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Appendix

Appendix A presents the proof of both Theorem 1 and Theorem 2. In Appendix B, we
show that the estimation of the model in Galí (2021) delivers the same posterior distri-
butions of the model parameters regardless of which forecast errors we include in our
representation. We also report the Raftery–Lewis diagnostics for each parameter chain in
Galí (2021). Appendix C reports the Raftery–Lewis diagnostics for each parameter chain
in Lubik and Schorfheide (2004) using the hybrid (“Mixture”) and random walk (“Ran-
dom walk”) algorithms. Finally, Appendix D provides detailed suggestions on the practi-
cal implementation of our method.

Appendix A: Proof of Theorem 1 and Theorem 2

A.1 Equivalence under determinacy

This section considers the case in which the original LRE is determinate, and shows
the equivalence of the solution obtained using the proposed augmented representation
with the one from the standard solution method described in Sims (2001).

A.1.1 Canonical solution Consider the LRE model in (5) and reported in the following
equation:

�0
k×k

Xt
k×1

= �1
k×k

Xt−1
k×1

+ Ψ
k×l

εt
l×1

+ Π
k×p

ηt
p×1

� (S1)

The method described in Sims (2001) delivers a solution, if it exists, by following four
steps. First, Sims (2001) showed how to write the model in the form

SZ′Xt = TZ′Xt−1 +QΨεt +QΠηt� (S2)

where �0 =Q′SZ′ and �1 =Q′TZ′ result from the QZ decomposition of {�0��1}, and the
k× k matrices Q and Z are orthonormal, upper triangular and possibly complex. Also,
the diagonal elements of S and T contain the generalized eigenvalues of {�0��1}.
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Second, given that the QZ decomposition is not unique, Sims’ algorithm chooses a
decomposition that orders the equations so that the absolute values of the ratios of the
generalized eigenvalues are placed in an increasing order, that is,

|tjj|/|sjj| ≥ |tii|/|sii| for j > i�

The algorithm then partitions the matrices S, T ,Q, and Z as

S =
[
S11 S12

0 S22

]
� T =

[
T11 T12

0 T22

]
� Z′ =

[
Z1

Z2

]
� Q=

[
Q1

Q2

]
�

where the first block corresponds to the system of equations for which |tjj|/|sjj| ≤ 1
and the second block groups the equations which are characterized by explosive roots,
|tjj|/|sjj|> 1.

The third step imposes conditions on the second, explosive block to guarantee the
existence of at least one bounded solution. Defining the transformed variables

ξt ≡Z′Xt =
⎡⎢⎣ ξ1�t
(k−n)×1

ξ2�t
n×1

⎤⎥⎦ �
where n is the number of explosive roots, and the transformed parameters

Ψ̃ ≡Q′Ψ� and Π̃ ≡Q′Π�

the second block can be written as

ξ2�t = S−1
22 T22ξ2�t−1 + S−1

22 (Ψ̃2εt + Π̃2ηt)�

As this system of equations contains the explosive roots of the original system, then a
bounded solution, if it exists, will set

ξ2�0
n×1

= 0� (S3)

Ψ̃2
n×


εt

×1

+ Π̃2
n×p

ηt
p×1

= 0� (S4)

where n also denotes the number of equations in (S4). A necessary condition for the ex-
istence of a solution requires that the number of unstable roots (n) equals the number of
expectational variables (p). In this section, we are considering the solution under deter-
minacy, and this guarantees that there are no degrees of indeterminacy m∗(θ)= 0. The
sufficient condition then requires that the columns of the matrix Π̃2 are linearly inde-
pendent so that there is at least one bounded solution. In that case, the matrix Π̃2 is a
square, nonsingular matrix and equation (S4) imposes linear restrictions on the forecast
errors, ηt , as a function of the fundamental shocks, εt ,

ηt = −Π̃−1
2 Ψ̃2εt� (S5)
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The fourth and last step finds the solution for the endogenous variables, Xt , by com-
bining the restrictions in (S3) and (S5) with the system of stable equations in the first
block,

ξ1�t = S−1
11 T11ξ1�t−1 + S−1

11 (Ψ̃1εt + Π̃1ηt)

= S−1
11 T11ξ1�t−1 + S−1

11

(
Ψ̃1 − Π̃1Π̃

−1
2 Ψ̃2

)
εt� (S6)

Using the algorithm by Sims (2001), we can describe the solution under determinacy
of the LRE model in (S1) with equations (S3), (S5), and (S6).

