
Supplementary Material

Supplement to “Market counterfactuals and the specification of
multiproduct demand: A nonparametric approach”

(Quantitative Economics, Vol. 13, No. 2, May 2022, 545–591)

Giovanni Compiani
Booth School of Business, University of Chicago

Appendix B: Supplementary results for inference

Proof of Theorem 1. We prove that
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The result then follows from Lemma 7 below. By Assumption 7(ii),
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By Assumption 7(iii), cT = op(1) and, therefore,
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Further, by Assumption 7(i),
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By (22) and Assumption 7(iii),
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Combining (20), (21), and (23), we obtain
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vT (f )
+ op(1). (24)

Giovanni Compiani: Giovanni.Compiani@chicagobooth.edu

© 2022 The Author. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE1653

mailto:Giovanni.Compiani@chicagobooth.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://qeconomics.org
https://doi.org/10.3982/QE1653


2 Giovanni Compiani Supplementary Material

We define
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First, we show that T1

d−→ N(0, 1) by the Lindeberg–Feller theorem. The Lindeberg
condition requires that, for every ε > 0,
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To show that this condition holds, note that
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Equation (27) implies that, for all w ∈ W and all ξ ∈
,

QT (w, ξ) ≤ I

{
J∑
j=1

|ξj|> ε
√
T

max
i

[
λi(T ) × ζA,i

]
}

≡QT (ξ),



Supplementary Material Market counterfactuals 3

where QT (w, ξ) was defined in (25). Therefore, using Cauchy–Schwarz and the law of
iterated expectations,
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where the inequality follows from Lemma 8 below. Further, supw∈W E[ξ2
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by Assumption 3(iv) and the fact that, by Assumption 4(i) and Lemma 8,
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The first inequality follows from some algebra and the Cauchy–Schwarz inequality, the
first equality is by the definition in (26), the second inequality holds by the definition of
matrix norm, and the second equality is by Lemmas A.1, F.8, and F.10(c) in CC, Lemma 8
below, and Assumption 4(iii). Therefore, by Assumption 4(i), we obtain |T2| = op(1). This
completes the proof of (19).

Remark 1. Note that I do not impose Assumption 4(i) in CC. This is because the as-
sumption is automatically satisfied if the basis functions used for the endogenous vari-
ables and those used for the instruments form a Riesz basis for the conditional expecta-
tion operator. I follow CC in assuming that this is the case.
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Lemma 7. Let ‖ĥ − h0‖∞ = op(1) and let Assumptions 3(i), 3(ii), 3(iii), 3(v), 3(vi), 4, 5,
7(iv) hold. Then ∣∣∣∣ v̂T (f )

vT (f )
− 1

∣∣∣∣= op(1). (28)
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∥∥Df (ĥ)[ψM ]′
(
G

−1/2
A L

)−
l

∥∥
× ∥∥G−1/2

A L
{(
Ĝ
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where the last step follows from Assumption 7(iv) and Lemma 8. Further, T (2)
1 = op(1)

by Lemmas F.10(c) and A.1 in CC and Assumption 4(i), and T (3)
1 = op(1) by Assump-

tion 7(iv). This implies that
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Therefore, by Cauchy–Schwarz,

|T1| ≤ ‖γ̂T − γT ‖
vT (f )

× ∥∥o∥∥× ‖γ̂T + γT ‖
vT (f )

≤ ‖γ̂T − γT ‖
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where in the last step we also use Lemma 8 and the fact that ‖o‖<∞ by Assumptions

3(i), 3(ii), 3(iii).

Turning to |T2|, note that

|T2| ≤ ‖γ̂T ‖
vT (f )

× ∥∥̂o −o∥∥× ‖γ̂T ‖
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where the last step follows again from Lemma 8 and (30). We complete the proof by

showing that ‖̂o −o‖ = op(1). Note that

o =
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∥∥+ 2J2 max

j,k∈J ,j �=k
∥∥̂ojk −ojk

∥∥≡ T̃1 + T̃2.
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Now, T̃1 = op(1) by Lemma G.3 in CC. For T̃2, note that, by the triangle inequality, for all

j, k ∈ J , j �= k,

∥∥̂ojk −ojk
∥∥≤

∥∥∥∥∥G−1/2
A,j

[
1
T

T∑
t=1

ξjtξkta
(j)
Kj

(wt )a
(j)
Kj

(wt )′ −E
(
ξjξka

(j)
Kj

(W )a(j)
Kj

(W )′
)]
G

−1/2
A,j

∥∥∥∥∥
+
∥∥∥∥∥G−1/2

A,j
1
T

T∑
t=1

[
(ξ̂jt − ξjt )ξkta(j)

Kj
(wt )a

(j)
Kj

(wt )′
]
G

−1/2
A,j

∥∥∥∥∥
+
∥∥∥∥∥G−1/2

A,j
1
T

T∑
t=1

[
(ξ̂jt − ξjt )(ξ̂kt − ξkt )a(j)

Kj
(wt )a

(j)
Kj

(wt )′
]
G

−1/2
A,j

∥∥∥∥∥
+
∥∥∥∥∥G−1/2

A,j
1
T

T∑
t=1

[
ξj,t(ξ̂k,t − ξk,t )a

(j)
Kj

(wt )a
(j)
Kj

(wt )′
]
G

−1/2
A,j

∥∥∥∥∥
≡ ‖T,1‖ + ‖T,2‖ + ‖T,3‖ + ‖T,4‖,

where we use the fact that GA,j = GA,k and a
(j)
Kj

= a(k)
Kk

for all j, k ∈ J by Assump-

tion 5. Using Lemma 9 below, we obtain ‖T,1‖ = op(1). Further, ‖T,2‖ = op(1) by

(ξ̂jt − ξjt )ξkt ≤ ‖ĥj − h0,j‖1,∞(1 + ξ2
kt ) and Lemma F.7 in CC. Similarly, ‖T,4‖ = op(1).

Finally, ‖T,3‖ = op(1) by (ξ̂jt − ξjt )(ξ̂kt − ξkt ) ≤ ‖ĥ− h0‖2∞ and Lemma F.7 in CC.

