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In this paper, we introduce a new approach to estimating differentiated product

demand systems that allows for products with zero sales in the data. Zeroes in

demand are a common problem in differentiated product markets, but fall out-

side the scope of existing demand estimation techniques. We show that with a

lower bound imposed on the expected sales quantities, we can construct upper

and lower bounds for the conditional expectation of the inverse demand. These

bounds can be translated into moment inequalities that are shown to yield con-

sistent and asymptotically normal point estimators for demand parameters under

natural conditions. In Monte Carlo simulations, we demonstrate that the new ap-

proach works well even when the fraction of zeroes is as high as 95%. We apply our

estimator to supermarket scanner data and find that correcting the bias caused

by zeroes has important empirical implications, for example, price elasticities be-

come twice as large when zeroes are properly controlled.
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1. Introduction

In this paper, we introduce a new approach to differentiated product demand estima-
tion that allows for zeroes in empirical market share data. Such zeroes are a highly preva-
lent feature of demand in a variety of empirical settings, ranging from workhorse retail
scanner data, to data as diverse as homicide rates and international trade flows (we dis-
cuss these examples in further depth below). Zeroes naturally arise in “big data” applica-
tions, which allow for increasingly granular views of consumers, products, and markets
(see, e.g., Quan and Williams (2018), and Nurski and Verboven (2016)). Unfortunately,
the standard estimation procedures using inverse demand function following the sem-
inal Berry, Levinsohn, and Pakes (1995) (BLP for short) cannot be used in the presence
of zero empirical shares—the inverse demand is simply not well-defined at zeroes. Fur-
thermore, ad hoc fixes to market zeroes that are sometimes used in practice, such as
dropping zeroes from the data or replacing them with small positive numbers, are sub-
ject to biases, which can be quite large (because the slope of the inverse demand is ar-
bitrarily large around zero). This has left empirical work on demand for differentiated
products without satisfying solutions to the zero shares problem, and often force re-
searchers to aggregate their rich data on naturally defined products to crude artificial
products, which limits the type of questions that can be answered. This is the key prob-
lem that our paper aims to solve.

In this paper, we provide an approach to estimating differentiated product demand
models that provides consistency and asymptotic normality for demand parameters de-
spite a possibly large presence of zero market shares in the data. We start by noting
that the zeroes are caused by the wedge between the empirical shares (sjt ) and the true
choice probabilities (πjt ): while the latter is always positive, the former can be zero be-
cause of sample noise. We show how the zeroes in empirical shares may not simply be
a data anomaly, but an essential feature of markets with a rich product variety, even if
the number of consumers (nt ) is large. By market design, expected sales (ntπjt ) of some
products do not increase with nt , and as a result, their empirical market shares are zero
with nonvanishing probabilities. We then show that by imposing a lower bound to the
expected sales we can construct upper and lower bounds for the conditional expectation
of the inverse demand. The bounds are used to construct a set of moment inequalities,
which are valid in the presence of the zeroes, and more generally in the presence of sam-
pling error in market shares.1

The moment inequalities can be directly used for parameter inference with the help
of set inference methods in the econometrics literature but for computational reasons,

1In the last couple of years, new aggregate demand models have been considered that accommodate
zeroes in market share data in Dube, Hortacsu, and Joo (2020) and Lima (2021). Dube et al. model the
products with zero market shares as ones that are not in any consumer’s consideration set. Lima’s model
rationalizes the zeros in market shares by restricting the support of the idiosyncratic taste shock. Neither
paper deals with the sample noise issue in observed market shares. Since Dube et al., Lima, and our paper’s
methods rely on nonnested assumptions on the source of zeros, in practice, knowing the true source of zero
is important for choosing the appropriate method. When in doubt, it is advisable to implement multiple
methods and compare the results. A potentially interesting direction for future research is to combine those
methods into a more generally applicable solution to the problem of zero market shares.
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we give a point-identification condition and propose a point estimator instead. We show
that our point estimator is consistent so long as nt is large and there is an exogenous
product or market characteristic, or a group of them, that can identify a positive mass
of observations whose latent choice probabilities are bounded sufficiently away from
zero, for example, product-market pairs for whom the observed market shares are not
likely to be zero. This is natural in many applications (as illustrated in Section 5), and
strictly generalizes the restrictions on choice probabilities for consistency under the tra-
ditional approach. Asymptotic normality then follows by similar arguments as those for
censored regression models by Kahn and Tamer (2009).

Computationally, our estimator closely resembles the traditional approach with only
a slight adjustment in how the empirical moments are constructed. In particular, it is
no more burdensome than the usual estimation procedures for BLP and can be imple-
mented using either the standard nested fixed-point method of the original BLP, or the
MPEC method as advocated more recently by Dubé, Fox, and Su (2012).

We investigate the finite sample performance of the approach in a variety of mixed
logit examples. We find that our estimator works well even when the the fraction of ze-
ros is as high as 95%, while the standard procedure with the observations with zeroes
deleted yields severely biased estimators even with mild or moderate fractions of zeroes.

We apply our bounds approach to widely used scanner data from the Dominicks
Finer Foods (DFF) retail chain. In particular, we estimate demand for the tuna category
as previously studied by Chevalier, Kashyap, and Rossi (2003) and continued by Nevo
and Hatzitaskos (2006) in the context of testing the loss-leader hypothesis of retail sales.
We find that controlling for products with zero demand using our approach gives de-
mand estimates that can be more than twice as elastic than standard estimates that
select out the zeroes. We also show that the estimated price elasticities increase sub-
stantially during Lent (a high demand period for this product category) after we control
for the zeroes. Both of these findings have implications for reconciling the loss-leader
hypothesis with the data.

The plan of the paper is the following. In Section 2, we illustrate the stylized empirical
pattern of Zipf’s law where market zeroes naturally arise. In Section 3, we describe our
solution to the zeroes problem using a simple logit setup without random coefficients
to make the essential matters transparent. In Section 4, we extend the moment inequal-
ity construction and our estimator to general discrete choice model possibly with ran-
dom coefficients. Section 5 discusses the point-identification condition. Sections 6 and
7 present the theoretical properties of the proposed estimator. Section 8 presents results
of Monte Carlo simulations and Section 9 presents the application to the DFF data, re-
spectively. Section 10 concludes.

2. Market zeroes

In this section, we highlight the empirical pattern of zeroes. Here, we primarily use
workhorse store level scanner data to illustrate these patterns. It is the same data that
will also be used for our application. However, we emphasize that our focus here on
scanner data is only for the sake of a concrete illustration of the market zeroes problem—
the key patterns we highlight in scanner data are also present in many other economic
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settings where demand estimation techniques are used (discussed further below and
illustrated in Section A of the Supplemental Appendix (Gandhi, Lu, and Shi (2023)).

We employ here a widely-studied store level scanner data set from the Dominick’s
Finer Foods grocery chain, which is a public data set that has been used by many
researchers.2 The data comprise 93 Dominick’s Finer Foods stores in the Chicago
metropolitan area over the years from 1989 to 1997. Like other store level scanner
data sets, this data set provides demand information (price, sales, marketing) at the
store/week/UPC level, where a universal product code (UPC) is a unique bar code that
identifies a natural product.3

Table 1 presents information on the resulting product variety across the different
product categories in the data. The first column shows the number of products in an av-
erage store/week—the number of UPCs can be seen varying from roughly fifty (e.g., bath
tissue) to over four hundred (e.g., soft drinks) within even these narrowly defined cate-
gories. Thus, there is considerable product variety in the data. The next two columns
illustrate an important aspect of this large product variety: there are often just a few
UPCs that dominate each product category whereas most UPCs are not frequently cho-
sen. The second column illustrates this pattern by showing the well-known “80/20” rule
that prevails in our data: we see that roughly 80% of the total quantity purchased in
each category is driven by the top 20% of the UPCs in the category. In contrast to these
“top sellers,” the other 80% of UPCs contain relatively “sparse sellers” that share the re-
maining 20% of the total volume in the category. The third column shows an important
consequence of this sparsity: many UPCs in a given week at a store simply do not sell.
In particular, we see that the fraction of observations with zero sales can even be nearly
60% for some categories.

We can visualize this situation in another way by fixing a product category (here
we use canned tuna) and simply plotting the histogram of the volume sold for each
week/UPC realization for a single store in the data. This frequency plot is given in Fig-
ure 1. As can be seen, there is a sharp decay in the empirical frequency as the purchase
quantity becomes larger, with a long thin tail.4 In particular, the bulk of UPCs in the
store has small purchase volume: the median UPC sells less than 10 units a week, which
is less than 1.5% of the median volume of tuna the store sells in a week. The mode of the
frequency plot is a zero share.

This power-law decay in the frequency of product demand is often associated with
“Zipf’s law” or the “the long tail,” which has a long history in empirical economics.5

2For a complete list of papers using this data set, see the website of Dominick’s Database:
https://www.chicagobooth.edu/research/kilts/datasets/dominicks

3Store level scanner data can often be augmented with a panel of household level purchases (available,
e.g., through IRI or Nielsen). Although the DFF data do not contain this micro level data, the main points of
our analysis are equally applicable to the case where household level data is available. Store level purchase
data can be viewed as a special case household level data where all households are observationally identical
(no observable individual level characteristics).

4We plot the long tail pattern differently from a commonly seen illustration of power law using rank-size
distribution (“size against rank or popularity”), but the difference is only cosmetic (basically flipping the x-
and y-axis); the two ways of plotting convey the same information.

5See Anderson (2006) for a historical summary of Zipf’s law and many examples from the social and
natural sciences. See Gabaix (1999) for an application of Zipf’s law to the economics literature.

https://www.chicagobooth.edu/research/kilts/datasets/dominicks
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Table 1. Selected product categories in the Dominick’s Database.

Category Average Number of UPCs
in a Store/Week Pair

Percent of Total Sale
of the Top 20% UPCs

Percent of
Zero Sales

Beer 179 87.18% 50.45%
Cereals 212 72.08% 27.14%
Crackers 112 81.63% 37.33%
Dish detergent 115 69.04% 42.39%
Frozen dinners 123 66.53% 38.32%
Frozen juices 94 75.16% 23.54%
Laundry detergents 200 65.52% 50.46%
Paper towels 56 83.56% 48.27%
Refrigerated juices 91 83.18% 27.83%
Soft drinks 537 91.21% 38.54%
Snack crackers 166 76.39% 34.53%
Soaps 140 77.26% 44.39%
Toothbrushes 137 73.69% 58.63%
Canned tuna 118 82.74% 35.34%
Bathroom tissues 50 84.06% 28.14%

We present further illustrations of this long-tail demand pattern found in international

trade flows as well as cross-county homicide rates in Supplemental Appendix A, which

provide a sense of the generality of these stylized facts.

The key takeaway from these illustrations is that the presence of market zeroes in the

data is closely intertwined to the prevalence of power-law patterns of demand. We will

exploit this relationship to place structure on the data generating process that underlies

market zeroes.

Figure 1. Zipf’s law in scanner data.
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3. A first pass through logit demand

Why do zero shares create a problem for demand estimation? In this section, we use
the workhorse multinomial logit model to explain the zeroes problem and our solution.
The general case is treated in the next section. In both cases, we assume that the econo-
metrician observes a data set of {(nt , sjt , xjt ) : j = 1, � � � , Jt , t = 1, � � � , T }, where nt is the
number of potential consumers in market t, sjt is the fraction of those consumers choos-
ing product j, and xjt is the vector of observed characteristics of the product j and/or
market t that often includes price, Jt is the number of inside products in market t, and
T is the number of markets. We focus on the case where there are many markets.

3.1 Making sense of the zeroes

Consider a multinomial logit model for the demand of Jt products (j = 1, � � � , Jt ) and
an outside option (j = 0). A consumer i derives utility uijt = δjt + εijt from product j in
market t, where δjt is the mean utility of product j in market t, and εijt is the idiosyncratic
taste shock that follows the type-I extreme value distribution. As is standard, the mean
utility δjt of product j > 0 is modeled as

δjt = x′
jtβ0 + ξjt , (1)

where ξjt is the unobserved characteristic. The outside good j = 0 has mean utility nor-
malized to δ0t = 0. The parameter of interest is β0.

