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Appendix A: Validity of the influence function calculation

In this Appendix, we show validity of Steps I and II of the influence function calculation.
Step I requires differentiability of θ(Fτ ) and the formula

dθ(Fτ )
dτ

=
∫
ψ(w)H(dw), E

[
ψ(W )

] = 0, E
[
ψ(W )2]<∞. (1)

Step II requires that evaluating the derivative at a point mass gives the influence func-
tion. We justify Step II as a limit asH approaches a point mass similar to Lebesgue differ-
entiation from analysis. Lebesgue differentiation shows that the limit of an integral of a
function over an interval divided by the length of the interval converges almost surely to
the value of the function at a point as the interval collapses on that point. We give regu-
larity conditions and classes of continuous, smooth probability distributions where the
expectation of the influence function converges to its value at a point as the probability
distribution collapses on the point.

The fundamental starting point for the influence function calculation is that the es-
timator is asymptotically linear with an influence function, that is, that it satisfies

√
n(θ̂− θ0 ) = 1√

n

n∑
i=1

ψ(Wi ) + op(1), E
[
ψ(W )

] = 0, E
[
ψ(W )Tψ(W )

]
<∞.

We take a modern, high level approach to regularity conditions in assuming that the
estimator is locally regular for a set of alternative distributions H that can approximate
a point mass.

Definition A1. θ̂ is locally regular for Fτ if there is a fixed random variable Y such that
for any τn =O(1/

√
n) andW1, � � � ,Wni.i.d. with distribution Fτn ,

√
n
[
θ̂− θ(Fτn )

] d−→ Y .
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This local regularity condition is familiar from the efficient estimation literature. Lo-
cal regularity of θ̂ is not a primitive condition but it is plausible when F0 satisfies con-
ditions for existence of θ(F ) and H is well behaved relative to F0. For example, F0 could
satisfy regularity conditions like some random variables being continuously distributed
and expectations of certain functions existing and H could be a uniformly bounded,
smooth deviation from F0. In such settings, it is plausible many estimators θ̂ would be
locally regular. We construct suchH in this Appendix so that local regularity is plausibly
satisfied for many semiparametric estimators θ̂.

We consider a sequence (H
j
w )∞j=1 taking the form

H
j
w(w̃) = E[

1(W ≤ w̃)δ
j
w(W )

]
, (2)

where for each j the random variable δjw(W ) is bounded with E[δ
j
w(W )] = 1. In Hj

w(w̃),
the variable w̃ represents a possible value of the random variable W . As we will discuss,
thisHj

w(w̃) will have the needed properties when δjw(W ) is chosen appropriately. In par-
ticular, the support of Hj

w(w̃) will approach {w} as the support of δjw(w) does. Through-
out, we will assume that w is a vector of real numbers of fixed dimension r. We impose
the following properties.

Assumption A1. F0 is absolutely continuous with respect to a measure μ on R
r with pdf

f0(w), δjw(W ) is not constant, bounded, and E[δ
j
w(W )] = 1 .

By δjw(W ) bounded Fjτ = (1 − τ)F0 + τHj
w will be a CDF for small enough τ with pdf

with respect to μ given by

fτ(w̃) = f0(w̃)
[
1 − τ+ τδjw(w̃)

] = f0(w̃)
[
1 + τS(w̃)

]
, S(w̃) = δjw(w̃) − 1, (3)

where we suppress the j superscript and w subscript on fτ(w̃) and S(w̃) for notational
convenience. Note that by S(w̃) bounded there is C such that for small enough τ,

(1 − τ)f0/C ≤ fτ ≤ Cf0, (4)

so that fτ and f0 will be absolutely continuous with respect to each other. Thus, vari-
ables that are continuously distributed under F0 will also be continuously distributed
under Fjτ . Also objects that have expectation close to zero for F0 will also have expec-
tation close to zero under Fjτ and vice versa. If θ(F ) being well-defined depends on ex-
istence of derivatives of the pdf for F then that restriction can be imposed by choosing
δ
j
w(w̃) so its derivatives exist. In these ways, we can choose δjw(w) so that fτ(w̃) satisfies

the restrictions needed for θ(F
j
τ ) to be well- defined.