A.1.2 Augmented representation We now consider the methodology proposed in this
paper, and we augment the LRE model in (S1) with the following system ofm equations:

ωt =ωt−1 + νt −ηf�t� ≡

⎡⎢⎢⎢⎢⎣
1
α1

0

� � �

0
1
αm

⎤⎥⎥⎥⎥⎦ �

where  is a m×m diagonal matrix. As the original model in (S1) is determinate, then
we assume that all the diagonal elements αi belong to the interval [1�2]. Therefore, we
are appending a system of stable equations, and we show that the solution for the en-
dogenous variables, Xt , is equivalent to the one found in Section A.1.1. Defining the
augmented vector of endogenous variables, X̂t ≡ (Xt�ωt)′ and the augmented vector of
exogenous shocks ε̂t ≡ (εt� νt)′, the representation that we propose takes the form

�̂0X̂t = �̂1X̂t−1 + Ψ̂ ε̂t + Π̂ηt� (S7)

where

�̂0 ≡
[
�0 0
0 I

]
� �̂1 ≡

[
�1 0
0 

]
� Ψ̂ ≡

[
Ψ 0
0 I

]
� Π̂ ≡

[
Πn Πf
0 −I

]
�

and without loss of generality the matrix Π is partitioned as Π = [Πn Πf ], where the
matricesΠn andΠf are respectively of dimension k× (p−m) and k×m.

We can find a solution to the augmented representation in (S7) by using Sims’ al-
gorithm. Similarly to the previous section, we follow the four steps which describe the
algorithm. First, the solution algorithm performs the QZ decomposition of the matrices
{�̂0� �̂1} and the augmented representation takes the form

ŜẐ′X̂t = T̂ Ẑ′X̂t−1 + Q̂Ψ̂ ε̂t + Q̂Π̂ηt� (S8)

where �̂0 = Q̂′ŜẐ′ and �̂1 = Q̂′T̂ Ẑ′ result from the QZ decomposition of {�̂0� �̂1}, and

Ŝ =
⎡⎢⎣S11 0 S12

0 I 0
0 0 S22

⎤⎥⎦ � T̂ =
⎡⎢⎣T11 0 T12

0  0
0 0 T22

⎤⎥⎦ � Ẑ′ =
⎡⎢⎣Z1 0

0 I
Z2 0

⎤⎥⎦ � Q̂=
⎡⎢⎣Q1 0

0 I
Q2 0

⎤⎥⎦ �
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Importantly, note that the inner matrices of {Ŝ� T̂ � Ẑ� Q̂} are the same as those which de-
fine the matrices {S�T�Z�Q} found in the previous section using the canonical solution
method.

Second, the algorithm chooses a QZ decomposition which groups the equations in
a stable and an explosive block. Because this section assumes that the original model
is determinate and that the diagonal elements of the matrix  are within the unit cir-
cle, the explosive block corresponds to the third system of equations in (S8), which is
characterized by explosive roots. Recalling the definition of the matrices Ψ̂ and Π̂, the
system of equations in the third block is

ξ2�t = S−1
22 T22ξ2�t−1 + S−1

22 (Ψ̃2εt + Π̃2ηt)� (S9)

The third step imposes conditions to guarantee the existence of a bounded solution.
However, the explosive block in (S9) is identical to the system of equations found in the
previous section. Therefore, the algorithm imposes the same restrictions to guarantee
the existence of a bounded solution, that is,

ξ2�0 = 0 (S10)

and as found earlier

ηt = −Π̃−1
2 Ψ̃2εt� (S11)

Finally, the last step combines these restrictions with the system of equations in the sta-
ble block which corresponds to the first and second systems of equations in (S8),

ξ1�t = S−1
11 T11ξ1�t−1 + S−1

11

(
Ψ̃1 − Π̃1Π̃

−1
2 Ψ̃2

)
εt� (S12)

ωt = ωt−1 + νt −ηf�t � (S13)

Recalling that ξt ≡Z′Xt , the solution in (S10)∼(S13) obtained for the augmented repre-
sentation of the LRE model delivers the same solution for the endogenous variables of
interest,Xt , found in the previous section and defined in equations (S3), (S5), and (S6).

A.2 Equivalence under indeterminacy

This section shows the equivalence of the solutions obtained for a LRE model under
indeterminacy using the proposed augmented representation and the methodology of
Lubik and Schorfheide (2003, 2004).