Lemma 8. For i ∈ J , let λi(T ) ≡ ‖Df (h0 )[ψ(i)
Mi

]′(L′
iG

−1
A,iLi )

−1L′
iG

−1/2
A,i ‖

vT (f ) and let Assumption 3(ii)

hold. Then lim supT→∞ λi(T )<∞.

Proof. Note that

v2
T (f ) =

J∑
i=1

Df (h0 )
[
ψ(i)
Mi

]′(
Li

′G−1
A,iLi

)−1
Li

′G−1
A,iiiG

−1
A,iLi

(
Li

′G−1
A,iLi

)−1
Df (h0 )

[
ψ(i)
Mi

]

+ 2
J∑
j=1

j−1∑
k=1

Df (h0 )
[
ψ

(j)
Mj

]′(
Lj

′G−1
A,jLj

)−1
Lj

′G−1
A,jjkG

−1
A,kLk

(
Lk

′G−1
A,kLk

)−1

×Df (h0 )
[
ψ(k)
Mk

]
≡

J∑
i=1

σ2
T ,i + 2

J∑
j=1

j−1∑
k=1

σT ,j,k.

Further, by Assumption 3(ii),

∥∥Df (h0 )
[
ψ(i)
Mi

]′(
L′
iG

−1
A,iLi

)−1
L′
iG

−1/2
A,i

∥∥2 ≤ σ−2σ2
T ,i
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for i ∈ J . Therefore, we can write

[
λi(T )

]2 ≤ σ−2σ2
T ,i

J∑
i=1

σ2
T ,i + 2

J∑
j=1

j−1∑
k=1

σT ,j,k

.

Since we focus on the case in which the functional f is slower than
√
T -estimable, the

denominator in the display above goes to infinity. Since the numerator is at most of the
same order as the denominator, the result follows.

Lemma 9. Let Assumptions 3(iii), 3(vi), 4(ii), and 5 hold. Then ‖T,1‖ =Op(1), where T,1

is defined in the proof of Lemma 7.

Proof. The proof adapts that of Lemma 3.1 in Chen and Christensen (2015). Let CT �
ζ(1+γ(2) )/γ(2)

be a sequence of positive numbers with γ(2) defined in Assumption 3(vi),
and let

T (1)
,1 ≡ 1

T

T∑
t=1

(

1,t −E[
1,t ]

)
, T (2)

,1 ≡ 1
T

T∑
t=1

(

2,t −E[
2,t ]

)
,

where


1,t ≡ ξjtξktG
−1/2
A,j a

(j)
Kj

(wt )a
(j)
Kj

(wt )′G−1/2
A,j I

{∥∥ξjtξktG−1/2
A,j a

(j)
Kj

(wt )a
(j)
Kj

(wt )′G−1/2
A,j

∥∥≤ C2
T

}
,


2,t ≡ ξjtξktG
−1/2
A,j a

(j)
Kj

(wt )a
(j)
Kj

(wt )′G−1/2
A,j I

{∥∥ξjtξktG−1/2
A,j a

(j)
Kj

(wt )a
(j)
Kj

(wt )′G−1/2
A,j

∥∥>C2
T

}
.

Note that T,1 = T (1)
,1 + T (2)

,1, so that ‖T (1)
,1‖ = op(1) and ‖T (2)

,1‖ = op(1) imply the state-

ment of the lemma. By definition, ‖
1,t‖ ≤ C2
T , and thus, by the triangle inequality and

Jensen’s inequality (‖ · ‖ is convex), we have ‖
1,t − E(
1,t )‖ ≤ 2C2
T . Further, dropping

the t subscripts,

E
[

1 −E(
1 )

]2 ≤ E
[
ξ2
j ξ

2
k

∥∥G−1/2
A,j a

(j)
Kj

(W )
∥∥2
G

−1/2
A,j a

(j)
Kj

(W )a(j)
Kj

(W )′G−1/2
A,j

× I
{∥∥ξjξkG−1/2

A,j a
(j)
Kj

(W )a(j)
Kj

(W )′G−1/2
A,j

∥∥≤ C2
T

}]
≤ C2

TE
[|ξjξk|G−1/2

A,j a
(j)
Kj

(W )a(j)
Kj

(W )′G−1/2
A,j

× I
{∥∥ξjξkG−1/2

A,j a
(j)
Kj

(W )a(j)
Kj

(W )′G−1/2
A,j

∥∥≤ C2
T

}]
≤ C2

TE
[
E
(|ξjξk||W )

G
−1/2
A,j a

(j)
Kj

(W )a(j)
Kj

(W )′G−1/2
A,j

]
� C2

TE
[
G

−1/2
A,j a

(j)
Kj

(W )a(j)
Kj

(W )′G−1/2
A,j

]= C2
T IKj ,

where the inequalities are in the sense of positive semidefinite matrices. Then Corol-
lary 4.1 in Chen and Christensen (2015) yields ‖T (1)

,1‖ = Op(CT
√

(logK)/T ), and thus

‖T (1)
,1‖ = op(1) by Assumption 4(ii). Turning to ‖T (2)

,1‖, since ‖
2,t‖ ≤ ζ2|ξjtξkt| ×
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I{|ξjtξkt| ≥ C2
T /ζ

2}, by the triangle inequality and Jensen’s inequality (‖ · ‖ is convex),
we have

E
[∥∥T (2)

,1

∥∥] ≤ 2ζ2
E
[|ξjξk|I{|ξjξk| ≥ C2

T /ζ
2}]

≤ 2ζ2(1+γ(2) )

C
2γ(2)

T

E
[|ξjξk|1+γ(2)

I
{|ξjξk| ≥ C2

T /ζ
2}]= o(1),

where the last step follows from Assumption 3(vi), the fact that C2
T /ζ

2 � ζ2/γ(2) → ∞ and

that ζ(1+γ(2) )/C
γ(2)

T � 1. Thus, ‖T (2)
,1‖ = op(1) by Markov’s inequality.

Lemma 10. Let Assumptions 3 and 8(i)–8(iii) hold. Then, for f ∈ {fε, fp1 },

[
vT (f )

]2 � τ2
MM

4.