We assume that the sequence (δ
j
w )∞j=1 satisfies a condition leading to

lim
j−→∞

∫
ψ(w̃)H

j
w(dw̃) −→ψ(w), (5)

thus justifying Step II of the influence function calculation. Define a function a(w̃) to be
almost surely continuous at w in μ if for any ε > 0 there is a neighborhoodN of w and a
subsetNμ ofN such that μ(Nμ ) = μ(N ) and |a(w̃) − a(w)| < ε for all w̃ ∈Nμ.
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Assumption A2. If a(w̃) is μ almost surely continuous at w and E[a(W )2] < ∞, then
δ
j
w(W ) satisfies limj−→∞E[a(W )δ

j
w(W )] = a(w).

This assumption will be sufficient for equation (5). There are a variety of ways that
δ
j
w(W ) can be chosen so that Assumption A2 will be satisfied. The basic idea is to con-

sider w where f0(w̃) is bounded away from zero on a neighborhood of w in the support
ofW and choose δjw(w̃) = gjw(w̃)/f0(w̃) where gjw(w̃) is a bounded pdf and the support of
g
j
w(w̃) to converge to {w}. A choice of gjw(w̃) that will lead to equation (5) in many cases

can be based on a nonnegative kernelK(u) with bounded support S, as in the following
result.

Lemma A1. (i) IfK(u) ≥ 0 ,
∫
K(u)du = 1,and K(u) has bounded support S ; (ii) there

is a neighborhood N of w and C > 0 such that f0(w̃) ≥ C almost surely μ for w̃ ∈ N ;
(iii) μ(w + σS) > 0 for all σ > 0; then for any (σ(j))∞j=1 with σ(j) > 0, σ(j) −→ 0, and
w+ σ(j)S ⊆N for all σ(j) , Assumptions A1 and A2 are satisfied for

δ
j
w(W ) = f0(W )−1

[∫
1
(
w̃ ∈w+ σ(j)S

)
σ(j)−rK

(
w̃−w
σ(j)

)
μ(dw̃)

]−1

σ(j)−rK
(
W −w
σ(j)

)
.

Note that ifW has the Lebesgue density f0, then the expression for δjw simplifies to

δ
j
w(w̃) = f0(w̃)−1σ(j)−rK

(
w̃−w
σ(j)

)
.

Proof. Note that ∫
1
(
w̃ ∈W + σ(j)S

)
σ(j)−rK

(
w̃−W
σ(j)

)
μ(dw̃)> 0

by (i) and (iii). Also, K((W −w)/σ(j)) is nonzero only on a subset of N so that δjw(W ) is
bounded by (i) and (ii). In addition, E[δ

j
w(W )] = 1 by construction.

Suppose a(W ) has finite second moment and is continuous at w a.s. μ. Then for any
ε > 0, there is jε large enough such that for j ≥ jε,

a(w) − ε≤ a(W ) ≤ a(w) + ε

a.s.μ forW ∈w+σ(j)S. Since δjw(W ) is nonnegative and nonzero only onW ∈w+σ(j)S
we have

a(w) − ε=E[{
a(w) − ε}δjw(W )

] ≤E[
a(W )δ

j
w(W )

] ≤E[{
a(w) + ε}δjw(W )

] = a(w) + ε,

for all j ≥ jε. The conclusion follows by ε being any positive number.

The choice of δjw(W ) in Lemma A1 is simply a device to help the limit of the Gateaux
derivative exist under as general conditions as possible. The limit, and hence the influ-
ence function, does not depend on the kernel. Also, we could replace the continuity of
a(w̃) at w in Assumption A2 with other conditions that are sufficient for equation (5) on
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a set of w with probability one under F0. Equation (5) is analogous to the Lebesgue dif-
ferentiation theorem that is known to hold under quite general conditions on a(w̃). For
example, for the δjw(w) of Lemma A1 equation (5) can be shown to hold for any measur-
able a(w̃) if μ is the sum of Lebesgue measure and a measure with a finite number of
atoms. We use the continuity condition of Assumption A2 because it is relatively simple
to state and because many influence functions will be μ almost sure continuous on a set
of w that has probability one.