Each consumer chooses the product that yields the highest utility:

sijt = 1
{
ujt ≥ uj′t ∀j′ = 0, 1, � � � , Jt

}
, for j = 0, 1, � � � , Jt . (2)

Aggregating consumers’ choices, we obtain the true choice probability of product j in
market t, denoted as

πjt = Pr(product j is chosen in market t ) = E[sijt|δ1t , � � � , δJt t ].

The standard approach introduced by Berry (1994) for estimating β0 is to combine de-
mand system inversion and instrumental variables.

First, for demand inversion, one uses the logit structure to find that

δjt = log(πjt ) − log(π0t ), for j = 1, � � � , Jt . (3)

To handle the potential endogeneity of xjt (i.e., its correlation with ξjt ), one finds some
excluded instruments, which along with the exogenous controls in xjt form zjt such that

E[ξjt |zjt ] = 0. (4)

Then two stage least squares with δjt defined in (3) as the dependent variable becomes
the identification strategy for β0.

Unfortunately, πjt is not observed as data—it is a theoretical choice probability de-
fined by the model but only indirectly revealed through actual consumer choices. The
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standard approach to this following Berry (1994), Berry, Levinsohn, and Pakes (1995),
and many subsequent papers in the literature has been to substitute sjt the empirical
market share for πjt , where

sjt = n−1
t

nt∑
i=1

sijt for j = 0, 1, � � � , Jt , (5)

and run a two-stage least square with log(sjt ) − log(s0t ) as dependent variable, xjt as
covariates, and zjt as instruments to obtain estimates for β0. The theoretical justification
used in the literature assume that nt is large, and importantly, πjt either is bounded away
from zero or converges to zero at a slower rate than 1/nt . Under these assumptions,
Berry, Linton, and Pakes (2004) and Freyberger (2015) show that plugging in sjt for πjt at
worst leads to a correctible bias.

However, for data sets with the power law pattern described in Section 2, a large
proportion of the sjt ’s are zeroes. Substituting sjt for πjt is no longer feasible, and the
theoretical assumptions used to justify that practice are no longer compatible with the
data. The former is because log(0) is not finite, and the latter is because under the as-
sumption that πjt approaches zero at a slower rater than 1/nt . We have Pr(sjt = 0) → 0,
which is not consistent with the large number of zeroes in the data.

We rationalize the large number of zeros in sjt at seemingly large nt by allowing πjt

to approach zero at the rate of 1/nt . When πjt approaches zero at this rate, for example,
πjt = c/nt for a constant c > 0, we have

lim
nt→∞ Pr(sjt = 0) = lim

nt→∞(1 − c/nt )nt = exp(−c). (6)

Thus, zeroes arise naturally in this framework. In our bound construction below, we will
assume a much weaker lower bound on πjt than the existing literature: πjt ≥ ε1/nt for
some fixed constant ε1.

There is a simple supply side explanation for why the choice probability of some
products should approach zero at the exact rate of 1/nt and why there may be a lower
bound for ntπjt . A market with the power-law feature described in Section 2 may be
thought of as one with a few dominant products that coexist with a competitive fringe
(see, e.g., Shimomura and Thisse (2012)). The fringe products enjoy free entry and exit
and are subject to a fixed cost, denoted fjt . The free entry and exit drives their expected
profit to zero:

ntπjtmjt − fjt = 0, (7)

where mjt is the average mark-up. Then ntπjt = fjt/mjt . And πjt ≥ ε1/nt holds for some
ε1 if there are a lower bound for fjt and an upper bound for mjt .6 If there is also an upper
bound for fjt and a lower bound for mjt , then πjt approaches zero at the rate of 1/nt . The
existence of such bounds is reasonable in differentiated product markets.7

6The calculation assumes single-product firms. Multiproduct firms stop putting out new products
sooner because they internalize the business stealing effect of new products on their existing products.

7The only bound that might be disputable is the lower bound for the average markup because markup
is endogenous. But even that has some supporting evidence in the literature: Armstrong (2016) shows that
the markup converges to a positive constant rather than zero when the number of firms grows to infinity.
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3.2 Estimation problem with zeroes

As mentioned above, the zeroes pose an immediate challenge to estimation: log(sjt )
is −∞ when sjt = 0. This makes the standard BLP estimator ill-defined. A common
workaround is to ignore the (jt )’s with sjt = 0, effectively lumping those j’s into the out-
side option in market t. This however leads to a selection problem. To see this, suppose
sjt = 0 for some (jt ) and one drops these observations from the analysis—effectively one
is using a selected sample where the selection criterion is sjt > 0. In this selected sample,
the conditional mean of ξjt is no longer a constant. This is the well-known selection-on-
unobservables problem and with such sample selection, an attenuation bias ensues.8

The attenuation bias generally leads to demand estimates that appear to be too inelas-
tic.9

Another commonly adopted empirical “trick” is to add a small positive number ε > 0
to the sjt ’s that are zero, and use the resulting modified shares sεjt > 0 in place of πjt .10

However, this trick only treats the symptom, that is, sjt = 0, but overlooks the nature of
the problem: the true choice probability πjt is small. And in this case, small estimation
error in any estimator π̂jt of πjt would lead to large error in the plugged-in version of δjt
and the estimation of β0. This problem manifests itself directly because the estimate β̂

can be incredibly sensitive to the particular choice of the small number being added and
there is little guidance on what is the “right” choice of the small number. In general, like
selecting away the zeroes, the “adding a small number trick” is also a biased estimator
for β0. We illustrate both biases in the Monte Carlo section (Section 8).

Despite their failure as general solutions, these “ad hoc zero fixes” have in them what
could be a useful idea. Perhaps the variation among the nonzero share observations
can be used to estimate the model parameters, while at the same time the presence of
zeroes is controlled in such a way that avoids bias. We will present a new estimator that
formalizes this possibility by using moment inequalities to control for the zeroes in the
data while using the variation in the remaining part of the data to estimate the demand
parameters.

8To see why E[ξjt |xjt , sjt > 0] is not a constant, consider two values of xjt : x, x∗ such that x′β > x∗′β,
and consider the homoskedastic case for simplicity. For each given value of xjt , the criterion sjt > 0 selects
high values of ξjt and leaves out low values of ξjt . Moreover, the selection is more severe for x∗ than for
x because the unobservable (to econometricians) needs to more appealing to induce a positive observed
market share when the observable characteristic is less appealing.

Thus, we should have

E
[
ξjt |xjt = x∗, sjt > 0

]
>E[ξjt |xjt = x, sjt > 0], (8)

and clearly, E[ξjt |xjt , sjt > 0] is not a constant.
9It is easy to see that the selection bias is of the same direction if the selection criterion is instead sjt > 0

for all t, as one is effectively doing when focusing on a few top sellers that never demonstrate zero sales
in the data. The reason is that the event sjt > 0 for all t contains the event sjt > 0 for a particular t. If the
markets (ξjt ’s) are independent, the particular t part of the selection dominates.

10Berry, Linton, and Pakes (2004) and Freyberger (2015) study the biasing effect of plugging in sjt for πjt .
Their bias corrections do not apply when there are zeroes in the empirical shares.
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3.3 Constructing moment inequalities

Our approach builds on two estimators of log(πjt ). We refer to them as the upper and
lower bounds of log(πjt ) because they bound log(πjt ) from above and below on average
in the sense discussed below. These bounds are

log
(
(ntsjt + ιu )/nt

)
and log

(
(ntsjt + ι
 )/nt

)
, (9)

where ιu and ι
 are two positive numbers that we now construct.
To construct ιu and ι
, note that ntsjt follows a binomial distribution given nt and

πjt : Bin(nt , πjt ).11 For each fixed n and π, and ι≥ 0, define the function

f (ι; n, nπ ) := E
[
log(ntsjt + ι) − log(ntπjt )|nt = n, πjt = π

]
.

The function f is negative infinity at ι= 0 (because sjt can be 0 with positive probability),
strictly increasing with ι, and approaches positive infinity as ι → ∞. Therefore, at each
n and π, the function crosses zero once and only once. We let the point of crossing be
denoted ι∗(n, nπ ), which is defined implicitly by the equation:

f
(
ι∗(n, nπ ); n, nπ

) = 0. (10)

This quantity can be calculated because the function f (ι; n, nπ ) (i.e., the expectation)
can be calculated using the binomial distribution.

As explained in Section 3.1 above, we assume that ntπjt is bounded below by a small
constant ε1 > 0, then we can define

ιu := sup
n,π:nπ≥ε1

ι∗(n, nπ ) and ι
 := inf
n,π:nπ≥ε1

ι∗(n, nπ ). (11)

Furthermore, suppose that ιu and ι
 are known and ιu <∞, ι
 > 0 for now, which we will
discuss shortly below. Then, if we let ιu and ι
 be any finite number satisfying ιu ≥ ιu and
0 < ι
 ≤ ι
, we will have

E
[
log

(
(ntsjt + ιu )/nt

) − log(πjt )|zjt
] ≥ 0 and

E
[
log

(
(ntsjt + ι
 )/nt

) − log(πjt )|zjt
] ≤ 0.

(12)

Combining this with the orthogonality condition E[ξjt|zjt ] = 0, we obtain a set of condi-
tional moment inequalities:

E
[
log(ntsjt + ιu )/nt ) − log(π0t ) − x′

jtβ0|zjt
] ≥ 0

E
[
log(ntsjt + ι
 )/nt ) − log(π0t ) − x′

jtβ0|zjt
] ≤ 0.

(13)

The piece log(π0t ) is easy to estimate because π0t is typically large (sufficiently distant
from zero) in most empirical work. We can plug in s0t or any modification s̃0t of s0t for

11Here, we maintain the standard assumption that in each given market, consumers’ choices are inde-
pendent and identically distributed.
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Figure 2. ι∗(n, nπ ) for a range of n and nπ values.

π0t . As long as the modification is negligible relative to the estimation error in s0t , stan-
dard arguments will imply T−1 ∑T

t=1[log( s̃0t ) − log(π0t )] = op(1). We specify s̃0t in the
general case later. For the logit case, s̃0t = s0t works just fine.

Now we discuss the choice of ι
 and ιu in greater detail. The first two questions we
seek to answer are whether ι
 is positive and ιu is finite, and whether we know them
without the knowledge of the lower bound ε1 for ntπjt . The third question is how to
choose ι
 and ιu given our answers to the first two questions.

We answer the first two questions by numerically obtaining ι∗(n, nπ ) for a large rep-
resentative set of values of n and nπ and plot them in Figure 2.12 The figure shows that
ι∗(n, nπ ) varies smoothly with its two arguments, which gives us confidence that the
supremum and the infimum from these discrete values are close to those of the func-
tion. Specifically, Figure 2 shows that ιu ≈ 0.5 and it is not affected by ε1. For ι
, the
figure shows that it approaches zero as ε1 approaches zero. Thus, without knowing ε1,
we do not know ι
. Nevertheless, the calculation that leads to Figure 2 also produces Ta-
ble 2, which gives us an idea of how ι
 changes with ε1. As the table shows, when ε1 is
very small, ι
 is well approximated by ε1.13

Given what we have learned about ιu and ι
, we recommend choosing ιu and ι
 as
follows. For ιu, any ιu > ιu works in theory, but for better finite sample property, we
recommend an ιu a bit larger. In the Monte Carlo simulations, we find that ιu = 2 works
well. Moreover, using ιu = 2 has an added benefit: it not only satisfies the theoretical
requirement for the logit model, but also satisfies the requirement for nonlogit based
models, as we will see in Section 4.2.

12We considered the values: n ∈ {100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 10,000,
20,000, 40,000} and nπ ∈ {0.0001 : 0.0001 : 0.01, 0.02 : .01 : 1, 1 : 0.1 : 50}, where the numbers between semi-
colons are the step sizes.

13Complete analytical investigation of the shape of ι∗(n, nπ ) is difficult due to the lack of analytical so-
lution to expectations of the logarithm of binomial random variables. However, we provide some partial
answers by analytically deriving the limit of ι∗(n, nπ ) as nπ approaches infinity and that as nπ approaches
zero in Supplemental Appendix E. These limits are consistent with the numerical results reported in Fig-
ure 2 and Table 2.
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Table 2. Computed ι
 for various values of ε1.

