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Appendix A: Auxiliary results

One important feature of the sequence of data generating processes defined by P0
M is

that Q̂(θ�P) − Q0(θ�P) = Op(M
−1/2) as M → ∞ under {P0

M : M ≥ 1}. This is a direct
consequence of a weak law of large numbers for triangular arrays and P0

M being in the

M−1/2 neighborhood of P0. To see this, let EP0
M

[Q̂(θ�P)] be the expectation of Q̂(θ�P)

when the data generating process corresponds to P0
M , that is,
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M
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By a weak law of large numbers for triangular arrays, Q̂(θ�P) − EP0
M

[Q̂(θ�P)] p→ 0. For

given (θ�P), EP0
M

[Q̂(θ�P)] is a function of P0
M . Then a first-order Taylor expansion of

EP0
M

[Q̂(θ�P)] for values of P0
M around P0 gives

EP0
M
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] =
∑
y�x
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[
Ψ

(
y|x�θ�P

)]
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+
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Since
∑

y�x ln[Ψ(y|x�θ�P)]P0(y|x) = Q0(θ�P) and P0
M − P0 = cP/

√
M , we conclude that

Q̂(θ�P)−Q0(θ�P) =Op(M
−1/2) as M → ∞ under {P0

M : M ≥ 1}.

It will also be useful to characterize the asymptotic distribution of �θQ̂(ϑ0
M(P)�P), that

is, the gradient of the pseudo-maximum likelihood evaluated at ϑ0
M(P) given P. Let

Ω0
M�(ϑ0

M(P)�P)
and Ω0

(ϑ0(P)�P)
be defined as follows:
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Since �θQ
0
M�(ϑ0

M(P)�P)
= 0, a central limit theorem for triangular arrays gives

√
M�θQ̂(ϑ0

M(P)�P)
d→ Normal

(
0�Ω0

(ϑ0(P)�P)

)
� (A.6)

The following lemma is used to state the results from the main text.

Lemma A1 (Local Asymptotic Distribution of the Sample NPL Mapping). Let Assump-
tions 1 and 2 be satisfied and let P0

M = P0 + cP/
√
M for some unknown constant vector

cP. Then, for any P ∈ P, as M → ∞ under {P0
M : M ≥ 1}, the pseudo-maximum likelihood

estimator ϑ̂(P) has limiting distribution:

√
M

(
ϑ̂(P)−ϑ0

M(P)
) d→ ξϑ(P) ∼ Normal

(
0�Σϑ(P)

)
�

where Σϑ(P) ≡ [�2
θθQ

0
(ϑ0(P)�P)

]−1Ω0
(ϑ0(P)�P)

[�2
θθQ

0
(ϑ0(P)�P)

]−1. The mapping φ̂(P) = P −
ϕ̂(P) has a limiting distribution such that, as M → ∞ under {P0

M :M ≥ 1}:

√
M
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M(P)
) = −√

M
(
ϕ̂(P)−ϕ0

M(P)
) d→ ξϕ(P) ∼ Normal

(
0�Σϕ(P)

)
�

where Σϕ(P) ≡ �θΨ (ϑ0(P)�P)Σϑ(P)�θΨ
′
(ϑ0(P)�P)

, φ0
M(P) = P − ϕ0

M(P) and ϕ0
M(P) =

Ψ(ϑ0
M(P)�P).

Proof. The first part simply follows from standard pseudo-maximum likelihood
asymptotic arguments. To see this, consider a stochastic first-order expansion of
�θQ̂(ϑ̂(P)�P) = 0 around ϑ0

M(P):

0 = �θQ̂(ϑ0
M(P)�P) +�2

θθQ̂(ϑ0
M(P)�P)

(
ϑ̂(P)−ϑ0

M(P)
) +Op

(∥∥ϑ̂(P)−ϑ0
M(P)

∥∥2)
� (A.7)

Since Q̂(θ�P)−Q0(θ�P) =Op(M
−1/2), we have that(

�2
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0
(ϑ0
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By rearranging, we get

√
M

(
ϑ̂(P)−ϑ0

M(P)
) = −[

�2
θθQ

0
(ϑ0

M(P)�P)

]−1√
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M(P)�P)
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� (A.9)

The result follows from noting that
√
M�θQ̂(ϑ0

M(P)�P)
d→ Normal(0�Ω0

(ϑ0(P)�P)
) and θ0

M →
θ0 imply that �2

θθQ
0
(ϑ0

M(P)�P)
→ �2

θθQ
0
(ϑ0(P)�P)

. For the second result, notice that, by defi-

nition of the NPL mapping:
√
M
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M(P)
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M
(
Ψ

(
ϑ̂(P)�P

) −Ψ
(
ϑ0

M(P)�P
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(A.10)

which is therefore, given P, a continuous nonlinear transformation of a maximum-
likelihood estimator. A standard delta method argument combined with θ0

M → θ0 gives
the multivariate normal distribution of ξϕ(P) stated in Lemma A1.

Appendix B: Proofs of results in the main text

B.1 Proof of Lemma 1

(i) Proof of Lemma 1(A). For any P0
M in the sequence {P0

M : M ≥ 1}, we have that
ϕ0
M(P) = Ψ(ϑ0

M(P)�P) is a continuous mapping from P to itself. By Brouwer’s fixed-
point theorem, F0

M is nonempty for each P0
M . Therefore, the sequence {P0

M : M ≥ 1} de-
fines a sequence of nonempty sets {F0

M : M ≥ 1}. Since P0
M converges to P0, we have that

ϑ0
M(P)→ ϑ0(P), ϕ0

M(P) →ϕ0(P), and F0
M → F0.

Furthermore, every point in the set F0
M belongs to a small open ball around a point

in set F0. (For a proof of this result see Aguirregabiria and Mira (2007, pp. 46–47), Step 2
in the proof of consistency of the NPL estimator). Therefore, each fixed-point P0

M∗ in set
F0
M converges to a well-defined fixed point in the set F0, that we represent as P0∗.