The next result shows that the influence function formula (5) is valid forHj
w as spec-

ified in equation (2).

Theorem A2. If Assumptions A1 and A2 are satisfied, θ̂ is asymptotically linear with in-
fluence function ψ(w̃), θ̂ is locally regular for Fjτ(w̃) = (1 − τ)F0(w̃) + τH

j
w(w̃) for each

integer j and Hj
w(w̃) = E[1(W ≤ w̃)δj(W )], and ψ(w̃) is μ almost surely continuous at w,

then dθ(F
j
τ )/dτ exists, dθ(F

j
τ )/dτ = ∫

ψ(w̃)H
j
w(dw̃), and equation (5) is satisfied.

Proof. By S(w̃) = δjw(w̃) − 1 bounded, there is an open set T containing zero such that
for all τ ∈ T , 1 + τS(w̃) is positive, bounded away from zero, and fτ(w̃)1/2 = f0(w̃)1/2[1 +
τS(w̃)]1/2 is continuously differentiable in τ with

sτ(w̃) = d

dτ
f0(w̃)1/2[1 + τS(w̃)

]1/2 = 1
2
f0(w̃)1/2S(w̃)[
1 + τS(w̃)

]1/2 ≤ Cf0(w̃)1/2S(w̃).

By S(w̃) bounded,
∫

[Cf0(w̃)1/2S(w̃)]2 dμ<∞. Then by the dominated convergence the-
orem f0(w̃)1/2[1+τS(w̃)]1/2 is mean-square differentiable and I(τ) = ∫

sτ(w̃)2 dμ is con-
tinuous in τ on a neighborhood of zero. By Assumption A1, S(W ) is not zero so that
I(τ)> 0. Then by Theorem A2 and Example 6.5 of Van der Vaart (1998), it follows that for
any τn =O(1/

√
n) a vector of n observations (W1, � � � ,Wn ) that is i.i.d. with pdf fτn(w̃) is

contiguous to (W1, � � � ,Wn ) that is i.i.d. with pdf f0(w̃). Therefore,

√
n(θ̂− θ0 ) = 1√

n

n∑
i=1

ψ(Wi ) + op(1)

holds when (W1, � � � ,Wn ) are i.i.d. with pdf fτn(w̃).

Next define μjw =E[ψ(W )S(W )] =E[ψ(W )δ
j
w(W )]. Then by E[ψ(W )] = 0,

Eτ
[
ψ(W )

] = τμjw.

Suppose (W1, � � � ,Wn ) are i.i.d. with pdf fτn(w̃). Let θ(τ) = θ((1−τ)F0 +τGjw ), θn = θ(τn ),

and ψ̆n(W ) =ψ(W ) − τnμjw. Adding and subtracting terms,
√
n(θ̂− θn ) = √

n(θ̂− θ0 ) − √
n(θn − θ0 )

= 1√
n

n∑
i=1

ψ(Wi ) + op(1) − √
n(θn − θ0 )

= 1√
n

n∑
i=1

ψ̆n(Wi ) + op(1) + √
nτnμ

j
w − √

n(θn − θ0 ).
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Note that Eτn[ψ̆n(W )] = 0. Also, by τn bounded,

Eτ
[
1
(∥∥ψ̆n(W )

∥∥ ≥M)∥∥ψ̆n(W )
∥∥2] ≤ CE[

1
(∥∥ψ̆n(W )

∥∥ ≥M)∥∥ψ̆n(W )
∥∥2]

≤ CE[
1
(∥∥ψ̆n(W )

∥∥ ≥M)(∥∥ψ(W )
∥∥2 +C)]

≤ CE[
1
(∥∥ψ(W )

