Supplement to "Uncertainty-driven business cycles: Assessing the markup channel"

(Quantitative Economics, Vol. 12, No. 2, May 2021, 587-623)

Benjamin Born

Frankfurt School of Finance \& Management, CEPR, and CESifo

Johannes Pfeifer
Department of Economics and Management, Bundeswehr University Munich

Appendix A: Theoretical model

A. 1 Model equations

The model equations after imposing a symmetric equilibrium are given by:

1. Production function:

$$
\begin{equation*}
Y_{t}=Y^{\text {norm }}\left[\alpha K_{t}^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(Z_{t}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}}-\Phi \tag{A.1}
\end{equation*}
$$

2. Firm FOC for renting N_{t} :

$$
\begin{equation*}
\exists_{p, t} \frac{W_{t}}{P_{t}}=M P L_{t} \tag{A.2}
\end{equation*}
$$

3. Definition marginal product of labor

$$
\begin{align*}
M P L_{t}= & Y^{\text {norm }}\left[\alpha K_{t}^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(Z_{t}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}-1} \\
& \times \frac{(1-\alpha)\left(Z_{t}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}}{N_{t}-N^{o}} \tag{A.3}
\end{align*}
$$

which, in the presence of no overhead labor and fixed costs, simplifies to

$$
M P L_{t}=(1-\alpha)\left(Z_{t}\right)^{\frac{\psi-1}{\psi}}\left(\frac{Y_{t}}{N_{t}}\right)^{\frac{1}{\psi}}
$$

4. Firm profits:

$$
\begin{equation*}
D_{t}=Y_{t}-N_{t} \frac{W_{t}}{P_{t}}-I_{t}-\frac{\phi_{P}}{2}\left(\Pi_{t}-\bar{\Pi}\right)^{2} Y_{t} \tag{A.4}
\end{equation*}
$$

[^0]© 2021 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0. Available at http://qeconomics.org. https://doi.org/10.3982/QE1297
5. Firm FOC for renting K_{t} :
\[

$$
\begin{equation*}
\Xi_{p, t} R_{t}^{K}=M P K_{t} \tag{A.5}
\end{equation*}
$$

\]

6. Definition marginal product of capital

$$
\begin{equation*}
M P K_{t}=Y^{\mathrm{norm}}\left[\alpha K_{t}^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(Z_{t}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}-1} \frac{\alpha K_{t}^{\frac{\psi-1}{\psi}}}{K_{t}} \tag{A.6}
\end{equation*}
$$

which, in the presence of no fixed costs, simplifies to

$$
M P K_{t}=\alpha\left(\frac{Y_{t}}{K_{t}}\right)^{\frac{1}{\psi}}
$$

7. Firm FOC for P_{t} :

$$
\begin{align*}
\phi_{p} & {\left[\Pi^{-1} \frac{P_{t}}{P_{t-1}}-1\right] \Pi^{-1} \frac{P_{t}}{P_{t-1}} } \\
= & \frac{\phi_{P} \theta_{p}}{2}\left(\Pi^{-1} \frac{P_{t}}{P_{t-1}}-1\right)^{2}+\left(1-\theta_{p}\right)+\theta_{p} \Xi_{p, t}^{-1} \\
& +\phi_{p} \mathbb{E}_{t}\left\{M_{t+1} \frac{Y_{t+1}}{Y_{t}}\left[\Pi^{-1} \frac{P_{t+1}}{P_{t}}-1\right]\left[\Pi^{-1} \frac{P_{t+1}}{P_{t}}\right]\right\} \tag{A.7}
\end{align*}
$$

where M_{t} is the stochastic discount factor defined below.
8. Firm FOC for capital:

$$
\begin{equation*}
q_{t}=E_{t} M_{t+1}\left(R_{t+1}^{k}+(1-\delta) q_{t+1}\right) \tag{A.8}
\end{equation*}
$$

9. Firm FOC for investment:

$$
\begin{align*}
1= & q_{t}\left(1-\frac{\phi_{k}}{2}\left(\frac{I_{t}}{I_{t-1}}-1\right)^{2}-\phi_{k}\left(\frac{I_{t}}{I_{t-1}}-1\right) \frac{I_{t}}{I_{t-1}}\right) \\
& +\phi_{k} E_{t} M_{t+1} q_{t+1}\left(\frac{I_{t+1}}{I_{t}}-1\right)\left(\frac{I_{t+1}}{I_{t}}\right)^{2} \tag{A.9}
\end{align*}
$$

10. Definition value function:

$$
\begin{equation*}
V_{t}=\frac{\left(C_{t}^{\eta}\left(1-N_{t}\right)^{1-\eta}\right)^{1-\sigma}}{1-\sigma}+\beta \mathbb{E}_{t} V_{t+1} \tag{A.10}
\end{equation*}
$$

11. Partial derivative of lifetime utility with respect to consumption:

$$
\begin{equation*}
V_{C, t}=\eta \frac{1}{C_{t}}\left(C_{t}^{\eta}\left(1-N_{t}\right)^{1-\eta}\right)^{1-\sigma} \tag{A.11}
\end{equation*}
$$

12. FOC with respect to W :

$$
\begin{align*}
0= & V_{N_{t}}\left(-\theta_{w}\right) N_{t}+\frac{V_{C, t}}{1+\tau_{t}^{c}}\left[\left(1-\theta_{w}\right)\left(1-\tau_{t}^{n}\right) N_{t} \frac{W_{t}}{P_{t}}-\phi_{w}\left(\Pi^{-1} \frac{W_{t}}{W_{t-1}}-1\right) \frac{W_{t}}{\Pi W_{t-1}} Y_{t}\right] \\
& +\beta \frac{V_{C, t+1}}{1+\tau_{t+1}^{c}}\left[\phi_{w}\left(\Pi^{-1} \frac{W_{t+1}}{W_{t}}-1\right) \Pi^{-1} \frac{W_{t+1}}{W_{t}} Y_{t+1}\right] \tag{A.12}
\end{align*}
$$

13. Partial derivative of lifetime utility with respect to labor:

$$
\begin{equation*}
V_{N, t}=-(1-\eta) \frac{1}{1-N_{t}}\left(C_{t}^{\eta}\left(1-N_{t}\right)^{1-\eta}\right)^{1-\sigma} \tag{A.13}
\end{equation*}
$$

14. Definition stochastic discount factor:

$$
\begin{equation*}
M_{t+1} \equiv \frac{\frac{\partial V_{t}}{\partial C_{t+1}}}{\frac{\partial V}{\partial C_{t}}} \frac{1+\tau_{t}^{c}}{1+\tau_{t+1}^{c}}=\beta \frac{1+\tau_{t}^{c}}{1+\tau_{t+1}^{c}}\left(\frac{C_{t+1}^{\eta}\left(1-N_{t+1}\right)^{1-\eta}}{C_{t}^{\eta}\left(1-N_{t}\right)^{1-\eta}}\right)^{1-\sigma}\left(\frac{C_{t}}{C_{t+1}}\right) \tag{A.14}
\end{equation*}
$$

15. Euler equation

$$
\begin{equation*}
1=R_{t} \mathbb{E}_{t}\left\{M_{t+1} \Pi_{t+1}^{-1}\right\} \tag{A.15}
\end{equation*}
$$

16. Taylor rule:

$$
\begin{equation*}
\frac{R_{t}}{R}=\left(\frac{R_{t-1}}{R}\right)^{\rho_{R}}\left(\left(\frac{\Pi_{t}}{\Pi}\right)^{\phi_{R \pi}}\left(\frac{Y_{t}}{Y_{t}^{\mathrm{HP}}}\right)^{\phi_{R y}}\right)^{1-\rho_{R}} \tag{A.16}
\end{equation*}
$$

17. Law of motion for capital:

$$
\begin{equation*}
K_{t+1}=K_{t}(1-\delta)+I_{t}\left(1-\frac{\phi_{k}}{2}\left(\frac{I_{t}}{I_{t-1}}-1\right)^{2}\right) \tag{A.17}
\end{equation*}
$$

18. Definition of model-consistent HP-filter output gap:

$$
\begin{align*}
Y_{t}^{\mathrm{HP}} & (1+6 \times 1600)+Y_{t-1}^{\mathrm{HP}}(-4 \times 1600)+E_{t} Y_{t+1}^{\mathrm{HP}}(-4 \times 1600) \\
& +Y_{t-2}^{\mathrm{HP}} \times 1600+E_{t} Y_{t+2}^{\mathrm{HP}} 1600 \\
= & Y_{t}(6 \times 1600)+Y_{t-1}(-4 \times 1600)+E_{t} Y_{t+1}(-4 \times 1600) \\
& +Y_{t-1} 1600+E_{t} Y_{t+1} 1600 \tag{A.18}
\end{align*}
$$

19. Budget constraint household after imposing that $B_{t} / P_{t}=0 \forall t:^{1}$

$$
\begin{equation*}
\left(1+\tau_{t}^{c}\right) C_{t}=\left(1-\tau_{t}^{n}\right) \frac{W_{t}}{P_{t}} N_{t}+C_{t}-\frac{\phi_{w}}{2}\left(\Pi^{-1} \frac{W_{t}}{W_{t-1}}-1\right)^{2} Y_{t}+T_{t}+D_{t} \tag{A.19}
\end{equation*}
$$

20. Budget constraint government:

$$
\begin{equation*}
\tau_{t}^{c} C_{t}+\tau_{t}^{n} \frac{W_{t}}{P_{t}} N_{t}=G_{t}+T_{t} \tag{A.20}
\end{equation*}
$$

[^1]These 20 equations define the evolution of the following 20 variables: $C_{t}, I_{t}, K_{t}, D_{t}$, $M_{t}, M P L_{t}, M P K_{t}, N_{t}, \Pi_{t}, q_{t}, R_{t}, R_{t}^{K}, T_{t}, V_{t}, V_{C, t}, V_{N, t}, \frac{W_{t}}{P_{t}}, \Xi_{p, t}, Y_{t}, Y_{t}^{\mathrm{HP}}$.

Finally, the exogenous processes for $\hat{Z}_{t}, \sigma_{t}^{z}, \hat{G}_{t}$, and σ_{t}^{g} are given by

$$
\begin{align*}
\hat{Z}_{t} & =\rho_{z} \hat{Z}_{t-1}+\sigma_{t}^{z} \varepsilon_{t}^{z} \tag{A.21}\\
\hat{G}_{t} & =\rho_{g} \hat{G}_{t-1}+\phi_{g y} \hat{Y}_{t-1}+\sigma_{t}^{g} \varepsilon_{t}^{g} \tag{A.22}\\
\sigma_{t}^{z} & =\left(1-\rho_{\sigma^{z}}\right) \bar{\sigma}^{z}+\rho_{\sigma^{z}} \sigma_{t-1}^{z}+\eta_{\sigma^{z}} \varepsilon_{t}^{\sigma^{z}} \tag{A.23}\\
\sigma_{t}^{g} & =\left(1-\rho_{\sigma^{g}}\right) \bar{\sigma}^{g}+\rho_{\sigma^{g}} \sigma_{t-1}^{g}+\eta_{\sigma^{g}} \varepsilon_{t}^{\sigma^{g}} \tag{A.24}
\end{align*}
$$

A. 2 Additional derivations for model calibration

A.2.1 Frisch elasticity This section shows how to compute the Frisch elasticity of labor supply for our model. The resulting expression will be used in steady-state computations to determine the weight of leisure in the Cobb-Douglas felicity function, that is, when determining η. As shown in, for example, Domeij and Floden (2006), the Frisch elasticity η^{λ} can be computed from

$$
\begin{equation*}
\eta^{\lambda}=\frac{U_{N}(C, N)}{\left(U_{N N}(C, N)-\frac{U_{C N}^{2}(C, N)}{U_{C C}}(C, N)\right)} \frac{1}{N} \tag{A.25}
\end{equation*}
$$