(ii) Proof of Lemma 1(B). First, we show that ϕ0
M(P) =ϕ0(P)+ cϕ(P)/

√
M +o(M−1/2)

for some unknown vector of constants cϕ(P) and any P ∈ P. Since ϑ0
M(P) and ϑ0(P),

respectively, maximize Q0
M(θ�P) and Q0(θ�P), standard pseudo-likelihood arguments

can be used to show that

ϑ0
M(P) =ϑ0(P)− [

�2
θθQ

0
(ϑ0(P)�P)

]−1�θQM�(ϑ0(P)�P) +O
(∥∥ϑ0

M(P)−ϑ0(P)
∥∥2)

� (B.1)

Let Dϑ0(P) ≡ diag{Ψ(ϑ0(P)�P)}−1. Then we have that

�θQ
0
M�(ϑ0(P)�P)

=
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x�y
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Ψ
(
y|x�ϑ0(P)�P
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′
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Dϑ0(P)P0
M (B.2)

and similarly, �θQ
0
(ϑ0(P)�P)

= �θΨ
′
(ϑ0(P)�P)

Dϑ0(P)P0. Since �θQ
0
(ϑ0(P)�P)

= 0:

�θQM�(ϑ0(P)�P) =�θΨ
′
(ϑ0(P)�P)

Dϑ0(P)

(
P0
M − P0) =�θΨ

′
(ϑ0(P)�P)

Dϑ0(P)
cP√
M

� (B.3)
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We can therefore write ϑ0
M(P) =ϑ0(P)+ cϑ0(P)/

√
M + o(M−1/2) where

cϑ0(P) ≡ −[
�2
θθQ

0
(ϑ0(P)�P)

]−1�θΨ
′
(ϑ0(P)�P)

Dϑ0(P)cP� (B.4)

By definition, ϕ0
M(P) = Ψ(ϑ0

M(P)�P) and ϕ0(P) = Ψ(ϑ0(P)�P). By applying a standard
delta method argument, we have

ϕ0
M(P) =ϕ0(P)+�θΨ (ϑ0(P)�P)

(
ϑ0

M(P)−ϑ0(P)
) +O

(∥∥ϑ0
M(P)−ϑ0(P)

∥∥2)
(B.5)

and ϕ0
M(P)= ϕ0(P)+ cϕ(P)/

√
M + o(M−1/2) with cϕ(P) ≡�θΨ (ϑ0(P)�P)cϑ0(P).

Second, consider a first-order expansion of ϕ0
M(P0

M∗) around P0∗:

ϕ0
M

(
P0
M∗

) =ϕ0
M

(
P0∗

) +�ϕ0
M�(P0∗)

(
P0
M∗ − P0∗

) +O
(∥∥P0

M∗ − P0∗
∥∥2)

� (B.6)

Since ϕ0
M(P0

M∗) = P0
M∗ and ϕ0(P0∗) = P0∗, we can rewrite the previous equation as follows:[

I −�ϕ0
(P0∗)

](
P0
M∗ − P0∗

) =ϕ0
M

(
P0∗

) −ϕ0(P0∗
)

+ [
�ϕ0

M�(P0∗)
−�ϕ0

(P0∗)
](

P0
M∗ − P0∗

) +O
(∥∥P0

M∗ − P0∗
∥∥2)

� (B.7)

On the left-hand side, the matrix I − �ϕ0
(P0∗)

is generically invertible. On the right-hand

side, ϕ0
M(P0∗) − ϕ0(P0∗) = cϕ(P0∗)/

√
M + o(M−1/2) and [�ϕ0

M�(P0∗)
− �ϕ0

(P0∗)
](P0

M∗ − P0∗) ≤
O(‖P0

M∗ − P0∗‖2). Therefore, this equation implies that P0
M∗ = P0∗ + c∗

P/
√
M + o(M−1/2)

where

c∗
P ≡ [

I −�ϕ0
(P0∗)

]−1cϕ(P0∗)� (B.8)

To show θ0
M∗ = θ0∗ + c∗

θ/
√
M + o(M−1/2), we start by considering a first-order expan-

sion of �θQ
0
M�(θ0

M∗�P0
M∗)

= 0 around θ0∗ and P0∗:

0 = �θQ
0
M�(θ0∗�P0∗)

+�2
θθQ

0
M�(θ0∗�P0∗)

(
θ0
M∗ − θ0∗

)
+�2

θPQ
0
M�(θ0∗�P0∗)

(
P0
M∗ − P0∗

) +O
(∥∥P0

M∗ − P0∗
∥∥2)

� (B.9)

Notice that (�2
θθQ

0
M�(θ0∗�P0∗)

−�2
θθQ

0
(θ0∗�P0∗)

)(θ0
M∗ −θ0∗) ≤ O(‖P0

M∗ − P0∗‖2) and that similarly

(�2
θPQ

0
M�(θ0∗�P0∗)

−�2
θPQ

0
(θ0∗�P0∗)

)(P0
M∗ −P0∗)≤ Op(‖P0

M∗ −P0∗‖2). Furthermore, one can write

�θQ
0
M(θ0∗�P0∗)

=
∑
x�y

P0
M(y|x)
P0∗(y|x)

∂Ψ(y|x�θ�P)
∂θ

∣∣∣∣
(θ0∗�P0∗)

=�θΨ
′
(θ0∗�P0∗)

D0∗P0
M� (B.10)

�θQ
0
(θ0∗�P0∗)

=
∑
x�y

P0(y|x)
P0∗(y|x)

∂Ψ(y|x�θ�P)
∂θ

∣∣∣∣
(θ0∗�P0∗)

=�θΨ
′
(θ0∗�P0∗)

D0∗P0 = 0� (B.11)
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where D0∗ ≡ diag{P0∗}−1. We can therefore write

θ0
M∗ = θ0∗ − [

�2
θθQ

0
(θ0∗�P0∗)

]−1{�2
θPQ

0
(θ0∗�P0∗)

(
P0
M∗ − P0∗

)
+�θΨ

′
(θ0∗�P0∗)

D0∗
(
P0
M − P0)} +O

(∥∥P0
M∗ − P0∗

∥∥2)
� (B.12)

This last expression leads to θ0
M∗ = θ0∗ + c∗

θ/
√
M + o(M−1/2) where

c∗
θ ≡ −[

�2
θθQ

0
(θ0∗�P0∗)

]−1{�2
θPQ

0
(θ0∗�P0∗)

c∗
P +�θΨ

′
(θ0∗�P0∗)

D0∗cP
}
� (B.13)

(iii) Proof of Lemma 1(C). Following Aguirregabiria and Mira (2007, pp. 46–47), we
can establish that, with probability approaching one, any element P̂∗ in the set F̂ belongs
to a small open ball around an element in the set F0

M , that we denote as P0
M∗. Therefore,

under the data generating process P0
M , we have that P̂∗

p→ P0
M∗.