Proof. We prove this for f = fε. The proof for f = fp1 is identical. As shown in CC,52 the
maintained assumptions imply

[
vT (fε )

]2 � τ2
M

M∑
m=1

(
Dfε(h0 )

[(
G

−1/2
ψ ψM

)
m

])2
, (31)

where (G−1/2
ψ ψM )m denotes the mth row of the M-by−2-valued function G

−1/2
ψ ψM .

Next, ∣∣Dfε(h0 )
[(
G

−1/2
ψ ψM

)
m

]∣∣� max
α̃:|α̃|=1

∥∥∂α̃(G−1/2
ψ ψM

)
m

∥∥∞ �M3/2,

where the first step follows from (12) and the second step follows from well-known
properties of splines (see, e.g., Newey (1997)). Combining this and (31) completes the
proof.

Appendix C: Constraints

In this Appendix, I provide more details on how to impose some of the constraints dis-
cussed in Section 3.2, and I introduce some additional constraints.

C.1 Imposing exchangeability

First, I discuss how to impose the exchangeability restriction defined in Section 3.2
(see equation (5)). As in the main text, I consider the case where x(2) is a vector of
product-specific characteristics each with dimension ñx(2) . With J goods, the over-
all degree of the approximation is then (2J + ñx(2) )m. Let vs ≡ (vs1, � � � , vsJ ) be a J-
vector of integers between 0 and m, and define vp ≡ (v

p
1 , � � � , vpJ ), and vx ≡ (vx1 , � � � , vxJ )

similarly. Next, let θj(vs1, � � � , vsJ , vp1 , � � � , vpJ , vx1 , � � � , vxJ ;m) denote the coefficient on the

term �Jk=1bvsk,m(sk )bvpk ,m(pk )bvxk,m(x(2)
k ) in the Bernstein approximation for σ−1

j . Let

52See pages 22–23. See also Chen and Pouzo (2015).
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π : {1, � � � , J} �→ {1, � � � , J} be any permutation, π−1 be its inverse, and π̃ denote the func-
tion that, for any J-vector y, returns the reshuffled version of y obtained by permuting
its subscripts according to π, that is,

π̃(y1, � � � , yJ ) = [yπ(1), � � � , yπ(J )]

π̃−1 is defined similarly for π−1. Then exchangeability of the Bernstein approximation
takes the form

θj
(
vs , vp, vx;m

)= θπ(j)
(
π̃−1(vs), π̃−1(vp), π̃−1(vx);m) (32)

for all vsk, vpk , vxk ∈ {0, 1, � � � ,m}. This is a set of linear constraints on the Bernstein coeffi-
cients that can be easily be enforced. In fact, one can directly embed the constraint into
the definition of the vector of the Bernstein coefficient, thus reducing the dimension of
the program to be solved in estimation (equation (3)).

Without exchangeability, the number of coefficients to estimate for each demand
function is equal to (m+ 1)J(2+ñ

x(2) ). In contrast, when exchangeability is imposed that
number is [ (m+J−1)!

(J−1)!(m)! (m+ 1)]2+ñ
x(2) . To see this, note that θj in (32) has J(2 + ñx( (2)) ) ar-

guments, of which 2 + ñx(2) are “own” argument (i.e., j′s share, price, and x(2) attributes)
and (J − 1)(2 + ñx(2) ) are other goods’ arguments. Exchangeability of σ−1

j means that
the function is invariant to rearranging the rival goods’s arguments, for any given value
of the own arguments. Now, the number of ways (J − 1) numbers can be drawn with
replacement from a set of sizem+ 1 is (m+J−1)!

(J−1)!(m)! .
53 Repeating this form+ 1 possible val-

ues of each own argument and for 2 + ñx(2) arguments per good (share, price, and x(2)

attributes), one obtains the total number of coefficients under exchangeability.
Finally, I consider the case where x(2) is a vector of market-level variables that are

not product-specific (e.g., income). The corresponding definition of exchangeability was
given in footnote 28. In this case, the analog of equation (32) is

θj
(
vs, vp, vx;m

)= θπ(j)
(
π̃−1(vs), π̃−1(vp), vx;m

)
(33)

for all vsk, vpk , vxk ∈ {0, 1, � � � ,m}. Again, this is a set of equalities between pairs of Bernstein
coefficients, which reduces the number of parameters to estimate.

C.2 Symmetry of the Jacobians

Next, I turn to an additional type of constraints that one might want to impose, namely
symmetry of the Jacobians. Because these constraints are defined conditional on any
given value of x(2), I drop this for notational convenience.

Let Jδσ (δ, p) denote the Jacobian matrix of σ with respect to δ:

J
δ
σ (δ, p) =

⎡
⎢⎢⎢⎢⎣
∂

∂δ1
σ1(δ, p) · · · ∂

∂δJ
σ1(δ, p)

...
. . .

...
∂

∂δ1
σJ(δ, p) · · · ∂

∂δJ
σJ(δ, p)

⎤
⎥⎥⎥⎥⎦ .

53This is sometimes called a multicombination.
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In a discrete choice model where δj is interpreted as a quality index for good j, if one
assumes that, for all j, δj enters the utility of good j linearly (and does not enter the
utility of the other goods), then Jδσ (δ, p) must be symmetric. Conveniently, symmetry of
Jδσ (δ, p) implies linear constraints on the Bernstein coefficients. To see this, note that by
the implicit function theorem, for every (δ, p) and for s = σ(δ, p),

J
s
σ−1 (s, p) = [

J
δ
σ (δ, p)

]−1
. (34)

Because the inverse of a symmetric matrix is symmetric, symmetry of Jδσ (δ, p) implies
symmetry of Js

σ−1 (s, p). This, in turn, by Result 1 yields linear constraints on the Bern-
stein coefficients.

Similarly, let Jpσ (δ, p) denote the Jacobian matrix of σ with respect to p:

J
p
σ (δ, p) =

⎡
⎢⎢⎢⎢⎣
∂

∂p1
σ1(δ, p) · · · ∂

∂pJ
σ1(δ, p)

...
. . .