∥∥ ≥M −C)(∥∥ψ(W )
∥∥2 +C)] −→ 0,

as M −→ ∞, so the Lindbergh–Feller condition for a central limit theorem is satisfied.
Furthermore, it follows by similar calculations that Eτn[ψ̆n(W )ψ̆n(W )T ] −→ V . There-

fore, by the Lindbergh–Feller central limit theorem,
∑n
i=1 ψ̆n(Wi )/

√
n

d−→ N(0, V ). By

local regularity,
√
n(θ̂− θn )

d−→N(0, V ) implying that

√
nτnμ

j
w − √

n(θn − θ0 ) −→ 0. (6)

Next, we follow the proof of Theorem 2.1 of Van der Vaart (1991). The above argu-
ment shows that local regularity implies that equation (6) holds for all τn = O(1/

√
n).

Consider any sequence rm −→ 0. Let nm be the subsequence such that

(1 + nm )−1/2 < rm ≤ n−1/2
m .

Let τn = rm for n= nm and τn = n−1/2 for n /∈ {n1, n2, � � �}. By construction, τn =O(1/
√
n),

so that eq (6) holds. Therefore, it also holds along the subsequence nm, so that

√
nmrm

{
μ
j
z − θ(rm ) − θ0

rm

}
= √

nmrmμ
j
z − √

nm
[
θ(rm ) − θ0

] −→ 0.

By construction
√
nmrm is bounded away from zero, so that μhz − [θ(rm ) − θ0]/rm −→ 0.

Since rm is any sequence converging to zero, it follows that θ(τ) is differentiable at τ = 0
with derivative μjz . The conclusion then follows by Assumption A2.

Let H∞
w be the CDF with Pr(W = w) = 1. Theorem A2 gives sufficient conditions for

equation (5), which is

ψ(w) =
∫
ψ(w̃)H∞

w (dw̃) = lim
H
j
w−→H∞

w

∫
ψ(w̃)H

j
w(dw̃),

where the first equality holds by definition of H∞
w . The second equality states that ψ(w)

is the Lebesgue derivative of
∫
ψ(w̃)H(dw̃) based on the regularity conditions of As-

sumptions A1 and A2 and the sequences of functions detailed there. This Lebesgue dif-
ferentiation conclusion justifies Step II of the Gateaux derivative calculation as simply
evaluating the Lebesgue derivative at a point. This evaluation will be valid with proba-
bility one under Assumptions A1 and A2.

We emphasize that the purpose of Theorem A2 is quite different than the results of
Bickel, Klaasen, Ritov, and Wellner (1993), Van der Vaart (1991), and other important
contributions to the semiparametric efficiency literature. Here, θ(F ) is not a parameter
of some semiparametric model. Instead, θ(F ) is associated with an estimator θ̂, being
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the probability limit of that estimator when F is a distribution that is unrestricted ex-
cept for regularity conditions, as in Newey (1994). Our goal is to use θ(F ) to calculate
the influence function of θ̂ under the assumption that θ̂ is asymptotically linear. The
purpose of Theorem A2 is to justify Steps I and II as a way to do that calculation. In con-
trast, the goal of the semiparametric efficiency literature is to find the efficient influence
function for a parameter of interest when F belongs to a family of distributions.

To highlight this contrast, note that the Gateaux derivative limit calculation can be
applied to obtain the influence function under misspecification while efficient influ-
ence function calculations generally impose correct specification. Indeed, the defini-
tion of θ(F ) requires that misspecification be allowed for, because θ(F ) is limit of the
estimator θ under all distributions F that are unrestricted except for regularity con-
dition. Of course, correct specification may lead to simplifications in the form of the
influence function. Such simplifications will be incorporated automatically when the
Gateaux derivative limit is taken at an F0 that satisfies model restrictions.

Theorem A2 is like Van der Vaart (1991, Theorem 2.1) in having differentiability of
θ(Fτ ) as a conclusion. It differs in restricting the paths to have the form (1 − τ)F0 + τHj

w.
Such a restriction on the paths actually weakens the local regularity hypothesis because
θ only has to be locally regular for a particular kind of path rather than the general class
of paths in Van der Vaart (1991). We note that this result allows for the distribution ofW
to have discrete components because the dominating measure μmay have atoms.