Using an argument similar as in the proof of Lemma 1(B), but based on a first-order
expansion of φ̂(P̂∗) = 0 around P0

M∗:

P̂∗ − P0
M∗ = −[

�φ0
(P0∗)

]−1(
φ̂

(
P0
M∗

) −φ0
M

(
P0
M∗

)) +Op
(∥∥P̂∗ − P0

M∗
∥∥2)

� (B.14)

By applying Lemma A1,
√
M(φ̂(P0

M∗) − φ0
M(P0

M∗))
d→ ξϕ(P0

M∗). Moreover, since P0
M∗ →

P0∗, ξϕ(P0
M∗) has the same asymptotic distribution as ξϕ(P0∗), that is, Normal(0�Σϕ(P0∗)).

We therefore obtain
√
M(P̂∗ − P0

M∗)
d→ ξP(P0∗) where ξP(P0∗) = −[�φ0

(P0∗)
]−1ξϕ(P0∗) is a

vector of normal variables with zero means. To derive the asymptotic distribution of
θ̂∗ − θ0

M∗, consider the following expansion of �θQ̂(θ̂∗�P̂∗) = 0 around θ0
M∗ and P0

M∗:

0 = �θQ̂(θ0
M∗�P0

M∗)
+�2

θθQ̂(θ0
M∗�P0

M∗)
(
θ̂∗ − θ0

M∗
)

+�2
θPQ̂(θ0

M∗�P0
M∗)

(
P̂∗ − P0

M∗
) +Op

(∥∥P̂∗ − P0
M∗

∥∥2)
� (B.15)

Let the empirical measure be denoted by P. More precisely, let

P=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P(y|x) =

M∑
m=1

1{ym = y}1{xm = x}

M∑
m=1

1{xm = x}
: y ∈ YN�x ∈X

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(B.16)

with the elements of P ordered in the same way as in P. A triangular array central limit
theorem can be used to show that, as M → ∞ under {P0

M :M ≥ 1}:

√
M

(
P− P0

M

) d→ ξP ∼ Normal(0�ΣP)� (B.17)

The variance-covariance matrix ΣP is a block diagonal matrix with x-specific blocks cor-
responding to

1

P0(x)

[
diag

{
P0(y|x)} − P0(y|x)P0(y|x)′]� (B.18)
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where P0(x) is the probability of observing x under P0 and covariances between P(y|x)
for different values of x are 0. Once again using arguments similar as in the proof of 1(B),
we can write

0 =�θΨ
′
(θ0∗�P0∗)

D0∗
(
P− P0

M

) +�2
θθQ

0
(θ0∗�P0∗)

(
θ̂∗ − θ0

M∗
)

+�2
θPQ

0
(θ0∗�P0∗)

(
P̂∗ − P0

M∗
) +Op

(∥∥P̂∗ − P0
M∗

∥∥2)
� (B.19)

Solving for θ̂∗ − θ0
M∗, provided that �2

θθQ
0
(θ0∗�P0∗)

is invertible, one gets

θ̂∗ − θ0
M∗ = −[

�2
θθQ

0
(θ0∗�P0∗)

]−1{�2
θPQ

0
(θ0∗�P0∗)

(
P̂∗ − P0

M∗
)

+�θΨ
′
(θ0∗�P0∗)

D0∗
(
P− P0

M

)} +Op
(∥∥P̂∗ − P0

M∗
∥∥2)

� (B.20)

As M → ∞ under {P0
M :M ≥ 1}, we have that

√
M(P̂∗ − P0

M∗)
d→ ξP(P0∗). It follows that

√
M

(
θ̂M∗ − θ0

M∗
) d→ ξθ

(
P0∗

)
� (B.21)

where ξθ(P0∗) = −[�2
θθQ

0
(θ0∗�P0∗)

]−1[�2
θPQ

0
(θ0∗�P0∗)

ξP(P0∗)+�θΨ
′
(θ0∗�P0∗)

D0∗ξP], which follows a

mean-zero multivariate distribution since both ξP(P0∗) and ξP follow mean-zero multi-
variate normal distributions.

(iv) Proof of Lemma 1(D). It simply follows from noting that

P̂∗ − P0∗ = P̂∗ − P0
M∗ + P0

M∗ − P0∗� (B.22)

Lemmas 1(C) and 1(B) imply that P̂∗
p→ P0

M∗ and P0
M∗ → P0∗, respectively. It follows that

P̂∗
p→ P0∗ as required. A similar argument shows that θ̂∗

p→ θ0∗.

B.2 Proof of Lemma 2

As shown in the proof of Lemma 1, for any point P̂∗ in the set F̂ there exists P0
M∗ ∈ F0

M

and P0∗ ∈ F0 such that, as M → ∞, we have that P̂∗
p→ P0

M∗, and P0
M∗ → P0∗.

(i) Proof of Lemma 2(A). We can write

ρ0
M∗ − ρ0∗ = ρ0

M∗ − ρ
(
�ϕ0

M�(P0∗)
) + ρ

(
�ϕ0

M�(P0∗)
) − ρ0∗� (B.23)

A standard delta method argument implies that

ρ0
M∗ − ρ

(
�ϕ0

M�(P0∗)
) = �Pρ

0
(P0∗)

′(
P0
M∗ − P0∗

) +O
(∥∥P0

M∗ − P0∗
∥∥2)

(B.24)

= �Pρ
0
(P0∗)

′ c∗
P√
M

+ o
(
M−1/2)� (B.25)
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where �Pρ
0
(P0∗)

is the derivative of ρ(�ϕ0
(P)) with respect to P evaluated at P0∗. Another

delta method argument implies that

ρ
(
�ϕ0

M�(P0∗)
) − ρ0∗ = vec

[
�ρ0

(P0∗)
]′ vec

[
�ϕ0

M�(P0∗)
−�ϕ0

(P0∗)
]

+Op
(∥∥�ϕ0

M�(P0∗)
−�ϕ0

(P0∗)
∥∥2)

� (B.26)

where �ρ0
(P0∗)

is the derivative of ρ(�ϕ0
(P)) with respect to the elements of �ϕ0

(P) evalu-

ated at P0∗. Let �2
jΨ (ϑ0(P)�P) be the derivative of �ϕ0

(P) = �Ψ(ϑ0(P)�P) with respect to

the jth element of θ evaluated at (ϑ0(P)�P). Once again using the delta method leads to

