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Appendix A contains the details of calculations for particular sets C discussed in Sec-
tion 4.3.4 and Remark 3.1. Appendix B develops a specification test of the null H0 : c ∈ C.
Appendix C contains the asymptotic coverage and efficiency results discussed in Sec-
tion 4. Appendix D discusses extensions allowing for global misspecification. Appendix E
gives a construction of a submodel satisfying Assumption C.1, verifies the conditions
in Appendix C in the misspecified IV model, and collects auxiliary results used in Ap-
pendix C.

Appendix A: Details of calculations

This Appendix contains the details of calculations for particular sets C discussed in Sec-
tion 4.3.4 and Remark 3.1.

A.1 Cressie–Read divergences

Consider the problem in equation (15) under constraints of the form {c : cΣ−1c ≤ M2}.
The Lagrangian for this problem can be written as

2Hθ+ λ1
(
δ2/4 − (c − �θ)′Σ−1(c − �θ)

)+ λ2
(
M2 − c′Σ−1c

)
(we multiply the objective function by 2 so that its optimized value equals ω(δ)). The
first-order conditions imply that at optimum, c = λ1

λ1+λ2
�θ, and θ = λ1+λ2

λ1λ2
(�′Σ−1�)−1H ′.

Plugging these expressions into the constraints yields M2 = H(�′Σ−1�)−1H ′/λ2
2 and

δ2/4 = H(�′Σ−1�)−1H ′/λ2
1. Since H(�′Σ−1�)−1H ′ = k′

LS�0ΣkLS�0, solving for λ1 and λ2,
and plugging into the expression for θ yields

θ = δ/2 +M√
k′

LS�0ΣkLS�0

· (�′Σ−1�
)−1

H ′	
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Thus, ω(δ) = 2Hθ = (δ + 2M)
√
k′

LS�0ΣkLS�0. With this form of ω, the bound in equation

(18) becomes

κ∗(H���Σ�C) = (1 − α)(z1−α +M)+φ(z1−α)

cvα(M)
	

This efficiency equals at least min{κL∗�α�1 − α}, where κL∗�α = ((1 − α)z1−α + φ(z1−α))/

z1−α/2 denotes the efficiency given in equation (19) when C is a linear subspace. To show
this, observe that cv′

α(M) ≤ 1 for all M ≥ 0. Therefore, the derivative of

(1 − α)(z1−α +M)+φ(z1−α)− min
{
1 − α�κL∗�α

}
cvα(M)

with respect to M , given by 1 − α − min{1 − α�κL∗�α} cv′
α(M), is always nonnegative.

Since the expression in the above display equals (κL∗�α − min{κL∗�α�1 − α})z1−α/2 ≥ 0 at
M = 0, it follows that it is always nonnegative. Rearranging it then yields κ∗(H���Σ�C) ≥
min{κL∗�α�1 −α}. Furthermore, it follows from equation (S29) below that the efficiency of

one-sided CIs at c = 0 is given by κ
OCI�β∗ = 1.

A.2 �p bounds

We now consider the form of the optimal sensitivity when the set C = C(M) takes the
form in equation (12), and ‖·‖ corresponds to an �p norm, as discussed in Remark 3.1.
First, we explain the connection with penalized estimation. Since c = Bγ, one can write
the approximately linear model in equation (13) as

Y = −�θ+Bγ +Σ1/2ε�

which one can think of as a regression model with correlated errors, design matrix
(−��B), and coefficient vector (θ′�γ′)′. With this interpretation, it is clear that if the
number of regressors dθ + dγ is greater than the number of observations dg, the con-
straint on the norm of γ is necessary to make the model informative. Using the observa-
tion from Remark 3.1 that biasC(1)(k) = ‖B′k‖p′ , it follows that the optimization problem
in equation (10) under C = C(1) is equivalent to

min
k

k′Σk s.t. H = −k′� and
∥∥B′k

∥∥
p′ ≤ B	 (S1)

We now specialize the results to the cases p = 2 and p = ∞. We discuss the case p = 1 in
a working paper version of this paper (Armstrong and Kolesár (2020)).

A.2.1 p = 2 In this case, the Lagrangian form of (S1) becomes

min
k

k′(Σ+ λBB′)k s.t. H = −k′��

with the Lagrange multiplier λ giving the relative weight on bias. Optimizing this ob-
jective is isomorphic to deriving the minimum variance unbiased estimator of Hθ in a
regression model with design matrix −� and variance Σ + λBB′, so the Gauss–Markov
theorem implies that the optimal sensitivities are k′

λ = −H(�′Wλ�)
−1�′Wλ where Wλ =

[Σ+ λBB′]−1.
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A.2.2 p = ∞ Write the Lagrangian form of (S1) as

min
k

k′Σk/2 + λ
∥∥B′k

∥∥
1 s.t. H = −k′�	 (S2)

It will be convenient to transform the problem so that the �1 constraint only involves dγ
elements of k. Let

T =
(

B′⊥(
B′B
)−1

B′

)
� T−1 =

(
B⊥ B

)
� (S3)

where B⊥ is an orthonormal matrix that’s orthogonal to B. Then, since TB = (0� Idγ )
′,

the above minimization problem is equivalent to the problem

min
κ

κ′Sκ/2 + λ
∑
i∈I

|κi| s.t. H ′ = −G′κ�

where κ = T ′−1k, S = TΣT ′, G = T�, and I = {dg − dγ� 	 	 	 � dg} indexes the last dγ ele-
ments of κ.

To minimize the above display and give the solution path as λ varies, we use ar-
guments similar to those in Theorem 2 of Rosset and Zhu (2007). For i ∈ I, write κi =
κ+�i − κ−�i, where κ+�i = max{κi�0} and κ−�i = −min{κi�0}. We minimize the objective
function in the preceding display over {κ+�i� κ−�i� κj : i ∈ I� j /∈ I} subject to the con-
straints κ+�i ≥ 0 and κ−�i ≥ 0. Let μ denote a vector of Lagrange multipliers on the re-
striction −H ′ =G′κ. Then the Lagrangian can be written as

κ′Sκ/2 + λ
∑
i∈I

(κ+�i + κ−�i)+μ′(H ′ +G′κ
)−∑

i∈I
(λ+�iκ+�i + λ−�iκ−�i)	

The first-order conditions are given by

e′
iSκ+ e′

iGμ = 0� i ∈ IC� (S4)

e′
iSκ+ e′

iGμ+ λ = λ+�i� i ∈ I� (S5)

−(e′
iSκ+ e′

iGμ
)+ λ = λ−�i� i ∈ I	 (S6)

The complementary slackness conditions are given by λ+�iκ+�i = 0 and λ−�iκ−�i = 0 for
i ∈ I, and the feasibility constraints are λ+�i ≥ 0, λ−�i ≥ 0 for i ∈ I and −H ′ = G′κ.

Let AC = {i : i ∈ I�κi = 0}, and let A = {i : i /∈ AC} denote the set of active constraints.
Let s denote a vector of length |A| with elements si = sign(κi) if i ∈ I and si = 0 otherwise.