A.2.1 Lubik and Schorfheide (2003) As in Section A.1, we consider the LRE model in
(S1) and reported below as (S14)

�0Xt = �1Xt−1 +Ψεt +Πηt� (S14)

In this section, we assume that the model is indeterminate, and we present the
method used by Lubik and Schorfheide (2003). The authors implement the first two
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steps of the algorithm by Sims (2001) and described in Section A.1.1.1 They proceed by
first applying the QZ decomposition to the LRE model in (S14) and then ordering the
resulting system of equations in a stable and an explosive block as defined in equation
(S2). However, their approach differs in the third step when the algorithm imposes re-
strictions to guarantee the existence of a bounded solution. In particular, the restrictions
in (S3) and (S4) reported below as (S15) and (S16) require that

ξ2�0
n×1

= 0� (S15)

Ψ̃2
n×


εt

×1

+ Π̃2
n×p

ηt
p×1

= 0� (S16)

Nevertheless, it is clear that the system of equation in (S16) is indeterminate as the
number of forecast errors exceeds the number of explosive roots (p > n). Equivalently,
there are less equations (n) than the number of variables to solve for (p). To characterize
the full set of solutions to equation (S16), Lubik and Schorfheide (2003) decompose the
matrix Π̃2 using the following singular value decomposition:

Π̃2
n×p

≡ U
n×n

[
D11
n×n

0
n×m

]
V ′
p×p�

where m represents the degrees of indeterminacy. Given the partition V
p×p ≡ [

V1
p×n

V2
p×m

]
,

equation (S16) can be written as

D−1
11

n×n
U ′
n×nΨ̃2

n×

εt

×1

+ V ′
1

n×p
ηt
p×1

= 0� (S17)

Given that the system is indeterminate, Lubik and Schorfheide (2003) append additional
m equations,

M̃
m×
 εt
×1

+ Mζ
m×m

ζt
m×1

= V ′
2

m×p
ηt
p×1

� (S18)

Them× 1 vector ζt is a set of sunspot shocks that is assumed to have mean zero, covari-
ance matrixΩζζ and to be uncorrelated with the fundamental shocks, εt , that is,

E[ζt] = 0� E
[
ζtε

′
t

] = 0� E
[
ζtζ

′
t

] =Ωζζ�
The matrix M̃ captures the correlation of the forecast errors, ηt , with fundamentals, εt ,
and Lubik and Schorfheide (2003) choose the normalization Mζ = Im. The reason to
append the system of equations in (S18) to the equations in (S17) is to exploit the prop-
erties of the orthonormal matrix V . Premultiplying the system by the matrix V and re-
calling that V ∗ V ′ = I, the expectational errors can be written as a function of the fun-
damental shocks, εt , and the sunspot shocks, ζt ,

ηt
p×1

= (−V1
p×n

D−1
11

n×n
U ′

1
n×n

Ψ̃2
n×


+ V2
p×m

M̃
m×


)
εt

×1

+ V2
p×m

ζt
m×1

�

1It is relevant to mention that in this section the matrices obtained from the QZ decomposition and the
ordering of the equations into a stable and an explosive block differ from those in Section A.1 both in terms
of their dimensionality and the elements constituting them. However, we opted to use the same notation
for simplicity.
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More compactly,

ηt
p×1

= ( V1
p×n

N
n×


+ V2
p×m

M̃
m×
) εt
×1

+ V2
p×m

ζt
m×1

� (S19)

where

N
n×
≡ −D−1

11
n×n

U ′
1

n×n
Ψ̃2
n×


is a function of the parameters of the model. Given the restriction in (S15) and (S19),

the fourth step of the algorithm combines these equations with the system of stable

equations in the first block as in Section A.1.1,

ξ1�t = S−1
11 T11ξ1�t−1 + S−1

11 (Ψ̃1εt + Π̃1ηt)

= S−1
11 T11ξ1�t−1 + S−1

11 (Ψ̃1 + Π̃1V1N + Π̃1V2M̃)εt + S−1
11 (Π̃1V2)ζt � (S20)

Using the method in Lubik and Schorfheide (2003), we can describe the solution for

the original LRE model under indeterminacy with equations (S15), (S19), and (S20).

A.2.2 Augmented representation We now consider the augmented representation as

in (S7) and reported below as

�̂0X̂t = �̂1X̂t−1 + Ψ̂ ε̂t + Π̂ηt� (S21)

where X̂t ≡ (Xt�ωt)′, ε̂t ≡ (εt� νt)′ and

�̂0 ≡
[
�0 0
0 I

]
� �̂1 ≡

[
�1 0
0 

]
� Ψ̂ ≡

[
Ψ 0
0 I

]
� Π̂ ≡

[
Πn Πf
0 −I

]
�

where the matrixΠ is partitioned asΠ = [Πn Πf ] without loss of generality.

The novelty of our approach is that, given our representation, we can easily obtain

the solution by using Sims’ algorithm even when the original LRE is assumed to be in-

determinate. It is enough to assume that the auxiliary processes ωt are characterized

by explosive roots, or equivalently that the diagonal elements of the matrix  are out-

side the unit circle. This approach guarantees that the Blanchard–Kahn condition for

the augmented representation is satisfied and, given the analytic form that we propose

for the auxiliary processes, we show that the solution for the endogenous variables of

interest,Xt , is equivalent to the method of Lubik and Schorfheide (2003).