�ϕ0
M�(P) −�ϕ0

(P) =
J∑

j=1

�2
jΨ (ϑ0(P)�P)

(
ϑ0
M�j(P)−ϑ0

j (P)
)

+Op
(∥∥(

ϑ0
M(P)−ϑ0(P)

)∥∥2)
� (B.27)

It follows that

ρ
(
�ϕ0

M�(P0∗)
) − ρ0∗ = vec

[
�ρ0

(P0∗)
]′ vec

[
J∑

j=1

�2
jΨ (ϑ0(P)�P)

cϑ0(P)�j√
M

]
+ o

(
M−1/2)� (B.28)

where cϑ0(P)�j is the jth element of the vector cϑ0(P). By using (B.23), (B.25), and (B.28),

we have that ρ0
M∗ = ρ0∗ + c∗

ρ/
√
M + o(M−1/2) where

c∗
ρ = �Pρ

0
(P0∗)

′
c∗

P + vec
[
�ρ0

(P0∗)
]′ vec

[
J∑

j=1

�2
jΨ (ϑ0(P)�P)cϑ0(P)�j

]
� (B.29)

(ii) Proof of Lemma 2(B). The random variable
√
M(ρ̂∗ − ρ0

M∗) is equivalent to

√
M

(
ρ̂∗ − ρ0

M∗
) = √

M
(
ρ̂∗ − ρ(�ϕ̂(P0

M∗)
)
) + √

M
(
ρ(�ϕ̂(P0

M∗)
)− ρ0

M∗
)
� (B.30)

Similarly, as in the proof of Lemma 2(A), the result follows from several applications of
delta method arguments. First, notice that

√
M

(
ρ̂∗ − ρ(�ϕ̂(P0

M∗)
)
) =�Pρ

0
(P0∗)

′√
M

(
P̂∗ − P0

M∗
) +Op

(√
M

∥∥P̂∗ − P0
M∗

∥∥2)
� (B.31)

Using Lemma 1(C), we have that as M → ∞ under {P0
M :M ≥ 1}:

√
M

(
ρ̂∗ − ρ(�ϕ̂(P0

M∗)
)
) d→�Pρ

0
(P0∗)

′
ξP

(
P0∗

)
� (B.32)

Second, we can write
√
M

(
ρ(�ϕ̂(P0

M∗)
)− ρ0

M∗
) = vec

[
�ρ0

(P0∗)
]′ vec

[√
M

(
�ϕ̂(P0

M∗)
−�ϕ0

M�(P0
M∗)

)]
+Op

(√
M

∥∥�ϕ̂(P0
M∗)

−�ϕ0
M�(P0

M∗)
∥∥2)

� (B.33)
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where

√
M

(
�ϕ̂(P) −�ϕ0

M�(P)

) =
J∑

j=1

�2
jΨ (ϑ0(P)�P)

√
M

(
ϑ̂j(P)−ϑ0

M�j(P)
)

+Op
(√

M
∥∥(
ϑ̂(P)−ϑ0

M(P)
)∥∥2)

� (B.34)

Then, considering P = P0
M∗ and noting that �2

jΨ (θ0
M∗�P0

M∗)
→�2

jΨ (θ0∗�P0∗), Lemma A1 gives

√
M

(
�ϕ̂(P0

M∗)
−�ϕ0

M�(P0
M∗)

) d→
J∑

j=1

�2
jΨ (θ0∗�P0∗) ξϑj

(
P0∗

)
� (B.35)

where ξϑj(P0∗) is the jth element of ξϑ(P0∗).

By combining equations (B.30), (B.32), and (B.35),
√
M(ρ̂∗ − ρ0

M∗)
d→ ξρ(P0∗) where

ξρ(P0∗) is equal to

�Pρ
0
(P0∗)

′
ξP

(
P0∗

) + vec
[
�ρ0

(P0∗)
]′ [vec

[
�2

1Ψ (θ0∗�P0∗)
]
� � � � � vec

[
�2
JΨ (θ0∗�P0∗)

]]
ξϑ

(
P0∗

)
� (B.36)

Since ξP(P0∗) and ξϑ(P0∗) are normally distributed and centered at vectors of 0’s, we con-
clude that

√
M(ρ̂∗ − ρ0

M∗) follows a normal distribution centered at 0. The variance of
this distribution is denoted σ2

ρ0∗
.

(iii) Proof of Lemma 2(C). Under {P0
M : M ≥ 1}, we have that

lim
M→∞

Pr
(
ρ̂∗ > ρ0∗

) =


(
−

lim
M→∞

√
M

[
ρ0∗ − ρ0

M∗
]

σρ0∗

)
�

Since ρ0
M∗ = ρ0∗ + c∗

ρ/
√
M + o(M−1/2), the probability simplifies to 
(c∗

ρ/σρ0∗).

B.3 Proof of Proposition 1

(i) Proof of Proposition 1(A). The fact that θ̂FP exists if min{ρ̂NPL� ρ̂∗} < 1 directly follows
from (21). To derive the limit of the probability Pr(EM) = Pr(min{ρ̂NPL� ρ̂∗} < 1) as M →
∞, we write this probability as

Pr
(
min

{√
M

(
ρ̂NPL − ρ0)�√M

(
ρ̂∗ − ρ0∗

) + √
M

(
ρ0∗ − ρ0)} <√

M
(
1 − ρ0))� (B.37)

Notice that
√
M(ρ̂NPL − ρ0

M) = √
M(ρ̂NPL − ρ0) − c0

ρ + o(1). Since
√
M(ρ̂NPL − ρ0

M)
d→

ξρ(P0), we can write
√
M(ρ̂NPL − ρ0) → ξρ(P0)+ c0

ρ. Similarly,
√
M(ρ̂∗ − ρ0∗) → ξρ(P0∗)+

c∗
ρ. Using ρ0 = 1, and defining δ(ρ0∗) ≡ limM→∞

√
M(ρ0∗ − 1), we have that

lim
M→∞

Pr(EM)= Pr
(
min

{
ξρ

(
P0) + c0

ρ�ξρ
(
P0∗

) + c∗
ρ + δ

(
ρ0∗

)}
< 0

)
� (B.38)

The limiting probability of EM therefore depends on ρ0∗ via δ(ρ0∗). If ρ0∗ < 1, δ(ρ0∗) = −∞
and limM→∞ Pr(EM) = 1. If ρ0∗ = 1, δ(ρ0∗) = ∞ × 0 = 0, such that limM→∞ Pr(EM) =
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Pr(min{ξρ(P0) + c0
ρ�ξρ(P0∗) + c∗

ρ} < 0). Finally, if ρ0∗ > 1, we have that δ(ρ0∗) = ∞ and

min{ξρ(P0) + c0
ρ�ξρ(P0∗) + c∗

ρ + δ(ρ0∗)} can only be strictly inferior to 0 if ξρ(P0) + c0
ρ < 0,

that is, limM→∞ Pr(EM)= Pr(ξρ(P0)+ c0
ρ < 0).