The slackness and feasibility conditions imply that if for i ∈ I, κi > 0, then λ+�i =
0, and if κi < 0 or λ−�i = 0. It therefore follows from (S5) and (S6) that e′

iSκ + e′
iGμ =

− sign(κi)λ = −siλ. We can combine this condition with (S4) and write

e′
iSκ+ e′

iGμ = −siλ� i ∈ A	 (S7)

On the other hand, if i ∈ AC , then since λ+�i and λ−�i are nonnegative, it follows from
(S5) and (S6) that ∣∣e′

iSκ+ e′
iGμ
∣∣≤ λ= ∣∣e′

jSκ+ e′
jGμ

∣∣� i ∈ AC� j ∈ A	 (S8)
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Let κA denote the subset of κ corresponding to the active moments, GA denote the
corresponding rows of G, and SAA the corresponding submatrix of S. Then we can write
the condition (S7) together with the feasibility constraint G′κ= −H ′ compactly as(

0 G′
A

GA SAA

)(
μ

κA

)
=
(

−H ′
−sλ

)
	

Using the block matrix inverse formula, this implies

μ = (G′
AS

−1
AAGA

)−1(
H ′ −G′

AS
−1
AAsλ

)
�

κA = −S−1
AAGAμ− S−1

AAsλ

= S−1
AAGA

(
G′

AS
−1
AAGA

)−1(
G′

AS
−1
AAsλ−H ′)− S−1

AAsλ	

Consequently, if we are in a region in where the solution path is differentiable with re-
spect to λ, we have

∂κA
∂λ

= S−1
AAGA

(
G′

AS
−1
AAGA

)−1
G′

AS
−1
AAs − S−1

AAs	 (S9)

The differentiability of path is violated if either (a) the constraint (S8) is violated for some
i ∈ AC if κ(λ) keeps moving in the same direction, and we add i to A at a point at which
(S8) holds with equality; or else (b) the sensitivity κi(λ) for some i ∈ A reaches zero. In
this case, drop i from A. In either case, we need to re-calculate the direction (S9) using
the new definition of A.

Based on the arguments above and the fact that κ(0) = −S−1G(G′S−1G)−1H ′, we
can derive the following algorithm, similar to the LAR-LASSO algorithm, to generate the
path of optimal sensitivities κ(λ):

1. Initialize λ = 0, A = {1� 	 	 	 � dg}, μ = (G′S−1G)−1H ′, κ = −S−1Gμ. Let s be a vector
of length dg with elements si = I{i ∈ I} sign(κi), and calculate initial directions as
μ� = −(G′S−1G)−1G′S−1s, κ� = −S−1(Gμ� + s)

2. While (|A| > max{dg − dγ�dθ}):

(a) Set step size to d = min{d1� d2}, where

d1 = min{d > 0 : κi + dκ��i = 0� i ∈ A∩ I}�
d2 = min

{
d > 0 : ∣∣e′

i(Sκ+Gμ)+ de′
i(Sκ� +Gμ�)

∣∣= λ+ d� i ∈ AC
}
	

Take step of size d: κ �→ κ+ dκ�, μ �→ μ+ dμ�, and λ �→ λ+ d.

(b) If d = d1, drop argmin(d1) from A, and if d = d2, then add argmin(d2) to A. Let
s be a vector of length dg with elements si = − I{i ∈ I} sign(e′

iSκ + e′
iGμ), and

calculate new directions as

μ� = −(G′
AS

−1
AAGA

)−1
G′

AS
−1
AAsA�
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(κ�)A = −S−1
AA(GAμ� + sA)�

(κ�)AC = 0	

The solution path k(λ) is then obtained as k(λ)= T ′κ(λ).
Finally, we show that in the limit M → ∞, the optimal sensitivity corresponds to a

method of moments estimator based on the most informative set of dθ moments, with
the remaining dg − dθ moments dropped. The optimal sensitivity as M → ∞ obtains
by solving (S2) as λ → ∞. If B corresponds to columns of the identity matrix, then this
is equivalent to minimizing ‖kI‖1 subject to H = −k′�. This can be written as a linear
program minkI�+ + kI�−i st −H ′ = �′(k+ − k−), k+�k− ≥ 0. The minimization problem
is done on a dθ-dimensional hyperplane, and solution must occur at a boundary point
of the feasible set, where only dθ variables are nonzero. So the optimal k has dθ nonzero
elements.

Appendix B: Specification test

One can test the null hypothesis of correct specification (i.e., the null hypothesis that
c = 0) using the J statistic

J = nmin
θ

ĝ(θ)′Σ̂−1ĝ(θ) = nĝ(θ̂)′Σ̂−1ĝ(θ̂)�

where θ̂ = argminθ ĝ(θ)
′Σ̂−1ĝ(θ). Alternatively, letting Σ̂−1/2 denote the symmetric

square root of Σ̂−1, one can project Σ̂−1/2ĝ(θ̃), where θ̃ is some consistent estimate, onto
the complement of the space spanned by Σ̂−1/2�̂,

S = nĝ(θ̃)′Σ̂−1/2R̂Σ̂−1/2ĝ(θ̃)�

where R̂ = I − Σ̂−1/2�̂(�̂′Σ̂−1�̂)−1�̂′Σ̂−1/2. If the model is correctly specified, so that c =
0, S and J are asymptotically equivalent (Newey and McFadden (1994, p. 2231)), and
distributed χ2

dg−dθ
.

Under local misspecification, the J statistic has a noncentral χ2 distribution, with
noncentrality parameter depending on c (Newey (1985)), and the asymptotic equiva-
lence of J and S still holds. In this section, we use this observation to form a test of the
null hypothesis H0 : c ∈ C. When C takes the form in equation (12) for some norm ‖·‖,
inverting these tests gives a lower CI for M . We begin with a lemma deriving the asymp-
totic distribution of S and J under local misspecification.

Lemma B.1. Suppose that equations (1), (2), and (3) hold, and that θ̂ and θ̃ satisfy, for
some K and K′

opt = −(�′Σ−1�)−1�′Σ−1,

√
n(θ̂− θ0)= K′

opt
√
nĝ(θ0)� and

√
n(θ̃− θ0) =K′√nĝ(θ0)	

Suppose that Σ̂ and �̂ are consistent estimates of Σ and �, and that Σ and � are full rank.
Then S = J + oP(1) and S and J converge in distribution to a noncentral chi-square dis-
tribution with dg − dθ degrees of freedom and noncentrality parameter c′Σ−1/2RΣ−1/2c

where R= I −Σ−1/2�(�′Σ−1�)−1�Σ−1/2.
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Proof. By equations (1), (2), and (3),
√
nĝ(θ̃) = (I + �K′)Σ1/2(Σ−1/2c + Zn) + oP(1)

where Zn = Σ−1/2[√nĝ(θ0)− c] d→ N (0� Idg), so that

S = (Σ−1/2c +Zn
)′
Σ1/2(Σ−1/2 +Σ−1/2�K′)′R(Σ−1/2 +Σ−1/2�K′)Σ1/2(Σ−1/2c +Zn

)
+ oP(1)