ε1 n ι


≥ 0.5 ∈ [100, 40,000] ≥ 0.250
0.1 ∈ [100, 40,000] 0.0776
0.01 ∈ [100, 40,000] 0.00955
0.001 ∈ [100, 40,000] 0.000993
0.0001 ∈ [100, 40,000] 0.0000998

For ι
, one can make a guess about how small ε1 can be based on institutional knowl-
edge, and simply use an ι
 that is smaller than this number. In practice, it sometimes is
not difficult to make an educated guess of ε1 when you realize that ε1 is the lowest num-
ber of units that one expects a product to sell in a market. For example, if the market unit
is week. and the product is a particular yogurt, the supermarket probably will not put it
on the shelf if it is expected to sell less than one unit per 100 weeks. That gives us a lower
bound ε1 = 0.01.

What if one makes a wrong guess at the lowest number of sales? Overguessing can
cause violations of the moment inequalities (12), but fortunately, underguessing does
not. Setting ι
 at a value much lower than the actual ι
 can guarantee the validity of
(12). In our Monte Carlo and application, we in fact use an extremely low ι
 = 2−52 just
to be on the safe side. As we see in the Monte Carlo and the empirical application, the
estimates have good precision despite the extremely small ι
 used.14

3.4 Point estimation

One can use any of the inference procedures for moment inequality models on (13), for
example, Andrews and Shi (2013) and Cox and Shi (2019). Point identification is not re-
quired. On the other hand, point identification can greatly reduce the computational
cost because inference without point identification generally requires costly test inver-
sion. This is especially important for more complicated demand models than multino-
mial logit where even standard BLP estimation is computationally nontrivial.

In later sections, we discuss conditions that guarantee point identification. Under
those conditions, the inequalities in (13) hold as equalities asymptotically on a set of zjt
values of positive measure, and ensure point identification in the same spirit as Kahn
and Tamer (2009) in the context of endogenously censored regression models. To cap-
ture the identification information provided by those zjt values, we consider a countable
collection G of instrumental indicator functions g : Rdz → {0, 1}, where dz is the dimen-
sion of zjt . We adopt the collections of instrumental functions in Andrews and Shi (2013).
Such collections are shown therein to preserve all the identification information in the

14We note that this is generally true if the point-identification condition in Section 5 below holds and nt
is large. But if the point-identification condition does not hold or nt is too small, ι
 can affect the precision
of the inference. In that case, one should use institutional knowledge to carefully determine ε1—the lower
bound for ntπjt , subsequently determine ι
 according to Table 2, and choose ι
 = ι
.
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conditional moment inequality model (13), and thus they preserve the point identifi-
cation provided by the set of zjt values at which the inequalities asymptotically hold as
equalities, without that set of values being known. An example of G is given below.

We form the sample moments

m̄u
T (β, g) : = (T J̄T )−1

T∑
t=1

Jt∑
j=1

(
δ̂ujt − x′

jtβ
)
g(zjt ) and

m̄

T (β, g) : = (T J̄T )−1

T∑
t=1

Jt∑
j=1

(
δ̂
jt − x′

jtβ
)
g(zjt ),

where J̄T = T−1 ∑T
t=1 Jt , δ̂

u
jt = log((ntsjt + ιu )/nt ), and δ̂
jt = log((ntsjt + ι
 )/nt ). These

moments are used to form the criterion function:

Q̂T (β) =
∑
g∈G

μ(g)
{[
m̄u

T (β, g)
]2
− + [

m̄

T (β, g)

]2
+
}

, (14)

where μ(g) : G → [0, 1] is a probability mass function on G, [x]− = min{0, x} and [x]+ =
max{0, x}. Finally, we define the estimator β̂T to be the minimizer of Q̂T (β):

β̂T = arg min
β∈B

Q̂T (β), (15)

where B is the parameter space of β. As we can see, computation of this estimator is on
par with the standard GMM estimator for the multinomial logit model.

For G, we divide the instrument vector zjt into discrete instruments, zd,jt , and con-
tinuous instruments zc,jt . Without loss of generality, assume that zc,jt lies in [0, 1]dzc .15

Let the set Zd be the discrete set of values that zd,jt can take. The set G is defined as

G = {
ga,r,ζ(zd , zc ) = 1

((
z′
c , z′

d

)′ ∈ Ca,r,ζ
)

: Ca,r,ζ ∈ C
}

, where

C = {
(×dzc

u=1

(
(au − 1)/(2r ), au/(2r )]

) × {ζ} : au ∈ {1, 2, � � � , 2r}, for u = 1, � � � , dzc ,

r = r0, r0 + 1, � � � , and ζ ∈ Zd

}
. (16)

In practice, we truncate r at a finite value r̄T .16 This does not affect the first-order asymp-
totic property of our estimator as long as r̄T → ∞ as T → ∞. For μ(·), we use

μ
(
{ga,r,ζ }

) ∝ (100 + r )−2(2r )−dzc K−1
d , (17)

where Kd is the number of elements in Zd . The same μ measure is used and works well
in Andrews and Shi (2013).17

15If not, we can normalize it to lie in [0, 1] as suggested in Andrews and Shi (2013). For example, we can

let z̃c,jt = FN(0,1)(�̂−1/2
zc zc,jt ), where FN(0,1)(·) is the standard normal cdf and �̂zc is the sample covariance

matrix of zc,jt , and use z̃c,jt in place of zc,jt to construct the instrumental functions.
16We shall show some simulation results in the Monte Carlo section that provides useful guidance on

choosing r̄T (and other ways of keeping the dimension of G manageable) in practice.
17Note that appropriate choices of G and μ are not unique. For other possible choices, see Andrews and

Shi (2013).
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4. The general model

Now we extend our discussion to the general differentiated product demand model and
present our parameter estimator.

4.1 Setup

The specification of the general model is the same as the logit model except that the
consumer level shock εijt in uijt = δjt + εijt ≡ x′

jtβ+ ξjt + εijt is no longer type-I extreme
value distribution. Instead, we assume that

εit = (εi0t , � � � , εiJt t ) ∼ F
(·|xt ; λ)

, (18)

where xt stands for (x′
1t , � � � , x′

Jt t
)′, and F(·|xt , λ) is a conditional cumulative distribu-

tion function known up to the finite-dimensional unknown parameter λ. By allowing
xt and an unknown parameter to enter the distribution of εijt , this specification is gen-
eral enough to encompass most models used in empirical work. In particular, it encom-
passes the random coefficient specifications εijt = x′

jt(βi −β) + νijt , where βi is a vector
of random coefficients that follows a distribution (e.g., joint normal) known up to some
unknown parameter, νijt is the idiosyncratic taste shock.18

Given the specification, the unknown parameter in the general model is θ = (β′, λ′ )′.
For clarity, we use θ0 ≡ (β′

0, λ′
0 )′ to denote the true value of θ. Let B ⊆ Rdβ denote the

parameter space of β, and � ⊆ Rdλ the parameter space of λ. Let � = B × � be the pa-
rameter space of θ.

In this model, the choice probability of each product is determined by

πjt =
∫

1
{
δjt + εj ≥ max

j′=0,1, ���,Jt
(δj′t + εj′ )

}
dF(ε0, ε1, � � � , εJt |xt , λ0 ),

j = 0, 1, � � � , Jt . (19)

Let πt = (π1t , � � � , πJtt )′. This system is invertible under the connected substitute con-
dition in Berry, Gandhi, and Haile (2013). In other words, we can define the inverse de-
mand function δt(πt , λ) := (δjt(πt , λ))Jtj=1 as the solution to the system

πjt =
∫

1
{
δjt(πt , λ) + εj ≥ max

j′=0,1, ���,Jt

(
δj′t(πt , λ) + εj′

)}
dF(ε0, ε1, � � � , εJt |xt , λ),

j = 1, � � � , Jt . (20)

Inverting the demand system allows for the use of instrumental variables to identify
θ based on the exclusion restriction:

E
[
ξjt |zjt

] = 0, (21)

18Requiring F(·|xt , λ) to be known up to a finite-dimensional parameter rules out the vertical model
(see Berry and Pakes (2007)) because for the vertical model, εijt is a function of the unobservable product
characteristics (quality).
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where zjt is a vector of exogenous variables including exogenous components of xjt and
excluded instruments if there are any. This is because one can then obtain the following
moment restriction:

E
[
δjt(πt , λ0 ) − x′

jtβ0|zjt
] = 0. (22)

If πt were observed, the parameter θ in the model would be identified under standard
GMM identification conditions. However, as discussed in the logit case, πt is not ob-
served. Instead only a noisy measure st := (s1t , � � � , sJt t )′ is, and st frequently contains
zero elements in many commonly used data sets. As in the logit case, δt(st , λ) is typi-
cally not well-defined when st contains zero elements, and thus simply substituting st
for πt in the moment conditions (22) is problematic.

4.2 Bound construction

Like in the logit case, we construct a pair of functions: δ̂ujt(st , λ) and δ̂
jt(st , λ), to form
bounds for δjt(πt , λ). The construction is based on the bounds for the logit case but
adjusts for the different functional form:

δ̂ujt(st , λ) = log
(
(ntsjt + ιu )/nt

) + δjt( s̃t , λ) − log( s̃jt ),

δ̂
jt(st , λ) = log
(
(ntsjt + ι
 )/nt

) + δjt( s̃t , λ) − log( s̃jt ),
(23)

where ι
 and ιu are fixed numbers, and s̃t is a slight modification of st to take it off the
boundary of the probability simplex. We will require that the modification of s̃jt to sjt is
small so that ‖s̃t − st‖ = Op(1/nt ). For example, s̃jt = sjt + 1/nt (when Jt is bounded) or
s̃jt = sjt + 1/(ntJt ) (when Jt is unrestricted) for j = 1, � � � , Jt .19 The conditions for ιu and
ι
 are specified in Assumptions 1(b) and 2(c) below. We recommend ιu = 2 and ι
 = 2−52

and use these choices in the Monte Carlo and application, as discussed in Section 3.3.
To see why the construction in (23) may be valid and what requirements we may

need on ιu and ι
, consider the upper bound for example:

δ̂ujt(st , λ) − δjt(πjt , λ) = [
log

(
(ntsjt + ιu )/nt

) − log(πjt )
]

+ [(
δjt( s̃t , λ) − log( s̃jt )

) − (
δjt(πt , λ) − log(πjt )

)]
.

We already know from the logit case that the first summand is nonnegative in expecta-
tion conditional on πjt as long as ιu ≥ ιu for ιu defined in equation (11). It is then clear
that the bound δ̂ujt(st , λ) will be asymptotically valid if either (i) the conditional expecta-
tion of the second summand is asymptotically negligible, or (ii) the conditional expec-
tation of the sum of the two is non-negative. Next, we show that the first case applies
to logit-based models, while the second case applies to models where the idiosyncratic
error has a thinner tail than the logistic distribution, for example, normal distributions.

19We note that this implies s̃0t = s0t −Jt/nt or s̃0t = s0t −1/nt . This in principle could be less than or equal
to zero. But in typical data sets, this is not an issue because s0t is much larger than Jt/nt . It is not an issue
asymptotically as we will assume that π0t—the share of the outside good—is bounded away from zero.
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Case 1. When δjt(·, λ) − log(·j ) is uniformly continuous.
Let �0

Jt
denote the subset of {π ∈ (0, 1)Jt : 1′

Jt
π < 1} that πt can take value in. Let �c

Jt

denote an c-expansion of �0
Jt

, that is, �c
Jt

= {π ∈ (0, 1)Jt : π ′1Jt < 1, minp∈�0
Jt

‖p−π‖f ≤ c}

for c > 0, where ‖p − π‖f = √‖p−π‖2 + (1′(p−π ))2. Note that the metric ‖ · ‖f takes
into account the difference for the outside share, while the Euclidean norm on {π ∈
(0, 1)Jt : 1′

Jt
π < 1} only considers the shares for the inside goods.

Define the function δ̌t(·, λ) = (δ̌1t(·, λ), � � � , δ̌Jt t(·, λ))′ : �c
Jt

→RJt where

δ̌jt(π, λ) := δjt(π, λ) − log(πj ).