For the felicity function,

$$
\begin{equation*}
U(C, N)=\frac{\left(C^{\eta}(1-N)^{1-\eta}\right)^{1-\sigma}}{1-\sigma}=\frac{C^{\eta(1-\sigma)}(1-N)^{(1-\eta)(1-\sigma)}}{1-\sigma} \tag{A.26}
\end{equation*}
$$

we get

$$
\begin{align*}
U_{N} & =-(1-\eta)\left(C^{\eta}\right)^{1-\sigma}(1-N)^{(1-\eta)(1-\sigma)-1}=-(1-\eta)(1-\sigma) \frac{U(C, N)}{(1-N)} \tag{A.27}\\
U_{N N} & =(1-\eta)(1-\sigma)((1-\eta)(1-\sigma)-1) \frac{U(C, N)}{(1-N)^{2}} \tag{A.28}\\
U_{C} & =\eta C^{\eta(1-\sigma)-1}(1-N)^{(1-\eta)(1-\sigma)}=\eta(1-\sigma) \frac{U(C, N)}{C}, \tag{А.29}\\
U_{C C} & =\eta(\eta(1-\sigma)-1)(1-\sigma) \frac{U(C, N)}{C^{2}}, \tag{A.30}\\
U_{C N} & =-\eta(1-\eta)(1-\sigma) C^{\eta(1-\sigma)-1}(1-N)^{(1-\eta)(1-\sigma)-1} \\
& =-\eta(1-\eta)(1-\sigma)(1-\sigma) \frac{U(C, N)}{C(1-N)} \tag{A.31}
\end{align*}
$$

After a lot of tedious algebra, we get that

$$
\begin{equation*}
\eta^{\lambda}=\frac{U_{N}(C, N)}{\left(U_{N N}(C, N)-\frac{U_{C N}^{2}(C, N)}{U_{C C}}(C, N)\right)} \frac{1}{N}=\frac{1-\eta(1-\sigma)}{1-(1-\sigma)} \frac{1-N}{N} \tag{A.32}
\end{equation*}
$$

A. 3 Steady state

The stochastic discount factor, equation (A.14), in steady state evaluates to

$$
\begin{equation*}
M=\beta \tag{A.33}
\end{equation*}
$$

while the first-order condition for investment, equation (A.9), gives Tobin's marginal q as

$$
\begin{equation*}
q=1 \tag{А.34}
\end{equation*}
$$

Plugging this into (A.8) yields

$$
\begin{equation*}
R_{K}=\frac{1}{\beta}-(1-\delta) \tag{A.35}
\end{equation*}
$$

and the pricing FOC (A.7) in steady state implies that

$$
\begin{equation*}
\Xi_{t, p}=\frac{\theta_{p}}{\theta_{p}-1} \tag{A.36}
\end{equation*}
$$

The wage setting FOC (A.12) implies

$$
\begin{equation*}
V_{N}=\frac{V_{C}}{1+\tau^{c}}\left[\left(\theta_{w}-1\right)\left(1-\tau_{t}^{n}\right) \frac{W}{P} N\right] \tag{А.37}
\end{equation*}
$$

Using the definition of marginal utility, (A.11),

$$
\begin{equation*}
V_{C}=\eta \frac{\left(C^{\eta}(1-N)^{1-\eta}\right)^{1-\sigma}}{C} \tag{A.38}
\end{equation*}
$$

and the definition of V_{N}, (A.13),

$$
\begin{equation*}
V_{N}=-(1-\eta) \frac{\left(C^{\eta}(1-N)^{1-\eta}\right)^{1-\sigma}}{1-N} \tag{A.39}
\end{equation*}
$$

equation (A.37) reduces to

$$
\begin{equation*}
\frac{1-\eta}{1-N} \theta_{w}=\frac{\eta}{1+\tau^{c}} \frac{1}{C}\left[\left(\theta_{w}-1\right)\left(1-\tau^{n}\right) \frac{W}{P}\right] \tag{A.40}
\end{equation*}
$$

With net output normalized to 1 by appropriately setting $Y^{\text {norm }}$, which is determined later, and the labor and capital share given by \aleph and $1-\aleph$, respectively, we have

$$
\begin{equation*}
\aleph=\frac{\frac{W}{P} N}{Y}=\frac{\frac{W}{P} N}{1} \quad \Rightarrow \quad W / P=\frac{\aleph}{N} \tag{A.41}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
K=\frac{1-\aleph}{R^{K}} \tag{A.42}
\end{equation*}
$$

Equation (A.42) can be used with (A.35) to directly compute K and via the law of motion for capital, equation (A.17), also investment

$$
\begin{equation*}
I=\delta K \tag{A.43}
\end{equation*}
$$

Next, substituting for the real wage in (A.40) from (A.41), one obtains

$$
\begin{equation*}
\frac{1-\eta}{\eta} \frac{C}{1-N}=\frac{\theta_{w}-1}{\theta_{w}} \frac{1-\tau^{n}}{1+\tau^{c}} \frac{\aleph}{N} . \tag{A.44}
\end{equation*}
$$

Solving this equation for consumption yields

$$
\begin{equation*}
C=\frac{\theta_{w}-1}{\theta_{w}} \frac{1-\tau^{n}}{1+\tau^{c}} \aleph \frac{1-N}{N} \frac{\eta}{1-\eta} . \tag{A.45}
\end{equation*}
$$

Consolidating the household and government budget constraints, equations (A.19) and (A.20), and using equation (A.43) and the definition of firm dividends, equation (A.4), yields

$$
\begin{equation*}
C+\delta K=Y=1 \tag{A.46}
\end{equation*}
$$

Plugging in from (A.45) for consumption yields

$$
\begin{equation*}
\frac{\theta_{w}-1}{\theta_{w}} \frac{1-\tau^{n}}{1+\tau^{c}} \aleph \frac{1-N}{N} \frac{1-\eta}{\eta}+\delta K=1, \tag{A.47}
\end{equation*}
$$

where K is already known from (A.42).
The Frisch elasticity η^{λ} is calibrated to 1 . From (A.32) then follows that

$$
\begin{equation*}
\eta=\frac{\theta}{1-\sigma}\left[1-\eta^{\lambda}\left(1-\frac{1-\sigma}{\theta}\right) \frac{N}{1-N}\right] . \tag{A.48}
\end{equation*}
$$

Plugging (A.48) into (A.47), one obtains a nonlinear equation for N :

$$
\begin{equation*}
0=\frac{\theta_{w}-1}{\theta_{w}} \frac{1-\tau^{n}}{1+\tau^{c}} \aleph \frac{1-N}{N} \frac{1-\frac{1}{1-\sigma}\left(1-(1-1-\sigma) \frac{N}{1-N}\right)}{\frac{1}{1-\sigma}\left(1-(1-1-\sigma) \frac{N}{1-N}\right)}+\delta K-1 . \tag{A.49}
\end{equation*}
$$

This equation is solved numerically for hours worked N. Consumption immediately follows from (A.45), η from (A.48), the real wage from (A.41), and dividends from (A.4).

Up to this point, we have assumed that net output is normalized to 1 . We are now in a position to compute the variables and parameters of the production side of our model, including the normalizing technology factor $Y^{\text {norm }}$ that allowed working with $Y=1$.

Fixed costs Φ are set equal to steady-state profits, which are the difference between output and factor payments:

$$
\begin{equation*}
\Phi=Y^{\text {norm }}\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)^{\frac{\psi}{\psi-1}}-K R^{K}-W N . \tag{A.50}
\end{equation*}
$$

With technology being in steady state, that is, $Z=1$, the firm FOCs, equations (A.2)(A.6), imply

$$
\begin{align*}
R^{K} & =\Xi Y^{\mathrm{norm}}\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)^{\frac{\psi}{\psi-1}-1} \alpha K^{\frac{\psi-1}{\psi}-1} \tag{A.51}\\
\frac{W}{P} & =\Xi Y^{\mathrm{norm}}\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)^{\frac{\psi}{\psi-1}-1}(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}-1} \tag{А.52}
\end{align*}
$$

so that (A.50) with $N^{o}=\phi_{o} N$ becomes

$$
\begin{align*}
\Phi= & Y^{\mathrm{norm}}\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)^{\frac{\psi}{\psi-1}} \\
& -\Xi Y^{\mathrm{norm}}\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)^{\frac{\psi}{\psi-1}-1} \alpha K^{\frac{\psi-1}{\psi}} \\
& -\Xi Y^{\mathrm{norm}}\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)^{\frac{\psi}{\psi-1}-1}(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}} \frac{N}{N-N^{o}} \\
= & Y^{\mathrm{norm}}\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)^{\frac{1}{\psi-1}} \\
& \times\left(1-\Xi \frac{\alpha K_{t}^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}} \frac{1}{\left(1-\phi_{o}\right)}}{\alpha K_{t}^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N_{t}-N^{o}\right)^{\frac{\psi-1}{\psi}}}\right) \tag{A.53}
\end{align*}
$$

In the absence of overhead labor, this reduces to

$$
\begin{equation*}
\Phi=(1-\Xi) Y^{\mathrm{norm}}\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha) N^{\frac{\psi-1}{\psi}}\right)^{\frac{1}{\psi-1}} . \tag{A.54}
\end{equation*}
$$

Net output Y is given by production minus fixed costs:

$$
\begin{align*}
& Y= Y^{\text {norm }}\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)^{\frac{\psi}{\psi-1}}-\Phi \\
& \stackrel{(\mathrm{A.} 53)}{=} Y^{\text {norm }}\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)^{\frac{\psi}{\psi-1}} \\
& \times \Xi \frac{\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}} \frac{1}{\left(1-\phi_{o}\right)}}{\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}} \tag{A.55}
\end{align*}
$$

which in the absence of overhead labor reduces to

$$
Y=Y^{\text {norm }}\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)^{\frac{\psi}{\psi-1}}
$$

Equation (A.55) implies that the normalizing technology factor $Y^{\text {norm }}$ is given by

$$
\begin{align*}
Y^{\mathrm{norm}}= & {\left[\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)^{\frac{\psi}{\psi-1}}\right.} \\
& \left.\times \Xi \frac{\left(\alpha K_{t}^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}} \frac{1}{\left(1-\phi_{o}\right)}\right)}{\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)}\right]^{-1} . \tag{A.56}
\end{align*}
$$

All the previous equations require knowledge of the labor share parameter α, which is not a true structural parameter in the sense that it depends on the units of the model variables (see Cantore and Levine (2012), for details). It can be computed from the actual labor share \aleph using

$$
\begin{align*}
1- & \\
= & \frac{K R^{K}}{Y} \\
= & \frac{K \Xi Y^{\mathrm{norm}}\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)^{\frac{\psi-1}{\psi-1}} \alpha K^{\frac{\psi-1}{\psi}-1}}{Y^{\mathrm{norm}}\left(\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}\right)^{\frac{\psi}{\psi-1}} \Xi \frac{\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}} \frac{1}{1-\phi_{o}}}{\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}}}} \\
= & \frac{\alpha K^{\frac{\psi-1}{\psi}}}{\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(N-\bar{N}^{o}\right)^{\frac{\psi-1}{\psi}} \frac{1}{1-\phi_{o}}} . \tag{A.57}
\end{align*}
$$

Solving for α yields

$$
\begin{equation*}
\alpha=\frac{\aleph\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}} \frac{1}{1-\phi_{o}}}{(1-\aleph) K^{\frac{\psi-1}{\psi}}+\aleph\left(N-N^{o}\right)^{\frac{\psi-1}{\psi}} \frac{1}{1-\phi_{o}}}, \tag{A.58}
\end{equation*}
$$

allowing us to compute the normalizing technology factor $Y^{\text {norm }}$ from (A.56) and the fixed costs Φ from (A.53).