To show this result, we simply apply the four steps of the algorithm described in Sims

(2001) to the proposed augmented representation. First, the QZ decomposition of (S21)

takes the form

ŜẐ′X̂t = T̂ Ẑ′X̂t−1 + Q̂Ψ̂ ε̂t + Q̂Π̂ηt� (S22)
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where �̂0 = Q̂′ŜẐ′ and �̂1 = Q̂′T̂ Ẑ′ result from the QZ decomposition2 of {�̂0� �̂1} and

Ŝ =
⎡⎢⎣S11 S12 0

0 S22 0
0 0 I

⎤⎥⎦ � T̂ =
⎡⎢⎣T11 T12 0

0 T22 0
0 0 

⎤⎥⎦ �

Ẑ′ =
⎡⎢⎣Z1 0
Z2 0
0 I

⎤⎥⎦ � Q̂=
⎡⎢⎣Q1 0
Q2 0
0 I

⎤⎥⎦ �
(S23)

Note that in the expression above the auxiliary matrix is in the lower (explosive) block
because of our simplifying assumption thatm∗(θ)=m. Whenm∗(θ) <m, part of the ma-
trix  would belong in the stable block. As mentioned above, we made this simplifying
assumption without loss of generality and only to simplify the exposition.

Second, the QZ decomposition chosen by the algorithm groups the explosive dy-
namics of the model in the second and third system of equations in (S22), which are
reported below as (S24)[

S22 0
0 I

][
ξ2

ωt

]
=

[
T22 0

0 

][
ξ2�t−1

ωt−1

]
+

[
Q2 0
0 I

]
(Ψ̂ ε̂t + Π̂ηt)� (S24)

In the third step, the following restrictions are imposed:

ξ2�0
n×1

= 0� (S25)

ω0
m×1

= 0� (S26)[
Q2 0
0 I

]
(Ψ̂ ε̂t + Π̂ηt) = 0� (S27)

Recalling the definition of Ψ̂ and Π̂ in (S21), then equation (S27) can be written as[
Ψ̃2 0
0 I

]
︸ ︷︷ ︸
p×(
+m)

ε̂t
(
+m)×1

+
[
Π̃n�2 Π̃f�2

0 −I

]
︸ ︷︷ ︸

p×p

ηt
p×1

= 0� (S28)

where Ψ̃ ≡ Q′Ψ and Π̃ ≡ Q′Π. Equation (S28) shows transparently how the explosive
auxiliary process that we append in our augmented representation helps to solve the
original LRE model under indeterminacy. The system of equations in (S28) is determi-
nate, as the number of equations defined by the explosive roots of the system equals the
number of expectational errors of the model. Thus, the necessary condition for the ex-
istence of a bounded solution for the augmented representation is satisfied. Assuming
that the columns of the matrix associated with the vector of nonfundamental shocks,

2Note that the inner matrices of {Ŝ� T̂ � ẐT � Q̂} are the same as those which define the matrices
{S�T�ZT �Q} found from the QZ decomposition using the methodology of Lubik and Schorfheide (2003).
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ηt , are linearly independent, we can impose linear restrictions on the forecast errors as
a function of the augmented vector of exogenous shocks ε̂t ≡ (εt� νt)′,

ηt = −
[
Π̃−1
n�2Ψ̃2 Π̃−1

n�2Π̃f�2
0 −I

]
ε̂t �

More compactly,

ηt = C1εt +C2νt� (S29)

where C1 ≡ −
[
Π̃−1
n�2Ψ̃2

0

]
and C2 ≡ −

[
Π̃−1
n�2Π̃f�2

−I

]
are a function of the structural parameters

of the model.
The last step of Sims’ algorithm combines the restrictions in (S25), (S26), and (S29)

with the stationary block derived from the QZ decomposition in (S22),

ξ1�t = S−1
11 T11ξ1�t−1 + S−1

11 (Ψ̃1εt + Π̃1ηt)

= S−1
11 T11ξ1�t−1 + S−1

11 (Ψ̃1 + Π̃1C1)εt + S−1
11 (Π̃1C2)νt � (S30)

A.3 Mapping of normalization in Lubik and Schorfheide (2004) to Bianchi–Nicolò

We prove the equivalence between the parametrization of the Lubik–Schorfheide inde-
terminate equilibrium θLS ∈ ΘLS and the Bianchi–Nicolò equilibrium parametrized by
θBN ∈ΘBN. In particular, we show that there is a unique mapping between the linear re-
strictions imposed in each of the two methodologies on the forecast errors to guarantee
the existence of at least a bounded solution. As shown in Section A.2.1, the method by
Lubik and Schorfheide (2003) imposes the following restrictions on the nonfundamental
shocks, ηt , as a function of the exogenous shocks, εt , and the sunspot shocks introduced
in their specification, ζt ,

