proximations of Chernozhukov, Chetverikov, and Kato (2013), Zhang and Wu (2017),
Chernozhukov, Chetverikov, and Kato (2019) to a panel setting.

4.5 Orthogonal group lasso

In this section, we focus on Example 2.1 with a linear control function e0(·) in (2.4). Ap-
plied economists fitting (2.4) often would like to include the variable (Kit )j whenever
the interaction of the base treatment Pit and the control (Kit )j is selected in the sec-
ond stage. However, in the case of the orthogonal lasso, the sets of controls selected in
the stage 2 may not be a subset of the controls selected in the stage 1. To address this
concern, we group the main and interaction effects of controls Kit to attain the desired
model selection pattern.

Decompose the covariate vector

Xit = (Kit , Zit ),

where Kit is a vector of heterogeneity-relevant controls and Zit is its complement. The
function can be written as

e0(Xit ) = K′
itρ0 +Z′

itδ
E
0Z

and the linear model (2.4),

Yit = (PitKit , Kit )′︸ ︷︷ ︸
Dit

(β0, ρ0 )︸ ︷︷ ︸
β̄0

+Z′
itδ

E
0Z + ξEi +Uit . (4.23)



494 Semenova, Goldman, Chernozhukov, and Taddy Quantitative Economics 14 (2023)

Assuming both the interaction effect β0 and the main effect ρ0 are s-sparse, the vector
β̄0 obeys group sparsity assumption,

‖β0, ρ0‖2,0 :=
d∑

j=1

1
{

(β0j , ρ0j ) �= (0, 0)
}≤

d∑
j=1

1{β0j �= 0} +
d∑

j=1

1{ρ0j �= 0} = 2s � d.

The unit-specific treatment reduced form is

Dit = di0(Zit ) = d0(Zit ; ξi )

and the unit-specific outcome reduced form is

E[Yit |Zit ] = di0(Zit )′β̄0 +Z′
itδ

E
0Z + ξEi .

The residualized form is

¯̃Yit = V̄ ′
it β̄0 +Uit ,

where

¯̃Yit := Yit − E[Yit | Zit ], V̄it := Dit − E[Dit | Zit ] =: Dit − di0(Zit ). (4.24)

The orthogonal group lasso estimator is the first component β̂GL of the following mini-
mization problem:

β̂GL := arg min
β̄=(β,ρ)∈R2d

1
NT

N∑
i=1

T∑
t=1

( ¯̃̂
Yit − ̂̄V ′

it β̄
)2 + λβ

d∑
j=1

∥∥(βj , ρj )
∥∥

2. (4.25)

The debiased orthogonal group lasso estimator is

β̂DGL : = β̂GL + �̂CLIME 1
NT

N∑
i=1

T∑
t=1

V̂it
(̂̃Yit − V̂ ′

it β̂GL
)
. (4.26)

Lemma 4.3 (Orthogonal Group Lasso). Under Assumptions 4.1–4.5 for V̄it and di0(Zit ) as
in (4.24), the orthogonal group lasso attains the following rate:

(
ENT

(
V̄ ′
it(β̂GL −β0 )

)2)1/2 = OP

(√
s logd
NT

)
, ‖β̂GL −β0‖1 =OP

(√
s2 logd
NT

)
. (4.27)

Furthermore, the statements of Theorems 4.2 and 4.3 hold for the debiased orthogonal
group lasso.

5. Verification of assumptions on the first-stage estimators of residuals

The purpose of this section is to verify Assumption 4.5 in i.i.d. and panel data settings.
For the lasso-based methods of Examples 3.1–3.2, we give examples of nuisance param-
eter estimates, nuisance realization sets, and the low-level assumptions that suffice for
Assumption 4.5 to hold. Unless proven immediately, all numbered remarks are formally
proven in the Online Supplement, Appendix E.
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5.1 No unobserved unit heterogeneity: General ML

Suppose the unit-specific vector function in (2.11) obeys pi0(·) = pj0(·), 1 ≤ i, j ≤N . Let
p0(·) = pi0(·) = pj0(·) be the single coordinate of the N-vector p0(·) entering in (4.4). If
the covariates Xit are i.i.d. over i and t, the mean square rate pNT reduces to

pNT = sup
p∈PNT

(NT )−1
N∑
i=1

T∑
t=1

(
E
(
p(Xit ) −p0(Xit )

)2)1/2 = sup
p∈PNT

(
E
(
p(X ) −p0(X )

)2)1/2
.