= (Σ−1/2c +Zn
)′
R
(
Σ−1/2c +Zn

)+ oP(1)
d→ (

Σ−1/2c +Z
)′
R
(
Σ−1/2c +Z

)
�

where Z ∼ N (0� Idg) and we use the fact that R(I +Σ−1/2�K′Σ1/2) = R. Similarly,

√
nĝ(θ̂) = (I − �

(
�′Σ−1�

)
�′Σ−1)(c +Σ1/2Zn

)+ oP(1) = Σ1/2R
(
Σ−1/2c +Zn

)+ oP(1)�

so that J = (Σ−1/2c+Zn)
′R(Σ−1/2c+Zn)+oP(1) = S+oP(1). To prove the second claim,

decompose R= P1P
′
1, whereP1 ∈R

dθ×(dg−dθ) corresponds to the eigenvectors associated
with nonzero eigenvalues of R. Then(

Σ−1/2c +Z
)′
R
(
Σ−1/2c +Z

)= (P ′
1Σ

−1/2c + P ′
1Z
)′(

P ′
1Σ

−1/2c + P ′
1Z
)
	

Since P ′
1Z ∼ N (0� Idg−dθ), it follows that the random variable in the preceding display

has a noncentral χ2 distribution with dg − dθ degrees of freedom and noncentrality pa-
rameter c′Σ−1/2RΣ−1/2c.

Lemma B.1 can be interpreted in using the limiting experiment described in Sec-
tion 4.1. In particular, the asymptotic distribution of the S and J statistics is given by the
distribution of the statistic Y ′Σ−1/2RΣ−1/2Y in the limiting experiment.

The quantiles of a noncentral chi-square distribution are increasing in the non-
centrality parameter (Sun, Baricz, and Zhou (2010)). Thus, to test the null hypothesis
H0 : c ∈ C, the appropriate critical value for tests based on the J or S statistic is based on
a noncentral chi-squared distribution, with noncentrality parameter

λ̄ = sup
c∈C

c′Σ−1/2RΣ−1/2c	

If C = {Bγ : ‖γ‖p ≤M}, then this becomes

λ̄ = sup
‖t‖p≤M

t ′B′Σ−1/2RΣ−1/2Bt = sup
‖t‖p≤1

M2∥∥RΣ−1/2Bt
∥∥2

2 =M2‖A‖2
p�2�

where the second equality uses the fact that R is idempotent, A = RΣ−1/2B, and
‖A‖p�q = max‖x‖p≤1‖Ax‖q is the (p�q) operator norm. For p = 2, the operator norm has

a closed form, which gives λ̄ =M max eig(B′Σ−1/2RΣ−1/2B).

Appendix C: Asymptotic coverage and efficiency

This Appendix contains the asymptotic coverage and efficiency results discussed in Sec-
tion 4. In particular, we prove Theorem 4.1. In order to allow for stronger statements, we
state upper and lower bounds separately. Theorem 4.1 then follows by combining these
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results. Theorem 4.1 focuses on two-sided CIs in the case where C is centrosymmetric,
in addition to being convex. In this Appendix, we also prove analogous results for one-
sided CIs, and we generalize these results to the case where C is a convex but asymmetric
set. When C is convex but asymmetric, the negative results about the scope for improve-
ment when c is close to zero no longer hold. Therefore, we consider the general problem
of optimizing quantiles of excess length over a set D ⊆ C, which may be a strict subset
of C.

The remainder of this Appendix is organized as follows. Appendix C.1 presents nota-
tion and definitions, as well as an overview of the results. Appendix C.2 contains results
on least favorable submodels as well as a two-point testing lemma used in later proofs.
We then use this to obtain efficiency bounds for one-sided CIs in Appendix C.3, and for
two-sided CIs in Appendix C.4. Appendix C.5 shows that our CIs achieve (or, for two-
sided CIs, nearly achieve) these bounds. Appendix C.6 shows how Theorem 4.1 follows
from these results, and also gives a one-sided version of this theorem. Primitive con-
ditions for the misspecified linear IV model, as well as a general construction of a least
favorable submodel satisfying the assumptions used in this section, are given in the sup-
plemental Appendix.

C.1 Setup

While our focus is on parameter spaces that place restrictions on c, we will also allow for
local restrictions on θ in some results. This allows us to bound the scope for “directing
power” at particular values of θ. Formally, for some parameter θ∗, we consider the local
parameter space that restricts (

√
n(θ−θ∗)′� c′)′ to some set F ⊆R

dθ+dg . The unrestricted
case considered throughout most of the main text corresponds to F =R

dθ × C (in which
case θ∗ does not affect the definition of the parameter space). We also allow for addi-
tional restrictions on θ by placing it in some set Θn. Finally, we use P to denote the set
of distributions P over which we require coverage.

With this notation, the set of values of θ that are consistent with the model under P
(i.e., the identified set under P) is

ΘI(P) =ΘI(P;F�Θn) = {θ ∈Θn : √n
((
θ− θ∗)′� gP(θ)′)′ ∈ F

}
�

and the set of pairs (θ�P) over which coverage is required is given by

Sn = {(θ�P) ∈Θn ×P : θ ∈ ΘI(P)
}= {(θ�P) ∈Θn ×P : √n

((
θ− θ∗)′� gP(θ)′)′ ∈ F

}
�

which reduces to the definition in Theorem 4.1 when F = R
dθ ×C. The coverage require-

ment for a CI In is then given in equation (20) with this definition of Sn. To compare
one-sided CIs [ĉ�∞), we will consider the β quantile of excess length. Rather than re-
stricting ourselves to the minimax criterion, we consider worst-case excess length over
a potentially smaller parameter space G, which may place additional restrictions on θ

and c. Let

qβ�n(ĉ;P�G�Θn) = sup
P∈P

sup
θ∈ΘI(P;G�Θn)

qP�β
(
h(θ)− ĉ

)
�
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where qP�β denotes the β quantile under P . We will also consider bounds on qP�β(h(θ)−
ĉ) at a single P , which corresponds to the optimistic case of optimizing length at a single
distribution. For two-sided CIs, we will consider expected length.

Our efficiency bounds can be thought of as applying the bounds in Armstrong and
Kolesár (2018) to a local asymptotic setting, which corresponds to the limiting model in
equation (13) with � = �θ∗�P0 , Σ = Σθ∗�P0 and H = Hθ∗ . The between class modulus of
continuity for this model is

ω(δ;F�G�H���Σ) = supH(s1 − s0) s.t.
(
s′0� c

′
0
)′ ∈ F�

(
s′1� c

′
1
)′ ∈ G�[

(c1 − c0)− �(s1 − s0)
]′
Σ−1[(c1 − c0)− �(s1 − s0)

]≤ δ2	 (S10)

We use the notation ω(δ) and ω(δ;F�G) when the context is clear. In the case where G =
F = R

dθ ×C and C is centrosymmetric, the solution satisfies s1 = −s0 and c1 = −c0, which
gives the same optimization problem as in equation (15), with the objective multiplied
by two (this matches the definition of ω(·) used to define κ∗ in the main text).