We also need to compute the steady states of our auxiliary variables in the model. In steady state, the wage markup between marginal rate of substitution is

$$
\begin{equation*}
M R S=\frac{1-\eta}{\eta} \frac{C}{1-N} \tag{A.59}
\end{equation*}
$$

while the real wage is given by

$$
\begin{equation*}
\Xi^{w}=\frac{\theta_{w}}{\theta_{w}-1} \tag{A.60}
\end{equation*}
$$

A. 4 Particle filter details and smoothed volatilities

We employ a Sequential Importance Resampling (SIR) filter (Gordon, Salmond, and Smith (1993)) with 20,000 particles to construct the likelihood of the stochastic volatility processes. Draws from the posterior are generated using the Metropolis-Hastings algorithm. We generate a Monte Carlo Markov Chain with 205,000 draws of which 5000 are used as a burn-in. As the proposal density, we use a multivariate normal distribution with the identity matrix as the covariance matrix, scaled to achieve an acceptance rate of about 25%. Smoothed objects are constructed using the backward-smoothing routine of Godsill, Doucet, and West (2004) with 20,000 particles for the smoother. More details can be found in Appendix B of Born and Pfeifer (2014).

(a) TFP Volatility
(b) Government Spending Volatility

Figure A.1. Median smoothed volatilities from the particle smoother, based on 20,000 particles for the forward pass and 20,000 particles for the backward smoothing routine. Shaded areas denote 90% highest posterior density intervals.

A. 5 Convergence diagnostics

Table A.1. Geweke (1992) convergence tests, based on means of draws 5001 to 45001 vs. 105001 to 205000. p-values are for χ^{2}-test for equality of means.

Parameter	Mean	Std	No Taper	4% Taper	8% Taper	15% Taper
$\rho_{\sigma^{z}}$	0.5177	0.1242	0.0591	0.8851	0.8846	0.8869
ρ_{z}	0.7730	0.0498	0.0000	0.2467	0.2427	0.2611
$\eta_{\sigma^{z}}$	0.0023	0.0003	0.2213	0.8546	0.8504	0.8503
$\bar{\sigma}^{z}$	0.0070	0.0006	0.1086	0.5670	0.5420	0.5090

Table A.2. Geweke (1992) convergence tests, based on means of draws 5001 to 45001 vs. 105001 to 205000. p-values are for χ^{2}-test for equality of means.

Parameter	Mean	Std	No Taper	4% Taper	8% Taper	15\% Taper
$\rho_{\sigma^{g}}$	0.5041	0.1226	0.0000	0.1551	0.1687	0.1578
ρ_{g}	0.9380	0.0343	0.0000	0.4864	0.5655	0.6271
$\eta_{\sigma^{g}}$	0.0030	0.0004	0.1448	0.8583	0.8514	0.8298
$\bar{\sigma}^{g}$	0.0076	0.0007	0.1993	0.8189	0.8289	0.8423
$\phi_{g y}$	0.0222	0.0343	0.0001	0.4009	0.4399	0.5008

A. 6 Additional model IRFs

Figure A.2. Model IRFs with sticky prices and flexible wages. Notes: IRFs to a two-standard deviation shock measured in percentage deviations from the stochastic steady state.

(a) Technology Volatility

(b) Government Spending Volatility

Figure A.3. Model IRFs with sticky wages and flexible prices. Notes: IRFs to a two-standard deviation shock measured in percentage deviations from the stochastic steady state.

(b) Government Spending Volatility

Figure A.4. Model IRFs with flexible prices and wages. Notes: IRFs to a two-standard deviation shock measured in percentage deviations from the stochastic steady state.

Figure A.5. Model IRFs to level shocks with sticky prices and wages. Notes: IRFs to a one-standard deviation shock, measured in percentage deviations or percentage point deviations (annualized inflation and interest rates) from the stochastic steady state.

Figure A.6. Model IRFs to a two-standard deviation technology uncertainty shock using our estimated TFP process (left panel) and the TFP process estimated in Leduc and Liu (2016) (right panel), with the model solved at order 4 instead of 3 as in the baseline. The left panel displays the output response for the baseline calibration (solid line), the baseline calibration with higher firm risk aversion (dashed line), and the latter calibration with lower real and higher nominal rigidities as in Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramírez (2015) (dotted line). The right panel combines the last calibration with the Leduc and Liu (2016) TFP process. See the main text for details. Notes: IRFs measured in percentage deviations from the stochastic steady state.

Figure A.7. Output responses under different four-standard deviation technology uncertainty shock scenarios using the TFP process estimated in Leduc and Liu (2016) with higher firm risk aversion as well as lower real and higher nominal rigidities as in Fernández-Villaverde et al. (2015), with the model solved at order 4 . The solid line shows two times the response to a two-standard deviation technology uncertainty shock, i.e. what would happen if the model scaled linearly in the shock size. The dashed line displays the response to a true four-standard deviation shock, while the yellow dotted line shows the response to a cascading four-standard deviation uncertainty shock, that is, two consecutive two-standard deviation shocks happening at $t=1$ and $t=2$. Notes: IRFs measured in percentage deviations from the stochastic steady state.

Appendix B: Marginal product of labor for markup computation
Given our production function, the marginal product of labor is equal to

$$
\begin{align*}
M P L_{t}= & Y^{\text {norm }}\left[\alpha K_{t}^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(Z_{t}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}-1} \\
& \times \frac{(1-\alpha)\left(e^{Z_{t}}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}}{N_{t}-N^{o}} \tag{B.1}
\end{align*}
$$

This is equal to

$$
\begin{align*}
M P L_{t}= & \left(Y^{\mathrm{norm}}\left[\alpha K_{t}^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(e^{Z_{t}}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}}\right)^{\frac{1}{\psi}} \\
& \times\left(Y^{\mathrm{norm}}\right)^{\frac{\psi-1}{\psi}} \frac{(1-\alpha)\left(e^{Z_{t}}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}}{N_{t}-N^{o}} \tag{B.2}
\end{align*}
$$

Using (A.1), we have that

$$
\begin{equation*}
Y_{t}+\Phi=Y^{\mathrm{norm}}\left[\alpha K_{t}^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(e^{Z_{t}}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}} \tag{B.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
M P L_{t}=(1-\alpha)\left(Y^{\text {norm }}\right)^{\frac{\psi-1}{\psi}}\left(e^{Z_{t}}\right)^{\frac{\psi-1}{\psi}}\left(\frac{Y_{t}+\Phi}{N_{t}-N^{o}}\right)^{\frac{1}{\psi}} \tag{B.4}
\end{equation*}
$$

In case of no fixed costs and no overhead labor, this reduces to the familiar

$$
\begin{equation*}
M P L_{t}=(1-\alpha)\left(Y^{\mathrm{norm}}\right)^{\frac{\psi-1}{\psi}}\left(e^{Z_{t}}\right)^{\frac{\psi-1}{\psi}}\left(\frac{Y_{t}}{N_{t}}\right)^{\frac{1}{\psi}} \tag{B.5}
\end{equation*}
$$

In logs, we have from (B.4)

$$
\begin{equation*}
\log \left(M P L_{t}\right)=\log \left((1-\alpha)\left(Y^{\mathrm{norm}}\right)^{\frac{\psi-1}{\psi}}\right)+\frac{\psi-1}{\psi} \log \left(e^{Z_{t}}\right)+\frac{1}{\psi} \log \left(\frac{Y_{t}+\Phi}{N_{t}-N^{o}}\right) \tag{B.6}
\end{equation*}
$$

where the first term is a constant that depends on the units of measurement. For the second term, we need a measure of labor-augmenting technology Z_{t}. Thus, the price markup can be computed as

$$
\begin{equation*}
\xi_{t}^{p}=\log \left((1-\alpha)\left(Y^{\mathrm{norm}}\right)^{\frac{\psi-1}{\psi}}\right)+\frac{\psi-1}{\psi} Z_{t}+\frac{1}{\psi} \log \left(\frac{Y_{t}+\Phi}{N_{t}-N^{o}}\right)-\log \left(\frac{W_{t}}{P_{t}}\right) . \tag{B.7}
\end{equation*}
$$

Technology movements are approximated using the Fernald (2012) utilizationadjusted TFP measure. This TFP measure, based on growth accounting, originally assumes a unit elasticity of output with respect to technology, which would correspond to Hicks-neutral technology growth. Starting from a general production function

$$
\begin{equation*}
Y=Y(K, L, T F P) \tag{B.8}
\end{equation*}
$$

the contribution of TFP to output growth is effectively computed via the total differential as the part of output growth not accounted for by utilization adjusted factor growth:

$$
\begin{equation*}
\frac{d T F P_{t}}{T F P_{t}}=\frac{d Y_{t}}{Y_{t}}-\varepsilon_{K, t} \frac{d K_{t}}{K_{t}}-\varepsilon_{N, t} \frac{d N_{t}}{N_{t}}, \tag{B.9}
\end{equation*}
$$

where ε denotes the respective output elasticities and where by construction $\varepsilon_{T F P, t}=1$. Thus, we need to transform this TFP measure to correspond to our measure of laboraugmenting (Kaldor-neutral) technology $A_{t}=e^{Z_{t}}$ as

$$
\begin{equation*}
\frac{d T F P_{t}}{T F P_{t}}=\varepsilon_{A, t} \frac{d A_{t}}{A_{t}} \Rightarrow \log A_{t}=\frac{1}{\varepsilon_{A, t}} \log T F P_{t}, \tag{B.10}
\end{equation*}
$$

where the integration constant has been set to 0 . Thus, when knowing the elasticity of TFP with respect to labor-augmenting technology, $\varepsilon_{A, t}$, the Fernald (2012) measure can be transformed into our required technology measure. ${ }^{2}$ As $\varepsilon_{A, t}$ is invariant to multiplicative transformations of output, we first normalize output by steady state/balanced growth path output Y to get gross deviations from steady state: ${ }^{3}$

$$
\begin{equation*}
\hat{Y} \equiv \frac{Y_{t}}{Y}=\frac{\left[\alpha K_{t}^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(A e^{\hat{Z}_{t}}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}}-\Phi}{\left[\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(A\left(N-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}}-\Phi}, \tag{B.11}
\end{equation*}
$$

where A is a constant capturing the unknown level of labor-augmenting technology and all other normalizations, for example, the one introduced by using an index for output.

Noting that in steady state

$$
\begin{align*}
& Y=\frac{1}{\left(1+\phi_{\mathrm{fix}}\right.}\left[\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(A\left(N-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}}, \tag{B.12}\\
& \Phi=\frac{\phi_{\mathrm{fix}}}{\left(1+\phi_{\mathrm{fix}}\right)}\left[\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(A\left(N-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}} \tag{B.13}
\end{align*}
$$

equation (B.11) can be rewritten as

$$
\begin{equation*}
\hat{Y}=\frac{\left(1+\phi_{\mathrm{fix}}\right)\left[\alpha K_{t}^{\frac{\mu-1}{\psi}}+(1-\alpha)\left(A e^{\hat{Z}_{t}}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{1}{\psi}}}{\left[\alpha K^{\frac{\mu-1}{\psi}}+(1-\alpha)\left(A\left(N-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}}}-\phi_{\mathrm{fix}} . \tag{B.14}
\end{equation*}
$$

Using the corresponding firm first-order conditions,

$$
\begin{equation*}
\frac{W_{t}}{P_{t}}=\Xi\left[\frac{(1-\alpha)\left(A e^{\hat{\mathcal{Z}}_{t}}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}}{\alpha K_{t}^{\frac{\psi^{\psi}}{\psi}}+(1-\alpha)\left(A e^{\hat{Z}_{t}}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}}\right] \frac{Y_{t}+\Phi}{N_{t}-N^{o}} \tag{B.15}
\end{equation*}
$$

[^2]and
\[

$$
\begin{equation*}
R_{t}^{K}=\Xi\left[\frac{\alpha K_{t}^{\frac{\psi-1}{\psi}}}{\alpha K_{t}^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(A e^{\hat{Z}_{t}}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}}\right] \frac{Y_{t}+\Phi}{K_{t}} \tag{B.16}
\end{equation*}
$$