Furthermore, one can split by unit index to construct independent partitions and use
regular cross-fitting instead of the NLO one. In this case, the condition (2) of Assump-
tion 4.1 redundant.

The upper bound on pNT are available for i.i.d. data (across time) for many regular-
ized methods under structured assumptions on the functions p0(x) and e0(x), such as
random forest, neural networks, or boosting. Specifically, the bound on pNT is achiev-
able by �1 penalized methods in sparse models (van der Geer et al. (2014), Belloni, Cher-
nozhukov, and Wei (2016), Belloni and Chernozhukov (2013)), �2 boosting in sparse lin-
ear models (Luo and Spindler (2016)), neural networks (Schmidt-Hieber (2017), Farrell,
Liang, and Misra (2021)), and random forest in small (Wager and Walther (2015)) and
high (Syrganis and Zampetakis (2020)) dimensions with the sparsity structure. While
most of these results are established in an i.i.d. setting, we conjecture that similar rates
could be established under weak dependence, by relying on Berbee coupling, exponen-
tial mixing conditions, and/or the martingale-difference property of regression errors.

5.2 Unobserved unit heterogeneity: Lasso

In this section, we verify Assumption 4.5 for the first-stage lasso estimator.
We will make use of weak sparsity assumptions on fixed effects. Weak sparsity gen-

eralizes the exact sparsity restriction to accommodate small deviations from sparsity.
Given a constant ν : 0 < ν < 1, the vector u ∈ Rdu is said to be (ν, S)-weakly sparse (Ne-
gahban, Ravikumar, Wainwright, and Yu (2012)) if there exists a bound S = S(N , T ), that
may depend on N , T , such that

du∑
j=1

|uj|ν ≤ S. (5.1)

Lemma A.1 in Kock and Tang (2019) gives examples of distributions that generate weakly
sparse draws with probability 1 − o(1). For one example, if ξi are independent Gaussian
draws

ξi ∼ N
(
0, σ2

i

)
, max

1≤i≤N
σ2
i = O

(
log3(dX +N )/

(
N1/νT

))
, i = 1, 2, � � � , N . (5.2)

Then the vector ξ = (ξi )Ni=1 obeys (5.1) with probability 1 − o(1) with SP =√
N log3ν(dX +N )/T ν .
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In what follows, we will rely on regressors and treatments being sub-Gaussian. In
dynamic models where regressors include lagged values of outcomes and treatments,
this assumption is nontrivial. We verify it from the model primitives in Remark 5.1 below.

Remark 5.1 (Plausibility of Sub-Gaussian Assumption on Treatments and Outcomes
and Their Lags). Consider Example 2.2. Substituting the treatment equation into the
outcome equation gives (

Yit

Pit

)
=

L∑
l=1

Al,it

(
Yi,t−l

Pi,t−l

)
+ Tit , (5.3)

where

Al,it =
[
δEE0l +K′

itβ0δ
PE
0l δEP0l +K′

itβ0δ
PP
0l

δPE0l δPP0l

]
, (5.4)

Tit :=
[
X̄ ′

it δ̄
E
0 + M̄ ′

iδ
E
M0 + ξEi +Uit +K′

itβ0
(
X̄ ′

it δ̄
P
0 + M̄ ′

iδ
P
M0 + ξi + V

p
it

)
X̄ ′

it δ̄
P
0 + M̄ ′

iδ
P
M0 + ξi + V

p
it

]
. (5.5)

We can represent the reduced form as the canonical vector autoregression of order 1:

Fit =�itFi,t−1 +ϕit , Fit = [(Yi,t−l, Pi,t−l )
L−1
l=0

]′
,

where

�it
(2L×2L)

:=

⎡⎢⎢⎢⎢⎢⎢⎣
A1,it A1,it � � � AL−1,it AL,it

I2 02 � � � 02 02

02 I2 02 � � � 02
...

. . .
. . .

. . .
...

02 � � � 02 I2 02

⎤⎥⎥⎥⎥⎥⎥⎦ , ϕit
(2L×1)

:=

⎡⎢⎢⎢⎢⎢⎢⎣
Tit

02

02
...

02

⎤⎥⎥⎥⎥⎥⎥⎦ .