The weak nature of the local regularity condition highlights the strength of the
asymptotic linearity hypothesis. Primitive conditions for asymptotic linearity can be
quite strong and complicated. For example, it is known that asymptotic linearity of es-
timators with a nonparametric first step often requires some degree of smoothness in
the functions being estimated; see Ritov and Bickel (1990). Our purpose here is to by-
pass those conditions in order to justify the Gateaux derivative formula for the influence
function. The formula for the influence function can then be used in all the important
ways outlined in Section 2.

It is also common to bypass regularity conditions when calculating the influence
function or asymptotic variance of parametric estimators. There are well-known formu-
lae that allow us to do this, such as Hansen (1982) for GMM estimators. The Gateaux
derivative limit provides such a formula for semiparametric estimators. It provides an
influence function formula that will be valid “under sufficient regularity conditions”
analogously to the GMM formula for parametric estimators.

Appendix B: The influence function of semiparametric m estimators

In this Appendix, we give the general structure of the influence function for a semipara-
metric M-estimator and show that the first step influence function (FSIF) is zero for any
first step that maximizes the same objective function as does the parameter of interest.
A maximization (M) estimator satisfies

θ̂= arg max
θ∈B

Q̂(θ),
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for a function Q̂(θ) that depends on the data and parameters. M estimators have long
been studied. A more general type that is useful when Q̂(θ) is not continuous has Q̂(θ) ≥
supθ∈B Q̂(θ)− R̂, where the remainder R̂ is small in large samples. The plim θ(F ) of θ̂will
be the maximizer of the probability limit of Q̂(θ) under standard regularity conditions.
Thus, the influence function will depend only on the limit of the objective function and
so is not affected by whether θ̂ is an approximate or exact maximizer of Q̂(θ). The way
we give of calculating the influence function will work for many estimators of this form,
including those maximizing U-processes as considered by Sherman (1993).

We can use the Gateaux derivative to characterize the influence function for semi-
parametric M-estimators. LetQτ(θ) denote the plim of the objective function Q̂(θ) when
the CDF ofWi is Fτ . Then under standard regularity conditions the plim of θ̂ is

θτ = arg max
θ∈	

Qτ(θ).

Suppose that Qτ(θ) is twice continuously differentiable in θ and θτ is in the interior of
the parameter set. Then θτ satisfies the first-order conditions dQτ(θτ )/dθ = 0. By the
implicit function theorem, for 
= ∂2Q(θ0 )/∂θ∂θ′ we have

dθτ

dτ
= −
−1 ∂

2Qτ(θ0 )
∂τ∂θ

∣∣∣∣
τ=0

= −
−1 ∂

∂τ

{
∂Qτ(θ0 )
∂θ

}
.

Comparing this equation with equation (1), we see that the influence function ψ(w) of a
semiparametric M estimator can be calculated by evaluating the derivative with respect
to τ of dQτ(θ0 )/dθ at the distributionH∞

w with W =w and premultiplying by −
−1. For
ξ(W ), such that dQτ(θ0 )/dθ= ∫

ξ(w)H(dw) the influence function of θ̂ will be

ψ(W ) = −
−1ξ(W ).

This formula generalizes that of Newey (1994) for semiparametric GMM to M-estimation.
For M-estimators, certain nonparametric components of Q̂(θ) can be ignored in de-

riving the influence function. The ignorable components are those that have been “con-
centrated out,” meaning they have a plim that maximizes the plim of Q̂(θ). In such cases,
the dependence of these functions on θ captures the whole asymptotic effect of their es-
timation. To show this result, suppose that there is a function γ that depends on θ and
possibly other functions and a function Q̃τ(θ, γ) such thatQτ(θ) = Q̃τ(θ, γτ ) where

γτ = arg max
γ
Q̃τ(θ, γ).