ηt
p×1

= ( V1
p×n

N
n×


+ V2
p×m

M̃
m×

m×


) εt

×1

+ V2
p×m

ζt
m×1

� (S31)

Using the methodology proposed in this paper, Section A.2.2 shows that the restric-
tions on the nonfundamental shocks, ηt , as a function of the exogenous shocks, εt , and
the sunspot shocks, νt , are

ηt
p×1

= C1
p×


εt

×1

+ C2
p×m

νt
m×1

� (S32)

where

C1 ≡ −
[
Π̃−1
n�2Ψ̃2

0

]
and C2 ≡ −

[
Π̃−1
n�2Π̃f�2
−I

]
�

Post-multiplying equation (S31) and (S32) by ε′
t and taking expectations on both

sides,

Ωηε
p×l

= V1
p×n

N
n×
Ωεε
×l

+ V2
p×m

M̃
m×
Ωεε
×l

�
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Ωηε
p×l

= C1
p×


Ωεε

×l

+ C2
p×m

Ωνε
m×l

�

Premultiplying by V ′
2 and equating the equations,

M̃
m×
Ωεε
×l

= (
V ′

2
m×p

C1
p×


− V ′
2

m×p
V1
p×n

N
n×


)
Ωεε

×l

+ V ′
2

m×p
C2
p×m

Ωνε
m×l

� (S33)

Using the properties of the vec operator, the following result holds:

vec(M̃)
(m×
)×1

= (Ωεε ⊗ Im)−1

(m×
)×(m×
)
[[
Il ⊗

(
V ′

2C1 − V ′
2V1N

)]
(m×
)×
2

vec(Ωεε)

2×1

+ (
Il ⊗ V ′

2C2
)

(m×
)×(m×
)
vec(Ωνε)
(m×
)×1

]
� (S34)

Equation (S34) is the first relevant equation to show the mapping between the repre-
sentation in Lubik and Schorfheide (2003) and our representation. For a given variance-
covariance matrix of the exogenous shocks, Ωεε, that is common between the two rep-
resentations, equation (S34) tells us that the covariance structure, Ωνε, of the sunspot
shock in our representation with the exogenous shocks has a unique mapping to the
matrix, M̃ , in Lubik and Schorfheide (2003). Clearly, equation (S33) can also be used to
derive the mapping from their representation to our method.

We now show how to derive the mapping between the variance-covariance matrix,
Ωνν , of the sunspot shocks in our representation to the variance-covariance matrix,Ωζζ ,
of the sunspot shocks in Lubik and Schorfheide (2003). Considering again equation (S31)
and (S32), we post-multiply by ζ′

t and take expectations on both sides,

Ωηζ
p×m

= V2
p×m

Ωζζ
m×m

�

Ωηζ
p×m

= C2
p×m

Ωνζ
m×m

�

Premultiplying both equations by V ′
2 and equating them,

Ωζζ
m×m

= Ωζν
m×m

(
V ′

2C2
)′

m×m
� (S35)

Finally, to obtain an expression for Ωζν , we post-multiply equation (S31) and (S32)
by ν′

t and taking expectations

Ωην
p×m

= ( V1
p×n

N
n×


+ V2
p×m

M̃
m×
)Ωεν
×m

+ V2
p×m

Ωζν
m×m

�

Ωην
p×m

= C1
p×


Ωεν

×m

+ C2
p×m

Ωνν
m×m

�

Premultiplying both equations by V ′
2 and solving forΩζν ,

Ωζν
m×m

= (
V ′

2
m×p

C1
p×


− V ′
2

m×p
V1
p×n

N
n×
− M̃

m×

)
Ωεν

×m

+ (
V ′

2C2
)

m×m
Ωνν
m×m

� (S36)
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Post-multiplying (S36) by (V ′
2C2)

′
m×m

and using (S35), then

Ωζζ
m×m

= (
V ′

2
m×p

C1
p×


− V ′
2

m×p
V1
p×n

N
n×
− M̃

m×

)
Ωεν

×m

(
V ′

2C2
)′

m×m
+ (
V ′

2C2
)

m×m
Ωνν
m×m

(
V ′

2C2
)′

m×m
� (S37)

Therefore, equation (S37) defines the mapping between the variance-covariance
matrix,Ωνν , of the sunspot shocks in our representation to the variance-covariance ma-
trix, Ωζζ , of the sunspot shocks in Lubik and Schorfheide (2003). Together with equa-
tion (S34), we show that this equation defines the one-to-one mapping between the
parametrization in Lubik and Schorfheide {Θ�ΘLS} and the parametrization in Bianchi–
Nicolò {Θ�ΘBN}.