We note that there are no restrictions on L here, but our conditions implicitly re-
strict K′

itβ0 to be bounded. Assume that the following conditions holds uniformly in
(i, t ): (1) The initial condition Fi,0 and Tit ’s are σ̄2-sub-Gaussian vectors. (2) The singu-
lar values λ(�it ) of �it obey ‖λ(�it )‖∞ ≤ 1 − δ for some constant δ > 0. Then ‖Fit‖ is
Aσ̄2/(1 − δ)- sub-Gaussian, for some numerical constant A.

Consider the following condition for learning the treatment reduced form:

(FS-TL) Consider the model

Pit =X ′
itδ

P
0 + ξi + V P

it ,

for each i, the residuals V P
it are a martingale difference sequence with respect to

filtration �it . Suppose (a) the vectors δP0 and ξ are (ν, S)-weakly sparse with S = SP

and S = N−ν/2SP , respectively, and SP = O(N1/2 log3ν/2(dX + N )T−ν/2 ); ‖δP0 ‖1 is
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bounded; (b) The Gram matrix

�X := (NT )−1
N∑
i=1

T∑
t=1

E
[
XitX

′
it

]
has all of its eigenvalues bounded from above and below by Bmax and Bmin, where
0 < Bmin ≤ Bmax are finite constants; (c) Each element of Xit and V P

it is σ̄2-sub-
Gaussian, where σ̄2 is a finite constant; (d) log(dXNT )/N = o(1).

All the constants are understood to be independent of (N , T ). The condition FS-
TL summarizes Assumptions A1–A3 in Kock and Tang (2019). Plugging λP = CP ×√
NT log3(dX +N ) into the stochastic bounds in Corollary A.1, page 332, Kock and Tang

(2019) results in the lemma below, which establishes the properties of the first-stage
treatment lasso.

Lemma 5.1 (First-Stage Treatment Lasso). Under Condition (FS-TL), the lasso estimator

in Example 3.1 with λP = CP

√
NT log3(dX +N ) large enough obeys the following bounds

wp → 1: ∥∥δ̂P − δP0
∥∥

1 ≤N−1/2ζNT ,∞, ‖̂ξ − ξ0‖1 ≤ ζNT ,∞, (5.6)

where, for some large enough constant C̄P ,

ζNT ,∞ = C̄PSP
(
T−1/2 log3/2(dX +N )

)(1−ν). (5.7)

Remark 5.2 (Time-Invariant Covariates). Consider Example 3.1. Suppose the condition
FS-TL holds with time-invariant fixed covariates (M̄i )Ni=1. There are (infinitely) many
ways to decompose the total effect vector a = (a1, a2, � � � , aN ) into the observable part
M ′

iδ and remainder part ξi:

ai = M ′
iδ+ ξi, ∀i : i = 1, 2, � � � , N .

Given the sparsity parameters (ν, SP ), the minimizer (δ̂, ξ̂) of the lasso optimization
problem (3.4) obeys the bound (5.6) expressed in terms of (ν, SP ). Thus, we are free to
choose (δ, ξ) whose sparsity parameters ν, S imply the tightest bound on ζNT ,∞ in (5.7).

Multiple sparse decompositions must be equivalent in the following sense. Consider
two possible decompositions

ai = M ′
iδ

1 + ξ1
i =M ′

iδ
2 + ξ2

i , ∀i,

with ζ1
NT ,∞ and ζ2

NT ,∞ rates, respectively, determined by the weak sparsity parameters

of (δ1, ξ1 ) and (δ2, ξ2 ). Let ξ̂ be any given minimizer to the lasso problem. Then these
decompositions must be equivalent in the following sense:∥∥ξ1 − ξ2

∥∥
1 ≤ ∥∥ξ1 − ξ̂

∥∥
1 + ∥∥̂ξ − ξ2

∥∥
1 ≤ 2 max

(
ζ1
NT ,∞, ζ2

NT ,∞
)
.
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Further, consider the following example with exact sparsity. Suppose ξ is s-exactly
sparse and M is a one-dimensional covariate drawn from Bernoulli distribution. Mi ∼
Bern(pM ) such that s � NpM . Consider

ai =Miδ
1 + ξ1

i =Miδ
2 + ξ2

i , ∀i,
such that ξ1

i �= ξ2
i for at least one i (i.e., ξ1 �= ξ2 as vectors). Then δ1 �= δ2, and the vector

Mi(δ1 − δ2 ) �= 0 for at least NpM/2 entries, w.p. 1 − o(1). Since s � NpM , it cannot be
the case that ξ1 and ξ2 are s-sparse at the same time. In this case, there exists a single
decomposition (δ, ξ) obeying sparsity assumption.