...
∂

∂p1
σJ(δ, p) · · · ∂

∂pJ
σJ(δ, p)

⎤
⎥⎥⎥⎥⎦ .

This matrix is the Jacobian of the Marshallian demand system. Under the assumption
that there are no income effects, it coincides with the Jacobian of the Hicksian demand
by Slutsky equation and, therefore, it must be symmetric. Imposing symmetry of Jpσ re-
quires nonlinear, nonconvex constraints. This is because, by the implicit function theo-
rem, for every (δ, p) and for s = σ(δ, p),

J
p
σ (δ, p) = −[

J
s
σ−1 (s, p)

]−1
J
p

σ−1 (s, p) (35)

which shows that Jpσ is a nonlinear function of the derivatives of σ−1 and, therefore, of
the Bernstein coefficients. In the implementation, it might be convenient to rewrite (35)
as

J
s
σ−1 (s, p)Jpσ (δ, p) = −J

p

σ−1 (s, p).

Expressing Js
σ−1 and J

p

σ−1 as linear combinations of the Bernstein polynomials and in-

troducing extra parameters (call them γ) for the entries of Jpσ , one then obtains a set of
constraints that are linear in the Bernstein coefficients, given γ, and linear in γ, given
the Bernstein coefficients.54

C.3 Proofs for results on constraints

Proof of Lemma 1. First, we show that Jδσ (δ, p) belongs to the class of M-matrices.
This follows from the fact that (a) under Assumption 2 in BH, Theorem 2 in Berry,
Gandhi, and Haile (2013) implies that Jδσ (δ, p) is a P-matrix for every (δ, p), that is,
a square matrix such that all of its principal minors are strictly positive; (b) by weak sub-
stitutability Jδσ (δ, p) is also a Z-matrix, that is, a matrix with nonpositive off-diagonal

54This is helpful especially when it comes to writing the analytic gradient of the constraints to input in
the optimization problem.
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entries; and (c) a Z-matrix which is also a P-matrix is an M-matrix (see, e.g., result 8.148
in Seber (2007)). Next, by the implicit function theorem Js

σ−1 (s, p) = [Jδσ (δ, p)]−1 for all
δ, p and s = σ(δ, p). Thus, since Jδσ (δ, p) is an M-matrix, it follows that Js

σ−1 (s, p) is an
inverse M-matrix. Part (i) of the lemma then follows directly from the definition of an M-
matrix. For parts (ii) and (iii), note that |

∂σj
∂δj

(δ, p)| ≥∑
k�=j | ∂σk∂δj (δ, p)| means that Jδσ (δ, p)

is diagonally dominant of its columns. Then Theorem 3.2 of McDonald et al. (1995) im-
plies the result in (ii), where again we use the fact that Js

σ−1 (s, p) = [Jδσ (δ, p)]−1. Finally,

by the implicit function theorem J
p

σ−1 (s, p) = −Js
σ−1 (s, p)J

p
σ (δ, p). The result in (iii) then

follows from those in (i) and (ii) and the assumption that the own-price effects
∂σj
∂pj

be

negative.

Proof of Lemma 2. For part (i), let π : {1, � � � , J} → {1, � � � , J} be any permutation with
inverse π−1. Further, let π̃ denote the function that, for any J-vector y, returns the
reshuffled version of y obtained by permuting its subscripts according to π, that is,

π̃(y1, � � � , yJ ) = [yπ(1), � � � , yπ(J )]

and define π̃−1 similarly for π−1. Then we can rewrite the definition of exchangeability
for a generic J-valued function g(y1, y2, y3 ) of 3J arguments as

π̃−1(g(y1, y2, y3 )
)= g(π̃−1(y1 ), π̃−1(y2 ), π̃−1(y3 )

)
.

Now take any (δ, p, x(2) ) and let s = σ(δ, p, x(2) ). We can invert the demand system to
obtain

δ= σ−1(s, p, x(2)). (36)

By exchangeability of σ ,

π̃−1(s) = σ(π̃−1(δ), π̃−1(p), π̃−1(x(2))).
Inverting this demand system, we obtain

π̃−1(δ) = σ−1(π̃−1(s), π̃−1(p), π̃−1(x(2))). (37)

Combining (36) and (37),

π̃−1(σ−1(s, p, x(2)))= σ−1(π̃−1(s), π̃−1(p), π̃−1(x(2)))
which shows that σ−1 is exchangeable. This proves part (i).

Part (ii) of the lemma follows directly from the definition of exchangeability and Re-
sult 1.

Appendix D: Additional Monte Carlo simulations

D.1 Reference prices

Another type of behavior allowed by the NPD model is one where consumers like (dis-
like) a product more if its price is lower (higher) than its competitor’s, all else equal. The
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Figure 5. Reference rrices: Own-price (left) and cross-price (right) elasticity functions.

idea is that consumers might enjoy the feeling of getting a bargain and, conversely, might
be turned off if they perceive a good is overpriced. I formalize this by letting the utility for
good j be a function not only of the price of j but also a (decreasing) function of the dif-
ference between the price of j and that of its competitor. I set the coefficient on the price
difference to −0.15; the simulation design is otherwise the same as that in Section 4.1.
As in the previous simulations, I compare the performance of the nonparametric ap-
proach with that of a mixed logit model. In this case, the latter is misspecified in that it
only allows p1, but not p1 −p2 to enter the utility of good 1, and similarly for good 2. In
the nonparametric estimation, I impose the following constraints: monotonicity of σ−1,
diagonal dominance of Jδσ , and exchangeability.55

Figure 5 shows the own- and cross-price elasticity functions, respectively. While the
nonparametric approach is on target, BLP tends to underestimate the magnitude of both
due to the fact that it does not capture the reference pricing patterns in the data.

D.2 Smaller sample size

The simulations in Section 4 were based on sample sizes equal to 3000. I now investigate
how well the NPD estimator performs in a smaller sample size. Specifically, I focus on the
complements example from Section 4.3 and repeat the simulation now using a sample
of 500 observations.