Appendix B: Additional results for Galí (2021)

Table SI reports the posterior distribution of the model parameters for each of the three
specifications that are possible when adopting our method to solve for the model of
Galí (2021) under two degrees of indeterminacy. For each specification, the log-posterior
mode is −33�1 and the table shows that the estimates are equivalent up to a transforma-

Table SI. Posterior distribution of model parameters under 2-degree indeterminacy.

{ν1 = νπ� ν2 = νy } {ν1 = νπ� ν2 = νb} {ν1 = νy� ν2 = νb}
Mean 90% prob. int. Mean 90% prob. int. Mean 90% prob. int.

100(λ−1
l − 1) 0�028 [0�018�0�038] 0�031 [0�018�0�043] 0�030 [0�012�0�042]

κ 0�042 [0�034�0�050] 0�039 [0�031�0�047] 0�039 [0�031�0�047]
g 0�48 [0�46�0�50] 0�49 [0�46�0�51] 0�48 [0�46�0�51]
π∗ 0�89 [0�44�1�36] 0�90 [0�41�1�36] 0�89 [0�40�1�34]
φπ 0�29 [0�14�0�43] 0�34 [0�15�0�56] 0�26 [0�12�0�39]
φq 0�02 [0�01�0�04] 0�04 [0�01�0�07] 0�03 [0�01�0�04]
ρi 0�50 [0�27�0�74] 0�50 [0�25�0�77] 0�48 [0�23�0�73]
σq 0�97 [0�45�1�51] 1�21 [0�45�2�06] 1�01 [0�46�1�58]
σs 0�11 [0�09�0�12] 0�11 [0�09�0�14] 0�11 [0�09�0�13]
σi 0�11 [0�09�0�14] 0�12 [0�09�0�15] 0�12 [0�09�0�14]
ρq 0�71 [0�55�0�87] 0�74 [0�57�0�91] 0�72 [0�56�0�87]
ρs 0�89 [0�84�0�94] 0�88 [0�81�0�95] 0�88 [0�83�0�94]
σν1 0�30 [0�25�0�34] 0�30 [0�25�0�34] 0�70 [0�61�0�79]
σν2 11�14 [5�48�16�55] 0�71 [0�61�0�80] 10�10 [4�83�15�39]
ϕν1�i −0�54 [−0�75�−0�31] −0�59 [−0�80�−0�39] −0�38 [−0�65�−0�11]
ϕν1�q 0�18 [−0�27�0�60] 0�21 [−0�23�0�62] 0�11 [−0�43�0�66]
ϕν1�s 0�58 [0�46�0�72] 0�54 [0�38�−0�69] −0�54 [−0�70�−0�40]
ϕν2�i −0�72 [−0�88�−0�54] −0�39 [−0�71�−0�10] −0�76 [−0�93�−0�61]
ϕν2�q −0�06 [−0�42�0�29] 0�05 [−0�44�0�56] −0�08 [−0�46�0�26]
ϕν2�s −0�51 [−0�71�−0�32] −0�55 [−0�72�−0�38] −0�45 [−0�65�−0�25]
ϕν1�ν2 0�28 [0�03�0�54] 0�23 [0�05�0�41] 0�63 [0�44�0�81]
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Table SII. Raftery–Lewis diagnostics for each parameter chain in Galí (2021).

Variable Thin Burn Total (N) Nmin I-stat

100(λ−1
l − 1) 1 2 345 322 1�071

κ 1 2 304 322 0�944
g 1 2 331 322 1�028
π∗ 1 3 293 322 0�910
φπ 1 2 304 322 0�944
φq 1 2 317 322 0�984
ρi 1 3 361 322 1�121
σq 1 2 331 322 1�028
σs 1 3 376 322 1�168
σi 1 2 345 322 1�071
ρq 1 3 376 322 1�168
ρs 1 2 331 322 1�028
σνπ 1 3 340 322 1�056
σνy 1 2 345 322 1�071
ϕνπ�i 1 3 392 322 1�217
ϕνπ�q 1 3 376 322 1�168
ϕνπ�s 1 4 410 322 1�273
ϕνy �i 1 3 376 322 1�168
ϕνy �q 1 4 410 322 1�273
ϕνy �s 1 3 385 322 1�196
ϕνπ�νy 1 13 985 322 3�059

Note: The table reports the Raftery–Lewis diagnostics for each parameter chain. We consider the 5th quantile, q = 0�05,
with an accuracy r = 0�02 and a probability s = 0�9 of obtaining an estimate in the interval (q − r� q + r). The diagnostics re-
ports the suggested number of burn-in iterations (“Burn”), the suggested number of iterations (“Total (N)”), the suggested
minimum number of iterations based on zero autocorrelation (“Nmin”) and the dependence factor (“I-stat”). The dependence
factor is computed as I-stat = (Burn + Total)/Nmin, and interpreted as the proportional increase in the number of iterations
attributable to autocorrelation.

tion of the correlations between the exogenous shocks and the forecast errors included
in the auxiliary process.3

Table SII reports the Raftery–Lewis diagnostics for each parameter chain of the
model of Galí (2021).