Since �c
Jt

may contain points arbitrarily close to the boundary of the probability sim-
plex, in general neither δjt(·, λ) nor log(·j ) is uniformly continuous on �c

Jt
. Thus, neither

δjt( s̃t , λ) − δjt(πt , λ) nor log( s̃jt ) − log(πjt ) may converge to zero as nt → ∞ and πjt → 0
even if s̃t is the most efficient consistent estimate of πt . However, in many models used
in empirical work, the logit inverse demand (log(πj ) − log(π0 )) is a good first-order ap-
proximation of δjt(π, λ) when πj is close to zero and this first-order term is the entire
reason that the inverse demand is not uniformly continuous. For such models, the fol-
lowing assumption is reasonable.

Assumption 1. (a) For some c > 0,

max
t=1, ���,T ;j=1, ���,Jt

sup
π,π̃∈�c

Jt
:π �=π̃

sup
λ∈�

|δ̌jt(π̃, λ) − δ̌jt(π, λ)|

‖π̃ −π‖f
√
Jt

≤O(1).

(b) 0 < ι
 ≤ ι
 and ιu ≤ ιu < ∞, where ι
 and ιu are defined in equation (11), and
supt=1, ���,T nt‖s̃t − st‖f =Op(1).

Now we give two examples where Assumption 1(a) is satisfied.

Example 4.1. Nested logit. The inverse demand of the nested logit model can be
written as δjt(πt , λ) = log(πjt/π0t ) − λ log(πgt/π0t ) where πgt is the aggregate share
of all the products in the nest (nest g) that j is in. In this case, δ̌jt(πt , λ) = (λ −
1) logπ0t − λ log(πgt ). Assumption 1(a) is satisfied if �0

Jt
= {π ∈ (0, 1)Jt : 1 − 1′

Jt
π >

ε0, πgt > ε0 for all nests g}. In fact, Assumption 1(a) holds without the
√
Jt , which is a

stronger version of the assumption. The requirement that π0t and πgt are bounded away
from zero is reasonable for data sets in which neither the outside good nor any of the
nests have zero shares.

Example 4.2. Random coefficient logit. For the random coefficient logit model, δjt(πt ;
λ) is the solution to the following equation system:

πjt = exp(δjt )
∫ exp

(
w′
jtv

)
1 +

Jt∑
k=1

exp
(
δkt +w′

ktv
) dF(v; λ), j = 1, � � � , Jt ,
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where wjt is a vector of covariates with random coefficients, and F(·; λ) is the distribu-
tion of the random coefficient known up to the unknown parameter λ. Using the defini-
tion of δ̌jt above, we can write

exp
(−δ̌jt(πt ; λ)

) =
∫ exp

(
w′
jtv

)
1 +

Jt∑
k=1

exp
(
δ̌kt(πt ; λ) +w′

ktv
)
πkt

dF(v; λ). (24)

Assume that ‖wjt‖ is bounded by w and 0 < supw:‖w‖≤w

∫
exp(w′v)dF(v; λ) < ∞. We can

already see that δ̌jt(πt ; λ) is bounded away from −∞ when πjt → 0 (in which case,
δjt(πt ; λ) → −∞). With additional algebra, we can show that ∂δ̌jt(πt ; λ)/∂πt is bounded,
which essentially guarantees Assumption 1(a). The details are given in Supplemental
Appendix D.

Under Assumption 1(a), the requirement for ιu and ι
 are the same as in the logit
case, which is formally stated in Assumption 1(b).

Case 2: when δjt(·, λ) − log(·j ) is not uniformly continuous.
In some models used in empirical work, Assumption 1 can fail to hold. For example,

if the model is a simple probit with Jt = 1, δt(π ) = �−1(π ), where �−1 is the inverse
of the standard normal cdf. In this case, δ̌t(π ) = δt(π ) − log(π ) = �−1(π ) − logπ. This
function approaches +∞ when π → 0, and has arbitrarily large slope near zero. For such
cases, an alternative assumption may be reasonable and this is given in the following
assumption.

Assumption 2. (a) maxj,t E[δ̌jt( s̃t , λ0 ) − δ̌jt(πt , λ0 )|πt , zt ] ≤ 0,
(b) minj,t E[δjt( s̃t , λ0 ) − δjt(πt , λ0 )|πt , zt ] ≥ 0, and
(c) for j = 1, � � � , Jt , s̃jt = sjt +1/nt , 0 < ι
 ≤ ι
 where ι
 is defined in equation (11), and

1 < ιu < ∞.
(d) supj supπ:πj≥(ε1∧1)/nt |δjt(π, λ0 )| ≤ C0 log(nt ) for a constant C0 > 0 for all t.

Example 4.3. Binary probit. For the binary probit model, we verified numerically that
parts (a)–(b) hold given part (c), even though we do not have a theoretical proof. The
intuition is that �−1(π ) decreases slower than log(π ) as π → 0. Thus, smaller mod-
ification ι is needed for E[�−1(sjt + ι/nt )|πt , zt ] to exceed E[�−1(πjt )|πt , zt ] than for
E[log(sjt + ι/nt )|πt , zt ] to exceed E[log(πjt )|πt , zt ]. And ι = 1 is sufficient for the latter,
as we discussed in the logit case. Part (d) holds simply because of the shape of �−1(·),
which increases slower than log(·) as the argument decreases to zero.

The following lemma shows that the bounds constructed in (23) are asymptotically
valid.

Lemma 1. Suppose that mint=1, ���,T nt → ∞ as T → ∞, that ntπjt ≥ ε1 for j = 1, � � � , Jt
and ε1 being the positive number used in (11), and that E[ξjt|zjt ] = 0 if either Assumption
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1 or Assumption 2(a)–(c) holds. Then there exist random variables eujt and e
jt such that

supj=1, ���,Jt ;t=1, ���,T
n

1/2
t

T 1/4J
1/2
t

|eyjt| = Op(1) for y = u, 
, and

E
[
δ̂ujt(st , λ0 ) − xjtβ0 + eujt|zjt

] ≥ 0,

E
[
δ̂
jt(st , λ0 ) − xjtβ0 + e
jt|zjt

] ≤ 0.
(25)

The moment inequalities (25) can be taken to the data since the term e
y
jt (y = u, 
)

is ignorable provided that nt increases at a faster rate than T 1/2Jt . Also, note that for the
multinomial logit and the nested logit case, the lemma holds without the J

1/2
t in the de-

nominator because Assumption 1(a) holds without the J
1/2
t in

supj=1, ���,Jt ;t=1, ���,T
n

1/2
t

T 1/4J
1/2
t

|eyjt| = Op(1). Thus, for these models nt only needs to increase

faster than T 1/2.

4.3 Point estimation

Like in the logit case, one can apply any of the inference procedures for moment
inequality models on (25). Yet point identification can greatly simplify computation.
Point-identification conditions are given in Section 5. Under those conditions, the in-
equalities in (25) hold as equalities asymptotically on a set of zjt values with positive
measure.

We define the point estimator analogous to the logit case:

θ̂T := (
β̂′
T , λ̂′

T

)′ = arg min
θ∈�

Q̂T (θ), (26)

where

Q̂T (θ) =
∑
g∈G

μ(g)
{[
m̄u

T (θ, g)
]2
− + [

m̄

T (θ, g)

]2
+
}

, with (27)

m̄u
T (θ, g) := (T J̄T )−1

T∑
t=1

Jt∑
j=1

(
δ̂ujt(st , λ) − x′

jtβ
)
g(zjt ) and

m̄

T (θ, g) := (T J̄T )−1

T∑
t=1

Jt∑
j=1

(
δ̂
jt(st , λ) − x′

jtβ
)
g(zjt ),

where μ(g) : G → [0, 1] is a probability mass function on G and G is a collection of instru-
mental functions. Both G and μ(·) have been given in Section 3.4.

5. Point-identification condition

The point-identification condition is motivated by the power law feature of the data
demonstrated in Section 2. The feature indicates a coexistence of a few dominant prod-
ucts with thick demand and a large number of fringe products with thin demand. For
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a dominant product j in market t, πjt is large and log(sjt + ιu/nt ) and log(sjt + ι
/nt )
are close to each other and close to log(πjt ) at large nt . If certain values of the exoge-
nous variables zjt predict such πjt ’s, then at those zjt values, the conditional moment
inequalities in (25) hold as equalities asymptotically. These equalities may yield point
identification by standard identification arguments for BLP moment conditions.

Formally, let Z0 stand for the set of values of zjt that predict dominant products
(those with choice probabilities that do not approach zero). We can state the assumption
as follows.

Assumption 3. There exists a fixed constant ε0 ∈ (0, 1) and a set Z0 ⊆ supp(zjt ) such
that infj,t,T Pr(zjt ∈ Z0 ) > 0, such that Pr(πjt ≥ ε0|zjt ∈ Z0 ) = 1 for all j, t.

Below we give three stylized demand–supply models that could give rise to the dom-
inant products and discuss what the dominant product predictors are in each case. For
now, it is important to note that zjt includes both the exogenous covariates in the de-
mand model and excluded instruments (if there are any). Often in practice, it is brand or
UPC dummies that predict dominant status, which usually are also included exogenous
covariates.

We state the lemma that shows that the bounds collapse on Z0 under Assumption 3.

Lemma 2. Suppose that mint=1, ���,T n2
t /T → ∞ as T → ∞, and that Assumption 3 holds.

Then we have

sup
j=1, ���,Jt ,t=1, ���,T

sup
λ∈�

nt|δ̂ujt(st , λ) − δ̂
jt(st , λ)|1{zjt ∈ Z0} =Op(1). (28)

Remark. When the bounds collapse, the moment inequalities (25) hold as equalities
on Z0 asymptotically. Then the standard (point) identification considerations for BLP
models apply here, except that attention is restricted on Z0. In general, if the instru-
ments shift price and sales sufficiently for the dominant products, the model is point
identified.

Remark. Note that neither Z0 or ε0 need to be known in order to use our estimator.
This is an advantage of the moment inequality approach compared to an alternative
approach that preselects products that never experience zeroes. The key to this is the
Andrews and Shi (2013) type instrumental functions that ensure that asymptotically all
of the information in the conditional moment inequalities (25) are preserved in forming
the unconditional moments. That will guarantee that the point-identification informa-
tion provided by Z0 is preserved as well, even though Z0 is unknown.

Next, we discuss how the dominant products may come into being. Such products
or firms have been a subject of interest since the early days of industrial organization.
They have been studied under the name of incumbents, leaders as well as as dominant
products/firms (see, e.g., Markham (1951), Chapter 8 of Tirole (1988), Gowrisankaran
and Holmes (2004), and Shimomura and Thisse (2012)). They are the ones that enjoy a
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large market share and earn a positive profit despite that there are free entry and an un-
limited number of potential entrants. The literature does not agree on how they achieve
their dominant status. Simple explanations include (a) the dominant products are less
substitutable with the fringe products than the fringe products among themselves, (b)
the dominant products are much more appealing on average possibly due to brand loy-
alty or technological innovations, (c) the dominant products are provided with signifi-
cantly lower cost possibly due to technology advances. In all explanations, a key is that
the dominant products have features that are not easily replicable, so there is no free
entry of products with those features. We illustrate each using a stylized example now.20

In the examples, we ignore the t subscript for notational ease.

Example 5.1. Consider a nested logit model with three nests: {0}, J0, J1, where J0 ∪
J1 = {1, � � � , J}. Let J0 and J1 denote the number of elements in J0 and J1, respectively,
and suppose that J0 is fixed as n grows but J1 grows proportionally to n, say J1 = cn.
Let πJ
 stand for the probability that a product in J
 is chosen, for 
 = 0, 1. Consider a
nested logit model that yields

πj

πJ


= exp(δj )∑
j′∈J


exp(δj′ )
for j ∈ J
,

πJ
 = exp
(
λ
(
I(J
 ) − log(J
 )

))
1 + exp

(
λ
(
I(J0 ) − log(J0 )

)) + exp
(
λ
(
I(J1 ) − log(J1 )

)) ,

for 
= 0, 1,

(29)

where I(J
 ) = log(
∑

j∈J

exp(δj )) and λ is a parameter. Suppose that δj : j = 1, � � � , J are

bounded between δ and δ. Then it is easy to verify that I(J
 ) − log(J
 ) is also bounded

between δ and δ. Thus, πJ
 ∈ [ exp(λδ))
1+exp(λδ)+exp(λδ)

, exp(λδ))
1+exp(λδ)+exp(λδ)

], and
πj

πJ

∈ J−1


 [exp(δ−
δ), exp(δ− δ)]. Then we have

πj ≥ J−1
0 exp(δ− δ+ λδ)/

(
1 + exp(λδ) + exp(λδ)

)
) for j ∈ J0,

nπj ≥ c−1 exp(δ− δ+ λδ)/
(
1 + exp(λδ) + exp(λδ)

)
) for j ∈ J1.