D.3 Violation of the index restriction

The NPD estimator is based on the index restriction embedded in equation (1). Here,
I explore how robust the estimator is to violations of this assumption. Specifically, I gen-

55See Section 3.2 and Appendix C for a discussion of these constraints.
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Figure 6. Complements, T = 500: Own-price (left) and cross-price (right) elasticity functions.

erate the data from the mixed logit dgp as in Section 4.1, except that I let the coefficient

on the covariate x be random and distributedN(1, σviol ). Because the coefficient on the

unobservable ξ is not random, this induces a violation of the index restriction, which be-

comes more severe as σviol increases. Figures 7 to 9 show that, except for the own-price

elasticity function at large values of own-price, the NPD estimator is quite robust to vi-

olations of the index assumption for this dgp. These results complement those on the

median elasticities (Table 3 in the main text) by showing robustness of the entire own-

and cross-elasticity functions.

Figure 7. Violation of index restriction, σviol = 0.10: Own-price (left) and cross-price (right)
elasticity functions.
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Figure 8. Violation of index restriction, σviol = 0.50: Own-price (left) and cross-price (right)
elasticity functions.

D.4 Sensitivity to the choice of polynomial degree

To complement the results in Table 2 in the main text, I consider how the entire own- and

cross-elasticity functions estimates vary as the degree for the polynomial approximation

changes. I focus on the mixed logit dgp from Section 4.1 and the complements dgp from

Section 4.3.

Figure 9. Violation of index restriction, σviol = 1.50: Own-price (left) and cross-price (right)
elasticity functions.
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D.4.1 Mixed logit dgp

Figure 10. Mixed logit data, degree = 16: Own-price (left) and cross-price (right) elasticity func-
tions.

Figure 11. Mixed logit data, degree = 12: Own-price (left) and cross-price (right) elasticity func-
tions.
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Figure 12. Mixed logit data, degree = 8: Own-price (left) and cross-price (right) elasticity func-
tions.

Figure 13. Mixed logit data, degree = 6: Own-price (left) and cross-price (right) elasticity func-
tions.
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Figure 14. Mixed logit data, degree = 4: Own-price (left) and cross-price (right) elasticity func-
tions.

D.4.2 Complements dgp

Figure 15. Complements, degree = 16: Own-price (left) and cross-price (right) elasticity func-
tions.
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Figure 16. Complements, degree = 12: Own-price (left) and cross-price (right) elasticity func-
tions.

Figure 17. Complements, degree = 8: Own-price (left) and cross-price (right) elasticity func-
tions.
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Figure 18. Complements, degree = 6: Own-price (left) and cross-price (right) elasticity func-
tions.

Figure 19. Complements, degree = 4: Own-price (left) and cross-price (right) elasticity func-
tions.

D.5 J > 2 goods

To complement the results in Table 3 in the main text, here I report estimates for the
entire own- and cross-elasticity functions for the J > 2 goods case. I generate data from
the logit model

uij = −pj + xj + ξj + εij .
I choose this simple model as it means that I can put pj into the linear index δj , which
reduces the number of parameters to estimate. I report the own-price elasticity of good
1 and the elasticity of good 1 wrt the price of good 2 for J = 3, J = 5, and J = 7 below.56

56Since the dgp and the model are symmetric in the different goods, the remaining own- and cross-price
elasticities are the same as those reported here.
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Figure 20. Logit data, J = 3: Own-price (left) and cross-price (right) elasticity functions.

Figure 21. Logit data, J = 5: Own-price (left) and cross-price (right) elasticity functions.

Figure 22. Logit data, J = 7: Own-price (left) and cross-price (right) elasticity functions.
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D.6 Semiparametric logit model

Here, I consider a semiparametric version of the model that maintains the logit distribu-

tional assumption on the error terms, but is flexible on how prices and the x(2) covariates

enter the demand functions. In particular, I consider the case where the x(2) covariates

are product-specific characteristics and assume that demand functions take the form

σj
(
δt , pt , x

(2)
t

)=
exp

(
δjt + g

(
pjt , x

(2)
jt

))
1 +

J∑
k=1

exp
(
δkt + g

(
pkt , x

(2)
kt

))

for an unknown function g, which leads to

log
(
sjt

s0t

)
= δjt + g

(
pjt , x

(2)
jt

)≡ βx(1)
jt + ξjt + g

(
pjt , x

(2)
jt

)
.

Given instruments for price, one can estimate β and γ using the methods developed in

the body of the paper.

Imposing the logit functional form substantially simplifies the problem. Specifically,

the unknown function g now only depends on 1 + nx(2) arguments and so there is no

curse of dimensionality in the number of goods.

To illustrate this, I generate data from the model with β = 1 and g(pjt , x
(2)
jt ) =

−pjt + 0.5p2
jt − 0.25p3

jt + x(2)
jt − 0.25(x(2)

jt )2 exp(−x(2)
jt ) and plot the own- and cross-price

elasticity functions for J = 20 and J = 50 goods in Figures 23 and 24, respectively.

Figure 23. Semiparametric logit model, J = 20: Own-price (left) and cross-price (right) elastic-
ity functions.
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Figure 24. Semiparametric logit model, J = 50: Own-price (left) and cross-price (right) elastic-
ity functions.

Appendix E: Extension to endogenous demand shifters

In this Appendix, I consider violations of the exogeneity assumption that take the form
E(ξj|x, z) = γjxj for all j.57 By equation (2), for all j,

xjt = E

[
1

βj + γj σ
−1
j

(
st , pt , x

(2)
t

)
|x, z

]
≡ E

[
μj
(
st , pt , x

(2)
t

)
|x, z

]
, (38)

where I let μ ≡ [μ1, � � � , μJ ]′ ≡ Mμσ
−1 and Mμ is the diagonal matrix with (j, j) entry

1
βj+γj . Then we can identify μ as in BH. Let Jsμ denote the Jacobian of μ wrt s, and sim-

ilarly for Jpμ, Jx
(1)

μ , and Jx
(2)

μ . Note that Jpσ = −(Jsμ )−1J
p
μ, so that Jpσ is identified. An anal-

ogous argument applies to Jx
(2)

σ . On the other hand, since Jx
(1)

σ = (Jsμ )−1M̃μ, where M̃μ

is the diagonal matrix with (j, j) entry
βj

βj+γj , identifying μ is not sufficient to recover

Jx
(1)

σ . In other words, the marginal effects of p and x(2) are identified in spite of the en-
dogeneity of x(1), whereas—as one would expect—the marginal effects of x(1) are not.
A corollary of this is that counterfactuals that only depend on derivatives wrt prices—
such as those considered in Section 5.4—are robust to this type of endogeneity.