Here, Q̃τ(θ, γτ ) is the plim of Q̂(θ) and γτ the plim of a nonparametric estimator on
which Q̂(θ) depends, when W has CDF Fτ . Since γτ maximizes over all γ it must maxi-
mize over τ̃ as the function γτ̃ varies. The first-order condition for maximization over τ̃
is

dQ̃τ(θ, γτ̃ )
dτ̃

∣∣∣∣
τ̃=τ

= 0.
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This equation holds identically in θ, so that we can differentiate both sides of the equal-
ity with respect to θ, evaluate at θ= θ0 and τ = 0, and interchange the order of differen-
tiation to obtain

∂2Q̃(θ0, γτ )
∂τ∂θ

= 0.

Then it follows by the chain rule that

∂2Q̃τ(θ0, γτ )
∂τ∂θ

= ∂2Q̃τ(θ0, γ0 )
∂τ∂θ

+ ∂2Q̃(θ0, γτ )
∂τ∂θ

= ∂2Q̃τ(θ0, γ0 )
∂τ∂θ

. (7)

That is, the influence function can be obtained by treating the limit γτ as if it were equal
to the true value γ0.

Equation (7) generalizes Proposition 2 of Newey (1994) and Theorem 3.4 of Ichimura
and Lee (2010) to objective functions that are not necessarily a sample average of a func-
tion of θ and γ. There are many important estimators included in this generalization.
One of those is NPIV where the residual includes both parametric and nonparametric
components. The result implies that estimation of the function of the nonparametric
component γ can be ignored in calculating the influence function of θ. Another inter-
esting estimator is partially linear regression with generated regressors. There the esti-
mation of the nonparametric component can also be ignored in deriving the influence
function, just as in Robinson (1988), though the presence of generated regressors will
often affect the influence function, as in Hahn and Ridder (2013, 2016) and Mammen,
Rothe, and Schienle (2012).

Appendix C: Endogenous orthogonality conditions with misspecification

In this Appendix, we derive the FSIF for endogenous orthgonality conditions under
overidentification and misspecification where

π̄(X ) = π(
ρ(W , γ0 )|X

) 
= 0.

The first-order conditions for γτ = arg minγ Eτ[πτ(ρ(W , γτ )|X )2] give

0 = Eτ
[
πτ

(
ρ(W , γτ )|X

)
πτ

(
vρτ(W )�(Z )|X

)]
= Eτ

[
πτ

(
ρ(W , γτ )|X

)
vρτ(W )�(Z )

]
for all � ∈ �,

identically in τ. Define α(X , �) := π(vρ(W )�(Z )|X ) for � ∈ �. Differentiating the previ-
ous identity with respect to τ gives for all � ∈ �,

0 = ∂

∂τ
E

[
πτ

(
ρ(W , γτ )|X

)
α(X , �)

] +
∫
φ1(w, �)H(dw) + Tvρ(�),

φ1(w, �) := π̄(X )vρ(W )�(Z ) −E[
π̄(X )vρ(W )�(Z )

]
,

Tvρ(�) := ∂

∂τ
E

[
π̄(X )vρτ(W )�(W )

]
.
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where vρ(W ) = vρ0(W ). Solving gives

∂

∂τ
E

[
πτ

(
ρ(W , γτ )|X

)
α(X , �)

] = −
∫
φ1(w, �)H(dw) − Tvρ(�) (8)

for all � ∈ �.
Next, we use the orthogonality condition for the projection that for all b ∈ B,

Eτ
[
ρ(W , γτ )b(X )

] =Eτ
[
πτ

(
ρ(W , γτ )|X

)
b(X )

]
.