(ii) Proof of Proposition 1(B). Using (21), we can write Pr(
√
M(θ̂FP − θ0

M) ∈B|EM) as

Pr
(√

M
(
θ̂FP − θ0

M

) ∈B�EM

)
Pr(EM)

= Pr
(√

M
(
θ̂NPL − θ0

M

) ∈B� ρ̂NPL < 1
)

Pr(EM)

+ Pr
(√

M
(
θ̂∗ − θ0

M

) ∈ B� ρ̂NPL ≥ 1� ρ̂∗ < 1
)

Pr(EM)
� (B.39)

For ρ0 = 1, this expression is equivalent to

Pr
(√

M
(
θ̂NPL − θ0

M

) ∈B|√M(ρ̂NPL − 1) < 0
)

Pr
(√

M(ρ̂NPL − 1) < 0|EM

)
+ Pr

(√
M

(
θ̂∗ − θ0

M

) ∈B|√M(ρ̂NPL − 1)≥ 0�
√
M

(
ρ̂∗ − ρ0∗

)
<

√
M

(
1 − ρ0∗

))
× Pr

(√
M(ρ̂NPL − 1) ≥ 0�

√
M

(
ρ̂∗ − ρ0∗

)
<

√
M

(
1 − ρ0∗

)|EM

)
� (B.40)

Notice that
√
M(θ̂∗ − θ0

M) = √
M(θ̂∗ − θ0

M∗)+ √
M(θ0

M∗ − θ0
M). As M → ∞, we have that√

M(θ̂NPL − θ0
M)

d→ ξθ(P0) and
√
M(θ̂∗ − θ0

M∗)
d→ ξθ(P0∗). Moreover, from the proof of

Proposition 1(A), we have that
√
M(ρ̂NPL −1) → ξρ(P0)+c0

ρ and
√
M(ρ̂∗−ρ0∗)→ ξρ(P0∗)+

c∗
ρ. Therefore, as M → ∞, we can write (B.40) as

Pr
(
ξθ

(
P0) ∈B|ξρ

(
P0) + c0

ρ < 0
)Pr

(
ξρ

(
P0) + c0

ρ < 0
)

lim
M→∞

Pr(EM)

+ Pr
(
ξθ

(
P0∗

) + lim
M→∞

√
M

(
θ0
M∗ − θ0

M

) ∈B
∣∣ξρ(P0) + c0

ρ ≥ 0� ξρ
(
P0∗

) + c∗
ρ < −δ

(
ρ0∗

))
× Pr

(
ξρ

(
P0) + c0

ρ ≥ 0� ξρ
(
P0∗

) + c∗
ρ < −δ

(
ρ0∗

))
lim

M→∞
Pr(EM)

� (B.41)

where limM→∞ Pr(EM) has been derived in Proposition 1(A). The limiting distribution

limM→∞ Pr(
√
M(θ̂FP −θ0

M) ∈B|EM) therefore also depends on ρ0∗ via δ(ρ0∗). If ρ0∗ < 1, we

have that δ(ρ0∗) = −∞, limM→∞ Pr(EM) = 1 and ξρ(P0∗) + c∗
ρ < −δ(ρ0∗) is realized with

probability 1, such that limM→∞ Pr(
√
M(θ̂FP − θ0

M) ∈B|EM) is

Pr
(
ξθ

(
P0) ∈ B|ξρ

(
P0) + c0

ρ < 0
)

Pr
(
ξρ

(
P0) + c0

ρ < 0
)

+ Pr
(
ξθ

(
P0∗

) + lim
M→∞

√
M

(
θ0
M∗ − θ0

M

) ∈B
∣∣ξρ(P0) + c0

ρ ≥ 0
)

× Pr
(
ξρ

(
P0) + c0

ρ ≥ 0
)
� (B.42)
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If ρ0∗ = 1, then δ(ρ0∗) = 0 and limM→∞ Pr(EM) = Pr(min{ξρ(P0) + c0
ρ�ξρ(P0∗) + c∗

ρ} < 0)

such that limM→∞ Pr(
√
M(θ̂FP − θ0

M) ∈B|EM) is

Pr
(
ξθ

(
P0) ∈B|ξρ

(
P0) + c0

ρ < 0
) Pr

(
ξρ

(
P0) + c0

ρ < 0
)

Pr
(
min

{
ξρ

(
P0) + c0

ρ�ξρ
(
P0∗

) + c∗
ρ

}
< 0

)
+ Pr

(
ξθ

(
P0∗

) + lim
M→∞

√
M

(
θ0
M∗ − θ0

M

) ∈ B
∣∣ξρ(P0) + c0

ρ ≥ 0� ξρ
(
P0∗

) + c∗
ρ < 0

)
× Pr

(
ξρ

(
P0) + c0

ρ ≥ 0� ξρ
(
P0∗

) + c∗
ρ < 0

)
Pr

(
min

{
ξρ

(
P0) + c0

ρ�ξρ
(
P0∗

) + c∗
ρ

}
< 0

) � (B.43)

Finally, if ρ0∗ > 1, we have that δ(ρ0∗) = ∞, limM→∞ Pr(EM) = Pr(ξρ(P0) + c0
ρ < 0) and

Pr(ξρ(P0) + c0
ρ ≥ 0� ξρ(P0∗) + c∗

ρ < −δ(ρ0∗)) = 0. As a result, the limiting distribution

limM→∞ Pr(
√
M(θ̂FP − θ0

M) ∈ B|EM) is

Pr
(
ξθ

(
P0) ∈B|ξρ

(
P0) + c0

ρ < 0
)
� (B.44)

Appendix C: Additional simulation results

C.1 Summary statistics from simulated data

Table C1 reports summary statistics using simulated data for Experiments I. These statis-
tics are based on simulated firms’ decisions in 50,000 markets drawn from the ergodic
distribution of the state variables. Besides potentially affecting the convergence proper-
ties of the NPL algorithm, the value of the strategic interaction parameter has important
economic implications. Increasing the value of the strategic interaction parameter con-
siderably reduces the average number of active firms, generating larger reductions in

Table C1. Competition statistics—Experiments I.