3To obtain the estimates in Table SI, we use a uniform distribution over the interval (0�20) for the stan-
dard deviation of the sunspot shocks. This guarantees that the posterior distribution of the sunspot shock
νb is not at the boundary of the range specified for the uniform prior.
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Appendix C: Additional results for Lubik and Schorfheide (2004)

Table SIII. Raftery–Lewis diagnostics for each parameter chain in Lubik and Schorfheide
(2004).

Mixture Random walk

Thin Burn Total (N) Nmin I-stat Thin Burn Total (N) Nmin I-stat

ψπ 2 5 2981 1286 2�318 4 14 5790 1286 4�502
ψy 1 2 1299 1286 1�010 1 1 1287 1286 1�000
ρR 1 3 1545 1286 1�201 1 3 1432 1286 1�113
τ 1 3 1564 1286 1�216 1 3 1538 1286 1�196
κ 2 7 3037 1286 2�362 1 4 1654 1286 1�286
ρg 2 7 2967 1286 2�307 4 15 6287 1286 4�889
ρz 1 2 1332 1286 1�036 1 2 1321 1286 1�027
r∗ 1 3 1468 1286 1�141 1 3 1474 1286 1�146
π∗ 1 3 1500 1286 1�166 3 11 4136 1286 3�216
σR 1 2 1366 1286 1�062 1 3 1526 1286 1�187
σg 1 2 1372 1286 1�067 1 3 1384 1286 1�076
σz 1 2 1304 1286 1�014 1 1 1285 1286 0�999
ρgz 2 7 3051 1286 2�372 2 8 2972 1286 2�311
ση 2 6 2758 1286 2�145 1 3 1390 1286 1�081

Note: The table reports the Raftery–Lewis diagnostics for each parameter chain using the hybrid (“Mixture”) and the ran-
dom walk algorithm (“Random walk”). We consider the 5th quantile, q = 0�05, with an accuracy r = 0�01 and a probability
s = 0�9 of obtaining an estimate in the interval (q− r� q+ r). The diagnostics reports the suggested number of burn-in iterations
(“Burn”), the suggested number of iterations (“Total (N)”), the suggested minimum number of iterations based on zero autocor-
relation (“Nmin”) and the dependence factor (“I-stat”). The dependence factor is computed as I-stat = (Burn + Total)/Nmin,
and interpreted as the proportional increase in the number of iterations attributable to autocorrelation.

Appendix D: Suggestions on practical implementation

In this section, we consider the case that a researcher estimates a LRE model using
Bayesian techniques and a conventional Metropolis–Hastings algorithm in Dynare. Let
us consider the following LRE model:

�0(θ)Xt = �1(θ)Xt−1 +Ψ(θ)εt +Π(θ)ηt� (S38)

with a maximum degree of indeterminacy denoted by m.4 As explained in detail in Sec-
tion 3, the proposed methodology appends to the original LRE model the following sys-
tem ofm equations:

ωt =ωt−1 + νt −ηf�t� (S39)

where  is a diagonal matrix whose entries are {1/α1� ���1/αm}. Denoting the newly de-
fined vector of endogenous variables X̂t ≡ (Xt�ωt)′ and the newly defined vector of ex-
ogenous shocks ε̂t ≡ (εt� νt)′, the resulting augmented LRE model can be written as

�̂0X̂t = �̂1X̂t−1 + Ψ̂ ε̂t + Π̂ηt� (S40)

4We refer the reader to Section 3 for definitions and notation.
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Auxiliary autoregressive parameters As a first step, we discuss how to handle the vector
of additional autoregressive parameters, {αi}mi=1, introduced under our methodology. We
can distinguish three cases:

1. When the threshold for the different regions of determinacy is known analytically,
then αi can be expressed as a function of the other parameters. In this case, there
is no need to specify a prior on αi and the prior probability of (in)determinacy is
given by the prior on the parameter vector θ.