For one-sided CIs, we show that, for any CI satisfying the coverage condition in equa-
tion (20) for a rich enough class P , we will have

lim inf
n→∞

√
nqβ�n(ĉ;P�G�Θn) ≥ω(δβ;F�G�H���Σ)� (S11)

where δβ = z1−α + zβ, where zτ denotes the τ quantile of the N (0�1) distribution. For
bounds on excess length at a single P0 with EP0g(wi�θ

∗) = 0, we obtain this bound with
G = {0}:

lim inf
n→∞

√
nqP0�β

(
h
(
θ∗)− ĉ

)≥ω
(
δβ;F� {0}�H���Σ

)
	 (S12)

These results can be thought of as a local asymptotic version of Theorem 3.1 in Arm-
strong and Kolesár (2018) applied to our setting.

For two-sided CIs, we show that, if a CI In = {ĥ± χ̂} satisfies the coverage condition
in equation (20) for a rich enough class P then, for any P0 with EP0g(wi�θ

∗) = 0, expected
length satisfies

lim inf
T→∞

lim inf
n→∞ EP0 min{√n2χ̂�T }

≥ (1 − α)E
[
ω
(
z1−α −Z; {0}�F�H���Σ

)
+ω
(
z1−α −Z;F� {0}�H���Σ

) | Z ≤ z1−α

]
� (S13)

where Z ∼ N (0�1). The above bound uses truncated expected length to avoid technical
issues with convergence of moments when achieving the bound (note however that this
bound immediately implies the same bound on excess length without truncation). Our
results constrain the CI to take the form of an interval. We conjecture that the bound
applies to arbitrary confidence sets (with length defined as Lebesgue measure) under
additional regularity conditions.

Here, “rich enough” means that P contains a least favorable submodel. Appendix C.2
begins the derivation of our efficiency results by giving conditions on this submodel. In
Appendix E.1, we construct a submodel satisfying these conditions under mild condi-
tions.
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C.2 Least favorable submodel

Let P0 be a distribution with EP0g(wi�θ
∗) = 0 (i.e., the model holds for this data-

generating process with θ = θ∗ and c = 0), and consider a parametric submodel Pt in-
dexed by t ∈ R

dg (i.e., the dimension of t is the same as the dimension of the values of
g(wi�θ)) with Pt equal to P0 at t = 0. We assume that {wi}ni=1 are i.i.d. under Pt . Let πt(wi)

denote the density of a single observation with respect to its distribution under P0, so
that EPt f (wi) = EP0f (wi)πt(wi) for any function f . We expect that the least favorable
submodel for this problem will be the one that makes estimating EPg(Wi�θ

∗) most dif-
ficult. This corresponds to any subfamily with score function g(wi�θ

∗). We also place
additional conditions on this submodel, given in the following assumption.

Assumption C.1. The data are i.i.d. under Pt for all t in a neighborhood of zero, and
the density πt(wi) for a single observation is quadratic mean differentiable at t = 0 with
score function g(wi�θ

∗), where EP0g(wi�θ
∗) = 0. In addition, the function (t ′� θ′)′ �→

Eptg(wi�θ) is continuously differentiable at (0′� θ∗′)′ with[
d

d
(
t ′� θ′)Eptg(wi�θ)

]
t=0�θ=θ∗

= (Σ��)� (S14)

where Σ and � are full rank.

To understand Assumption C.1, note that Problem 12.17 in Lehmann and Romano
(2005) gives the Jacobian with respect to t as Σ in the case where g(wi�θ

∗) is bounded,
and the Jacobian with respect to θ is equal to � by definition. Assumption C.1 requires
the slightly stronger condition that Eptg(wi�θ) is continuously differentiable with re-
spect to (t ′� θ′)′ for t close to 0 and θ close to θ∗. This is needed to apply the implicit
function theorem in the derivations that follow. In the supplemental materials, we give
a construction of a quadratic mean differentiable family satisfying this condition, with-
out requiring boundedness of g(wi�θ

∗) (Lemma E.1 in Appendix E.1).
The bounds in Armstrong and Kolesár (2018) are obtained by bounding the power of

a two-point test (simple null and simple alternative) where the null and alternative are
given by the points that achieve the modulus. To obtain analogous results in our setting,
we use a bound on the power of a two-point test in a least favorable submodel.

Consider sequences of local parameter values (θ′
0�n� c

′
0�n)

′ and (θ′
1�n� c

′
1�n)

′ where, for
some s0, c0, s1, and c1,

θd�n = θ∗ + (sd + o(1)
)
/
√
n� cd�n = cd + o(1) d ∈ {0�1}	 (S15)

Consider a sequence of tests of (θ′
0�n� c

′
0�n)

′ vs (θ′
1�n� c

′
1�n)

′. Formally, for any (θ′� c′)′, let

Pn(θ� c)= {P ∈ P : EPg(wi�θ) = c/
√
n
}

(S16)

be the set of probability distributions in P that are consistent with the parameter values
(θ′� c′)′. We derive a bound on the asymptotic minimax power of a level α test of

H0�n : P ∈ Pn(θ0�n� c0�n) vs H1�n : P ∈ Pn(θ1�n� c1�n)� (S17)
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as well as a bound on the power of a test of H0�n at P0. Let � be the standard normal cdf
and let

β(s0� c0� s1� c1) =�
(√[

c1 − c0 − �(s1 − s0)
]′
Σ−1
[
c1 − c0 − �(s1 − s0)

]− z1−α

)
	

Lemma C.1. Consider a sequence of tests φn satisfying lim supn supP∈Pn(θ0�n�c0�n)
EPφn ≤ α.

Then, provided the class of distributions P contains a family Pt that satisfies Assump-
tion C.1, we have

lim sup
n

EP0φn ≤ β(s0� c0�0�0) and lim sup
n

inf
P∈Pn(θ1�n�c1�n)

EPφn ≤ β(s0� c0� s1� c1)	

Lemma C.1 says that the asymptotic minimax power of any test of H0�n vs H1�n is
bounded by β(s0� c0� s1� c1). Furthermore, if we take s1 = 0 and c1 = 0, then this bound is
achieved at P0. Note that, in keeping with the analogy with the linear model in equation
(13), β(s0� c0� s1� c1) is the power of the optimal (Neyman–Pearson) test of the simple null
(s′0� c

′
0) versus the simple alternative (s′1� c

′
1) in the model in equation (13).

Proof of Lemma C.1. The proof involves two steps. First, we use the implicit function
theorem to find sequences t0�n and t1�n such that Pt0�n satisfies H0�n and Pt1�n satisfies
H1�n. Next, we apply a standard result on testing in quadratic mean differentiable fam-
ilies to obtain the limiting power of the optimal test of Pt0�n versus Pt1�n, which gives an
upper bound on the limiting minimax power of any test of H0�n versus H1�n.