(30)

That is, products in nest J0 are dominant products satisfying πj ≥ ε0 and those in nest
J1 are fringe products satisfying nπj ≥ ε1 for ε0 = cJ−1

0 ε1 = J−1
0 exp(δ − δ + λδ)/(1 +

exp(λδ) + exp(λδ))) for j ∈ J1. Assumption 3 is satisfied if 1{j ∈ J0} is part of zjt .
In this example, the number of fringe products is proportional to n. This appears

arbitrary, but can in fact be a natural result of the zero-profit condition under free entry
into nest J1 (see the discussion at the end of Section 3.1). The dominant products are
dominant because they are protected from the competition of the fringe products by the
substitution pattern in product demand and barrier to entry into nest J0.

20As we can see, in each of the examples, the dominant status indicator is a discrete random variable.
It is possible to conjure up a continuous dominant status indicator, but its support would need to have a
discontinuity to separate the dominant and fringe products, a feature that could be difficult to justify in
practice.
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Example 5.2. Consider a multinomial logit model for simplicity. Normalize δ0t = 0. Let

δj = −αpj +
J∑

k=1

βkUPCkj + ξj , (31)

where pj is the price, UPCkj ’s are UPC dummies (UPCkj = 1{k = j}), βj = bj for j ∈ J0,
and βj = − log(n) + bj for j /∈ J0 for a subset J0 of {1, � � � , J}, and bj are bounded con-
stants. Let J be fixed. Let pj and ξj be bounded. Then for j /∈ J0,

πj = exp(−αpj + bj + ξj )/n

1 +
J∑

k=1

exp(−αpk +βk + ξk )

≥ n−1 exp(−αp+ b+ ξ)

1 + J exp(−αp+ b+ ξ)
, (32)

where p, b, ξ are the lower bounds of pj , bj , ξj , and p, b, ξ are the upper bounds. Let

ε1 = exp(αp+b+ξ)

1+J exp(αp+b+ξ)
. Then this shows that nπj ≥ ε1. For j ∈ J0,

πj = exp(−αpj + bj + ξj )

1 +
J∑

k=1

exp(−αpk +βk + ξk )

≥ exp(−αp+ b+ ξ)

1 + J exp(−αp+ b+ ξ)
. (33)

Let ε0 = ε1. Then this shows that Assumption 3 holds if the UPC dummies are used as
part of zjt .21

In this example, the mean utility of the fringe products depends on n. This can be a
natural result of the zero-profit condition under free entry (see the discussion at the end
of Section 3.1): only fringe products with such mean utilities self-select into the market.

Example 5.3. Consider a multinomial logit model again. Let δj = −αpj + ξj . Let there
be constant marginal cost cj = α−1 log(n)zj + c0j , where zj is a dummy variable and c0j

is a bounded constant. Suppose for simplicity that the products are supplied by single-
product firms maximizing profit. Then it is easy to see that the optimal price is

pj = cj + 1
α(1 −πj )

(34)

Let J be fixed and ξj be bounded. Then, for every j = 1, � � � , J,

πj = exp
(− log(n)zj − αc0j − (1 −πj )−1)

1 +
J∑

k=1

exp
(− log(n)zk − αc0k − (1 −πk )−1)

≤ exp(−αc − 1), (35)

21Note that letting α be a random coefficient or adding other covariates would not change the essence of
the example.
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where c is the lower bound for c0j . Let π = exp(−αc−1). Then for j’s with zj = 1, we have

πj ≥ n−1 exp
(−αc − (1 −π )−1)

1 +
J∑

k=1

exp(−αc − 1)

, (36)

where c is the upper bound for c0j . Let ε1 = exp(−αc−(1−π )−1 )
1+∑J

k=1 exp(−αc−1)
. Then this shows that nπj ≥

ε1. Similarly, we can show that for j’s with zj = 0, πj ≥ ε0 := ε1, verifying Assumption 3.
In this example, the cost of the fringe products depends on n. This can be a natu-

ral result of the zero-profit condition under free entry (see the discussion at the end of
Section 3.1): only fringe products with such costs self-select into the market.

As we see above, the point-identification assumption is natural in many situations
with dominant products. Nevertheless, in settings where these assumptions are ques-
tionable, we can still use (25) as a basis for partial identification and inference. For ex-
ample, one can use the method developed in Andrews and Shi (2013) to construct a
joint confidence set for the full vector θ0. This confidence set is constructed by inverting
an Anderson–Rubin test: CS = {θ : T (θ) ≤ c(θ)} for some test statistic T (θ) and criti-
cal value c(θ). Computing this set amounts to computing the 0-level set of the function
T (θ) − c(θ), where c(θ) typically is simulated quantiles, and thus a nonsmooth function
of θ. A new approach that is computationally less burdensome when β is high dimen-
sional is proposed in Gandhi, Lu, and Shi (2013), which also includes Monte Carlo sim-
ulations and empirical results using the profiling approach under partial identification.
When the linear coefficients of the control variables are nuisance parameters, one can
also use the approach in Cox and Shi (2019) for inference to further reduce computa-
tional burden.

6. Consistency

In this section, we establish the consistency of the point estimator defined in (26). We
need additional assumptions.

The first set of assumptions formalize the model and the data environment. They
are similar to those in Berry, Linton, and Pakes (2004) and Freyberger (2015).

Assumption 4. (a) The equation system (20) uniquely defines δt(πt , λ) for all t, all πt ∈
{π ∈ (0, 1)Jt : 1′

Jt
π < 1}, and all λ ∈�.

(b) In each market, consumers’ preferences (εijt )Jtj=1 are i.i.d. draws from the known
distribution F(·|xt ; λ0 ) with unknown parameter λ0 ∈�. Consumer choice is determined
by (19).

(c) The moment condition (22) holds.
(d) (xt , st , zt )Tt=1 are independent across markets.
(e) There exists a constant M such that E[ξ2+c

jt ] < M for all j = 1, � � � , Jt , all t =
1, � � � , T , and all T for some c > 0.
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(f) supt=1, ���,T nt‖s̃t − st‖f = Op(1) as T → ∞.

(g) nT
Jmax
T

√
T

→ ∞ and log(nT )√
T

→ 0 where nT = mint=1, ���,T nt , Jmax
T = maxt=1, ���,T Jt , and

nT = maxt=1, ���,T nt .

Remark. Part (g) requires that nt be not too small and not too big. The not-too-big part
may be surprising because larger nt is typically considered a good thing. Here, larger nt is
not purely a good thing because we allow the lowest πjt to be inversely related to nt .22 In
this framework, larger nt also implies lower minimum πjt , which increases the difficulty
in bounding log(πjt ). Also, note that the Jmax

T in part (g) is not needed for multinomial
logit and nested logit models for the reason discussed in the paragraph below Lemma 1.

The next assumption formalizes the lower bound for choice probabilities for the out-
side and the fringe products. These bounds have been discussed in detail in Sections 3
and 5.

Assumption 5. (a) π0t > ε0 for all t.
(b) πjt > ε1/nt for all j, t.

Next, we impose a Lipschitz continuity assumption on δjt(π, λ) in π on the part of
the π space for the dominant products.

Assumption 6.

sup
t=1, ���,T

sup
j=1, ���,Jt

sup
λ∈�

sup
π,π̃∈�ε0/2

Jt
:π �=π̃,πj ,π̃j≥ε0/2

|δjt(π̃, λ) − δjt(π, λ)|

‖π̃ −π‖f
√
Jt

=O(1).

Remark. Assumption 6 is a commonly accepted assumption when all products are
dominant products (ref. Freyberger (2015)). The stronger version of this assump-
tion without

√
Jt on the denominator holds for multinomial logit models: δjt(π, λ) =

log(πj ) − log(π0 ) because the logarithm function is uniformly continuous on the inter-
val [ε0/2, ∞). This argument combined with Assumption 1 (a) implies Assumption 6 for
models satisfying Assumption 1. The same argument as that for the multinomial logit
also works for the binary probit model.

Finally, we strengthen the point-identification condition to ensure consistency. De-
fine

G0 = {
g ∈ G : g(z) = 0 for z /∈ Z0

}
. (37)

This is the set of instrumental functions that captures the identification information
provided by the dominant products. Note that the dominant status predictor(s) in zjt
often is (are) brand/UPC dummy(ies); thus, elements in G0 are often those dummies in-
teracted with dummies created for other elements of zjt in the Andrews and Shi (2013)

22Recall from Section 3 that this is done to rationalize the zeroes in the data.
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style (described in Section 3.4). It is also worth noting that one does not need to know G0

but only need to know that G contains such a G0, the latter guaranteed by Assumption 3
and the Andrews and Shi style G.

Let

m̄T (θ, g) = 1

T J̄T

T∑
t=1

Jt∑
j=1

(
δjt(πt , λ) − x′

jtβ
)
g(zjt ),

Q̂∗
T (θ) =

∑
g∈G0

μ(g)m̄T (θ, g)2.

(38)

The moments m̄T (θ, g) is infeasible because πjt is not observed. But we will be able
to show that they are close to m̄u

T (θ, g) and m̄

T (θ, g) for g ∈ G0. The criterion function

Q̂∗
T (θ) aggregates the infeasible moments for the dominant products. The assumption

below is the additional identification condition.

Assumption 7. For any c > 0, there exists C(c) > 0 such that

lim
T→∞

Pr
(

inf
θ∈�:‖θs−θs0‖>c

Q̂∗
T (θ) >C(c)

)
= 1,

where θs is a subvector of θ and θs0 is its true value.

Remark. This assumption ensures that the dominant products provide enough restric-
tion to point identify the parameter θs. Only a subvector of θ is considered in this as-
sumption because we want to allow (but not require) specifications with product fixed
effects. The fixed effects for the fringe products are clearly not identified since the data
do not contain sufficiently precise information about their inverse demand. In that case,
θs will only contain the common parameters and the fixed effects of the dominant prod-
ucts. Moreover, the assumption requires that the instrumental functions in G0 are able
to capture the variation of the moments over zjt ∈ Z0. This in general requires that
E[δ̂ujt(st , λ) − xjtβ|zjt = z] and E[δ̂
jt(st , λ) − xjtβ|zjt = z] are continuous in the contin-
uous components of z and the projection of Z0 onto the space of zc,jt (the continuous
components of zjt ) is zero distance to an open set. This is innocuous in most applica-
tions.

Finally, Assumption 7 also requires that the instruments shift xjt and πjt sufficiently.
This requirement is a standard one for BLP instruments. Thus, all the considerations for
finding instruments in BLP models still apply.

The following theorem shows the consistency of the estimator defined in (26). Note
that only the identified subvector θs0 can be estimated consistently.

Theorem 1. Suppose that either Assumption 1 holds and T−1 ∑T
t=1 J

2
t /J̄

2
T is bounded, or

Assumption 2 holds and supt=1, ���,T Jt is bounded. Further suppose that Assumptions 3–7
hold. Then ‖θ̂sT − θs0‖ →p 0.
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Remark. Note that for logit-based models (which satisfy Assumption 1), we do not
need Jt to be bounded. We require that the Jt ’s are roughly even across t, which is
formalized as the boundedness of T−1 ∑T

t=1 Jt/J̄
2
T . For nonlogit-based models satisfy-

ing Assumption 2, we require supt=1, ���,T Jt to be bounded because Assumption 2(c) re-
quires s̃jt = sjt + 1/nt , which is incompatible with Assumption 4(f) unless maxt=1, ���,T Jt
is bounded.

Remark. The proof of the theorem follows two steps. First, we show that at the true
value θ0, Q̂T (θ) = op(1). Second, we show that for points in � such that θs is bounded
away from θs0, Q̂T (θ) asymptotically dominate Q̂∗

T (θ) and the latter is bounded away
from zero. The proof is given in Section C.1.