Consider the following condition:

(FS-OL) Consider the model of Example 3.2:

Yit = D′
itβ0 +X ′

itδ
P
0 + ξEi +Uit ,

where the residuals Uit are an m.d.s with respect to the filtration �it . Suppose
(a) ξE = (ξEi )Ni=1 ∈ RN and (δE0 , β0 ) ∈ RdDX are (νE , SE ) and (νE , N−νE/2SE )-weakly

sparse vectors with SE = O(N1/2 log3νE/2(dX + N )T−νE/2 ); ‖(β0, δE0 )‖1 is bounded
(b) The Gram matrix

�DX := (NT )−1
N∑
i=1

T∑
t=1

E
[
(Dit , Xit )(Dit , Xit )′

]
has all of its eigenvalues bounded from above and below by Bmax and Bmin, where
0 < Bmin ≤ Bmax < ∞, w.p. 1 − o(1). (c) Each element of Dit , Xit and Uit is σ̄-sub-
Gaussian, where σ̄ is a finite constant.

The following lemma follows from Kock and Tang (2019), and establishes the prop-
erties of the first-stage outcome lasso.

Lemma 5.2 (First-Stage Outcome Lasso). Under the condition (FS-OL), the estimator
(β̌, δ̂E , ξ̂E ) defined in Example 3.2 obeys the following bounds wp 1 − o(1):∥∥(β̌, δ̂E

)− (β0, δPE
)∥∥

1 ≤N−1/2ζENT ,∞,
∥∥̂ξE − ξE0

∥∥
1 ≤ ζENT ,∞, (5.8)

where, for some sufficiently large constant C̄E ,

ζENT ,∞ = C̄ES
E
(
T−1/2 log3/2(dX +N )

)(1−νE ). (5.9)

Next, we proceed to the construction of nuisance realization sets for the treatment
and outcome models.

Remark 5.3 (Realization Sets for Reduced Form for Base Treatment). Define PNT as a
collection of N-vector functions:

PNT =
{

p(x) = {pi(xi )
}N
i=1 = {x′

iδ
P + ξi

}N
i=1 :∥∥δP − δP0

∥∥
1 ≤N−1/2ζNT ,∞, ‖ξ− ξ0‖1 ≤ ζNT ,∞

}
. (5.10)
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Under Condition (FS-TL), the mean square rate pNT in (4.4) obeys pNT =
O(N−1/2ζNT ,∞ ), and the sup-rate upper bound chosen as pNT ,∞ := 2ζNT ,∞ satisfies
the sup-rate condition (4.5).

In the context of Example 2.1, define DNT as a collection of N-vector functions

DNT = {d(x) = {di(xi )}Ni=1 = {pi(xi )K(xi )
}n
i=1 : p(x) = {pi(xi )

}N
i=1 ∈ PNT

}
.

The following remark helps verifying Assumption 4.5 in models with base treatment
structure.

Remark 5.4 (Deducing Rates in Base Treatment Cases). Consider the models (2.4)–(2.5)
with single base treatment structure (2.10). Suppose the matrix K(·) in (2.10) has a.s.
bounded entries. Suppose the base treatment reduced form vector p0(·) in (2.11) con-
verges at rates pNT and pNT ,∞. Then the worst-case rates dNT and dNT ,∞ of the techni-
cal treatment reduced form in (2.10) obey dNT = O(pNT ) and dNT ,∞ = O(pNT ,∞ ). This
follows from the Cauchy–Schwarz inequality.

Remark 5.5 (Realization Sets for Reduced Form for Outcome). Suppose the matrix

�D := (NT )−1
N∑
i=1

T∑
t=1

E
[(
PitK

′
itβ0

)2
XitX

′
it

]
has all of its eigenvalues bounded from above and below by Bmax and Bmin, where
0 < Bmin ≤ Bmax < ∞, w.p. 1 − o(1) and suppose ‖K(Xit )‖∞ ≤ K̄ < ∞ a.s. for some con-
stant K̄. Define the outcome nuisance realization set

LNT =
{

l(x) = (li(xi ))Ni=1 = {di(xi )′β+ x′
iδ

E + ξEi
}N
i=1 : d(x) ∈DNT ,

‖β−β0‖1 + ∥∥δE − δE0
∥∥

1 ≤N−1/2ζENT ,∞,
∥∥ξE − ξE0

∥∥
1 ≤ ζENT ,∞

}
. (5.11)

Under Condition (FS-OL), the mean square rate lNT in (4.4) obeys

lNT = O
(
N−1/2(ζNT ,∞ + ζENT ,∞

))
,

and the sup-rate upper bound chosen as lNT ,∞ := 2(K̄‖β0‖1ζNT ,∞ +ζENT ,∞ ) satisfies the
sup-rate condition (4.5).