Let f (t� θ�a) = EPtg(wi�θ)− a so that (θ′� c′)′ is consistent with Pt iff f (t� θ� c/
√
n) =

0. Under Assumption C.1, it follows from the implicit function theorem that there exists
a function r(θ�a) such that, for θ in a neighborhood of θ∗ and a in a neighborhood of
zero,

EPr(θ�a)g(wi�θ)− a = f
(
r(θ�a)�θ�a

)= 0	

Thus, letting t0�n = r(θ0�n� c0�n/
√
n) and t1�n = r(θ1�n� c1�n/

√
n), Pt0�n satisfies H0�n and Pt1�n

satisfies H1�n. Furthermore,[
d

d
(
θ′� a′) r(θ�a)]

(θ′�a′)=(θ∗�0)
= −Σ−1(��−Idg)

so that

r(θ�a)= Σ−1a−Σ−1�
(
θ− θ∗)+ o

(∥∥θ− θ∗∥∥+ ‖a‖)	
Thus, letting t0�∞ = Σ−1c0 −Σ−1�s0, we have

t0�n = r(θ0�n� c0�n/
√
n)= Σ−1c0�n/

√
n−Σ−1�

(
θ0�n − θ∗)+ o

(∥∥θ0�n − θ∗∥∥+ ‖c0�n‖/
√
n
)

= Σ−1c0/
√
n−Σ−1�s0/

√
n+ o(1/

√
n) = t0�∞/

√
n+ o(1/

√
n)	

Similarly, t1�n = t1�∞/
√
n+ o(1/

√
n) where t1�∞ = Σ−1c1 −Σ−1�s1.

Since the information matrix for this submodel evaluated at t = 0 is Σ, it follows from
the arguments in Example 12.3.12 in Lehmann and Romano (2005), extended to the case
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where the null and alternative are both drifting sequences (rather than just the alterna-
tive), that the limit of the power of the Neyman–Pearson test of Pt0�n vs Pt1�n is

�
(√[t1�∞ − t0�∞]′Σ[t1�∞ − t0�∞] − z1−α

)= β(s0� c0� s1� c1)	

This gives the required bound on minimax power over H1�n. To obtain the bound on
power at P0, note that, for θ1�n = θ∗ and c1�n = 0, t0�n = 0, the bound also corresponds to
the power of a test that is optimal for Pt0�n versus P0.

C.3 One-sided CIs

We prove the following efficiency bound for one-sided CIs.

Theorem C.1. Let P be a class of distributions that contains a submodel Pt satisfying
Assumption C.1. Let Θn(C) = {θ | ‖θ − θ∗‖ ≤ C/

√
n} for some constant C, and let F be

given. Let [ĉ�∞) be a sequence of CIs such that, for all C, the coverage condition in equa-
tion (20) holds with Θn = Θn(C). Let G ⊆ F be a set such that the limiting modulus ω is
well-defined and continuous for all δ. Then the asymptotic lower bounds (S11) and (S12)
hold.

Proof. Consider a sequence of simple null and alternative values of θ and c that satisfy
(S15) for some s0, c0, s1, c1, with (

√
n(θ0�n − θ∗)′� c′

0�n)
′ ∈ F and (

√
n(θ1�n − θ∗)′� c′

1�n)
′ ∈ G,

for each n. Note that

lim
n→∞

√
n
[
h(θ1�n)− h(θ0�n)

]= H(s1 − s0)	

Consider the testing problem H0�n : P ∈ Pn(θ0�n� c0�n) vs H1�n : P ∈ Pn(θ1�n� c1�n) defined
in (S16) and (S17). Suppose that

qβ�n(ĉ;P�G�Θn) < h(θ1�n)− h(θ0�n)	 (S18)

Let φn denote the test that rejects when h(θ0�n) /∈ [ĉ�∞). Since, for any P ∈ Pn(θ1�n� c1�n),
we have qP�β(h(θ1�n) − ĉ) ≤ qβ�n(ĉ;P�G�Θn) by construction, it follows that, for all P ∈
Pn(θ1�n� c1�n),

EPφn = P
(
h(θ1�n)− ĉ < h(θ1�n)− h(θ0�n)

)≥ P
(
h(θ1�n)− ĉ ≤ qP�β

(
h(θ1�n)− ĉ

))≥ β�

where the last step follows from properties of quantiles (Lemma 21.1 in van der Vaart
(1998)). The coverage requirement in equation (20) implies that the test φn that rejects
when h(θ0�n) /∈ [ĉ�∞) has asymptotic level α for H0�n. Thus, by Lemma C.1, we must
have β≤ β(s0� c0� s1� c1) if (S18) holds infinitely often.

It follows that, if β(s0� c0� s1� c1) < β, we must have

lim inf
n→∞

√
nqβ�n(ĉ;P�G�Θn)≥H(s1 − s0)

since otherwise, equation (S18) would hold infinitely often. Since the sequences and
limiting (s′0� c

′
0) ∈ F and (s′1� c

′
1) ∈ G were arbitrary, the above bound holds for any
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(s′0� c
′
0) ∈ F and (s′1� c

′
1) ∈ G with β(s0� c0� s1� c1) ≤ β − η, where η > 0 is arbitrary. The

maximum of the right-hand side over s0, c0, s1, c1 in this set is equal to ω(δβ−η;F�G�H�

��Σ) by definition, so taking η→ 0 gives the result.

C.4 Two-sided CIs

We prove the following efficiency bound for two-sided CIs.

Theorem C.2. Suppose that, for all C, {ĥ ± χ̂} satisfies the local coverage condition in
equation (20) with Θn =Θn(C) = {θ | ‖θ− θ∗‖ ≤ C/

√
n}, where P contains a submodel Pt

satisfying Assumption C.1. Suppose also that 0dθ+dg ∈ F and a minimizer (s′ϑ� c
′
ϑ)

′ of (c −
�s)′Σ−1(c−�s) subject to Hs = ϑ and (s′� c′)′ ∈ F exists for all ϑ ∈R. Then the asymptotic
lower bound (S13) holds.

In the case where F = R
dθ × C, which is the focus of the main text, a sufficient con-

dition for the existence of the minimizer (s′ϑ� c
′
ϑ)

′ is that C is compact, H is not equal to
the zero vector and � is full rank.

Proof. For each ϑ ∈R, let θ̃ϑ�n = θ∗ + sϑ/
√
n, and let φϑ�n = I(h(θ̃ϑ�n) /∈ {ĥ± χ̂}) be the

test that rejects when h(θ̃ϑ�n) is not in the CI. When the constant C defining Θn =Θn(C)

is large enough, the asymptotic coverage condition in equation (20) implies that φϑ�n is
an asymptotic level α test for H0�n : P ∈ Pn(θ̃ϑ�n� cϑ) defined in (S16) and (S17). Thus, by
Lemma C.1,

lim sup
n→∞

EP0φϑ�n ≤�(δϑ − z1−α) where δϑ =
√
(cϑ − �sϑ)′Σ−1(cϑ − �sϑ)	 (S19)

We apply this bound to a grid of values of ϑ. Let En(m) denote the grid centered at
zero with length 2m and meshwidth 1/m:

En(m) = {j/m : j ∈ Z� |j| ≤m2}	
Let

Ẽn(m) = {√n
[
h(θ̃ϑ�n)− h

(
θ∗)] :ϑ ∈ En(m)

}
	

Note that h(θ̃ϑ�n) = h(θ∗) + (1 + o(1))Hsϑ/
√
n = h(θ∗) + (1 + o(1))ϑ/

√
n. Thus, letting

a1� 	 	 	 � a2m2+1 denote the ordered elements in En(m) and ã1� 	 	 	 � ãm2+1 the ordered ele-
ments in Ẽn, we have ãj → aj for each j as n→ ∞.