\]

equation (B.14) becomes

$$
\begin{align*}
\hat{Y}= & \left(1+\phi_{\mathrm{fix}}\right) \\
& \times\left[\frac{\alpha K_{t}^{\frac{\psi-1}{\psi}}}{\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(A\left(N-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}}+\frac{(1-\alpha)\left(A e^{\hat{Z}_{t}}\left(N_{t}-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}}{\left.\alpha K^{\frac{\psi-1}{\psi}}+(1-\alpha)\left(A\left(N-N^{o}\right)\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}}}\right. \\
& -\phi_{\mathrm{fix}} \\
= & \left(1+\phi_{\mathrm{fix}}\right)\left[\frac{1}{\Xi} \frac{R^{K} K}{(Y+\Phi)}\left(\frac{K_{t}}{K}\right)^{\frac{\psi-1}{\psi}}+\frac{1}{\Xi} \frac{W}{P} \frac{\left(N-N^{o}\right)}{(Y+\Phi)}\left(\frac{A e^{\hat{Z}_{t}}\left(N_{t}-N^{o}\right)}{A\left(N-N^{o}\right)}\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}} \\
& -\phi_{\mathrm{fix}} . \tag{B.17}
\end{align*}
$$

Defining the share of nonoverhead labor compensation in output as

$$
\begin{equation*}
\aleph^{o} \equiv \frac{\frac{W}{P}\left(N-N^{o}\right)}{Y}=\frac{\frac{W}{P} N}{Y} \frac{N-N^{o}}{N}=\aleph\left(1-\phi^{o}\right) \tag{B.18}
\end{equation*}
$$

and noting that the prefactors in front of capital and labor sum up to 1, equation (B.14) can be rewritten as

$$
\begin{equation*}
\hat{Y}_{t}=\left(1+\phi_{\mathrm{fix}}\right)\left[\left(1-\frac{\aleph^{o}}{\Xi\left(1+\phi_{\mathrm{fix}}\right)}\right) \hat{K}_{t}^{\frac{\psi-1}{\psi}}+\frac{\aleph^{o}}{\Xi\left(1+\phi_{\mathrm{fix}}\right)}\left(e^{\hat{Z}_{t}} \hat{N}_{t}\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi}{\psi-1}}-\phi_{\mathrm{fix}} \tag{B.19}
\end{equation*}
$$

The elasticity of output with respect to technology A_{t} can then be computed by differentiating net output deviations from steady state with respect to \hat{Z}_{t},

$$
\begin{align*}
\varepsilon_{A, t}= & \frac{\partial\left(\hat{Y}_{t}-1\right)}{\partial \hat{Z}_{t}} \\
= & \left(1+\phi_{\mathrm{fix}}\right)\left[\left(1-\frac{\aleph^{o}}{\Xi\left(1+\phi_{\mathrm{fix}}\right)}\right) \hat{K}_{t}^{\frac{\psi-1}{\psi}}+\frac{\aleph^{o}}{\Xi\left(1+\phi_{\mathrm{fix}}\right)}\left(e^{\hat{Z}_{t}} \hat{N}_{t}\right)^{\frac{\psi-1}{\psi}}\right]^{\frac{\psi-1}{\psi-1}-1} \\
& \times \frac{1}{\Xi\left(1+\phi_{\mathrm{fix}}\right)} \aleph^{o}\left(e^{\hat{Z}_{t}} \hat{N}_{t}\right)^{\frac{\psi-1}{\psi}} \\
& \stackrel{\text { (B.19) }}{=}\left[\frac{\hat{Y}_{t}+\phi_{\mathrm{fix}}}{1+\phi_{\mathrm{fix}}}\right]^{\frac{1}{\psi}} \frac{1}{\Xi} \aleph^{o}\left(e^{\hat{Z}_{t}} \hat{N}_{t}\right)^{\frac{\psi-1}{\psi}} . \tag{B.20}
\end{align*}
$$

In the Cobb-Douglas case in steady state, this simplifies to the well-known

$$
\begin{equation*}
\varepsilon_{A, t}=\frac{1}{E} \aleph \tag{B.21}
\end{equation*}
$$

To operationalize the aforementioned, we first need to detrend output with the rate of labor-augmenting technology growth.

Appendix C: Data

C. 1 Macro data

The data for the VARs is taken from FRED-MD (McCracken and Ng (2016)), except for (i) our constructed markup measure, (ii) the respective uncertainty measure, (iii) the shadow federal funds rate, which is taken from Wu and Xia (2016), and (iv) real new orders, which are taken from Conference Board as the sum of "Orders: consumer goods" (A1M008) and "Orders: capital goods" (A1M027) and are deflated using the "PCE Implicit Price Deflator" (PCEPI) from FRED-MD.

For the particle filtering, we use Government Consumption Expenditures and Gross Investment (FRED: GCE) as our measure of government spending and Real Gross Domestic Product (FRED: GDPC1) as our output measure. Both are transformed to per capita values via division by Civilian noninstitutional population (FRED: CNP16OV), smoothed with an HP-filter with $\lambda=10,000$ to solve the best levels problem (Edge and Gurkaynak (2010)). The resulting per capita series are then logged and detrended using a one-sided HP-filter with $\lambda=1600$.

For TFP, we cumulate the utilization adjusted TFP growth rates of Fernald (2012) (dtfp_util, transformed from annualized to quarterly growth rates), and detrend using a one-sided HP-filter with $\lambda=1600$. The vintage of TFP data used already incorporates recent methodological changes in the computation of utilization (see Kurmann and Sims (forthcoming)).

C. 2 Uncertainty measures

- The Jurado, Ludvigson, and Ng (2015) macro uncertainty measure and the Ludvigson, Ma , and Ng (forthcoming) financial uncertainty measure are available at Sydney Ludvigson's homepage at https://www.sydneyludvigson.com/data-andappendixes/. We use the $h=1$ measures.
- The Baker, Bloom, and Davis (2016) economic policy uncertainty measure is taken from FRED (USEPUINDXM)
- The VIX index is taken from FRED (VIXCLS) and averaged across months. Before the VIX becomes available in 1990, we use the realized stock return volatility. For that purpose, we compute the monthly standard deviation of the daily S\&P 500 stock price index returns. The stock price index values are taken from Datastream (S\&PCOMP(PI)). The resulting index of realized volatilities is normalized to have the same mean and variance as the VIX index when they overlap from 1990 onwards. The correlation between the two during that period is 0.8776 .

C. 3 Wage markup

For the wage markup, that is, the wedge between the marginal rate of substitution and the real wage, we focus on an encompassing measure of hours. Recall the equation for computing the wage markup in the baseline case of a Cobb-Douglas utility function

$$
\begin{equation*}
\xi_{t}^{w}=\log \left(\frac{1-\tau_{t}^{n}}{1+\tau_{t}^{c}}\right)+\log \left(\frac{W_{t} N_{t}}{P_{t} Y_{t}}\right)+\log \left(\frac{Y_{t}}{C_{t}}\right)-\log \left(\frac{1-\eta}{\eta}\right)+\log \left(\frac{1-N_{t}}{N_{t}}\right) \tag{C.1}
\end{equation*}
$$

Demeaning yields:

$$
\begin{align*}
\xi_{t}^{w}-\xi^{w}= & {\left[\log \left(\frac{W_{t} N_{t}}{P_{t} Y_{t}}\right)-\log \left(\frac{W N}{P Y}\right)\right]+\left[\log \left(\frac{Y_{t}}{C_{t}}\right)-\log \left(\frac{Y}{C}\right)\right] } \\
& +\left[\log \left(\frac{1-N_{t}}{N_{t}}\right)-\log \left(\frac{1-N}{N}\right)\right] \\
& +\left[\log \left(\frac{1-\tau_{t}^{n}}{1+\tau_{t}^{c}}\right)-\log \left(\frac{1-\tau^{n}}{1+\tau^{c}}\right)\right] \tag{C.2}
\end{align*}
$$

where the first term on the right-hand side is the labor share. Expanding the fractions to get the wedge in terms of the labor share and the consumption to output ratio has the advantage of avoiding problems with different trends that may be contained in different data sources. ${ }^{4}$

In case of isoelastic preferences with external habits:

$$
\begin{equation*}
U\left(C_{t}, N_{t}\right)=\frac{\left(C_{t}-\phi_{c} C_{t-1}\right)^{1-\sigma}-1}{1-\sigma}-\psi \frac{N_{t}^{1+\frac{1}{\kappa}}}{1+\frac{1}{\kappa}} \tag{C.3}
\end{equation*}
$$

where κ is the inverse Frisch elasticity, σ the risk aversion, ϕ_{c} the habit persistence parameter, and ψ the weight of labor in the utility function, we get

$$
\begin{align*}
\xi_{t}^{w}= & -\log (\phi)+\log \left(Y_{t}\right)-\sigma \log \left(C_{t}-\phi_{c} C_{t-1}\right)-(1+\kappa) \log \left(N_{t}\right) \\
& +\log \left(\frac{1-\tau_{t}^{n}}{1+\tau_{t}^{c}}\right)+\log \left(\frac{W_{t} N}{P_{t} Y_{t}}\right) \tag{C.4}
\end{align*}
$$

which, with $\sigma=1$ and $\phi_{c}=0$, simplifies to

$$
\begin{equation*}
\xi_{t}^{w}=\log \left(\frac{1-\tau_{t}^{n}}{1+\tau_{t}^{c}}\right)+\log \left(\frac{W_{t} N_{t}}{P_{t} Y_{t}}\right)+\log \left(\frac{Y_{t}}{C_{t}}\right)+\log (\psi)+(1+\kappa) \log \left(N_{t}\right) \tag{C.5}
\end{equation*}
$$

In case of Cobb-Douglas preferences with external habits of the form

$$
\begin{equation*}
U\left(C_{t}, N_{t}\right)=\frac{\left(\left(C_{t}-\phi_{c} C_{t-1}\right)^{\eta}(1-N)^{1-\eta}\right)^{1-\sigma}-1}{1-\sigma} \tag{C.6}
\end{equation*}
$$

[^3]we obtain
\[

$$
\begin{align*}
\xi_{t}^{w}= & \log \left(\frac{1-\tau_{t}^{n}}{1+\tau_{t}^{c}}\right)+\log \left(\frac{W_{t} N_{t}}{P_{t} Y_{t}}\right)+\log \left(Y_{t}\right)-\sigma \log \left(C_{t}-\phi_{c} C_{t-1}\right) \\
& -\log \left(\frac{1-\eta}{\eta}\right)+\log \left(\frac{1-N_{t}}{N_{t}}\right) \tag{C.7}
\end{align*}
$$
\]

which nests our baseline specification (4.1) with $\sigma=1$ and $\phi_{c}=0$.
For GHH preferences with

$$
\begin{equation*}
U\left(C_{t}, N_{t}\right)=\frac{\left(C_{t}-\psi N_{t}^{1+\kappa}\right)^{1-\sigma}-1}{1-\sigma} \tag{C.8}
\end{equation*}
$$

where $\sigma \geq 0$ determines the intertemporal elasticity of substitution ($\sigma=1$ corresponds to \log utility), $\psi>0$ determines weight of the disutility of labor, and κ is the inverse of the Frisch elasticity, we get

$$
\begin{equation*}
\xi_{t}^{w}=-\log (\psi(1+\kappa))-(1+\kappa) \log \left(N_{t}\right)+\log \left(\frac{1-\tau_{t}^{n}}{1+\tau_{t}^{c}}\right)+\log \left(\frac{W_{t} N}{P_{t} Y_{t}}\right)+\log \left(Y_{t}\right) \tag{C.9}
\end{equation*}
$$

It should be noted that GHH preferences and isoelastic preferences with $\sigma \neq 1$ are not consistent with a balanced growth path unless additional stationarizing devices are used (as in, e.g., Mertens and Ravn (2011)). Including a log-linear trend in our empirical VAR allows us to deal with such remaining trends.