7. Inference

In this section, we discuss statistical inference based on our point estimator. We show
that the estimator is asymptotically normal despite that the bounds are slack for some
g’s, which is a similar result to that in Kahn and Tamer (2009) for censored regression
models.23

Since the consistency is derived only for the subvector θs of θ, the asymptotically
normality also will be about the subvector. For ease of notation, we consider the partic-
ular case where θs = (λ′, βs, ′ )′ where βs is a subvector of β. The parameters in β excluded
from βs are the coefficients of variables that are zero whenever zjt ∈ Z0.

More assumptions are needed. For clarity, we divide the assumptions into two
groups, the first being standard ones similar to those in Freyberger (2015) and the sec-
ond being the special assumptions that are needed to account for the presence and
the unknown identity of the fringe products. Let Bc(λ0 ) = {λ ∈ � : ‖λ − λ0‖ ≤ c} and
Bc(πt ) = {π̃t ∈ (0, 1)Jt : 1′π̃t < 1, ‖πt − π̃t‖f ≤ c}. Let G\G0 denote the relative comple-

ment of G0 in G. Let ∂mjt(λ) denote
(
∂δjt(πt , λ)/∂λ′ xs, ′

jt

)′
, where xsjt is the subvector of

xjt that correspond to βs . Let

�T (g) = (T J̄T )−1
T∑
t=1

Jt∑
j=1

E
[
∂mjt(λ0 )g(zjt )

]
. (39)

Assumption 8. (a) θs0 is in the interior of �s := {θs : ∃θr s.t. (θs, ′, θr, ′ )′ ∈�}.
(b) The function δjt(π, λ) is twice-continuously differentiable on �0

Jt
×�, for all j, t.

(c) For some c > 0 and M <∞,

sup
j,t

E

[
sup

π̃t∈Bc(πt )
sup

λ∈Bc(λ0 )

∥∥∥∥∂δjt(π̃t , λ)
∂λ

∥∥∥∥]
≤M ,

23However, it is worth noting some subtle differences between the identification and inference argu-
ments in this paper and those in Kahn and Tamer. In Kahn and Tamer, the upper and lower bounds col-
lapse in the finite sample for covariate values that indicate no-censoring, while in this paper, the upper
and lower bounds collapse only asymptotically. Kahn and Tamer consider a fixed data-generating-process
asymptotic framework, while the nature of our problem calls for a triangular array asymptotic framework.
These are part of the reason that our conditions look more complicated than Kahn and Tamer’s.
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sup
j,t

E

[
sup

λ∈Bc(λ0 )

∥∥∥∥∂2δjt(πt , λ)

∂λ∂λ′

∥∥∥∥]
≤M ,

and supj,t E[‖xsjt‖2|zjt ∈ Z0] ≤M .
(d) limT→∞

∑
g∈G0

μ(g)�T (g)�T (g)′ = ϒ for a matrix ϒ of full rank, and

lim
T→∞

T−1
T∑
t=1

∑
g,g∗∈G0

Cov

(
J̄−1
T

Jt∑
j=1

ξjtg(zjt ), J̄−1
T

Jt∑
j=1

ξjtg
∗(zjt )

)
�T (g)�T (g)′μ(g)μ

(
g∗) = V .

(e) limT→∞ T−1n
1/2
T = 0.

Remark. Parts (a)–(b) are standard regularity conditions for extreme estimators. Part
(c) imposes a uniform bound on the derivatives of δjt(·, λ) with respect to λ. This
bound condition is trivially satisfied for multinomial logit models and the binary
probit models because δjt(·, λ) does not depend on λ. For the nested logit model,
|∂δjt(π̃t , λ)/∂λ| = | log(π̃gt/π̃0t )| ≤ 2| log(ε0 − c)| as long as πgt , π0t > ε0t , and c < ε0.
And ∂2δjt(πt , λ)/∂λ∂λ′ = 0. Thus, part (c) holds if the share of each nest is bounded from
zero. For mixed logit models, one can verify part (c) following similar arguments as those
for Lemma S7 in Supplemental Appendix D, under the additional assumptions that the
covariates with random coefficients are bounded. Part (d) of the assumption is needed,
because we allow the data generating process to drift as T → ∞. It regulates the limit of
the drift in our asymptotic thought experiment. The only restriction it imposes on the
data itself is that the Jacobian of the moment conditions has full-rank, which is standard
for moment-based estimation and rules out perfect multicolinearity in xsjt .

Assumption 9. (a) There exists a constant η> 0 such that for all sufficiently small c > 0
and all T , we have ∑

g∈G\G0:(T J̄T )−1
∑T

t=1
∑Jt

j=1 E[(log(sjt+ιu/nt )−log(πjt ))g(zjt )]≤c

μ(g) < cη,

∑
g∈G\G0:(T J̄T )−1

∑T
t=1

∑Jt
j=1 E[(log(sjt+ι
/nt )−log(πjt ))g(zjt )]≥−c

μ(g) < cη,

∑
g∈G\G0:(T J̄T )−1

∑T
t=1

∑Jt
j=1 E[g(zjt )(ntsjt+ιu )−1]≤c

μ(g) < cη.

(b) Case 1: When Assumption 1 holds, assume that

sup
j,t=1, ���,T

E

[∥∥∥∥∂δ̌jt(πt , λ0 )
∂π

∥∥∥∥2]
= O

(
Jmax
T

)
and

sup
j,t=1, ���,T

sup
π∈Bc(πt )

∥∥∥∥∂2δ̌jt(π, λ0 )

∂π∂π ′

∥∥∥∥ = Op
(
Jmax
T

)
for some c > 0.
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Case 2: When Assumption 2 holds, assume that

sup
j,t=1, ���,T

E

[∥∥∥∥∂δjt(πt , λ0 )

∂π

∥∥∥∥2

1(zjt ∈ Z0 )

]
= O(1), and

sup
j,t=1, ���,T

sup
π:‖π−πt‖≤c

∥∥∥∥∂2δjt(π, λ0 )

∂π∂π ′ 1(zjt ∈ Z0 )

∥∥∥∥ = Op(1)

for some c > 0.

Remark. Part (a) of Assumption 9 is needed to show that the moments inequalities are
slack enough for the fringe products to not interfere with the convergence rate and
the asymptotic distribution of the bound estimator. It is satisfied for the μ(·) and G
that we propose if the exogenous variables that signal dominant products are discrete
and πjt ’s for the fringe products converge to zero at the rate n−1

t so that E[log(sjt +
ιu/nt ) − logπjt|zjt ] and E[log(sjt + ι
/nt ) − logπjt|zjt ] are bounded away from zero. Part
(b) strengthens the requirements of Assumptions 1 and 2 to ensure convergence rate
of our estimator. The case 1 part of Assumption 9(b) implies the case 2 part of this as-
sumption, thus is stronger. The weaker assumption is sufficient for case 2 because of the
additional conditions in Assumption 2. Case 1 of Assumption 9(b) may be verified in a
similar fashion as Assumption 1(a).24

Theorem 2. Suppose that either Assumption 1 holds and T−1 ∑T
t=1 J

2
t /J̄

2
T is bounded, or

Assumption 2 holds and supt=1, ���,T Jt is bounded. Further suppose that Assumptions 3–9
hold. Then we have

√
T

(
θ̂sT − θs0

) →d N
(
0, ϒ−1V ϒ−1).

Remark 1. Note that ϒ and V depend on G0, which in turn depends on the unknown set
Z0. Thus, estimating the asymptotic variance covariance matrix can be difficult. Instead,
following Kahn and Tamer (2009), we recommend using nonparametric bootstrap to
obtain standard errors and confidence intervals. We follow this recommendation in the
application in Section 9. We also evaluate the performance of bootstrap standard errors
and bootstrap-based confidence intervals in our Monte Carlo experiments in Section 8.

Remark 2. The asymptotic variance formula also makes it clear that the choice of in-
strumental function set G affects estimation accuracy. Potentially, one could choose G to
minimize the asymptotic variance, however, this does not seem to resemble the existing
efficiency theory for conditional moment equalities, for example, Chamberlain (1987),
Newey (1990), and Ai and Chen (2003), mainly due to the structure that G needs to take
to preserve the information in the conditional moment inequalities. We thus leave this
for future research.

24For multinomial logit and nested logit models, part (b) is not needed. The proofs of Theorem 2 go
through with slight adjustment using the special structure of the inverse demand of such models, with-
out using part (b). As a result, for such models the rate at which Jt increases with nt does not need to be
restricted.
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8. Monte Carlo simulations

In this section, we present three sets of Monte Carlo experiments with random coeffi-
cient logit models. The first experiment investigates the performance of our approach
with moderate fractions of zero shares, which should cover most of the empirical sce-
narios. In the second experiment, we test our estimator with a data generating process
that produces extremely large fractions of zeros; the purpose is to further illustrate the
key idea of our estimator in exploiting the long tail pattern that is naturally present in
the data. In the third experiment, we use actual data from our application as the base for
DGP; the purpose is to examine the performance of our estimator in a realistic setting
and provide some practical guidelines regarding the choice of instruments functions.

The first two experiments use the a random coefficient logit model, where the utility
of consumer i for product j in market t is

uijt = α0 + xjtβ0 + λ0xjtvi + ξjt + εijt , (40)

where vi ∼ N(0, 1), λ0 is the standard deviation of the random coefficients on xjt , εijt ’s
are i.i.d. across i, j, and t following Type I extreme value distribution. The parameters
of interest are β0 and λ0, while α0 is a nuisance parameter. In both experiments, we set
λ0 = 0.5, β0 = 1, and vary α0 for different designs. We simulate T markets, each with J

products. For the third experiment, we will describe the DGP in Section 8.3.25

8.1 Moderately many zeroes

In the first experiment, the observed and unobserved characteristics are generated as
xjt = j

10 +N(0, 1) and ξjt ∼ N(0, 0.12 ) for each product j in market t. Thus, one feature
of the design is that the xjt has some persistence across markets—products with larger
index tend to have higher value of x (which respects the nature of the variation in the
scanner data shown in Section 2). Finally, the vector of empirical shares in market t,
(s0t , s1t , � � � , sJt ), is generated from Multinomial(n, [π0t , π1t , � � � , πJt ]′ )/n, where n is the
number of consumers in each market.26

With the simulated data set {(sjt , xjt ) : j = 1, � � � , J}Tt=1, we compute our bound es-
timator,27 the standard BLP estimator using empirical share st in place of πt and dis-

25In all of the three experiments, we checked the realized minj,t ntπjt ’s in the generated data and they
are all well above our choice of ι
 = 2−52 = 2.2204e− 16. Thus, there is a ε1 that is well above ι
 = 2−52 and
satisfies minj,t ntπjt ≥ ε1. This and Table 2 imply that our choice of ι
 satisfies 0 < ι
 ≤ ι
, which is the key
for the validity of the lower bound part of our moment inequality construction.

26The πt has no closed-form solution in the random coefficient model, and thus we compute them via
simulation, that is,

πjt = 1
s

s∑
i=1

exp(α0 + xjtβ0 + λ0xjtvi + ξjt )

1 +
J∑

k=1

exp(α0 + xktβ0 + λ0xktvi + ξkt )

,

where s = 1000 is the number of consumer type draws (vi).
27We use s̃jt = sjt + 1/(ntJt ) for j = 1, � � � , Jt when implementing the bound estimator for all the simula-

tions in this section.
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carding observations with sjt = 0, the standard BLP estimator using Laplace shares
sLt = (ntst + 1)/(nt + Jt + 1) in place of πt .

All the estimators require simulating the market shares and solving demand systems
for each trial of λ in optimizing the objective function for estimation. We use the same
set of random draws of vi in estimation as in the data generating process to eliminate
simulation error as simulation error is not the focus of this paper. BLP contraction map-
ping method is employed to numerically solve the demand systems for all three estima-
tors.

We simulate 1000 data sets {(srt , xrt ) : t = 1, � � � , T }1000
r=1 and implement all the esti-

mators mentioned above on each for a repeated simulation study. For the instrumental
functions, we use the countable hypercubes defined in (16), and set r̄T = 50. The choices
of ι
 and ιu follow the recommendation in Section 4.2. For the BLP estimator, we use
(1, xjt , x2

jt − 1, x3
jt − 3xjt ) (the first three Hermite polynomials) as instruments to con-

struct the GMM objective function. Alternative transformations of xjt as instruments
yield effectively the same results.