Let N (n�m) be the number of elements ãj in Ẽn such that h(θ∗)+ ãj/
√
n= h(θ̃aj�n) ∈

{ĥ± χ̂}. Then

EP0N (n�m)=
2m2+1∑
j=1

EP0I
(
h(θ̃aj�n) ∈ {ĥ± χ̂})= 2m2+1∑

j=1

[1 −EP0φaj�n]	
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It follows from (S19) that (assuming the constant C that defines Θn(C) is large enough),

lim inf
n→∞ EP0N (n�m)≥

2m2+1∑
j=1

[
1 −�(δaj − z1−α)

]= 2m2+1∑
j=1

�(z1−α − δaj )	

Note that 2χ̂≥ n−1/2[N (n�m)−1] ·min1≤j≤2m2(ãj+1 − ãj) = n−1/2[N (n�m)−1] ·m−1 · (1+
εn) where εn = min1≤j≤2m2(ãj+1 − ãj)/m

−1 − 1 is a nonrandom sequence converging to
zero. This, combined with the above display, gives

lim inf
n→∞ EP0 min

{
2n1/2χ̂�T

}≥
[
m−1

2m2+1∑
j=1

�(z1−α − δaj )−m−1

]

for any T > 2m. We have

m−1
2m2+1∑
j=1

�(z1−α − δaj )= m−1
2m2+1∑
j=1

∫
I(δaj ≤ z1−α − z)d�(z)	 (S20)

Following the proof of Theorem 3.2 in Armstrong and Kolesár (2018), note that, for ϑ ≥ 0,
t ≥ 0, we have δϑ ≤ t iff ϑ ≤ ω(t; {0}�F). Indeed, note that ω(δϑ; {0}�F) ≥ Hsϑ = ϑ by
feasibility of 0 and sϑ, cϑ for this modulus problem. Since the modulus is increasing,
this means that, if δϑ ≤ t, we must have ϑ ≤ ω(t; {0}�F). Now suppose ϑ ≤ ω(t; {0}�F).
Then Hsω(t;{0}�F) ≥ ϑ, so, for some λ ∈ [0�1], (s′λ� c′

λ) = λ(s′ω(t;{0}�F)� c
′
ω(t;{0}�F)) satisfies

Hsλ = ϑ, which means that δϑ ≤
√
(cλ − �sλ)′Σ−1(cλ − �sλ)≤ t as claimed.

Thus, the part of the expression in (S20) corresponding to terms in the sum with
aj ≥ 0 is given by

m−1
2m2+1∑
j=1

∫
I
(
0 ≤ aj ≤ω

(
z1−α − z; {0}�F))d�(z)

≥
∫
z≤z1−α

min
{
ω
(
z1−α − z; {0}�F)− 1/m�m

}
d�(z)	

By the dominated convergence theorem, this converges to
∫
z≤z1−α

ω(z1−α − z; {0}�
F)d�(z) as m → ∞. Similarly, for ϑ < 0, t ≥ 0, we have δϑ ≤ t iff. −ϑ ≤ ω(t;F� {0}),
so that an analogous argument shows that, for arbitrary ε > 0, there exists m such that∫
z≤z1−α

ω(z1−α − z;F� {0})d�(z) − ε is an asymptotic lower bound for the part of the
expression (S20) that corresponds to terms in the sum with aj < 0. Thus, for any ε > 0,
there exist constants C and T such that, if the coverage condition in equation (20) holds
with Θn =Θn(C),

lim inf
n→∞ EP0 min

{
n1/22χ̂�T

}≥
∫
z≤z1−α

[
ω
(
z1−α − z; {0}�F)+ω

(
z1−α − z;F� {0})]d�(z)− 2ε	

This gives the result.
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C.5 Achieving the bound

This section gives formal results showing that the CIs proposed in the main text are
asymptotically valid, and that, if the sensitivities are chosen optimally, they achieve the
efficiency bound in Theorem C.1 in the one-sided case, and nearly achieve the bound
in Theorem C.2 in the two-sided case (where “nearly” means up to the sharp efficiency
bound κ∗ in the limiting model, given in equation (18), in the case where C is centrosym-
metric).

We specialize to the case considered in the main text where we require coverage
without local restrictions on θ. In the notation of Appendices C.3 and C.4, this corre-
sponds to F = R

dθ × C for a convex (but possibly asymmetric) set C.
In the main text, we focused on the case where C is centrosymmetric. To allow for

general convex C, we use estimators that are asymptotically affine, rather than linear.
We focus on one-step estimators, which take the form

ĥ= h(θ̂initial)+ k̂′g(θ̂initial)+ â/
√
n

for some vector k̂ and some scalar â. We continue to require the condition

Ĥ = −k̂′�̂� (S21)

where �̂ is an estimator of � satisfying conditions to be given below.
To deal with asymmetric C, and to state results involving worst-case quantiles of ex-

cess length over different sets, it will be helpful to separately define worst-case upper
and lower bias. For a set C ∈R

dg , let

biasC(k�a) = sup
c∈C

k′c + a� biasC(k�a) = inf
c∈C

k′c + a	

A one-sided asymptotic 1 − α CI is given by [ĉ�∞) where

ĉ = ĥ− biasC(k̂� â)/
√
n− z1−α

√
k̂′Σ̂k̂/

√
n

= h(θ̂initial)+ k̂′g(θ̂initial)+ â/
√
n− biasC(k̂� â)/

√
n− z1−α

√
k̂′Σ̂k̂/

√
n

= h(θ̂initial)+ k̂′g(θ̂initial)− biasC(k̂�0)/
√
n− z1−α

√
k̂′Σ̂k̂/

√
n�

and Σ̂ is an estimate of Σ. Thus, the intercept term â does not matter for the one-sided
CI and can be taken to be zero in this case. For two-sided CIs, however, the choice of â
matters, and we assume that â is chosen so that the estimator is centered:

biasC(k̂� â) = sup
c∈C

k̂′c + â= −
(

inf
c∈C

k̂′c + â
)

= −biasC(k̂� â)	 (S22)

A two-sided asymptotic 1 − α CI is then given by ĥ± χ̂ where

χ̂= cvα
(
biasC(k̂� â)/

√
k̂′Σ̂k̂

)√
k̂′Σ̂k̂/

√
n� where cvα(t) is the 1 − α quantile of

∣∣N (t�1)
∣∣	
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For both forms of CIs, we first state a result for general k̂, â, and then specialize to op-
timal weights. For the one-sided case, we consider CIs that optimize worst-case length
over (

√
n(θ − θ∗)′� c′)′ in some set G, subject to coverage over F = R

dθ × C. In principle,
this allows for confidence sets that “direct power” not only at particular values of c but
also at particular values of θ. However, Lemma E.2 in Appendix E.3.1 shows that the op-
timal weights for this problem are the same as the optimal weights when G is replaced
by R

dθ ×D(G), where D(G) = {c : there exists s s.t. (s′� c′)′ ∈ G}. Thus, it is without loss of
generality to consider weights that optimize worst-case excess length over c ∈ D subject
to coverage over c ∈ C where D ⊆ C is a compact convex set.