Combining the results from Remarks 5.1–5.5, we provide sufficient conditions to ver-
ify Assumption 4.5.

Remark 5.6 (Verification of Assumption 4.5 for First-Stage Lasso Estimators). Consider
the setup of Remarks 5.1–5.5 with ν, νE < 1. Suppose the scales S and SE are not too big,
namely, (

SP
)2
N−1/2Tν−1/2 log3(1−ν)(dX +N ) = o(1),

SP · SEN−1/2T (ν+νE )/2−1 log3(1−(ν+νE )/2)(dX +N ) = o(1).
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Adding the equations above and multiplying by (NT )1/2 gives

√
NT

(
p2
NT + pNT lNT

)= o(1),

which suffices for (4.6). Likewise, assuming

ζPNT ,∞ = C̄PSP
(
T−1/2 log3/2(dX +N )

)(1−ν) = o
(
log−1/2(dNT )

)
,

ζENT ,∞ = C̄ESE
(
T−1/2 log3/2(dX +N )

)(1−νE ) = o
(
log−1/2(dNT )

)
directly verifies (4.7).

Orthogonal lasso achieves an oracle rate for CATE estimation, which can be strictly
better than the nonorthogonal approach. The comparison is provided in terms of the
upper bounds on the rates.

Remark 5.7 (Improvement of Orthogonal Lasso Upon One-Stage Lasso). Suppose the
treatment effect vector β0 is “less complex” than the first-stage parameter (δE0 , ξE0 ), that
is,

s logd � (
SE
)2
TνE log3(1−νE )(dX +N ). (5.12)

Then, under Assumption 4.5, the upper bound on the oracle lasso rate is attained. Di-
viding (5.12) by NT and taking square root gives√

s logd/NT = o
(
N−1/2ζENT ,∞

)
,

where N−1/2ζENT ,∞ is the mean square rate bound of the preliminary nonorthogonal

estimator β̌ in (3.6).

6. Empirical application

To show the immediate usefulness of the method, we consider the problem of inference
on demand elasticities for grocery products. Our transactional data come from a major
European food distributor that sells to retailers. The identifier of each observation con-
sists of the cross-sectional index—the product code, the store location, the distribution
channel (i.e., collection or delivery)—and the timestamp. For each value of the index,
we compute weekly averages of the price and the quantity sold. Overall, we have 1163
unique products, sold at 8 site locations via 2 delivery channels, at T = 208 time periods
(weeks). In addition to the transactional data, we have access to the product catalog,
which classifies products into a tree. For example, the product code Vanilla Soft Scoop
Ice Cream 4 Ltr package is classified into a hierarchy whose Level 1 is Sweets, Level 2 is
Ice Cream & Shakes & Syrups, and Level 3 is Ice Cream. We filter out observations whose
either price or sales is zero, which constitutes less than 5% of the sample.

The next step is to convert the categorical covariates representing classification into
a vector of binary covariates. For each node j and the product i, the binary indicator for
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the node j is equal to one if the product i belongs to the node j and zero otherwise. Since
a binary indicator for a parent and all its children creates a linearly dependent covariate
set, we exclude one child category for each parent. In the absence of any restrictions,
different excluded categories yield numerically equivalent results. Under the sparsity
assumption (2.16), this is no longer the case. The sparsity assumption requires that most
siblings have similar treatment effects, albeit for a small number of exceptions whose
identities are unknown. To obtain the sparse treatment modification effect, one has to
exclude category that belongs to the majority (i.e., is not an exception). We assume that
the store brand belongs to the majority, and can be taken as the baseline (excluded)
category.