In order to compute the wage markup, the right-hand-side variables are mapped to the data in the following way:

- $\frac{W_{t} N_{t}}{P_{t} Y_{t}}$: to compute the labor share, we take the share of employees' compensation Compensation of Employees, Paid (FRED: COE) in net national income (NNI), where net national income is compute as National Income (FRED: NICUR) minus net indirect taxes, computed as the difference between taxes on production and imports (FRED: GDITAXES) and subsidies (FRED: GDISUBS). To this, we add part of the ambiguous proprietor's income (FRED: PROPINC). The share of proprietor's income assigned to labor is computed as the share of unambiguous labor income in total unambiguous income resulting in

$$
\frac{W N}{P Y}=\frac{C O E}{N N I-P R O P I N C}
$$

- P_{t} : Gross Domestic Product: Implicit Price Deflator (FRED: GDPDEF).
- Y_{t} : Gross Domestic Product (FRED: GDP), deflated by the GDP deflator and divided by population Pop_{t} (defined below).
- C_{t} : real private consumption is computed as the sum of Personal Consumption Expenditures: Nondurable Goods (FRED: PCND) and Personal Consumption Expenditures: Services (FRED: PCESV), each deflated by the GDP deflator and divided by population Pop $_{t} .{ }^{5}$

[^4]- N_{t} : We use a quarterly total hours measure following Cociuba, Prescott, and Ueberfeldt (2018), divided by population Pop $_{t}$. For this purpose, we extend their measure to include more recent periods.

1. Compute the civilian noninstitutional population between 16 and 65 years by subtracting the (Unadj) Population Level-65 yrs. \& over (BLS: LNU00000097) from Civilian Noninstitutional Population (BLS: LNU00000000), both averaged over the respective quarter.
2. To compute the number of military personell, we first download the most recent vintage from Simona Cociuba's website at https://sites.google.com/site/ simonacociuba/research and then update Military Personnel-Total Worldwide using data from https://www.dmdc.osd.mil/appj/dwp/dwp_reports.jsp: Military Personnel -> Active Duty Military Personnel by Service by Rank/Grade (Updated Monthly); for the current year, we use the monthly PDFs. There, we use GRAND TOTAL-Total services. Again we average monthly values to get a quarterly series.
3. Civilian employment and weekly hours worked before 1976, which are based on Census and BLS data in printed books, are taken from the most recent vintage from Simona Cociuba's website.
4. Civilian employment after 1976 is taken from Number Employed, At Work (BLS: LNU02005053), while their weekly hours worked are from Average Hours, Total At Work, All Industries (BLS: LNU02005054).

The series in 2 to 4 are first averaged over the quarter. When doing so for the civilian series in 3 and 4, we follow Cociuba, Prescott, and Ueberfeldt (2018) and check for outliers on the low side, i.e. we check whether $d_{t} \equiv \operatorname{mean}\left(m_{i}\right) / \min \left(m_{i}\right)<$ 0.95 , where m_{i} denotes the months belonging to a quarter. If $d_{t}<0.95$, we use $\left(3 \times \operatorname{mean}\left(m_{i}\right)-\min \left(m_{i}\right)\right) / 2$ and mean $\left(m_{i}\right)$ otherwise. The civilian quarterly series are then seasonally adjusted using the X13 routine of Eviews 8 . Total quarterly hours are computed as the sum of civilian and military hours, both computed as the product of employment times weekly hours worked in the respective category. For military weekly hours, we assume a workweek of 40 hours. To get from weekly to quarterly hours, we assume 4 quarters with 13 weeks.

- $P o p_{t}$: we use the sum of civilian noninstitutional population between 16 and 65 and military personell, based on our update of Cociuba, Prescott, and Ueberfeldt (2018).
- Leisure $1-N_{t}$: Following Karabarbounis (2014), who in turn is motivated by Aguiar, Hurst, and Karabarbounis (2013), we normalize the discretionary time endowment available to 92 hours per week per person and compute leisure as the difference between this endowment and N_{t}. Again, the measure is transformed to per capita values by dividing by Pop $_{t}$.
- Labor tax rate τ_{t}^{n} :The average labor income tax rate is computed as the sum of taxes on labor income, τ^{LI}, plus the "tax rate" on social insurance contributions, τ^{SI},

$$
\tau^{n}=\tau^{\mathrm{LI}}+\tau^{\mathrm{SI}}
$$

We closely follow Mendoza, Razin, and Tesar (1994), Jones (2002), and Leeper, Plante, and Traum (2010) and compute the tax rate from the national accounts by dividing the tax revenue by the respective tax base. For labor income tax rates, we need to compute the portion of personal income tax revenue that can be assigned to labor income. We first compute the average personal income tax rate

$$
\tau^{p}=\frac{I T}{W+P R I / 2+C I},
$$

where $I T$ is personal current tax revenues computed as the sum of Federal government current tax receipts: Personal current taxes and State and local government current tax receipts: Personal current taxes (Table 3.1 line 3, FRED: A074RC1Q027SBEA + W071RC1Q027SBEA), W is Compensation of Employees: Wages and Salary Accruals (Table 1.12 line 3, FRED: WASCUR), PRI is Proprietors' Income with Inventory Valuation Adjustment(IVA) and Capital Consumption Adjustment (CCAdj) (Table 1.12 line 9, FRED: PROPINC), and $C I$ is capital income. It is computed as

$$
C I \equiv P R I / 2+R I+C P+N I,
$$

where RI is Rental Income of Persons with Capital Consumption Adjustment (CCAdj) (Table 1.12 line 12, FRED: RENTIN), CP is Corporate Profits with Inventory Valuation Adjustment (IVA) and Capital Consumption Adjustment (CCAdj) (Table 1.12 line 13, FRED: CPROFIT), and NI denotes Net interest and miscellaneous payments on assets (Table 1.12 line 18, FRED: W255RC1Q027SBEA). In doing so, the ambiguous proprietor's income is assigned in equal parts to capital and labor income. The labor income tax can then be computed as

$$
\tau^{\mathrm{LI}}=\frac{\tau^{p}(W+P R I / 2)}{E C+P R I / 2},
$$

where EC is National Income: Compensation of Employees, Paid (Table 1.12 line 2, FRED: COE), which, in addition to wages, includes contributions to social insurance and untaxed benefits. The social insurance "tax rate" is given by

$$
\tau^{\mathrm{SI}}=\frac{C S I}{E C+P R I / 2},
$$

where CSI denotes Government current receipts: Contributions for government social insurance (Table 3.1 line 7, FRED: W782RC1Q027SBEA).

- Consumption tax rate τ_{t}^{c} : The tax revenue from consumption taxes, $C T$, requires apportioning the indirect tax revenue to investment and consumption. ${ }^{6}$ We do this

[^5]as:
$$
C T=\frac{P C}{P C+I} I N D T
$$
where PC is Personal Consumption Expenditures (FRED: PCE), I is Gross Private Domestic Investment (FRED: GPDI), and INDT is net indirect taxes, computed as the difference between Gross Domestic Income: Taxes on Production and Imports (FRED: GDITAXES) and Gross Domestic Income: Subsidies (FRED: GDISUBS). ${ }^{7}$ The consumption tax rate is then computed as
$$
\tau^{c}=\frac{C T}{P C-C T}
$$

C. 4 Price markup

For the price markup, that is, the wedge between the real wage and the marginal product of labor, we focus on the private business sector. Recall the equation for computing the price markup:

$$
\begin{equation*}
\xi_{t}^{p}=\log \left((1-\alpha)\left(Y^{\mathrm{norm}}\right)^{\frac{\psi-1}{\psi}}\right)+\frac{\psi-1}{\psi} Z_{t}+\frac{1}{\psi} \log \left(\frac{Y_{t}+\Phi}{N_{t}-N^{o}}\right)-\log \left(\frac{W_{t}}{P_{t}}\right) \tag{4.1}
\end{equation*}
$$

Demeaning this expression yields

$$
\begin{align*}
\xi_{t}^{p}-\xi^{p}= & \frac{\psi-1}{\psi} \log \left(e^{Z_{t}}\right)+\frac{1}{\psi}\left[\log \left(\frac{Y_{t}+\Phi}{N_{t}-N^{o}}\right)-\log \left(\frac{Y+\Phi}{N-N^{o}}\right)\right] \\
& -\left[\log \left(\frac{W_{t}}{P_{t}}\right)-\log \left(\frac{W}{P}\right)\right] \tag{C.10}
\end{align*}
$$

where

$$
\begin{align*}
e^{Z_{t}} & =\frac{1}{\varepsilon_{A, t}} \log T F P_{t} \tag{C.11}\\
\varepsilon_{A, t} & =\left[\frac{\hat{Y}_{t}+\phi_{\mathrm{fix}}}{1+\phi_{\mathrm{fix}}}\right]^{\frac{1}{\psi}} \frac{1}{\Xi} \aleph^{o}\left(e^{\hat{Z}_{t}} \hat{N}_{t}\right)^{\frac{\psi-1}{\psi}} \tag{B.20}
\end{align*}
$$

We can then compute the price markup by using the following sources:

- W_{t} : following the approach in Nekarda and Ramey (2013), we use the Average hourly earnings of production and nonsupervisory workers in the private sector (BLS: CES0500000008). ${ }^{8}$
- P_{t} : Gross Domestic Product: Implicit Price Deflator (FRED: GDPDEF).

[^6]- $N_{t}-N^{o}$: Average weekly hours of production and nonsupervisory employees, private business (BLS: CES0500000006) multiplied by Production and nonsupervisory employees, private business (CES: CES0500000006), divided by civilian noninstitutional population.
- Y_{t} : Current dollar output, private business (BLS: PRS84006053), deflated using the GDP deflator and divided by civilian noninstitutional population, detrended by an exponential trend.
- Φ : Consistent with our model, we assume additional fixed costs of 2.96% of steadystate output per capita, which we approximate using the average detrended log output per capita.
- Population: Civilian noninstitutional population (FRED: CNP16OV), smoothed with an HP-filter with $\lambda=10,000$ to solve the best levels problem (Edge and Gurkaynak (2010)).
- $T F P_{t}$: cumulated sum of the utilization adjusted or nonutilization adjusted TFP growth rates of Fernald (2012) ($\mathrm{dt} f \mathrm{p} _$util or $d t \mathrm{fp}$, starting value initialized to 1 , transformed from annualized to quarterly growth rates), detrended by an exponential trend.
- \aleph^{o} : The labor share not accounting for overhead labor, \aleph is computed as 1 minus Capital's share of income from Fernald (2012), ${ }^{9}$ which is "[B] ased primarily on NIPA data for the corporate sector." To derive the share of non-overhead labor \aleph°, we use equation

$$
\begin{equation*}
\aleph^{o} \equiv \frac{\frac{W}{P}\left(N-N^{o}\right)}{Y}=\frac{\frac{W}{P} N}{Y} \frac{N-N^{o}}{N}=\aleph\left(1-\phi^{o}\right) \tag{B.18}
\end{equation*}
$$

with $\phi^{o}=0.11$ as discussed in the calibration section.
In the Cobb-Douglas case, the price markup simplifies to

$$
\begin{equation*}
\xi_{t}^{p}=\log \left(\frac{Y_{t}+\Phi}{N_{t}-N^{o}}\right)-\log \left(\frac{W_{t}}{P_{t}}\right) \tag{C.12}
\end{equation*}
$$

which, in the absence of fixed costs, reduces to the inverse labor share. In the robustness checks, we use three different measures:

- The labor share based on total compensation in the nonfinancial business sector is computed as Net value added of nonfinancial corporate business: Compensation of employees (FRED: A460RC1Q027SBEA), divided by Gross value added of nonfinancial corporate business (FRED: A455RC1Q027SBEA) minus Net value added of nonfinancial corporate business: Taxes on production and imports less subsidies (FRED: W325RC1Q027SBEA).