The optimal weights take the form k̂= k(δβ� Ĥ� �̂� Σ̂) where

k(δ�H���Σ)′ =
((
c∗

1�δ − c∗
0�δ
)− �

(
s∗1�δ − s∗0�δ

))′
Σ−1((

c∗
1�δ − c∗

0�δ
)− �

(
s∗1�δ − s∗0�δ

))′
Σ−1�H ′/HH ′ (S23)

and c0�δ, s0�δ, c1�δ, s1�δ solve the between class modulus problem (S10) with F = R
dθ × C

and G = R
dθ × D. For a two-sided CI of the form given above, the optimal weights take

this form with D = C, δ minimizing χ̂, and with â chosen to center the CI so that (S22)
holds. We note that, in the case where D = C and C is centrosymmetric, s∗1�δ = s∗0�δ and
c∗

1�δ = c∗
0�δ, and (S10) reduces to two times the optimization problem in equation (15).

The weights k̂ then take the form given in equation (14) in the main text, and, since C is
centrosymmetric, â= 0, which gives the two-sided CI proposed in the main text.

For our general result showing coverage for possibly suboptimal weights k̂, â, we
make the following assumptions. In the following, for a set An, random variables An�θ�P

and Bn�θ�P and a sequence an, we say An�θ�P = Bn�θ�P + oP(an) uniformly over (θ�P) in
An if, for all ε > 0, sup(θ�P)∈An

P(a−1
n ‖An�θ�P −Bn�θ�P‖ > ε) → 0. We say An�θ�P = Bn�θ�P +

OP(an) uniformly over (θ�P) in a set An if limC→∞ lim supn→∞ sup(θ�P)∈An
P(a−1

n ‖An�θ�P −
Bn�θ�P‖ > C) = 0. In the following, the set Sn defined in Appendix C.1 over which cover-
age is required is defined with F = R

dθ × C.

Assumption C.2. The set C is compact or takes the form C̃ × R
dg2 where dg1 + dg2 = dg

and C̃ is a compact subset of Rdg1 . In addition, θ̂initial − θ = OP(1/
√
n), ĝ(θ̂initial)− ĝ(θ) =

�θ�P(θ̂initial −θ)+oP(1/
√
n) and h(θ̂initial)−h(θ) =Hθ(θ̂initial −θ)+oP(1/

√
n) uniformly

over (θ�P) ∈ Sn.

Assumption C.3. ĝ(θ)−gP(θ)= O(1/
√
n) uniformly over (θ�P) ∈ Sn. Furthermore, for a

collection of matrices Σθ�P such that k′
θ�PΣθ�Pkθ�P is bounded away from zero and infinity,

sup
t∈R

sup
(θ�P)∈Sn

∣∣∣∣P(
√
nk′

θ�P

(
ĝ(θ)− gP(θ)

)√
k′
θ�PΣθ�Pkθ�P

≤ t

)
−�(t)

∣∣∣∣→ 0	

Assumption C.4. k̂ − kθ�P = oP(1) uniformly over (θ�P) ∈ Sn, and similarly for â, �̂, Ĥ

and Σ̂. Furthermore, kθ�P , aθ�P , �θ�P , Hθ and Σθ�P are bounded uniformly over (θ�P) ∈
Sn. In the case where C = C̃ × R

dg2 , assume that the last dg2 elements of k̂ are zero with
probability one for all P ∈ P .
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Theorem C.3. Suppose that Assumptions C.2, C.3, and C.4 hold and let ĉ be defined
above with k̂, �̂, and Ĥ satisfying (S21). Then

lim inf
n→∞ inf

(θ�P)∈Sn

P
(
h(θ) ∈ [ĉ�∞)) ≥ 1 − α�

and

lim sup
n→∞

sup
P∈P

sup
θ∈ΘI(P;Rdθ×D�Θn)

{√
nqβ�P

(
h(θ)− ĉ

)
−
[
biasC(kθ�P�0)− biasD(kθ�P�0)+ (z1−α + zβ)

√
k′
θ�PΣθ�Pkθ�P

]}
≤ 0	

Proof. If C = C̃ ×R
dg2 with C̃ compact, the theorem can equivalently be stated as hold-

ing with k̂ redefined to be the vector in R
dg1 that contains the first dg1 elements of the

original sensitivity k̂, and with other objects redefined similarly. Therefore, it suffices to
consider the case where C is compact.

Note that

√
n
(
ĥ− h(θ)

)
=Hθ

√
n(θ̂initial − θ)+ k̂

√
nĝ(θ)+ k̂

√
n
(
ĝ(θ̂initial)− ĝ(θ)

)+ â+ oP(1)

=Hθ
√
n(θ̂initial − θ)+ k̂

√
n
(
ĝ(θ)− gP(θ)

)+ k̂′c + k̂
√
n�θ�P(θ̂initial − θ)+ â+ oP(1)

= (Hθ + k′
θ�P�θ�P

)√
n(θ̂initial − θ)+ k′

θ�Pc + aθ�P + k′
θ�P

√
n
(
ĝ(θ)− gP(θ)

)+ oP(1)�

where c = √
ngP(θ) and the oP(1) terms are uniform over (θ�P) ∈ Sn (the last equality

uses the fact that C is compact). By Assumption C.4 and (S21), Hθ + k′
θ�P�θ�P = 0 so this

implies
√
n
(
ĥ− h(θ)

)= k′
θ�Pc + aθ�P + k′

θ�P

√
n
(
ĝ(θ)− gP(θ)

)+ oP(1) (S24)

uniformly over (θ�P) ∈ Sn. By compactness of C and Assumption C.4, we also have

biasC(k̂� â) = biasC(kθ�P�aθ�P)+ oP(1)� k̂′Σ̂k̂= k′
θ�PΣθ�Pkθ�P + oP(1)

uniformly over (θ�P) ∈ Sn. Thus,

√
n
(
ĉ − h(θ)

)= √
n
(
ĥ− h(θ)

)− biasC(k̂� â)− z1−α

√
k̂′Σ̂k̂

= k′
θ�Pc + aθ�P + k′

θ�P

√
n
(
ĝ(θ)− gP(θ)

)− biasC(kθ�P�aθ�P)

− z1−α

√
k′
θ�PΣθ�Pkθ�P + oP(1) (S25)

uniformly over (θ�P) ∈ Sn. Since k′
θ�Pc + aθ�P − biasC(kθ�P�aθ�P) ≤ 0 by definition, the

first part of the theorem (coverage) now follows from Assumption C.3. For the last part
of the theorem, note that, using the above display and the fact that k′

θ�Pc + aθ�P ≥
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biasD(kθ�P�aθ�P) for any (θ�P) with c = √
nEPg(wi�θ) ∈ D, it follows that

√
n(h(θ)− c) is

less than or equal to

biasC(kθ�P�aθ�P)−biasD(kθ�P�aθ�P)+z1−α

√
k′
θ�PΣθ�Pkθ�P +k′

θ�P

√
n
(
ĝ(θ)−gP(θ)

)+oP(1)

uniformly over (θ�P) with
√
nEPg(wi�θ) ∈ D. This, along with Assumption C.3, gives the

last part of the theorem.