The bias and standard deviation of the estimators are presented in Table 3. As we can
see from the table, the standard BLP estimator with using empirical share st (labeled
as “ES”) shows large bias for both β and λ. Replacing the empirical share st with the
Laplace share sLt (and thus not discarding the observations with sjt = 0), labeled as “LS,”
increases the bias for β although reducing the bias for λ. Our bound estimator (labeled
as “Bound”) is the least biased, and its bias is very small for both parameters, especially
when the sample size (T ) is large.

Next, we examine the performance of our proposed bootstrap procedure and the
results are reported in Table 4. We can see that bootstrap standard errors are on aver-
age slightly larger than the standard deviation of the estimators, especially for the cases
with large fraction of zeros and small sample size. Also, we compute two versions of
bootstrap confidence intervals and find that the “Normal CI,” based on normal quan-
tile and bootstrap standard errors, outperforms the standard nonparametric percentile
bootstrap confidence interval and gets rather close to the nominal level (95%) of cover-
age probability, especially for the β, when the sample size gets large and the fraction of
zeros is not too high.

8.2 Extremely many zeroes

Next, we pressure test our bound estimator by pushing the fraction of zeroes in empirical
shares toward the extreme. We modify the DGP slightly to produce a very high fraction
of zeros. Specifically, we generate xjt from the following discrete distribution:

x 1 12 15

Pr(xjt = x) 0.99 0.005 0.005

and

ξjt ∼ 1(xjt = 1) ×N
(
0, 22) + 1(xjt �= 1) ×N

(
0, 0.12).

All the other aspects of the DGP is identical to the previous simulation.
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Table 3. Monte Carlo results: estimation.

ES LS Bound

DGP T
Ave. %of

Zeros λ β λ β λ β

I

25 9.52%
Bias 0.3718 −0.1941 0.2900 −0.2167 0.0422 −0.0432
SD 0.0337 0.0160 0.0221 0.0115 0.0477 0.0352

50 9.48%
Bias 0.3712 −0.1939 0.2912 −0.2172 0.0172 −0.0216
SD 0.0236 0.0118 0.0164 0.0082 0.0388 0.0284

100 9.46%
Bias 0.3714 −0.1941 0.2900 −0.2169 0.0002 −0.0065
SD 0.0169 0.0081 0.0112 0.0055 0.0311 0.0234

II

25 18.54%
Bias 0.6752 −0.6115 0.4023 −0.4675 0.0142 −0.0302
SD 0.0845 0.0655 0.0315 0.0229 0.0531 0.0536

50 18.54%
Bias 0.6649 −0.6040 0.3993 −0.4657 −0.0083 −0.0028
SD 0.0580 0.0462 0.0223 0.0158 0.0410 0.0413

100 18.50%
Bias 0.6624 −0.6021 0.3983 −0.4651 −0.0154 0.0073
SD 0.0422 0.0333 0.0163 0.0114 0.0297 0.0297

III

25 41.13%
Bias 0.7302 −1.3220 0.3868 −0.9863 −0.0366 0.0278
SD 0.2022 0.2890 0.0366 0.0460 0.0481 0.0721

50 41.09%
Bias 0.7092 −1.2947 0.3830 −0.9819 −0.0331 0.0303
SD 0.1373 0.1975 0.0262 0.0323 0.0374 0.0549

100 41.09%
Bias 0.7070 −1.2935 0.3809 −0.9794 −0.0219 0.0176
SD 0.0911 0.1325 0.0188 0.0232 0.0282 0.0391

IV

25 52.39%
Bias 0.4013 −1.1035 0.2907 −1.1412 −0.0499 0.0512
SD 0.1346 0.2435 0.0304 0.0453 0.0530 0.0899

50 52.35%
Bias 0.3942 −1.0937 0.2877 −1.1369 −0.0346 0.0330
SD 0.0956 0.1740 0.0214 0.0313 0.0396 0.0635

100 52.36%
Bias 0.3916 −1.0901 0.2862 −1.1349 −0.0215 0.0169
SD 0.0687 0.1255 0.0154 0.0227 0.0311 0.0475

Note: 1. J = 50, n = 10,000, β0 = 1, λ0 = 0.5, number of repetitions = 1000. 2. “ES”: Empirical Shares; “LS”: Laplace Shares.
3. DGP: I, II, III, and IV correspond to α0 = −9, −10, −12, and −13, respectively.

The fractions of zeroes are made very high: 82%–96% by choosing the α0 parameter.
With such high fractions of zeroes, the vast majority of observations are uninformative.
Thus, we need larger sample size for any estimator to perform well. We consider T =
100, 200, 400. For simplicity of presentation and to reduce computational burden, here
we fix λ at its true value, and only investigate the behavior of the estimators for β.

The results are reported in Table 5, and they are very encouraging for the bound ap-
proach. The ES estimator is severely biased toward 0, so is the LS estimator. The bound
estimator is remarkably accurate in these extreme cases. The performance highlights
the key idea behind our estimator: utilizing the information from the dominant prod-
ucts with inherently thick demand while controlling the impact of fringe products with
small/zero sales on estimation.

8.3 Monte Carlo simulations with tuna data

In this subsection, we conduct Monte Carlos simulations based on the canned tuna data
set that will be used later in our application. The main purposes are two-fold: (1) we want
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Table 4. Monte Carlo results: bootstrap.

Actual SD BS SE CP: BS CI CP: Normal CI

DGP T
Ave. %of

Zeros λ β λ β λ β λ β

I
25 9.52% 0.0477 0.0352 0.0473 0.0353 0.8390 0.8250 0.8630 0.7790
50 9.48% 0.0388 0.0284 0.0400 0.0300 0.8556 0.8675 0.9444 0.9160

100 9.46% 0.0311 0.0234 0.0324 0.0244 0.8408 0.8458 0.9570 0.9530

II
25 18.54% 0.0531 0.0536 0.0563 0.0585 0.8390 0.8630 0.9640 0.9510
50 18.54% 0.0410 0.0413 0.0423 0.0433 0.7980 0.8340 0.9490 0.9690

100 18.50% 0.0297 0.0297 0.0309 0.0311 0.8380 0.8750 0.9270 0.9560

III
25 41.13% 0.0481 0.0721 0.0537 0.0840 0.7700 0.8310 0.9040 0.9680
50 41.09% 0.0374 0.0549 0.0388 0.0581 0.8360 0.8760 0.8690 0.9360

100 41.09% 0.0282 0.0391 0.0290 0.0417 0.8740 0.9250 0.9000 0.9450

IV
25 52.39% 0.0530 0.0899 0.0549 0.0971 0.7880 0.8550 0.8710 0.9430
50 52.35% 0.0396 0.0635 0.0420 0.0707 0.8490 0.9120 0.8870 0.9530

100 52.36% 0.0311 0.0475 0.0312 0.0498 0.8450 0.8980 0.9040 0.9440

Note: 1. All the settings are identical to Table 1. Bootstrap draws are taken at market level. Bootstrap sample size is 500. 2.
“BS SE” refers to average bootstrap standard error. 3. “CP: BS CI” refers to the coverage probability of the 95% nonparametric
bootstrap CI. 4. “CP: Normal CI” refers to the coverage probability of the 95% normal CI with bootstrap s.e.

to examine performance of the bound estimator in a setting that is similar to the appli-
cation; (2) we would like to understand better how the choices of instruments affect the
performance of the bound estimator, especially in real empirical settings where product
dummies are typically included.

Table 5. Monte Carlo results: very large fraction of zeros.

DGP T Avg. % of Zeros ES LS Bound

I

100 84.73%
Bias −0.2698 −0.2643 −0.0014
SD 0.0060 0.0058 0.0123

200 84.68%
Bias −0.2695 −0.2640 −0.0011
SD 0.0042 0.0040 0.0094

400 84.71%
Bias −0.2692 −0.2639 −0.0005
SD 0.0030 0.0030 0.0066

II

100 91.45%
Bias −0.3328 −0.3319 −0.0016
SD 0.0066 0.0061 0.0126

200 91.43%
Bias −0.3324 −0.3314 −0.0014
SD 0.0049 0.0044 0.0091

400 91.43%
Bias −0.3320 −0.3313 −0.0007
SD 0.0034 0.0032 0.0067

III

100 95.37%
Bias −0.3992 −0.4028 −0.0014
SD 0.0079 0.0070 0.0126

200 95.35%
Bias −0.3991 −0.4025 −0.0014
SD 0.0056 0.0049 0.0093

400 95.36%
Bias −0.3986 −0.4023 −0.0010
SD 0.0040 0.0035 0.0065

Note: 1. T = 100, J = 50, n = 10,000, β0 = 1, λ0 = 0.5. Number of repetitions = 1000. 2. We fix λ = λ0 (at the true value)
without estimating it. 3. DGP: I, II, III correspond to α0 = −13, −14, −15.
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To generate data, we use tuna data in one week (the week of March 30, 1995) across
all the stores (there are 80 stores) as a template (a store week as a “market” and a UPC as
a “product”) and consider a random coefficient logit specification that extends (40). In
particular, we let the price coefficient be random, that is,

uijt = a0 +β0xjt − vipjt + ξjt + εijt ,

where vi follows lognormal(μp, σp ). The product-market specific demand shock ξjt has
a simple heteroskedasticity structure

ξjt = 1
(
β0xjt ≥ med(β0xjt )

)
ξ′
jt + 1

(
β0xjt < med(β0xjt )

)
ξ′′
jt ,

where ξ′
jt (ξ′′

jt ) follows normal distribution N(0, 0.52 ) (N(0, 1.52 )) truncated at ±3σ . The
truncation gives ξjt a finite support to ensure that Assumptions 3 and 5 hold easily. Price
is generated as a linear combination of marginal cost (use the observed wholesale price
from the data) and a markup term that is a function of demand shock ξ, that is,

pjt =mcjt + b0 exp(ξjt ). (41)

Note that the markup term introduces a simple endogeneity problem. The covariates xjt
include a continuous variable following N(0, 1) (truncated at ±3σ) and UPC dummies
from the data. The coefficient on the continuous variable is 1 and those on the UPC
dummies are set to be the estimated ones (using bound estimator) in our application.
Other specifications are similar to the previous DGP. And the number of consumers in
each market for generating market shares is directly imported from the data.

We simulate 1000 data sets that have the same structure as the real data, with the
endogenous variables, that is, price and market shares, varying across data sets. Then we
implement several estimators of interests using the data sets. To simplify the estimation,
we only estimate the two parameters of the random coefficient on price and fixing other
parameters (UPC fixed effects) at their true values without estimating them.

The estimation results are summarized in Table 6. Note that we consider three values
of a0 that imply different fractions of zeros (labeled by “I,” “II,” and “III”). Also, besides
the baseline T = 80 case with one week data (the week of March 30, 1995), we also try
T = 160 using two weeks’ data (the weeks of March 23 and March 30, 1995). As before,
“ES” and “LS” refer to standard BLP estimator applied to empirical shares and Laplace
shares, respectively. For the bound estimator, we experiment with four alternative sets
of instrument functions. “Bound-G1” uses the instruments defined by (16), which in-
cludes indicators constructed from continuous variables (zjt , mcjt ) with r̄80 = 10 and
r̄160 = 15 and UPC dummies. “Bound-G2” is the same as “Bound-G1” except with larger
r̄T : r̄80 = 20 and r̄160 = 30. “Bound-G3” (“Bound-G4”) expands the set of instruments of
“Bound-G1” (“Bound-G2”) by including the interactions between indicators constructed
from continuous variables (denoted by C in (16)) and UPC dummies.

From the results, we can see that

• In almost all the cases, as before, the bound estimators have much smaller biases
than the ES and LS estimators do (although with slightly increased standard devia-
tions), especially for the standard deviation of the random coefficient σp.
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Table 6. Monte Carlo results: simulation using tuna data.