Appendix F: Data

I take a market to be a week/store combination.58 Data on prices and quantities come
from the 2014 Nielsen scanner data set. For each market, the most granular unit of obser-
vation in the Nielsen data is a UPC (i.e., a specific bar code). I aggregate UPCs according
to whether they bear or do not bear the USDA organic seal. When this information is

57For simplicity, here I consider the case where x(1)
j is scalar, since that corresponds to the empirical

settings in Section 5.
58I use the terms “store” and “retailer” interchangeably.
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missing, I assume the UPC is nonorganic. The aggregate quantities are obtained by sim-
ply summing the quantities for the individual UPCs, whereas for prices I take a weighted
average where the weights are determined by the yearly share of sales that a given UPC
has in that store. Similarly, I aggregate across UPCs for selected nonstrawberry fruits.59

Specifically, I focus on the top four nonstrawberry fruits according to Produce for Better
Health Foundation (2015) in terms of per capita consumption nationwide, that is, ba-
nanas, apples, other berries, and oranges. For each of these fruits, I compute a price in-
dex (across UPCs) following the same procedure I used for strawberries. These fruit-level
price indices are then aggregated even further into a single price index using weights
that are proportional to the per capita eatings of each fruit and are normalized to sum
to one.

Regarding Hausman instruments, I take the mean price of strawberries and the
mean price index for the outside option, respectively, across the Californian supermar-
kets that are not in the same marketing area60 as a given store. Excluding supermarkets
in the same marketing area is meant to alleviate the usual concerns about Hausman
instruments, that is, that likely spatial correlation in the unobserved quality of the prod-
ucts might induce a violation of the exogeneity assumption.

Spot prices for strawberries are obtained from the US Department of Agriculture
website.61 The data reports spot prices for the following shipping points: California,
Texas, Florida, North Carolina, and Mexico. In absence of information on where su-
permarkets source their strawberries from, I take a simple average of the prices at the
various shipping points in any given week.

I measure the availability of nonstrawberry fresh fruit in any given week at the state
level using the total sales of nonstrawberry fruits at all stores included in the Nielsen
data set in that week. To proxy for consumer tastes for organic produce at a given store,
I compute the percentage of yearly organic lettuce sales over total yearly lettuce sales at
the store.

Finally, data on income at the zip-code level is downloaded from the Internal Rev-
enue Service website.62

The resulting data set has 38,800 markets. Table 8 reports descriptive statistics for
each variable and Figure 25 shows the price pattern for a typical store over time. Both
the retail price and the spot price exhibit strong seasonality. Moreover, the retail price
sometimes displays a pattern in which it drops and then jumps back up to the initial
level. This is typical of supermarket prices given the prevalence of periodic sales. How-
ever, in the case of strawberries, this pattern is much less marked than for other items,
such as packaged goods. Therefore, the model does not explicitly account for sales.63

Next, I present the results of the first-stage regressions in Table 9. As expected, the re-
tail prices significantly increase with the spot prices. Further, the share of organic straw-
berries increases with the taste for organic products, while the opposite is true of the

59In this case, however, I do not distinguish between organic and nonorganic fruits.
60Here, I follow the Nielsen partition of the United States into designated marketing areas.
61http://cat.marketnews.usda.gov/cat/index.html
62https://www.irs.gov/uac/soi-tax-stats-individual-income-tax-statistics-zip-code-data-soi
63Inventory is often invoked as a justification for sales in models of retail. However, because strawberries

are so perishable, it is unlikely that inventory plays a first-order role in driving the retailer’s pricing behavior.

http://cat.marketnews.usda.gov/cat/index.html
https://www.irs.gov/uac/soi-tax-stats-individual-income-tax-statistics-zip-code-data-soi
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Table 8. Descriptive statistics.

Mean Median Min Max

Quantity nonorganic 735.33 581.00 6.00 5729.00
Quantity organic 128.91 78.00 1.00 2647.00

Price nonorganic 2.97 2.89 0.93 4.99
Price organic 4.26 3.99 1.24 6.99
Price other fruit 3.95 3.80 1.30 13.88

Hausman nonorganic 3.00 2.98 2.09 4.05
Hausman organic 4.28 4.07 2.95 5.50
Hausman other fruit 4.50 3.79 1.19 13.33
Spot nonorganic 1.46 1.35 0.99 2.32
Spot organic 2.38 2.17 1.25 4.88

Quantity other fruit (per capita) 0.83 0.82 0.60 1.08
Share organic lettuce 0.08 0.06 0.00 0.41
Income 82.54 72.61 33.44 405.09

Sample size 38,800 38,800 38,800 38,800

Note: Prices in dollars per pound. Quantities in pounds. Income in thousands of dollars per household.

nonorganic share. Finally, the shares of both inside goods decrease with the availability
of other fruit.

Appendix G: Microfoundation of the empirical model

This Appendix shows how to map the model estimated on the Nielsen data in Section 5
into the general framework outlined in Section 2. Specifically, I outline two models of
consumer behavior that yield the demand system in equation (6) and prove that the

Figure 25. Price patterns. Note: Prices in dollars per pound for organic strawberries sold at a
representative store.
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Table 9. First-stage regressions.