Because A is a subset of B, it follows that

Eτ
[
ρ(W , γτ )α(X , �)

] =Eτ
[
πτ

(
ρ(W , γτ )|X

)
α(X , �)

]
for all � ∈ �,

identically in τ. Differentiating both sides of this identify with respect to τ and applying
the chain rule gives

∂

∂τ
Eτ

[
ρ(W , γτ )α(X , �)

] = ∂

∂τ
Eτ

[
π̄(X )α(X , �)

] + ∂

∂τ
E

[
πτ

(
ρ(W , γτ )|X

)
α(X , �)

]

= ∂

∂τ
Eτ

[
π̄(X )α(X , �)

] −
∫
φ1(w, �)H(dw) − Tvρ(�)

= −
∫
φ�(w, �)H(dw) − Tvρ(�),

φ�(w, �) = π̄(X )
{
vρ(X )�(Z ) − α(X , �)

}
,

for all � ∈ � where the second equality follows by equation (8) and the third equality
follows by E[π̄(X )α(X , �)] = E[π̄(X )vρ(W )�(Z )]. Applying the chain rule to the left-
hand side and solving then gives

− ∂

∂τ
E

[
ρ(W , γτ )α(X , �)

] = ∂

∂τ
Eτ

[
ρ(W , γ0 )α(X , �)

] +
∫
φ�(w, �)H(dw) + Tvρ(�)

=
∫ {
ρ(w, γ0 )α(x, �) +φ�(w, �)

}
H(dw) + Tvρ(�), (9)

for all � ∈ �, where the last equality follows by the first-order condition at τ = 0 that
implies E[ρ(W , γ0 )α(X , �)] = 0 for all �. Suppose that there exists bm such that the pro-
jection of bm on A is α(X , �m ) for some �m ∈ � and

�
(
vm(Z )|Z

) = −�(
vρ(W )bm(X )|Z

)
.

Then by γτ(Z ) ∈ �,

E
[
vm(Z )γτ(Z )

] = E
[
�

(
vm(Z )|Z

)
γτ(Z )

]
= −E[

�
(
vρ(W )bm(X )|Z

)
γτ(Z )

]
= −E[

vρ(W )bm(X )γτ(Z )
]

= −E[
bm(X )π

(
vρ(W )γτ(Z )|X

)]
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= −E[
α(X , �m )π

(
vρ(W )γτ(Z )|X

)]
= −E[

α(X , �m )vρ(W )γτ(Z )
]
. (10)

Then differentiating gives

∂

∂τ
E

[
m(W , γτ )

] = ∂

∂τ
E

[
vm(Z )γτ(Z )

]

= − ∂

∂τ
E

[
α(X , �m )vρ(W )γτ(Z )

]

= − ∂

∂τ
E

[
α(X , �m )ρ(W , γτ )

]

=
∫ {
ρ(w, γ0 )α(x, �m ) +φ�(w, �m )

}
H(dw) + Tvρ(�m )

where the first equality follows by Assumption 3, the second equality by equation (10),
the third equality by Assumption 4, and the fourth equality by equation (9). Combining
this last equation with the conditions on which it depends gives the following result.

Proposition C1. (i) If Assumptions 3–4 are satisfied; (ii) there exists bm(X ) and �m ∈ �
such that α(X , �m ) is the projection of bm(X ) on A and �(vm(Z )|Z ) = �(vρ(W )bm(X )|
Z ); and (iii) there is φρ(w) such that ∂E[π̄(X )vρτ(W )�m(W )]/∂τ = ∫

φρ(w)H(dw) then
the FSIF is

φ(w, γ, α) = α(x, �m )ρ(w, γ) + π̄(x)
{
vρ(x)�m(z) −π(

vρ(X )�m(Z )|X = x)} +φρ(w).

This expression for the FSIF contains the termφρ(w), which is the influence function
of E[π̄(X )vρτ(W )�m(Z )]. This φρ(w) need not exist. In particular, for quantile orthog-
onality conditions where vρτ(W ) depends on the conditional pdf of Y given Z and X
evaluated at the point Y = γ0(Z ) it seems that this φρ(w) generally does not exist. In
that case, the NPIV estimator may not be root-n consistent under misspecification. This
problem does not appear to be present for expectiles, where E[π̄(X )vρτ(W )�m(Z )] can
be shown to have an influence function.

Ai and Chen (2007, p. 40) gave an influence function for a function of the solution
to a conditional moment restriction under misspecification. In this case, the expression
given in Proposition 3 is analogous to that in Ai and Chen (2007). Proposition C1 gener-
alizes that expression to orthogonality conditions.
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