2. When the threshold is unknown and the researcher writes her own code, she can
start with all the roots inside the unit circle for α at each draw of θ and then flip
the appropriate number of elements in the vector α. This case coincides with the
approach that we adopt in Section 5 to estimate the model of Galí (2021) for which
there is no need to specify a prior on αi and the prior probability of indeterminacy
depends on the prior on the parameter vector θ. In other words, in this case αi is
treated as an unknown transformation of the structural parameters that guarantees
that a solution, if it exists, can be found independently of the degree of indetermi-
nacy.

3. When the threshold is unknown and the researcher wants to use standard estima-
tion packages such as Dynare, there are two options. First, the researcher estimates
the model separately for different degrees of indeterminacy. This is the simplest ap-
proach and we describe it more in detail below. Second, the researcher estimates
the model over the whole parameter space. In this case, the researcher can com-
plement the Dynare codes with a function that pins down the degrees of indeter-
minacy. This can be done writing a function that, starting with all {αi}mi=1 inside the
unit circle, solves the model and keeps flipping {αi}mi=1 until the augmented state
space returns determinacy. In this case, the {αi}mi=1 are still treated as a transfor-
mation of the structural parameters of the model. Alternatively, the researcher can
decide to treat {αi}mi=1 as additional parameters. In this case, the researcher should
choose priors that are symmetric with respect to the various determinacy regions
and orthogonal with respect to the priors on the other parameters. The researcher
could use a uniform distribution over the interval [0�5�1�5] or any symmetric inter-
val around 1 as a prior distribution. The assumptions that the priors are symmetric
around 1 and orthogonal with respect to the structural parameters imply that the a
priori probabilities of the different determinacy regions only depend on the priors
on the structural parameters of the model. The posterior distribution of the pa-
rameters is not affected by treating {αi}mi=1 as additional parameters. However, the
priors on {αi}mi=1 would have an impact on the marginal data density computed by
Dynare. The marginal data density can be corrected ex post by taking into account
that uniform priors on {αi}mi=1 simply rescale the joint prior on the model parame-
ters. Alternatively, a researcher could implement a simple modification of the code
used to compute Geweke (1999)’s modified harmonic mean estimator to remove
the impact of the priors on αi. For example, {αi}mi=1 could be weighted using their
own prior when computing the modified harmonic mean estimator.
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Priors for the correlations between the sunspot and fundamental shocks In Section 2.2,
we discuss in detail the economic rationale for how to construct a baseline solution us-
ing our methodology. Therefore, it seems natural to center the prior distribution for the
correlations on zero, the value associated with the “baseline solution.” However, as care-
fully explained in Section 2.2, it is important to stress that under the baseline solution,
the choice of which forecast errors to include in the auxiliary processes matters for the
solution when the correlations are restricted to zero. At the same time, as explained in
Section 3, a set of correlations under the representation that includes a given subset of
nonfundamental shocks has a unique mapping to different values of the correlations
in the representation with another subset of nonfundamental disturbances, and vice
versa. Therefore, in order for the alternative representations to deliver the same fit to the
data, a researcher has to leave the correlations unrestricted. One simple option is to set
a uniform prior distributions over the interval (−1�1) for the correlations of the sunspot
shocks. As shown for the estimation of the model of Galí (2021) in Section 5, this ap-
proach guarantees that the fit of the model does not depend on which nonfundamental
shock is included in the auxiliary processes. Of course, if a researcher has reasons to be-
lieve that one baseline solution is more meaningful than the other, she can choose the
priors accordingly.

Lubik and Schorfheide (2004) centered the prior distribution for the additional pa-
rameters introduced in their representation to values that minimize the distance be-
tween the impulse responses of the model under indeterminacy and determinacy eval-
uated at the boundary of the region of determinacy. While our approach and intuition
differ, our theoretical results show the equivalence between the two representations in
Section 3. Therefore, the priors for the correlations between sunspot shocks and funda-
mental shocks could also be specified in a way to replicate the approach of Lubik and
Schorfheide (2004). Specifically, we could center the prior on the auxiliary parameters as
in Lubik and Schorfheide (2004) and then map those values into correlations in our ap-
proach that would deliver the same fit of the model to the data. However, our suggestion
to choose a flat prior such as a uniform distribution considers a priori the mapped pa-
rameterization suggested by Lubik and Schorfheide (2004) as equally likely with respect
to the continuum of indeterminate equilibria.

Model comparison A researcher might be interested in comparing the fit of the model
under determinacy and under indeterminacy. Note that, while under indeterminacy the
volatility of the sunspot shocks and their correlations with the exogenous shocks are
estimated, those parameters should be restricted to zero (or any other constant) under
determinacy. Model comparison can then be conducted by using standard techniques,
such as the harmonic mean estimator proposed by Geweke (1999).
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