Nonorganic Organic

Price Share Price Share

Spot price (own) 0.12 −0.68 0.35 −0.26
(0.02) (0.05) (0.02) (0.01)

Spot price (other) 0.04 0.10 −0.21 0.22
(0.01) (0.03) (0.02) (0.02)

Hausman (own) 0.70 −1.30 0.46 −0.19
(0.008) (0.02) (0.01) (0.01)

Hausman (other) −0.01 0.25 0.13 0.22
(0.007) (0.02) (0.01) (0.01)

Hausman (out) −0.01 0.11 −0.10 0.04
(0.006) (0.01) (0.002) (0.002)

Availability other fruit −0.01 −0.07 −0.02 −0.01
(0.001) (0.003) (0.001) (0.001)

Share organic lettuce 0.08 −0.20 −0.01 0.10
(0.004) (0.008) (0.004) (0.004)

Income −0.02 0.00 0.01 0.04
(0.002) (0.005) (0.002) (0.002)

R2 0.46 0.27 0.52 0.16

Note: All variables are normalized to belong to the [0, 1] interval. Standard errors in parentheses.

system is indeed invertible. It should be emphasized that these are only two out of many
models that are compatible with (6) and invertibility, and that the estimation procedure
does not rely on any of the parametric restrictions embedded in either model.64

G.1 Model 1

I first consider a standard discrete choice model. While the model is clearly at odds with
the fact that consumers buying fresh fruit face an (at least partially) continuous choice,
this serves as a building block for the more realistic model discussed in Section G.2.
Moreover, given the prevalence of discrete choice models in the literature, it provides a
connection between the demand system in (6) and a more familiar setup.

I assume that consumers face a discrete choice between one unit (say, one pound)
of nonorganic strawberries, one unit of organic strawberries, and one unit of other fresh
fruit. Consumer i’s indirect utilities for each of these goods are, respectively,

ui1 = θstrδ
∗
str + αip1 + εi1,

ui2 = θstrδ
∗
str + θorgδ

∗
org + αip2 + εi2,

ui0 = θ0,strx
(1)
str + θ0,orgδ

∗
org + αip0 + εi0,

(39)

64For instance, while Model 1 below assumes that prices enter linearly in utilities, this restriction is not
needed for identification or estimation, given that I do not impose symmetry of the Jacobian of demand
with respect to price.
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where

δ∗
str = ξstr,

δ∗
org = θ1,orgx

(1)
org + ξorg

and p1, p2, p0 denote the prices of nonorganic strawberries, organic strawberries, and
the price index for other fresh fruit, respectively. I interpret δ∗

str as the mean quality of
all strawberries in the market and δ∗

org as the mean utility for organic products (includ-
ing but not limited to organic strawberries). Because the outside option of buying other
fresh fruit includes organic produce (e.g., organic apples), I let δ∗

org enter ui0. In addi-
tion, ui0 also depends on the richness of the nonstrawberry fruits offering, as captured
by x(1)

str . I use (ξstr, ξorg ) to denote the unobserved quality levels for strawberries and
organic produce, respectively, and (εi2, εi2 ) to denote taste shocks idiosyncratic to con-
sumer i. Unlike BLP, I will not make any parametric assumptions on (εi2, εi2 ), nor on the
distribution of the price coefficient αi. In particular, note that the correlation structure
of the vector (εi2, εi2, αi ) is unrestricted, which allows for patterns such as the fact that
wealthier consumers may have a stronger preference for organic produce. Further, the
distribution of αi will be allowed to depend on other covariates such as mean income
x(2) in the market.

Now I show that the demand system generated by the model above is identified un-
der the following assumption (as well as the standard exogeneity and completeness as-
sumptions discussed in Section 2).

Assumption 10. The coefficients θstr, θorg, θ0,str, θ0,org, and θ1,org are nonzero.

Note that Assumption 10 is very mild. It is satisfied if (i) consumers care about the
quality of strawberries (θstr > 0) and organic produce (θorg, θ0,org > 0), as well as the
availability of nonstrawberry fruit θ0,str > 0, when purchasing fresh fruit; and (ii) the
variable x(1)

org is indeed a proxy for taste for organic produce (θ1,org > 0).

Lemma 11. Under Assumption 10, the demand functions σ1 and σ2 generated by the
model in (39) are point-identified under the same set of conditions used to obtain identi-
fication in BH.

Proof. Since utility is ordinal, I can subtract θ0,strx
(1)
str + θ0,orgδ

∗
org + αip0 from each

equation in (39) and write

ui1 = δ̃1 − θ0,strx
(1)
str + αi(p1 −p0 ) + εi1,

ui2 = δ̃2 − θ0,strx
(1)
str + αi(p2 −p0 ) + εi2,

ui0 = εi0,

(40)

where

δ̃1 ≡ θstrδ
∗
str − θ0,orgδ

∗
org,

δ̃2 ≡ θstrδ
∗
str + (θorg − θ0,org )δ∗

org.
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Using (40) and the fact that the distribution of αi is allowed to depend on x(2), we can
write the demand system as

s = σ̃(δ̃1 − θ0,strx
(1)
str , δ̃2 − θ0,strx

(1)
str , p, x(2)), (41)

where p ≡ (p0, p1, p2 ), s ≡ (s1, s2 )′ is the vector of market shares and σ̃ is a function
from R2 × R4+ to the unit 2-simplex. Next, by Theorem 1 of Berry, Gandhi, and Haile
(2013), we can invert the system in (41) for the mean utility levels as follows:

δ̃1 =σ̃−1
1

(
s, p, x(2))+ θ0,strx

(1)
str ,

δ̃2 =σ̃−1
2

(
s, p, x(2))+ θ0,strx

(1)
str ,

(42)

where σ̃−1
k denotes the kth element of the inverse, σ̃−1, of σ̃ . I now show that there

is a one-to-one mapping between (δ∗
str, δ∗

org ) and (δ̃1, δ̃2 ). Letting δ∗ ≡ (δ∗
str, δ∗

org )′ and

δ̃≡ (δ̃1, δ̃2 )′, we have

δ̃=Aδ∗,

where

A≡
[
θstr −θ0,org

θstr θorg − θ0,org

]
.