Very Stable Mildly Stable Mildly Unstable Very Unstable

Number of active firms
Average 2�7652 1�9939 1�7646 1�2225
Std. dev. 1�6622 1�4320 1�3233 1�0024

AR(1) parameter for number of active firms 0�7070 0�5691 0�5095 0�3519
Average number of entries 0�6917 0�7473 0�7278 0�5492
Average number of exits 0�6933 0�7569 0�7349 0�5558
Average excess turnover 0�4600 0�5110 0�4896 0�2879
Correlation between entries and exits −0�1743 −0�2225 −0�2141 −0�1854
Probabilities of being active

Firm 1 0�4993 0�3222 0�2676 0�1239
Firm 2 0�5222 0�3552 0�3032 0�1457
Firm 3 0�5536 0�3975 0�3492 0�1871
Firm 4 0�5797 0�4363 0�3953 0�2689
Firm 5 0�6103 0�4827 0�4493 0�4968

Note: Statistics computed using M = 50,000 markets drawn from the ergodic distribution of the state variables. Excess
turnover defined as (# entries + # exits)− abs(# entries − # exits).
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Table C2. Competition statistics—Experiments II.

Eq (i) Eq (ii) Eq (iii)

Number of active firms
Average 1�0247 1�1559 1�1621
Std. dev. 0�6027 0�6394 0�6371

AR(1) parameter for number of active firms 0�0160 0�0216 0�0184
Average number of entries 0�3351 0�3331 0�3308
Average number of exits 0�3374 0�3338 0�3302
Average excess turnover 0�0938 0�0567 0�0547
Correlation between entries and exits −0�2262 −0�2603 −0�2580
Probabilities of being active

Firm 1 0�7690 0�6009 0�5824
Firm 2 0�2557 0�5550 0�5797

Note: Statistics computed using M = 50,000 markets drawn from the ergodic distribution
of the state variables. Excess turnover defined as (# entries+# exits)−abs(# entries−# exits).

the probabilities of being active for the firms with larger fixed costs. Interestingly, the
effect on the number of entry and exits is nonmonotonic: these numbers are larger for
the “mildly stable” and the “mildly unstable” cases than the other two data generating
processes.

Table C2 reports the same competition statistics but for Experiments II, using also
50,000 simulated markets.

C.2 Average estimates and standard errors with larger sample

Table C3 reports average estimates and standard errors of the estimators of interest in
Experiment I for M = 5000.

C.3 Using the frequency estimator as a single set of starting values

In this section, we investigate whether using multiple starting values to initiate the dif-
ferent algorithms studied is necessary for the relative good properties of the spectral
approach. To do so, we compute the estimates one would have obtained in our simula-
tion exercises when considering the frequency count estimator of the conditional choice
probabilities as the only set of starting values. We study how this modification affects the
average estimates and the convergence rate of the algorithms. More precisely, for each
data generating process and each algorithm, we compute the absolute value of the bias
estimated by Monte Carlo simulations and we average this absolute bias over the pa-
rameters to obtain a scalar measurement. Tables C4 and C5 report the relative average
absolute bias, that is, the computed average absolute bias obtained when using a single
set of starting values divided by the one computed from multiple starting values. The
relative convergence rates are computed in a similar way: the fraction of Monte Carlo
samples which have reached convergence when using a single set of starting values di-
vided by the same fraction obtained when using multiple ones.

From Experiments I’s results, using the frequency count estimator as a single set of
starting values barely affects the estimated values of the parameters obtained from the
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Table C3. Simulation results—M = 5000, Experiments I.

θRS = 1 θRN θEC = 1 θFC�1 = 1�9 θFC�2 = 1�8 θFC�3 = 1�7 θFC�4 = 1�6 θFC�5 = 1�5

Two-step estimates
Very stable
(θRN = 1)

0�8582 0�6470 1�0103 1�8658 1�7711 1�6749 1�5787 1�4808
(0�0625) (0�1857) (0�0362) (0�0676) (0�0660) (0�0650) (0�0611) (0�0574)

Mildly stable
(θRN = 2)

0�7061 0�9286 1�0448 1�8907 1�7799 1�6712 1�5544 1�4374
(0�0641) (0�2325) (0�0341) (0�0612) (0�0605) (0�0563) (0�0550) (0�0567)

Mildly unstable
(θRN = 2�4)

0�6673 1�0634 1�0694 1�8909 1�7729 1�6559 1�5326 1�4046
(0�0638) (0�2491) (0�0358) (0�0634) (0�0617) (0�0593) (0�0588) (0�0595)

Very unstable
(θRN = 4)

0�6637 2�0699 1�2045 1�9440 1�8264 1�6964 1�5181 1�2030
(0�0540) (0�2830) (0�0528) (0�0864) (0�0820) (0�0778) (0�0777) (0�0845)

Converged K = 100 NPL fixed-point algorithm estimates
Very stable
(θRN = 1)

1�0032 1�0086 1�0007 1�9010 1�8019 1�7016 1�6012 1�5004
(0�0659) (0�2052) (0�0355) (0�0661) (0�0664) (0�0642) (0�0600) (0�0582)

Mildly stable
(θRN = 2)

0�9608 1�8540 1�0162 1�9035 1�7994 1�6997 1�5947 1�4916
(0�0638) (0�2294) (0�0349) (0�0640) (0�0653) (0�0590) (0�0606) (0�0612)

Mildly unstable
(θRN = 2�4)

0�9027 2�0002 1�0420 1�9075 1�7972 1�6922 1�5834 1�4706
(0�0402) (0�1467) (0�0321) (0�0663) (0�0643) (0�0653) (0�0637) (0�0649)

Very unstable
(θRN = 4)

– – – – – – – –
(–) (–) (–) (–) (–) (–) (–) (–)

All K = 100 NPL fixed-point algorithm estimates
Very stable
(θRN = 1)