We postulate a partially linear dynamic panel model for weekly log demand

log(Q)it = log(P)it ·
(∑
h∈H

1
{
h(i) = h

} ·β0h

)
+ (log(P)it−1, log(Q)it−1

)′(
αP

1 , αS
1

)
+ γE

h(i) + aEpc(i) + ρEs(i) + ζEc(i) + γE
m(t ) +Uit , (6.1)

where i = 1, 2, � � � , N and t = 1, 2, � � � , T with T = 208 time periods (weeks). The cross-
sectional unit index i indicates the combination of the product pc(i) at the store s = s(i)
offered via c = c(i) channel. The outcome variable Yit := log(Q)it is total log demand
for unit i, and the base treatment Pit := log(P)it is the log price. The hierarchy depth H
varies between Level 2 (Figure 2a) and Level 3 (Figure 2b), and notation h(i) denotes the
hierarchical encoding of the product code pc(i).

The model is a special case of Example 2.1. Here, the interaction covariates are the
hierarchy fixed effects

Ki =
⋃
h∈H

1
{
h(i) = h

}
and the parameter β0 is

β0 =
(⋃
h∈H

β0h

)
,

which results in the CATE function

εi(β0 ) =K′
iβ0 =

∑
h∈H

1
{
h(i) = h

} ·β0h

being equal to the heterogeneous elasticity εi(β0 ) of unit i. In addition to the hierarchy
fixed effects Ki, the first-stage controls include the product, store, channel fixed effects,

Zi =
( ⋃
pc∈PC

1
{
pc(i) = pc

}
,
⋃
s∈S

1
{
s(i) = s

}
,
⋃
c∈C

1
{
c(i) = c

})

and the time effects Mt =⋃12
m=1{m(t ) =m}. Thus, the first-stage controls are

XE
it = (log(P)it−1, log(Q)it−1, Ki, Zi, Mt

)
. (6.2)
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Figure 2. Histogram of estimated price elasticities for each category of Level 2 (Figure 2a) and
Level 3 (Figure 2b) for Snacks. Estimates: Orthogonal lasso (left panel), debiased orthogonal lasso
(middle panel), OLS (right panel). See the text for details.

Therefore, (6.1) is a special case of (2.4) with Xit = XE
it in (6.2) and ξEi = 0 ∀i:

Yit = Pit · (K′
iβ0
)+ (XE

it

)′
δE0 + 0 +Uit .

To estimate (β0, δE0 ), we invoke the lasso estimator of Example 3.2 with the outcome

Yit = log(Q)it and the covariate vector Xit = XE
it in (6.2), restricting ξE = (ξEi )Ni=1 to be

equal to zero.

The price equation takes the form

log(P)it = log(P)it−1 ·
(∑
h∈H

h(i) · ζP0h
)

+ γP
h(i) + aPpc(i) + ρPs(i) + ζPc(i) + γE

m(t ) + V P
it . (6.3)
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Taking

XP
it =

(
log(P)it−1 ·

⋃
h∈H

1
{
h(i) = h

}
, Ki, Zi, Mt

)
(6.4)

and ξi = 0 gives

Pit = (XP
it

)′
δP0 + 0 + V P

it .

To estimate δP0 , we invoke the lasso estimator of Example 3.1 with the outcome Pit and
the covariate vector XPit as in (6.4), restricting ξ = (ξi )Ni=1 to be equal to zero.

In the second stage, we interact the first-stage price residuals V̂ P
it with hierarchy fixed

effects Ki to obtain treatment residual

V̂it = V̂ P
it Ki.

Next, we regress the outcome residual Ỹit = ˜log(Q)it onto Vit ,

Ỹit = V ′
itβ0 +Uit .

The lasso estimator β̂L is as in Definition 3.3 with λβ chosen by cross-validation. To
simplify computation, the debiasing matrix is taken to be the Ridge inverse, which has
similar properties to the CLIME estimator in the moderate-dimensional case. For each
estimate β̂ ∈ {β̂OLS, β̂L, β̂DL}, we report a d-vector of distinct heterogeneous elasticities
(
⋃

h∈H ε̂h(β̂))′, that is,

ε̂h(β̂) =
∑
h̄∈H

1{h̄= h} · β̂h, h ∈ H.

We consider two choices of the partition H: Level 2 partition (Figure 2a) with d = 31 and
Level 3 partition (Figure 2b) with d = 40, respectively.