DGP T

Avg. %
of Zeros ES LS Bound-G1 G2 G3 G4

Panel I: μp

I
80 9.11%

Bias −0.0001 −0.0605 −0.0009 −0.0007 −0.0004 −0.0014
SD 0.0228 0.0251 0.0326 0.0239 0.0299 0.0233

160 9.09%
Bias −0.0081 −0.0678 −0.0026 −0.0042 −0.0019 −0.0037
SD 0.0158 0.0185 0.0296 0.0175 0.0276 0.0173

II
80 14.29%

Bias −0.0166 −0.1403 −0.0098 −0.0104 −0.0096 −0.0099
SD 0.0258 0.0311 0.0582 0.0303 0.0498 0.0305

160 14.25%
Bias −0.0246 −0.1472 −0.0005 −0.0129 −0.0037 −0.0126
SD 0.0186 0.0228 0.0721 0.0221 0.0530 0.0220

III
80 17.70%

Bias −0.0286 −0.2205 −0.0097 −0.0185 −0.0123 −0.0180
SD 0.0269 0.0318 0.0767 0.0344 0.0635 0.0344

160 17.66%
Bias −0.0373 −0.2267 0.0203 −0.0185 −0.0013 −0.0183
SD 0.0192 0.0234 0.1178 0.0253 0.0706 0.0252

Panel II: σp

I
80 9.11%

Bias 0.2691 0.4111 0.0555 0.0840 0.0630 0.0840
SD 0.0664 0.0848 0.1382 0.0846 0.1176 0.0804

160 9.09%
Bias 0.2457 0.3931 0.0065 0.0402 0.0208 0.0414
SD 0.0484 0.0647 0.1570 0.0662 0.1338 0.0657

II
80 14.29%

Bias 0.3103 0.5125 0.0163 0.0656 0.0367 0.0664
SD 0.0674 0.1030 0.2469 0.0978 0.2119 0.0990

160 14.25%
Bias 0.2924 0.5022 0.0007 0.0290 0.0324 0.0304
SD 0.0511 0.0778 0.3153 0.0747 0.2633 0.0747

III
80 17.70%

Bias 0.3410 0.5745 0.0340 0.0578 0.0458 0.0590
SD 0.0710 0.1164 0.3273 0.1163 0.2873 0.1179

160 17.66%
Bias 0.3221 0.5678 0.1010 0.0260 0.1158 0.0275
SD 0.0517 0.0871 0.3819 0.0911 0.2915 0.0912

Note: 1. DGP: I, II, and III correspond to a0 = 0.4, 0.8, 1, respectively. Number of markets T: 80 and 160 correspond to one
week (03/30/1995 to 04/05/1995) and two weeks (03/23/1995 to 04/05/1995) of the tuna data for all the stores, respectively.
2. “E”: Empirical Shares; “LS”: Laplace Shares; “Bound-G1”: r̄80 = 10, r̄160 = 15; “Bound-G2”: r̄80 = 20, r̄160 = 30; “Bound-G3”:
r̄80 = 10, r̄160 = 15, instruments in C interact with product dummies; “Bound-G4”: r̄80 = 20, r̄160 = 30, instruments in C interact
with product dummies. 3. True value: μp = 0, σp = 0.5. Coefficients on product dummies are fixed at their true values without
being estimated for ease of computation. Number of repetitions = 1000.

• By comparing Bound-G1 and Bound-G2, we can see that increasing the tuning pa-

rameter r̄T reduces standard deviation substantially but increase biases slightly.

• Including interactions between C and UPC dummies reduces standard deviations of

the estimators substantially. Hence, it seems preferable to have a sufficiently large

r̄T and include the interactions, and these findings guide the construction of G in

our empirical application.
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9. Empirical application

In this section, we apply our estimator on the DFF scanner data previewed in Section 2.
28 In particular, we focus on the canned tuna category, as previously studied by Cheva-
lier, Kashyap, and Rossi (2003) (CKR for short) and Nevo and Hatzitaskos (2006) (NH for
short). CKR observed using the same data discussed in Section 2 that the share-weighted
average price (i.e., the price index) of tuna fell by 15% during Lent—a high demand pe-
riod for this product. They attributed the outcome to loss-leading behavior on the part
of retailers. NH on the other hand suggest that this pricing pattern in the tuna data could
instead be explained by increased price sensitivity of consumers (consistent with an in-
crease in search), which causes a reallocation of market shares toward less expensive
products in the Lent period, and hence a fall in the observed share weighted price index.
They test this hypothesis directly in the data by estimating demand parameters sepa-
rately in the Lent and non-Lent periods, and find that demand becomes more elastic in
the high demand (Lent) period.

Here, we revisit the groundwork laid by NH to examine the difference in price elas-
ticity between Lent and non-Lent periods. The main difference in our analysis is that we
use data on all products in the analysis, while NH restrict the sample to include only the
top 30 UPCs, and thus automatically drop products with small/zero sales. There are two
main questions we seek to address: (a) Does the selection of UPCs with only positive
shares significantly bias the estimates of price elasticity and (b) Does the difference in
price elasticities between the Lent and non-Lent period persist after properly control-
ling for zeroes.

To make the comparison clear, we use largely the same specification of the model
used in NH. In particular, we consider a logit specification

uijt = αpjt +βxjt + ξjt + εijt ,

where the control variables xjt consist of UPC fixed effects and a time trend.29 The
week-to- week variation in the product-/market-level unobserved demand shock ξjt
largely captures the short-term promotional efforts, for example, in-store advertising
and shelving choices, because the UPC fixed effects control the intrinsic product qual-
ity, which is likely stable over a short time horizon. Since stores are likely to advertise
or shelf the product in a more prominent way during weeks when the product is on
a price sale, we expect a negative correlation between price and the unobservable. We
construct instruments for price by inverting DFF’s data on gross margin to calculate the
chain’s wholesale costs, which is the standard price instrument in the literature that has
studied the DFF data.30

28The sample period predates the price fixing conduct by the tuna cartel starting around 2011; see Miller,
Remer, and Weinberg (2020) for details.

29Empirical market shares are constructed using quantity sales and the number of people who visited
the store that week (the customer count) as the relevant market size.

30The gross margin is defined as (retail price–wholesale cost)/retail price, so we get wholesale cost using
retail price×(1 – gross margin). The instrument is defensible in the store disaggregated context we consider
here because it has been shown that price sales in retail price primarily reflect a reduction in retailer mar-
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Table 7. Demand estimation results.

BLP Bound

Price coefficient −0.39 −1.03
S.E. (0.005) (0.319)

Avg. own price elasticity −0.57 −1.51
Fraction of inelastic products 90.04% 28.20%
No. of obs. 862,683 959,331

Note: The S.E. for the bound approach is the bootstrap standard error (using 1000 bootstrap replications).

We implement our bound estimator defined by (26) to obtain the point estimate
of (α, β) in the model.31 The standard errors are obtained using nonparametric boot-
strap.32 The estimation results are presented in Tables 7 and 8.33 Table 7 shows that
standard BLP logit estimator that inverts empirical shares to recover mean utilities (and
hence drops zeroes) has a significant selection bias toward zero. The UPC level elastic-
ities for the logit model are small in economic magnitude, with the average elasticity in
the data being −0.572. Furthermore, over 90% of products have inelastic demand. Using
our bounds approach instead to control for zeroes has a major effect on the estimated
elasticities. Average demand elasticity for UPCs becomes −1.51 and less than 30% of
observations have inelastic demand. This change in the direction of elasticities is con-
sistent with the attenuation bias effects of dropping products with small/zero market
shares.

Our second result is that demand becomes more elastic in the high demand period,
as shown in Table 8. This is consistent with Nevo and Hatzitaskos (2006)’s findings that
are based on the standard logit estimator with zeroes being dropped. However, the Lent
effect is bigger according to our bounds estimator that controls for the zeroes. In other
words, correcting the selection bias, our bound estimator brings the price coefficient
and elasticity higher and the correction effect is higher for the Lent period than for the
non-Lent period. Since the fractions of zeroes are remarkably close between Lent and

gins rather than a reduction in wholesale costs (see, e.g., Chevalier, Kashyap, and Rossi (2003) and Hosken
and Reiffen (2004)); thus, sales (and hence promotions) are not being driven by the manufacturer through
temporary reduction in wholesale costs. However, this instrument may be invalid if manufacturers respond
to demand shocks and adjust wholesale prices accordingly. We acknowledge the potential deficiency of us-
ing this instrument but searching for a better alternative is beyond the scope of the current paper.

31The choice of G is guided by the simulation results in Section 8.3: we set r̄ = 45 when constructing
instrument functions from the wholesale cost (continuous variable) and include interactions between them
and the UPC dummies.

32The procedure contains the following steps: (1) draw with replacement a bootstrap sample of markets,
denoted as {t1, � � � , tT }; (2) compute the bound estimator θ̂BD∗

T using the bootstrap sample; (3) repeat (1)–(2)
for BT times and obtain BT independent (conditional on the original sample) copies of θ̂BD∗

T ; (4) obtain the
sample standard deviation of the BT copies of θ̂BD∗

T and this is the bootstrap standard error.
33In principle, we can estimate our model separately for each store, letting preferences change freely

over stores depending on local preferences. These results are available upon request. Here, we present for
the results of demand pooling together all stores together as was done by Nevo and Hatzitaskos (2006). The
store level regressions results are very similar to the pooled store regression and the latter is a more concise
summary of demand behavior that we present here.
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Table 8. Demand in Lent versus non-Lent.

BLP Bound

Lent Non-Lent Lent Non-Lent

Price coefficient −0.518 −0.371 −1.23 −0.75
S.E. (0.018) (0.005) (0.221) (0.231)

Avg. own price elasticity −0.757 −0.544 −1.80 −1.10
Fraction of inelastic products 84.02% 92.84% 16.79% 43.94%
No. of obs. 70,496 792,187 78,838 880,493

Note: The s.e. for the bound approach is the bootstrap standard error (using 1000 bootstrap replications).

non-Lent periods, we suspect that the difference in the correction effect is due to a dif-
ference in the distribution of the unobservable ξ.

To further investigate this, we first replicate the reduced form finding of Nevo and
Hatzitaskos (2006) that suggested a change in price sensitivity in the Lent period. This
is reported in Table 9, which shows that although the price index of tuna during Lent
appears to be approximately 15% less expensive than other weeks (as previously under-
scored by CKR), the average price of tuna is virtually unchanged between the Lent versus
non-Lent period. Hence, it is a reallocation of demand toward less expensive products
during Lent that drives the change in the price index.

We take this decomposition one step further than NH, and examine the price index
separately for products “on sale” and “regularly priced” during these periods.34 As can
be seen in Table 10, it is the sales price index that is the key driver of the aggregate price
index being cheaper during Lent. However, the average price of an “on-sale” product is
not cheaper in the Lent period. This shows that it is a reallocation toward more steeply
discounted “on-sale” product during Lent that is driving change in the aggregate price
index. In contrast, we do not see an analogous reallocation for “regularly priced” prod-
ucts.

This suggests a tighter coordination of promotional effort and discounting in the
high- demand period. In effect, more steeply discounted products are receiving larger
promotional effort on the part of the retailer during the high demand, which is similar
in spirit to the loss-leader hypothesis originally advanced for this data by CKR. Since
promotional effort in the model is largely captured through the unobservable ξ, this
change in behavior of the unobservable would account for the selection effect due to

Table 9. Regression of price index in Lent.

P: Price Index P̄: Average Price

Lent −0.150 −0.009
s.e. (0.0005) (0.0003)

34We flag an observation in the data as being on sale if that particular UPC in that particular store in that
particular week has at least a 5% reduction from highest price of previous three weeks.
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Table 10. Regression of sales price index in Lent.

P: Price Index P̄: Average Price

Sale Regular Sale Regular

Lent −0.199 0.035 0.010 0.001
s.e. (0.0017) (0.0003) (0.0016) (0.0003)

dropping zeroes changing across the two periods: during the Lent period, the variance
of promotional effort is larger so the selection bias is worse. Hence, our results suggest
that both demand and supply side effects contribute to the falling price during the high-
demand period, which complements and reconciles the findings of NH and CKR.

10. Conclusion

We have shown that differentiated product demand models have enough content to
construct a system of moment inequalities that can be used to consistently estimate
demand parameters despite a possibly large presence of observations with zero mar-
ket shares in the data. We construct a GMM-type estimator based on these moment
inequalities that is consistent and asymptotically normal under assumptions that are a
reasonable approximation to the DGP in various environments with product differenti-
ation. Our application to scanner data reveals that taking the market zeroes in the data
into account has economically important implications for price elasticities.
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