1�0032 1�0086 1�0007 1�9010 1�8019 1�7016 1�6012 1�5004
(0�0659) (0�2052) (0�0355) (0�0661) (0�0664) (0�0642) (0�0600) (0�0582)

Mildly stable
(θRN = 2)

0�9963 1�9875 1�0038 1�9005 1�7990 1�7010 1�5988 1�4994
(0�0806) (0�2944) (0�0387) (0�0661) (0�0664) (0�0622) (0�0625) (0�0647)

Mildly unstable
(θRN = 2�4)

0�9696 2�2761 1�0123 1�8991 1�7949 1�6953 1�5947 1�4954
(0�0508) (0�1927) (0�0353) (0�0699) (0�0685) (0�0661) (0�0666) (0�0681)

Very unstable
(θRN = 4)

0�7667 2�6684 1�2213 1�8942 1�7736 1�6647 1�4770 1�2901
(0�0240) (0�0603) (0�0338) (0�0820) (0�0791) (0�0760) (0�0744) (0�0678)

All K = 100 relaxation algorithm estimates
Very stable
(θRN = 1)

1�0129 1�0378 0�9993 1�8993 1�8005 1�7006 1�6005 1�5002
(0�0687) (0�2137) (0�0357) (0�0665) (0�0667) (0�0645) (0�0603) (0�0584)

Mildly stable
(θRN = 2)

1�0437 2�1589 0�9883 1�9065 1�8075 1�7121 1�6132 1�5175
(0�0960) (0�3500) (0�0434) (0�0674) (0�0680) (0�0643) (0�0652) (0�0683)

Mildly unstable
(θRN = 2�4)

1�0603 2�6356 0�9749 1�9147 1�8164 1�7223 1�6274 1�5340
(0�1004) (0�3943) (0�0522) (0�0730) (0�0728) (0�0724) (0�0750) (0�0800)

Very unstable
(θRN = 4)

1�0273 4�1534 0�9728 1�9020 1�8023 1�7095 1�6205 1�5462
(0�0418) (0�2011) (0�0487) (0�0926) (0�0897) (0�0869) (0�0854) (0�0891)

All K = 100 spectral algorithm estimates
Very stable
(θRN = 1)

1�0032 1�0086 1�0007 1�9010 1�8019 1�7016 1�6012 1�5004
(0�0659) (0�2052) (0�0355) (0�0661) (0�0664) (0�0642) (0�0600) (0�0582)

Mildly stable
(θRN = 2)

0�9990 1�9970 1�0029 1�9010 1�7996 1�7016 1�5993 1�4997
(0�0853) (0�3117) (0�0399) (0�0661) (0�0665) (0�0624) (0�0628) (0�0650)

Mildly unstable
(θRN = 2�4)

1�0035 2�4121 0�9991 1�9049 1�8027 1�7042 1�6037 1�5034
(0�0886) (0�3486) (0�0465) (0�0708) (0�0701) (0�0689) (0�0706) (0�0736)

Very unstable
(θRN = 4)

0�9993 3�9922 1�0025 1�9046 1�8019 1�7036 1�6020 1�5008
(0�0432) (0�2132) (0�0497) (0�0912) (0�0882) (0�0852) (0�0838) (0�0880)

(Continues)
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Table C3. Continued.

θRS = 1 θRN θEC = 1 θFC�1 = 1�9 θFC�2 = 1�8 θFC�3 = 1�7 θFC�4 = 1�6 θFC�5 = 1�5

Spectral solver estimates
Very stable
(θRN = 1)

1�0031 1�0082 1�0008 1�9011 1�8019 1�7017 1�6013 1�5004
(0�0659) (0�2052) (0�0355) (0�0661) (0�0664) (0�0643) (0�0600) (0�0583)

Mildly stable
(θRN = 2)

0�9990 1�9972 1�0029 1�9011 1�7998 1�7017 1�5994 1�4998
(0�0854) (0�3122) (0�0400) (0�0661) (0�0665) (0�0625) (0�0629) (0�0651)

Mildly unstable
(θRN = 2�4)

1�0035 2�4123 0�9991 1�9049 1�8027 1�7043 1�6037 1�5034
(0�0887) (0�3490) (0�0465) (0�0708) (0�0701) (0�0690) (0�0707) (0�0737)

Very unstable
(θRN = 4)

0�9993 3�9918 1�0025 1�9046 1�8018 1�7035 1�6018 1�5006
(0�0431) (0�2131) (0�0498) (0�0913) (0�0882) (0�0851) (0�0836) (0�0877)

Note: Averages and standard errors (in brackets) computed over 500 Monte Carlo samples. The K = 100 NPL algorithm is

deemed having converged if max{|P̂k − P̂k−1|} < 10−5 for some k ≤ 100. The relaxation algorithm never converged by K = 100.
Since the spectral algorithm almost always converged, the results conditional on convergence are very similar to the ones
obtained from all samples and are not reported.

spectral algorithm and the spectral solver. The same comment holds for the relaxation
algorithm. Some differences are noticeable when looking at the NPL algorithm’s results
for less stable data generating processes. In particular, using the frequency count esti-
mator as a single set of starting values may reduce the convergence rate and, as a result,
alter the estimated bias of converging sequences. Moreover, different starting values

Table C4. Single starting values—Experiments I.

Very Stable Mildly Stable Mildly Unstable Very Unstable

400 5K 400 5K 400 5K 400 5K

NPL algorithm
Rel. absolute bias (all) 1�001 1�000 1�275 1�025 1�105 1�036 1�128 1�003
Rel. absolute bias (converged) 1�031 1�000 1�008 1�020 1�010 1�051 1�000 –
Rel. convergence rate 0�998 1�000 0�993 0�989 0�986 0�895 1�000 –

Relaxation algorithm
Rel. absolute bias (all) 0�980 1�000 0�991 1�000 0�992 1�000 0�997 1�000
Rel. absolute bias (converged) – – – – – – – –
Rel. convergence rate – – – – – – – –

Spectral algorithm
Rel. absolute bias (all) 1�000 1�000 1�000 0�999 1�000 1�001 1�000 1�000
Rel. absolute bias (converged) 1�000 1�000 1�000 0�999 1�000 1�001 1�000 1�000
Rel. convergence rate 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000

Spectral solver
Rel. absolute bias (converged) 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000
Rel. convergence rate 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000

Note: The Monte Carlo simulation results are computed using a single set of starting values for the choice probabilities
(the frequency count estimator) instead of using 5 starting values (including the frequency count estimator). The table reports
the average of the parameters’ absolute bias and the convergence rates relative to the case with 5 starting values (i.e., the
statistics for the single starting value case are divided by their multiple starting values counterpart). The relative absolute bias
is computed for converged sequences (i.e., max{|P̂k − P̂k−1|} < 10−5 for k ≤ 100) and all sequences at K = 100. For the spectral

solver, the R’s BBsolve default tolerance is used to assess convergence (i.e., the L2 norm of φ̂(P) being smaller than
√

dim(P)×
10−7).
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Table C5. Single starting value—Experiments II.