Figure 2 qualitatively summarizes our results. On each panel, the histogram shows
estimated heterogeneous elasticities. The total number of points is equal to the total
number of heterogeneous groups (i.e., the cardinality of H). It is d = 31 for Figure 2a
and d = 40 for Figure 2b. A single vertical bar represents a collection of heterogeneous
groups with the same value of estimated elasticity, and its height shows the number of
such groups. The distinct parts of the bar are grouped by Level 1 (Snacks, Sweets, Sugar,
and Veggie Meals), as marked by color. A small number of distinct bars on Figure 2(b, left
plot) indicates that the vector of heterogeneous elasticities’ difference β̂h has many ze-
roes. As expected, the lasso elasticity estimate β̂L is sparse, which makes the histogram
of ε̂h(β̂L ) very concentrated. In contrast, the debiased lasso β̂DOL is not sparse, and the
histogram of ε̂h(β̂DOL ) is more dispersed.

We find the Snacks category to be relatively homogenous. For example, lasso esti-
mates suggest that all Sugar products (Figure 2 b, left panel, green bar) have the same
elasticity value regardless of sugar type or packaging. As a result, all d = 40 heteroge-
neous groups can be pooled into s = 7 distinct ones. Second-stage shrinkage helps to
reduce noise, which proves useful to obtain elasticities consistent with economic the-
ory. For example, 7 out of d = 40 groups have positive OLS estimates, while neither lasso
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nor debiased lasso have any. We find the debiased lasso elasticity estimates to be the
ones most consistent with economic theory predictions.

7. Extensions

The following extensions are not formally covered by theoretical framework of Section 4.
Nevertheless, we expect the results would extend to these settings with suitable treat-
ment of clustering, given the recent developments of Chiang et al. (2019).

Heterogeneous own and cross-price elasticities with many heterogeneous products

Consider a firm that makes a pricing decision about a large number N of heterogeneous
goods. Let C : {1, 2, � � � , N } → {1, 2, � � �G} be a known partition of the products into the
set of G independent clusters. The notation C(i) stands for all members of the i’th clus-
ter. For any two products i and j from distinct clusters C(i) �= C(j), the cross-price elas-
ticity between i and j is assumed to be zero. Define the average leave-i-out price of prod-
ucts in the i’th cluster as

P−it :=

∑
j∈C(i),j �=i

Pjt∣∣C(i) − 1
∣∣ . (7.1)

Suppose that in the short term the realizations of prices and sales can be approximated
by the following partially linear model:

Yit =D′
itβ0 + e0(Xit ) + ξEi +Uit , E

[
Uit|(Xjt , Pjt , �jt )j∈C(i)

]= 0, (7.2)

Dit = [K′
itPit , K

′
itP−it

]
, (7.3)

Pit = p0(Xit ) + ξi + V P
it , E

[
V P
it |Xit , �it

]= 0, (7.4)

where Yit is the log sales of product i at time t, Pit is the log price, Xit is a pX-vector
of the observable product characteristics, the lagged realizations of market quantities
Yit , Pit , and the demand-side variables used for strategic price setting by the firm. The
symbol �it denotes the full information set available for unit i prior to period t, spanned
by lagged realizations of the demand system. The controls Xit affect the price variable
Pit through p0(·) and the sales through e0(·).

The technical treatment Dit is formed by interacting Pit and P−it with the observable
product characteristics Kit such that EKit = 0. The parameter β0 stands for the vector of
own and cross-price elasticities. In order to assign a causal interpretation to β0, we as-
sume that, after conditioning on all predetermined variables, the sales shock Uit is mean
independent of all the information (Xjt , �jt , Pjt )j∈C(i) about members of the i’th cluster
(i.e., Uit is dissociated from (Xjt , �jt , Pjt )j∈C(i), Chiang et al. (2019)). The asymptotic re-
sults should be clustered at the level of independent clusters G rather than individual
products N .

Equation (2.11) defines the price effect of interest

β0 = (βown
0 , βcross

0

)
,
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where βown
0 and βcross

0 are d/2 dimensional vectors of the own- and the cross-price ef-
fect, respectively. A change in the own price �Pit affects demand via

�D′
itβ0 = �PitK

′
itβ

own
0 ,

and a change in the average price �P−it affects demand via

�D′
itβ0 = �P−itK

′
itβ

cross
0 .

Let

βown
0 := (αown

0 , γown
0

)
and βcross

0 := (αcross
0 , γcross

0

)
.

We see that

• αown
0 is the baseline own elasticity, and K′

itγ
own
0 is the heterogeneous own elasticity;

• αcross
0 is the baseline cross-price elasticity, and K′

itγ
cross
0 is the heterogeneous cross-

price elasticity.
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