[^7]- The labor share in the private business sector is based on Business Sector: Labor Share (FRED: PRS84006173).
- The labor share based on total compensation in the private business sector is computed as the product of Production and Nonsupervisory Employees: Total Private (FRED: CES0500000006), Average Weekly Hours of Production and Nonsupervisory Employees: Total private (FRED: AWHNONAG) and Average Hourly Earnings of Production and Nonsupervisory Employees: Total Private (FRED: AHETPI) divided by Business Sector: Current Dollar Output (FRED: PRS84006053).

C. 5 Industry-level markups

The majority of our data needed to construct industry-level price markups comes from the NBER-CES manufacturing industry database, which covers the SIC2 industries 20 to 39 at a four-digit granularity for the years 1958-2011.

We compute industry-level price markups using equations (B.20), (C.10), and (C.11). As we have no information on fixed costs, we assume the absence of fixed costs such that

$$
\begin{equation*}
\xi_{i, t}^{p}=\frac{\psi-1}{\psi} \log \left(e^{Z_{i, t}}\right)+\frac{1}{\psi} \log \left(\frac{Y_{t}}{N_{i, t}-N_{i}^{o}}\right)-\log \left(\frac{W_{i, t}}{P_{i, t}}\right), \tag{C.10'}
\end{equation*}
$$

where

$$
\begin{equation*}
e^{Z_{i, t}}=\frac{1}{\varepsilon_{A, i}} \log T F P_{i, t} . \tag{C.13}
\end{equation*}
$$

Here, we use the steady-state elasticity $\varepsilon_{A, i}$ given by

$$
\varepsilon_{A, i}=\Xi_{i}^{-1} \aleph_{i}^{o},
$$

where \aleph_{i}^{o} is the labor share and Ξ_{i}^{-1} is the gross markup.
The NBER-CES database only contains information on wages paid. But what matters for the labor margin is the total compensation of employees. For that reason, we follow the approach of Chang and Hong (2006) and Nekarda and Ramey (2011) and multiply the wage bill in the CES database by the ratio of the total compensation (NIPA Table 6.2, Compensation of Employees by Industry) to wages (NIPA Table 6.3 Wages and Salaries by Industry) at the two-digit industry level. The respective mapping is displayed in Tables C. 3 and C.4. When the SIC classifications in the NIPA tables change, we splice the respective adjustment factor series by giving precedence to the 1987 SIC series (NIPA Table B) when there is overlap and multiplying the earlier/later series by the ratio of the two series in the first/last period of overlap to ensure smooth pasting. Similarly, the database only contains hours of production workers (NBER-CES code: prodh). To compute total hours (toth), we compute the number of production workers as the difference between total employment (emp) and production workers (prode). We then assume that nonproduction workers are salaried and work 1960 hours per year as in Nekarda and Ramey (2011):

$$
\begin{equation*}
\text { toth }=\text { prodh }+(e m p-\text { prode }) \times 1960 . \tag{C.14}
\end{equation*}
$$

The database contains information about real shipments which is not equal to output due to inventories. To compute real output accounting for inventories, we follow Nekarda and Ramey (2011). A problem is that only the total value of inventories $I_{i, t}^{\text {nom }}$ (invent) is reported, which also includes inventories of materials that need to be subtracted. The first step is to compute the change in nominal finished-goods and work-inprocess inventories $\Delta I_{i, t}^{f, \text { nom }}$, which is equal to nominal value added $V_{i, t}^{\text {nom }}$ (vadd) minus the value of shipments $S_{i, t}^{\text {nom }}$ (vship) plus nominal material costs $M_{i, t}^{\text {nom }}$ (matcost):

$$
\begin{equation*}
\Delta I_{i, t}^{f, \mathrm{nom}}=V_{i, t}^{\mathrm{nom}}-S_{i, t}^{\mathrm{nom}}+M_{i, t}^{\mathrm{nom}} \tag{C.15}
\end{equation*}
$$

The change in materials inventories $\Delta I_{i, t}^{m, n o m}$ can then be computed as the difference between total inventory changes and changes in nominal finished-goods and work-inprocess inventories:

$$
\begin{equation*}
\Delta I_{i, t}^{m, \mathrm{nom}}=\Delta I_{i, t}^{\mathrm{nom}}-\Delta I_{i, t}^{f, \mathrm{nom}} \tag{C.16}
\end{equation*}
$$

Real output $Y_{i, t}$ can then be computed as ${ }^{10}$

$$
\begin{equation*}
Y_{i, t} \approx \frac{S_{i, t}^{\mathrm{nom}}}{P_{i, t}}+\left[\frac{I_{i, t}^{\mathrm{nom}}}{P_{i, t}}-\frac{I_{i, t-1}^{\mathrm{nom}}}{P_{i, t-1}}\right]-\frac{\Delta I_{i, t}^{m, \mathrm{nom}}}{P_{i, t}} \tag{C.17}
\end{equation*}
$$

To implement the above formulas, we need a sectoral TFP estimate and the elasticity of labor productivity with respect to labor-augmenting technology $\varepsilon_{A, i}$.

Elasticity of labor productivity with respect to labor-augmenting technology To compute the elasticity, we need to know both the average markup and the labor share. In the absence of fixed costs, the average markup can be directly computed from the average profit share, as one minus the profit share is then equal to the inverse steady-state gross industry markup. The profit share in industry $i, \Pi_{i, t}^{\mathrm{ps}}$ is computed as

$$
\begin{equation*}
\Pi_{i, t}^{\mathrm{ps}}=\left(Y_{i, t}^{\mathrm{nom}}-W_{i, t}^{\mathrm{comp}, \mathrm{nom}}-(0.05+\bar{\delta}) K_{i, t} P_{i, t}^{\mathrm{inv}}-M_{i, t}^{\mathrm{nom}}\right) / Y_{i, t}^{\mathrm{nom}} \tag{C.18}
\end{equation*}
$$

where $Y_{i, t}^{\text {nom }}$ is nominal output defined as real output $Y_{i, t}$ times the shipment deflator ("pship"), $W_{i, t}^{\text {comp,nom }}$ it total compensation of employees, $M_{i, t}^{\text {nom }}$ is nominal materials costs (matcost), and $(0.05+\bar{\delta}) K_{i, t} P_{i, t}^{\text {inv }}$ is the imputed nominal cost of capital, where we assume an interest rate of 5% per year. We compute the average depreciation rate from

$$
\begin{equation*}
\delta_{i, t}=1-\left(K_{i, t}-I_{i, t}\right) / K_{i, t-1} \tag{C.19}
\end{equation*}
$$

where real investment is obtained by dividing nominal investment ("invest") by the investment deflator $P_{i, t}^{\mathrm{inv}}$ ("piinv") and $K_{i, t}$ is the real capital stock ("cap"). When computing the average depreciation rate $\bar{\delta}$ over the sample, we discard observations that show negative depreciation rates and depreciation rates larger than 50%.

[^8]Table C.3. Mapping between SIC two digit codes and NIPA Table 6 lines: Total compensation.

SIC Code	Line	60200B Ann	Code	Line	60200C Ann	Code	Line	60200D Ann	Code
24	15	Lumber and wood products	J4115C0	15	Lumber and wood products	B4115C0	15	Wood products	N4115C0
25	16	Furniture and fixtures	J4116C0	16	Furniture and fixtures	B4116C0	24	Furniture and related products	N4124C0

Table C.3. Continued.

SIC Code	Line	60200B Ann	Code	Line	60200C Ann	Code	Line	60200D Ann	Code
26	31	Paper and allied products	J4131C0	31	Paper and allied products	Q4131C0	30	Paper products	N4132C0
27	32	Printing and publishing	Q4132BC0	32	Printing and publishing	Q4132C0	31	Printing and related support activities	N4133C0
28	33	Chemicals and allied products	J4133C0	33	Chemicals and allied products	B4133C0	33	Chemical products	N4135C0
29	34	Petroleum and coal products	J4134C0	34	Petroleum and coal products	B4134C0	32	Petroleum and coal products	N4134C0
30	35	Rubber and miscellaneous plastics products	J4135C0	35	Rubber and miscellaneous plastics products	B4135C0	34	Plastics and rubber products	N4136C0
31	36	Leather and leather products	J4136C0	36	Leather and leather products	B4136C0	29	Apparel and leather and allied products	N4130C0

[^9]Table C.4. Mapping between SIC two digit codes and NIPA Table 6 lines: Wages.

SIC Code	Line	60300B Ann	Code	Line	60300C Ann	Code	Line	60300D Ann	Code
24	15	Lumber and wood products	J4115C0	15	Lumber and wood products	B4115C0	15	Wood products	N4115C0
25	16	Furniture and fixtures	J4116C0	16	Furniture and fixtures	B4116C0	24	Furniture and related products	N4124C0

Table C.4. Continued.

SIC Code	Line	60300B Ann	Code	Line	60300C Ann	Code	Line	60300D Ann	Code
26	31	Paper and allied products	J4131C0	31	Paper and allied products	Q4131C0	30	Paper products	N4132C0
27	32	Printing and publishing	Q4132BC0	32	Printing and publishing	Q4132C0	31	Printing and related support activities	N4133C0
28	33	Chemicals and allied products	J4133C0	33	Chemicals and allied products	B4133C0	33	Chemical products	N4135C0
29	34	Petroleum and coal products	J4134C0	34	Petroleum and coal products	B4134C0	32	Petroleum and coal products	N4134C0
30	35	Rubber and miscellaneous plastics products	J4135C0	35	Rubber and miscellaneous plastics products	B4135C0	34	Plastics and rubber products	N4136C0
31	36	Leather and leather products	J4136C0	36	Leather and leather products	B4136C0	29	Apparel and leather and allied products	N4130C0

[^10]The elasticity of labor productivity with respect to labor-augmenting technology is then given by the mean labor share, $1 / T \sum_{t=1}^{T} W_{i, t}^{\text {comp,nom }} / Y_{i, t}^{\text {nom }}$, times the inverse markup. ${ }^{11}$

Industry-level TFP To get a measure of productivity, we follow Nekarda and Ramey (2013) and run a Galí (1999)-type VAR with labor productivity and hours in first differences. We compute labor productivity by dividing real output $Y_{i, t}$ by either total hours (toth) or hours of production workers (prodh). Technology shocks are identified as the only shocks that moves productivity in the long-run. An estimated TFP series is then computed by cumulating the productivity growth rates resulting from simulating the long-run VAR with only the identified technology innovations. ${ }^{12}$

Appendix D: Mixed-frequency VARs

D. 1 Prior, estimation, and convergence diagnostics

We use a shrinking prior of the Independent Normal-Wishart type (Kadiyala and Karlsson (1997)), where the mean and precision are derived from from a Minnesota-type prior (Litterman (1986), Doan, Litterman, and Sims (1984)). Denote the vector of stacked coefficients with $\beta=\operatorname{vec}\left(\left[\mu \alpha A_{1}, \ldots, A_{p}\right]^{\prime}\right)$. It is assumed to follow a normal prior

$$
\begin{equation*}
\beta \sim N(\underline{\beta}, \underline{V}) . \tag{D.1}
\end{equation*}
$$

For the prior mean $\underline{\beta}$, we assume the variables to follow a univariate $\operatorname{AR}(1)$-model with mean of 0.9 for levels and mean 0 for growth rates, while all other coefficients are 0 . The prior precision \underline{V} is assumed to be a diagonal matrix with the highest precision for the first lag and exponential decay for the other lags. The weighting of cross-terms is conducted according to the relative size of the error terms in the respective equations, while a rather diffuse prior is used for deterministic terms. The diagonal element corresponding to the j th variable in equation $i, \underline{V}_{i, j j}$ is

$$
\underline{V}_{i, j j}= \begin{cases}\frac{\underline{a}_{1}}{r^{2}}, & \text { for coefficients on own lag } r \in\{1, \ldots, p\} \tag{D.2}\\ \underline{a}_{2} s_{i}^{2} & \text { for coefficients on lag } r \in\{1, \ldots, p\} \text { of variable } j \neq i, \\ r^{2} s_{j}^{2}, & \\ \underline{a}_{3} s_{i}^{2}, & \text { for coefficients on exogenous variables, }\end{cases}
$$

where s_{i}^{2} is the OLS estimate of the error variance of an $\operatorname{AR}(p)$ model with constant and trend estimated for the i th variable (see Litterman (1986)). ${ }^{13}$ We follow Koop and Korobilis (2010) and set $\underline{a}_{1}=0.2, \underline{a}_{2}=0.5$ and $\underline{a}_{3}=10^{4}$. The prior error covariance is

[^11]assumed to follow
\[

$$
\begin{equation*}
\underline{\Sigma} \sim \operatorname{IW}(\underline{S}, \underline{\nu}) \tag{D.3}
\end{equation*}
$$

\]

with $\underline{\nu}=60$ "pseudo-observations", corresponding to $\approx 10 \%$ of the observations, and \underline{S} being the OLS covariance matrix.