Eq (1) Eq (2) Eq (3)

400 5K 400 5K 400 5K

NPL algorithm
Rel. absolute bias (all) 1�275 1�000 1�013 1�027 1�007 1�003
Rel. absolute bias (converged) 1�275 1�000 1�013 1�027 1�007 1�003
Rel. convergence rate 1�000 1�000 1�000 1�000 1�000 1�000

Relaxation algorithm
Rel. absolute bias (all) 1�534 1�045 1�023 1�038 1�016 1�015
Rel. absolute bias (converged) 0�987 0�902 1�035 1�033 1�034 1�012
Rel. convergence rate 0�942 0�998 0�922 0�976 0�912 0�982

Spectral algorithm
Rel. absolute bias (all) 1�174 1�000 4�621 9�450 4�367 20�90
Rel. absolute bias (converged) 1�174 1�000 4�621 9�450 4�367 20�90
Rel. convergence rate 1�000 1�000 1�000 1�000 1�000 1�000

Spectral solver
Rel. absolute bias (converged) 1�819 1�000 4�192 3�783 1�754 10�74
Rel. convergence rate 1�000 1�000 1�000 0�998 0�998 1�000

Note: The Monte Carlo simulations are repeated using a single starting value for the choice probabilities (the frequency
count estimator) instead of using 100 starting values (including the frequency count estimator and the one-step NPL mapping
update). The table reports the average of the parameters’ absolute bias and the convergence rates relative to the case with 100
starting values (i.e., the statistics for the single starting value case are divided by their multiple starting values counterpart).
The relative absolute bias is computed for converged sequences (i.e., max{|P̂k − P̂k−1|} < 10−5 for k≤ 500) and all sequences at

K = 500. For the spectral solver, the R’s BBsolve default tolerance is used to assess convergence (i.e., the L2 norm of φ̂(P) being
smaller than

√
dim(P)× 10−7).

may lead to different estimates at K = 100 if the sequence of NPL algorithm estimates
fail to converge by this number of iterations.

Experiments II’s results suggest that using the frequency count estimator as a single
set of starting values may severely increase the bias of the estimates, especially for the
spectral algorithm and solver. This observation suggests that a single starting value may
be insufficient to find the NPL fixed point that maximizes the log-likelihood function. It
is worth emphasizing that if the increase in the bias is not as striking for the NPL and
the relaxation algorithms, it is because these algorithms often fail to deliver the NPL
estimator even with multiple starting values.

To summarize, using multiple starting values is necessary for the relative good per-
formance of the spectral algorithm and solver when they are applied to data generating
processes featuring multiple fixed points. In that sense, the need for multiple starting
values has a similar justification as when maximizing a log-likelihood function that has
multiple local maxima.

C.4 Split histograms of spectral algorithm estimates

Figures C1 and C2 present the empirical distributions of spectral solver estimates for
Experiments I and II, respectively, when we split the Monte Carlo replications in two
groups: with ρ̂NPL < 1, and with ρ̂NPL ≥ 1.
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Appendix D: Results from the empirical application

The parameters’ estimates and the computation time are reported in Table D1.

Table D1. Results from three different methods across 100 different starting values.

NPL Algorithm Relaxation Algorithm Spectral Solver

Estimates and standard errors
θ0

VP�BK 1�09786∗∗∗ 1�09786∗∗∗ 1�09787∗∗∗
(0�21687) (0�21687) (0�21687)

θ1
VP�BK −0�07653 −0�07653 −0�07654

(0�07247) (0�07247) (0�07247)
θ2

VP�BK −0�01297∗∗ −0�01297∗∗ −0�01297∗∗
(0�00649) (0�00649) (0�00649)

θ0
FC�BK 0�07883∗∗ 0�07883∗∗ 0�07883∗∗

(0�03076) (0�03076) (0�03076)
θ1

FC�BK 0�15095∗∗∗ 0�15095∗∗∗ 0�15095∗∗∗
(0�02829) (0�02829) (0�02829)

θ2
FC�BK −0�00547∗∗ −0�00547∗∗ −0�00547∗∗

(0�00269) (0�00269) (0�00269)
θ0

VP�MD 0�97371∗∗∗ 0�97371∗∗∗ 0�97371∗∗∗
(0�30911) (0�30911) (0�30911)

θ1
VP�MD 0�28736∗∗∗ 0�28736∗∗∗ 0�28736∗∗∗

(0�09865) (0�09865) (0�09865)
θ2

VP�MD −0�00738 −0�00738 −0�00738
(0�00745) (0�00745) (0�00745)

θ0
FC�MD 0�07731∗∗∗ 0�07731∗∗∗ 0�07731∗∗∗

(0�02614) (0�02614) (0�02614)
θ1

FC�MD 0�13020∗∗∗ 0�13020∗∗∗ 0�13020∗∗∗
(0�01847) (0�01847) (0�01847)

θ2
FC�MD 0�00014 0�00014 0�00014

(0�00162) (0�00162) (0�00162)
Population density 3�94938∗∗ 3�94940∗∗ 3�94938∗∗

(1�59148) (1�59149) (1�59148)
Income 0�00014 0�00014 0�00014

(0�00011) (0�00011) (0�00011)
Average rent −0�00003 −0�00003 −0�00003

(0�00022) (0�00022) (0�00022)
Retail taxes 0�00003 0�00003 0�00003

(0�00003) (0�00003) (0�00003)

Summary statistics of computational time in seconds
Minimum 159�7 1743 103�0
Median 233�0 3186 194�2
Mean 226�1 2848 193�7
Maximum 261�8 3674 1541

Note: Significance levels: ∗ is 90%, ∗∗ is 95%, and ∗∗∗ is 99%. The estimates are the ones that maximize the log-likelihood
function across all 100 vectors of starting values for each method. The computational time is the total time until convergence.
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