Since det(A) = θstrθorg �= 0 under Assumption 10, we can rewrite (42) as

δ∗ =A−1σ̃−1(s, p, x(2))+A−1 · [1 1]′ × θ0,strx
(1)
str (43)

or equivalently,

δ∗
str = σ−1

1

(
s, p, x(2))+ θ1x

(1)
str ,

δ∗
org = σ−1

2

(
s, p, x(2))+ θ2x

(1)
str ,

(44)

for functions σ−1
i : �2 × R4+ → R2, i = 1, 2, where �2 denotes the unit 2-simplex. Now,

I derive expressions for the coefficients θ1 and θ2 in terms of the model primitives. Note
that

A−1 = 1
θorg

⎡
⎣θorg − θ0,org

θstr

θ0,org

θstr
−1 1

⎤
⎦ ,

and thus

A−1 ·
[

1 1
]′ =

[
1
θstr

0
]′

,

that is,

θ1 = θ0,str

θstr
,

θ2 = 0.
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Plugging this into (44) and using the definitions of δ∗
str and δ∗

org, we obtain

ξstr = σ−1
1

(
s, p, x(2))+ θ0,str

θstr
x(1)

str ,

θ1,orgx
(1)
org + ξorg = σ−1

2

(
s, p, x(2)). (45)

The final step is to show that we can identify the system in (45), given the instruments
available. Because we are free to normalize the scale of ξstr and ξorg in the display above,

we can divide the first equation of (45) by θ0,str
θstr

and the second equation by θ1,org without

loss,65 and rearrange terms as follows:

−x(1)
str = σ−1

1

(
s, p, x(2))− ξstr, (46)

x(1)
org = σ−1

2

(
s, p, x(2))− ξorg. (47)

Equations (46) and (47) are in the same form as equation (6) in BH, and thus we can
follow their argument to show that σ1 and σ2 are identified. Further, note that inverting
the system in (46) and (47) yields the demand system in equation (6) that was estimated
on the Nielsen data (after normalizations).

G.2 Model 2

I now turn to a model of continuous choice that is likely a closer approximation to the
behavior of consumers buying fresh fruit. Let consumer i face the following maximiza-
tion problem:

max
q0,q1,q2

Ui(q0, q1, q2 )

s.t. p0q0 +p1q1 +p2q2 ≤ y inc
i ,

(48)

where y inc
i denotes the income consumer i allocates to fresh fruit, q0 is the quantity of

nonstrawberry fresh fruit, q1 is the quantity of nonorganic strawberries, and q2 is the
quantity of organic strawberries, and similarly for prices p0, p1, p2. One could think of
y inc
i as being the outcome of a higher-level optimization problem in which the consumer

chooses how to allocate total income across different product categories, including fresh
fruit. Assume Ui takes the Cobb–Douglas form

Ui(q0, q1, q2 ) = qd0εi,0
0 q

d1εi,1
1 q

d2εi,2
2 ,

for positive d ≡ (d0, d1, d2 ) and εi ≡ (εi,0, εi,1, εi,2 ). Then the optimal quantities chosen
by the consumer are

q∗
j

(
d, p, y inc

i , εi
)= y inc

i

pj
· djεi,j

2∑
k=0

dkεi,k

j = 0, 1, 2, (49)

65These divisions are well-defined operations as θ0,out
θstr

and θ1,org are nonzero by Assumption 10.
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where d ≡ (d0, d1, d2 ) and p≡ (p0, p1, p2 ). Now assume that

d0 = γ
θ0,org
org x̃

θ0,str
str ,

d1 = γθstr
str ,

d2 = γθstr
str γ

θorg
org ,

where

γstr ≡ exp
{
δ∗

str
}

,

γorg ≡ exp
{
δ∗

org
}

,

x̃str ≡ exp
{
x(1)

str

}
and δ∗

str, δ∗
org are defined as in Section G.1. I can then rewrite (49) as

q∗
j

(
d̃, p, y inc

i , εi
)= y inc

i

pj
· d̃jεi,j

2∑
k=0

d̃kεi,k

j = 0, 1, 2, (50)

where

d̃0 ≡ 1,

d̃1 ≡ γθstr
str γ

−θ0,org
org x̃

−θ0,str
str ,

d̃2 ≡ γθstr
str γ

θorg−θ0,org
org x̃

−θ0,str
str

and d̃ ≡ (d̃0, d̃1, d̃2 ).
Next, let FY ,ε denote the joint distribution of y inc

i and εi in the market, and define66

Q∗
j

(
d̃, p, x(2))=

∫
q∗
j (d̃, p, y, ε)dFY ,ε

(
y, ε; x(2)) j = 0, 1, 2

Q∗
j (d̃, p, x(2) ) is the model counterpart to the market-level quantity Qj observed in the

data.
The last step is to show that there exists a mapping of quantities into market shares

such that the resulting demand system is invertible. For j = 0, 1, 2, define

˜̃σj
(
d̃, p, x(2))= Q∗

j

(
d̃, p, x(2))

2∑
k=0

Q∗
k

(
d̃, p, x(2))

66Note that I let FY ,ε be a function of mean income x(2), consistently with the information available in
the data.
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and

sj = Qj
2∑
k=0

Qk

.

Then, equating observed shares to their model counterparts, we obtain the system

s = ˜̃σ(d̃, p, x(2)), (51)

where s ≡ (s0, s1, s2 )′ and ˜̃σ(d̃, p, x(2) ) ≡ ( ˜̃σ0(d̃, p, x(2) ), ˜̃σ1(d̃, p, x(2) ), ˜̃σ2(d̃, p, x(2) ))′.
Because ˜̃σj is strictly decreasing in d̃k for all j and all k > 0, k �= j, by Theorem 1 in

Berry, Gandhi, and Haile (2013), we can invert (51) as follows:

d̃ = ˜̃σ−1(s, p, x(2))
and, taking logs, we can write

θstrδ
∗
str − θ0,orgδ

∗
org = σ̃−1

1

(
s, p, x(2))+ θ0,strx

(1)
str ,

θstrδ
∗
str + (θorg − θ0,org )δ∗

org = σ̃−1
2

(
s, p, x(2))+ θ0,strx

(1)
str ,

(52)

where σ̃−1
j (s, p, x(2) ) ≡ log( ˜̃σ−1

j (s, p, x(2) )) for j = 1, 2.
Note that (52) has the exact same form as (42). Therefore, we can use the argument

in Section G.1 to show that the demand system is identified.
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