As a practical matter, we use z-scored the data (including the trend) to avoid numerical problems arising from under/overflow during the posterior computations that involve sum of squares. We also impose a stability condition on our VAR by drawing from the conditional distribution for β until all eigenvalues of the companion form matrix are smaller than 1.

In the Gibbs sampler, we use 50,000 draws, of which we discard the first 5000 draws as a burn-in. The Raftery and Lewis (1992) convergence diagnostics with quantile $q=$ 0.025 , precision $r=0.01$, and probability of attaining this precision $s=0.95$ suggests that this is sufficient for convergence.

D. $211+1$ variable VAR

The Jurado, Ludvigson, and Ng (2015) 11+1-variable VAR is given by (FRED-MD Acronyms in brackets, see Appendix C for details on other variables)
$\left[\begin{array}{c}\log (\text { real IP (INDPRO) }) \\ \log (\text { employment (PAYEMS) }) \\ \log (\text { real consumption (DPCERA3M086SBEA) }) \\ \log (\text { PCE Deflator (PCEPI) }) \\ \log (\text { real new orders }) \\ \log (\text { real wage (CES3000000008) }) \\ \text { hours (AWHMAN) } \\ \text { shadow federal funds rate } \\ \log (\text { S\&P } 500 \text { Index (S\&P 500) }) \\ \text { growth rate of M2 (M2SL) } \\ \text { uncertainty proxy } \\ \log (\text { markup })\end{array}\right]$.
D. 3 8+1 variable VAR

The Bloom (2009) $8+1$ variable VAR is given by
$\left[\begin{array}{c}\log (\text { S\&P } 500 \text { Index (S\&P 500) }) \\ \text { uncertainty proxy } \\ \text { shadow federal funds rate } \\ \log (\text { real wage (CES3000000008) }) \\ \log (\text { CPI (CPIAUCSL })) \\ \text { hours (AWHMAN) } \\ \log (\text { manufacturing employment (MANEMP) }) \\ \log (\text { real manufacturing production (IPMANSICS) }) \\ \log (\text { markup })\end{array}\right]$.

Figure D.8. IRFs to JLN-based two-standard deviation uncertainty shock in the $11+1$ variable mixed-frequency VAR. Notes: Bands are pointwise 90% HPDIs. The macroeconomic uncertainty index is measured in arbitrary units and has a mean of 0.65 .

Figure D.9. IRFs to JLN-based two-standard deviation uncertainty shock in the $11+1$ variable mixed-frequency VAR including the total markup. Notes: Bands are pointwise 90% HPDIs. The total markup is computed as the sum of the price and wage markup. The macroeconomic uncertainty index is measured in arbitrary units and has a mean of 0.65.

Table D.5. Unconditional forecast error variance explained by uncertainty shock.

| Y | Emp. | C | P | Orders | W / P | N | R | S\&P | $\Delta M 2$ | Uncert. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Markup

Note: Mean posterior forecast error variance share explained by the uncertainty shock in the $11+1$ variable mixedfrequency VAR with the Jurado, Ludvigson, and Ng (2015) uncertainty measure ordered second-to-last. Based on 1000 posterior draws. First row: VAR with price markup measure; second row: VAR with wage markup measure; third row: VAR with total markup measure.

Figure D.10. IRFs to VIX-based two-standard deviation uncertainty shock in the $8+1$ variable mixed-frequency VAR where uncertainty is ordered second. Notes: Bands are pointwise 90% HPDIs. The VIX is measured as the annualized volatility in percentage points.

(b) Wage Markup

Figure D.11. IRFs to JLN-based two-standard deviation uncertainty shock in the $8+1$ variable mixed-frequency VAR where uncertainty is ordered second. Notes: Bands are pointwise 90% HPDIs. The macroeconomic uncertainty index is measured in arbitrary units and has a mean of 0.65 .

D. 4 MF-VAR: Other uncertainty measures

Recently, Caldara, Fuentes-Albero, Gilchrist, and Zakrajšek (2016) and Ludvigson, Ma, and Ng (forthcoming) have argued that it is important to distinguish between macroeconomic and financial uncertainty, with the latter driving the former. In Figure D.12, we therefore display the VAR-IRFs in response to the Ludvigson, Ma, and Ng (forthcoming) financial uncertainty measure. The results are similar to the ones of the JLN-macro uncertainty measure.

Carriero, Clark, and Marcellino (2018) also provide measures of macroeconomic and financial uncertainty. Figures D. 13 to D. 16 display the results. Again, the wage markup increases while the price markup tends to fall. The only slight exception is their financial uncertainty proxy for which we see an initial, insignificant increase in the price markup before it drops again.

Baker, Bloom, and Davis (2016) have constructed an index of economic policy uncertainty. It is more narrow than the JLN-uncertainty measure in that it only captures the political dimension of uncertainty, but is at the same time broader in that it not only captures risk, but also Knightian uncertainty. Despite these differences, the responses of the respective markups, displayed in Figure D.17, show a familiar pattern: the wage markup increases while the price markup falls. ${ }^{14}$

[^12]

Figure D.12. IRFs to Ludvigson, Ma, and Ng (forthcoming) two-standard deviation financial uncertainty shock in the $11+1$ variable mixed-frequency VAR. Notes: Bands are pointwise 90% HPDIs. The financial uncertainty index is measured in arbitrary units and has a mean of 0.91.

Figure D.13. IRFs to Carriero, Clark, and Marcellino (2018) two-standard deviation macro uncertainty shock in the $11+1$ variable mixed-frequency VAR. Notes: Bands are pointwise 90% HPDIs. The macro uncertainty series is measured in arbitrary units and has a mean of 1.0.

Figure D.14. IRFs to Carriero, Clark, and Marcellino (2018) two-standard deviation macro uncertainty shock in the $8+1$ variable mixed-frequency VAR. Notes: Bands are pointwise 90% HPDIs. The macro uncertainty series is measured in arbitrary units and has a mean of 1.0.

Figure D.15. IRFs to Carriero, Clark, and Marcellino (2018) two-standard deviation financial uncertainty shock in the $11+1$ variable mixed-frequency VAR. Notes: Bands are pointwise 90% HPDIs. The financial uncertainty series is measured in arbitrary units and has a mean of 1.06.

(b) Wage Markup

Figure D.16. IRFs to Carriero, Clark, and Marcellino (2018) two-standard deviation financial uncertainty shock in the $8+1$ variable mixed-frequency VAR. Notes: Bands are pointwise 90% HPDIs. The financial uncertainty series is measured in arbitrary units and has a mean of 1.06.

Figure D.17. IRFs to EPU-based two-standard deviation uncertainty shock in the $11+1$ variable mixed-frequency VAR. Notes: Bands are pointwise 90% HPDIs. The EPU is measured in arbitrary units and has a mean of 100 .

Appendix E: Proof of precautionary pricing in stylized example

Denote marginal costs with γ and the optimal relative price chosen by the firm with p. Due to uncertainty about the aggregate price level, this relative price is due to a mean preserving spread. The spread is parameterized by $0 \leq \varepsilon<1$. The demand elasticity is given by $\theta>0$

The firm faces the problem

$$
\max _{p} \mathbb{E} \Pi=\max [(1+\varepsilon) p-\gamma][(1+\varepsilon) p]^{-\theta}+[(1-\varepsilon) p-\gamma][(1-\varepsilon) p]^{-\theta}
$$

The FOC is given by:

$$
\begin{aligned}
\frac{\partial \mathbb{E} \Pi}{\partial p}= & (1-\theta) p^{-\theta}(1+\varepsilon)^{1-\theta}+\theta \gamma(1+\varepsilon)^{-\theta} p^{-\theta-1} \\
& +(1-\theta) p^{-\theta}(1-\varepsilon)^{1-\theta}+\theta \gamma(1-\varepsilon)^{-\theta} p^{-\theta-1} \stackrel{!}{=} 0
\end{aligned}
$$

which simplifies to

$$
(1-\theta) p^{*}(1+\varepsilon)^{1-\theta}+(1-\theta) p^{*}(1-\varepsilon)^{1-\theta}=-\theta \gamma\left[(1+\varepsilon)^{-\theta}+(1-\varepsilon)^{-\theta}\right]
$$

and thus

$$
p^{*}=\frac{-\theta \gamma\left[(1+\varepsilon)^{-\theta}+(1-\varepsilon)^{-\theta}\right]}{(1-\theta)\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]}
$$

Now check whether the optimal price increases in the spread ε

$$
\begin{aligned}
\frac{\partial p *}{\partial \varepsilon}= & \frac{-\theta \gamma}{(1-\theta)}\left\{\frac{\left[-\theta(1+\varepsilon)^{-\theta-1}-\theta(1-\varepsilon)^{-\theta-1}(-1)\right]\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]}{\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]^{2}}\right. \\
& \left.-\frac{\left[(1+\varepsilon)^{-\theta}+(1-\varepsilon)^{-\theta}\right]\left[(1-\theta)(1+\varepsilon)^{-\theta}+(1-\theta)(1-\varepsilon)^{-\theta}(-1)\right]}{\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]^{2}}\right\}
\end{aligned}
$$

simplify

$$
\begin{aligned}
= & \frac{-\theta \gamma}{(1-\theta)}\left\{\frac{\left[-\theta(1+\varepsilon)^{-\theta-1}+\theta(1-\varepsilon)^{-\theta-1}\right]\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]}{\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]^{2}}\right. \\
& \left.-(1-\theta) \frac{\left[(1+\varepsilon)^{-\theta}+(1-\varepsilon)^{-\theta}\right]\left[(1+\varepsilon)^{-\theta}-(1-\varepsilon)^{-\theta}\right]}{\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]^{2}}\right\}
\end{aligned}
$$

Now split in two terms, factor out $(-\theta)$ in the first term and use the binomial formula on the second term

$$
\begin{aligned}
= & \frac{-\theta \gamma}{(1-\theta)} \\
& \times\left\{\frac{-\theta(1+\varepsilon)^{-2 \theta}-\theta(1+\varepsilon)^{-\theta-1}(1-\varepsilon)^{1-\theta}+\theta(1-\varepsilon)^{-\theta-1}(1+\varepsilon)^{1-\theta}+\theta(1-\varepsilon)^{-2 \theta}}{\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]^{2}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-(1-\theta) \frac{\left[\left((1+\varepsilon)^{-\theta}\right)^{2}-\left((1-\varepsilon)^{-\theta}\right)^{2}\right]}{\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]^{2}}\right\} \\
= & \frac{-\theta \gamma}{(1-\theta)}\left\{(-\theta) \frac{(1+\varepsilon)^{-2 \theta}+(1+\varepsilon)^{-\theta-1}(1-\varepsilon)^{1-\theta}-(1-\varepsilon)^{-\theta-1}(1+\varepsilon)^{1-\theta}-(1-\varepsilon)^{-2 \theta}}{\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]^{2}}\right. \\
& \left.-(1-\theta) \frac{\left[\left((1+\varepsilon)^{-\theta}\right)^{2}-\left((1-\varepsilon)^{-\theta}\right)^{2}\right]}{\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]^{2}}\right\} .
\end{aligned}
$$

Now cancel the $-\theta(1+\varepsilon)^{-2 \theta}$ and $-\theta(1-\varepsilon)^{-2 \theta}$ terms present in both terms of the curly brackets to get

$$
\begin{aligned}
= & \frac{-\theta \gamma}{(1-\theta)}\left\{(-\theta) \frac{(1+\varepsilon)^{-\theta-1}(1-\varepsilon)^{1-\theta}-(1-\varepsilon)^{-\theta-1}(1+\varepsilon)^{1-\theta}}{\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]^{2}}\right. \\
& \left.-\frac{\left[\left((1+\varepsilon)^{-\theta}\right)^{2}-\left((1-\varepsilon)^{-\theta}\right)^{2}\right]}{\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]^{2}}\right\} .
\end{aligned}
$$

Finally, factor out $(1+\varepsilon)^{-\theta}(1-\varepsilon)^{-\theta}$ in the first term after the big curly bracket:

$$
=\underbrace{\frac{-\theta \gamma}{(1-\theta)}}_{>0}\{\underbrace{(-\theta)}_{<0} \underbrace{\frac{(1+\varepsilon)^{-\theta}(1-\varepsilon)^{-\theta}\left(\frac{1-\varepsilon}{1+\varepsilon}-\frac{1+\varepsilon}{1-\varepsilon}\right)}{\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]^{2}}}_{<0}-\underbrace{\frac{\left[\left((1+\varepsilon)^{-\theta}\right)^{2}-\left((1-\varepsilon)^{-\theta}\right)^{2}\right]}{\left[(1+\varepsilon)^{1-\theta}+(1-\varepsilon)^{1-\theta}\right]^{2}}}_{<0}\} .
$$

Thus, both parts are positive, establishing that the optimal price increases in response to a mean preserving spread. As marginal costs were constant, the markup increases.

References

Aguiar, M., E. Hurst, and L. Karabarbounis (2013), "Time use during the Great Recession." American Economic Review, 103 (5), 1664-1696. [20]

Baker, S. R., N. Bloom, and S. J. Davis (2016), "Measuring economic policy uncertainty." Quarterly Journal of Economics, 131 (4), 1593-1636. [17, 35]

Bloom, N. (2009), "The impact of uncertainty shocks." Econometrica, 77 (3), 623-685. [31]

Born, B. and J. Pfeifer (2014), "Policy risk and the business cycle." Journal of Monetary Economics, 68, 68-85. [9]
Caldara, D., C. Fuentes-Albero, S. Gilchrist, and E. Zakrajšek (2016), "The macroeconomic impact of financial and uncertainty shocks." European Economic Review, 88, 185207. [35]

Cantore, C. and P. L. Levine (2012), "Getting normalization right: Dealing with ‘dimensional constants' in macroeconomics." Journal of Economic Dynamics and Control, 36 (12), 1931-1949. [8]

Carriero, A., T. E. Clark, and M. Marcellino (2018), "Measuring uncertainty and its impact on the economy." Review of Economics and Statistics, 100 (5), 799-815. [35, 36, 37, 38]

Chang, Y. and J. H. Hong (2006), "Do technological improvements in the manufacturing sector raise or lower employment?" American Economic Review, 96 (1), 352-368. [24]

Cociuba, S. E., E. C. Prescott, and A. Ueberfeldt (2018), "US hours at work." Economics Letters, 169, 87-90. [20]

Doan, T., R. Litterman, and C. Sims (1984), "Forecasting and conditional projection using realistic prior distributions." Econometric Reviews, 3 (1), 1-100. [30]

Domeij, D. and M. Floden (2006), "The labor-supply elasticity and borrowing constraints: Why estimates are biased." Review of Economic Dynamics, 9 (2), 242-262. [4]

Edge, R. M. and R. S. Gurkaynak (2010), "How useful are estimated DSGE model forecasts for central bankers?" Brookings Papers on Economic Activity, 41 (2 (Fall)), 209-259. [17, 23]

Fernald, J. (2012), "A quarterly, utilization-adjusted series on total factor productivity." Federal Reserve Bank of San Francisco Working Paper 2012-19. [14, 15, 17, 23]
Fernández-Villaverde, J., P. A. Guerrón-Quintana, K. Kuester, and J. F. Rubio-Ramírez (2015), "Fiscal volatility shocks and economic activity." American Economic Review, 105 (11), 3352-3384. [13]

Galí, J. (1999), "Technology, employment, and the business cycle: Do technology shocks explain aggregate fluctuations?" American Economic Review, 89 (1), 249-271. [30]

Geweke, J. (1992), "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments." In Bayesian Statistics, Vol. 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds.), 641-649, Clarendon Press, Oxford. [10]

Godsill, S. J., A. Doucet, and M. West (2004), "Monte Carlo smoothing for nonlinear time series." Journal of the American Statistical Association, 99 (465), 156-168. [9]

Gordon, N. J., D. J. Salmond, and A. F. M. Smith (1993), "Novel approach to nonlinear/non-Gaussian Bayesian state estimation." IEE Proceedings F-Radar and Signal Processing, 140 (2), 107-113. [9]

Jones, J. B. (2002), "Has fiscal policy helped stabilize the postwar U.S. economy?" Journal of Monetary Economics, 49 (4), 709-746. [21]

Jurado, K., S. C. Ludvigson, and S. Ng (2015), "Measuring uncertainty." American Economic Review, 105 (3), 1177-1216. [17, 31, 33]

Kadiyala, K. R. and S. Karlsson (1997), "Numerical methods for estimation and inference in Bayesian VAR-models." Journal of Applied Econometrics, 12 (2), 99-132. [30]

Karabarbounis, L. (2014), "The labor wedge: MRS vs. MPN." Review of Economic Dynamics, 17 (2), 206-223. [20, 22]

Koop, G. and D. Korobilis (2010), "Bayesian multivariate time series methods for empirical macroeconomics." Foundations and Trends in Econometrics, 3 (4), 267-358. [30]

Kurmann, A. and E. Sims (forthcoming), "Revisions in utilization-adjusted TFP and robust identification of news shocks." Review of Economics and Statistics. [17]

Leduc, S. and Z. Liu (2016), "Uncertainty shocks are aggregate demand shocks." Journal of Monetary Economics, 82, 20-35. [13]

Leeper, E. M., M. Plante, and N. Traum (2010), "Dynamics of fiscal financing in the United States." Journal of Econometrics, 156 (2), 304-321. [21]

Litterman, R. B. (1986), "Forecasting with Bayesian vector autoregressions: Five years of experience." Journal of Business \& Economic Statistics, 4 (1), 25-38. [30]
Ludvigson, S. C., S. Ma, and S. Ng (forthcoming), "Uncertainty and business cycles: Exogenous impulse or endogenous response?" American Economic Journal: Macroeconomics. [17, 35, 36]

McCracken, M. W. and S. Ng (2016), "FRED-MD: A monthly database for macroeconomic research." Journal of Business \& Economic Statistics, 34 (4), 574-589. [17]

Mendoza, E. G., A. Razin, and L. L. Tesar (1994), "Effective tax rates in macroeconomics: Cross-country estimates of tax rates on factor incomes and consumption." Journal of Monetary Economics, 34 (3), 297-323. [21, 22]

Mertens, K. and M. O. Ravn (2011), "Understanding the aggregate effects of anticipated and unanticipated tax policy shocks." Review of Economic Dynamics, 14 (1), 27-54. [19]

Nekarda, C. J. and V. A. Ramey (2011), "Industry evidence on the effects of government spending." American Economic Journal: Macroeconomics, 3 (1), 36-59. [24, 25]

Nekarda, C. J. and V. A. Ramey (2013), "The cyclical behavior of the price-cost markup." NBER Working Papers 19099. [22, 30]

Raftery, A. E. and S. Lewis (1992), "How many iterations in the Gibbs sampler?" In Bayesian Statistics, Vol. 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds.), 763-773, Clarendon Press, Oxford. [31]

Ramey, V. A. (1991), "Markups and the business cycle: Comment." In NBER Macroeconomics Annual, Vol. 6 (O. J. Blanchard and S. Fischer, eds.), 134-139, The University of Chicago Press. [22]

Wu, J. C. and F. D. Xia (2016), "Measuring the macroeconomic impact of monetary policy at the zero lower bound." Journal of Money, Credit and Banking 48 (2-3), 253-291. [17]

Co-editor Kjetil Storesletten handled this manuscript.
Manuscript received 22 February, 2019; final version accepted 8 September, 2020; available online 19 October, 2020.

[^0]: Benjamin Born: b. born@fs.de
 Johannes Pfeifer: johannes.pfeifer@unibw.de

[^1]: ${ }^{1}$ Note that for the purpose of model simulations, we set $\tau_{t}^{c}=\tau^{c}$ and $\tau_{t}^{n}=\tau^{n}$.

[^2]: ${ }^{2}$ In the Cobb-Douglas case, we have $Y_{t}=K_{t}^{\alpha}\left(A_{t} L_{t}\right)^{1-\alpha}=A_{t}^{1-\alpha} K_{t}^{\alpha} L_{t}^{1-\alpha}$ so that a 1% change in laboraugmenting technology A_{t} moves measured TFP by $\varepsilon_{A, t}=1-\alpha$ percent (up to first order).
 ${ }^{3}$ We suppress the assumed deterministic loglinear trend in A for notational convenience.

[^3]: ${ }^{4}$ For example, the trend in NIPA GDP and Average hourly earnings of production and nonsupervisory workers in the private sector differs, although theory says they should be the same.

[^4]: ${ }^{5}$ Due to chain-weighting, this separate deflating is required to preserve additivity.

[^5]: ${ }^{6} \mathrm{We}$ opt to not attribute sales tax revenues to government purchases due to the different tax-exemption status of local, state, and federal purchases in different states. For example, government entities are sales tax-exempt in New York, but are tax-liable in California.

[^6]: ${ }^{7}$ The use of net indirect taxes follows Karabarbounis (2014) and differs from e.g. Mendoza, Razin, and Tesar (1994) who use gross indirect taxes.
 ${ }^{8}$ This implicitly assumes that all nonproduction and supervisory workers are overhead labor, which probably is an upper bound (see Ramey (1991)).

[^7]: ${ }^{9}$ This series substitutes for Business Sector: Labor Share (FRED: PRS84006173), which is unfortunately only available in index form.

[^8]: ${ }^{10}$ See the Technical Appendix (A.5) of Nekarda and Ramey (2011) and their discussion of the approximation error involved.

[^9]: Note: In Table "60200D Ann." we do not assign NIPA line 20 "Computer and electronic products" (N4020C0) to any two-digit industry, because in SIC 1987 it was part "Industrial machinery and equipment" and later became a separate category, introducing a structural break.

[^10]: Note: In Table "60300D Ann." we do not assign NIPA line 20 "Computer and electronic products" (N4020C0) to any two-digit industry, because in SIC 1987 it was part "Industrial machinery and equipment" and later became a separate category, introducing a structural break.

[^11]: ${ }^{11}$ The labor share is computed by dividing an appropriate measure of worker compensation by a output measure. Depending on the concept used, the worker compensation is either the one for production or production and supervisory workers. As the output measure, we use either total value added or total value added minus material costs. The latter provides a labor share after abstracting from materials.
 ${ }^{12}$ Note this assumes the equality between labor productivity movements caused by techn. shocks and TFP.
 ${ }^{13}$ In case of the quarterly variable, we estimate the $\operatorname{AR}(p)$ model on linearly interpolated data.

[^12]: ${ }^{14}$ In this case, due to non-availability of the EPU measure, the sample only starts in 1985 , potentially explaining the non-significant drop in industrial production.