Theorem C.4. Suppose that Assumptions C.2, C.3, and C.4 hold and let ĥ and χ̂ be de-
fined above with k̂, â, �̂, and Ĥ satisfying (S21) and (S22). Then

lim inf
n→∞ inf

(θ�P)∈Sn

P
(
h(θ) ∈ {ĥ± χ̂})≥ 1 − α	

In addition, we have

√
nχ̂− cvα

(
biasC(kθ�P�aθ�P)√

k′
θ�PΣθ�Pkθ�P

)√
k′
θ�PΣθ�Pkθ�P

p→ 0

uniformly over (θ�P) ∈ Sn.

Proof. As with Theorem C.3, it suffices to consider the case where C is compact.
Let (θn�Pn) be a sequence in Sn and let cn = √

ngPn(θn). Let bn = k′
θn�Pn

cn + aθn�Pn ,

sdn =
√
k′
θn�Pn

Σθn�Pnkθn�Pn and bn = biasC(kθn�Pn� aθn�Pn). Note that, by (S22), biasC(kθn�Pn�

aθn�Pn) = −biasC(kθn�Pn� aθn�Pn) when Assumption C.4 holds. It therefore follows that
−bn ≤ bn ≤ bn.

Let Zn = √
nk′

θn�Pn
(ĝ(θn)− gPn(θn))/sdn. Note that Zn converges in distribution (un-

der Pn) to a N (0�1) random variable by Assumption C.3. By (S24),
√
n
(
ĥ− h(θn)

)= bn + sdnZn + oPn(1)	

Using the fact that sdn is bounded away from zero and
√
k̂′Σ̂k̂/sdn converges in proba-

bility to one under Pn, it also follows that

√
n
(
ĥ− h(θn)

)
/

√
k̂′Σ̂k̂= bn/sdn +Zn + oPn(1)	

Also, by Assumption C.4, we have, for a large enough constant K,∣∣∣∣cvα

(
biasC(k̂� â)√

k̂′Σ̂k̂

)
− cvα

(
bn

sdn

)∣∣∣∣≤K
{[

biasC(k̂� â)− bn
]+ [√k̂′Σ̂k̂− sdn

]} p→ 0	

This, along with the fact that
√
k̂′Σ̂k̂/sdn converges in probability to one under Pn, gives

the second part of the theorem. Furthermore, it follows from the above display that

Pn
(
h(θn) > ĥ+ χ̂

) = Pn

(√
n
(
ĥ− h(θn)

)√
k̂′Σ̂k̂

<− cvα
(
biasC(k̂� â)/

√
k̂′Σ̂k̂

))
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= Pn
(
bn/sdn +Zn <− cvα(bn/sdn)+ oPn(1)

)
= �
(−bn/sdn − cvα(bn/sdn)

)+ o(1)	

Similarly,

Pn
(
h(θn) < ĥ− χ̂

) = Pn

(√
n
(
ĥ− h(θn)

)√
k̂′Σ̂k̂

> cvα
(
biasC(k̂� â)/

√
k̂′Σ̂k̂

))

= Pn
(
bn/sdn +Zn > cvα(bn/sdn)+ oPn(1)

)
= 1 −�

(−bn/sdn + cvα(bn/sdn)
)+ o(1)	

Thus, the probability of the CI not covering is given, up to o(1), by

1 −�
(−bn/sdn + cvα(bn/sdn)

)+�
(−bn/sdn − cvα(bn/sdn)

)
	

This is the probability that the absolute value of a N (bn/sdn�1) variable is greater than
cvα(bn/sdn), which is less than 1 − α since |bn| ≤ bn.

We now specialize to the case where the optimal weights are used. We make a uni-
form consistency assumption on �̂, Ĥ, and Σ̂, as well as assumptions on the rank of H,
�, and Σ. The latter are standard regularity conditions for the correctly specified (C = {0})
case.

Assumption C.5. The estimators �̂, Ĥ, and Σ̂ are full rank with probability one and
satisfy �̂−�θ�P = oP(1), Ĥ −Hθ = oP(1) and Σ̂−Σθ�P = oP(1) uniformly over (θ�P) ∈ Sn.

Assumption C.6. There exists a compact set B that contains the set {(Hθ��θ�P�Σθ�P) : θ ∈
Θn�P ∈ P} for all n, such that (i) in the case where C is compact, H �= 0 and � and Σ are
full rank for any (H���Σ) ∈ B or (ii) in the case where C = C̃ × R

dg2 with C̃ compact, the
same holds for the submatrices corresponding to the first dg1 moments.

Using these assumptions, we can verify that Assumption C.4 holds with weights
kθ�P that achieve the efficiency bound in Theorem C.1 and nearly achieve the efficiency
bound in Theorem C.2. This gives the following results.

Theorem C.5. Suppose that Assumptions C.2, C.3, C.5, and C.6 hold and let ĉ be defined
above with k̂ = k(δβ� Ĥ� �̂� Σ̂). Then

lim inf
n→∞ inf

(θ�P)∈Sn

P
(
h(θ) ∈ [ĉ�∞)) ≥ 1 − α

and

lim sup
n→∞

sup
P∈P

sup
θ∈ΘI(P;Rdθ×D�Θn)

[√
nqβ�P

(
h(θ)− ĉ

)−ω
(
δβ;Rdθ × C�Rdθ ×D�Hθ��θ�P�Σθ�P

)]
≤ 0	
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Proof. In the case where C is compact, it follows from Lemma E.6 in Appendix E.3.2,
k(δ�H���Σ) is continuous on {δ} × B. Since B is compact, this means that k(δ�H���Σ)

is uniformly continuous. Thus, Assumption C.5 implies that k̂ satisfies Assumption C.4
with kθ�P = k(δ�Hθ��θ�P�Σθ�P). Furthermore, k̂ satisfies (S21) by assumption. By prop-
erties of the modulus (equation (24) in Armstrong and Kolesár (2018)),

biasC(kθ�P�0)− biasD(kθ�P�0)+ (z1−α + zβ)
√
k′
θ�PΣθ�Pkθ�P

=ω
(
δβ;Rdθ × C�Rdθ ×D�Hθ��θ�P�Σθ�P

)
for this kθ�P . Applying Theorem C.3 gives the result.

In the case where C = C̃ × R
dg2 with C̃ compact, the last dg2 elements of k̂ are equal

to zero as required by Assumption C.4, and the first dg1 elements are the same as the
weights computed from the modulus problem with the last dg2 components thrown
away and H, � and Σ redefined to be the submatrices corresponding to the first dg1

elements of the moments. Thus, the same arguments apply in this case.

For two-sided CIs, we consider weights k̂ = k(δ∗(Ĥ� �̂� Σ̂)� Ĥ� �̂� Σ̂) given by (S23)
with G = F = R

dθ × C, where δ∗ may depend on the data through Ĥ, �̂, and Σ̂. If δ∗ is
chosen to optimize CI length, it will be given by δχ(Ĥ� �̂� Σ̂) where

δχ(H���Σ) = argmin
δ

cvα

(
ω(δ)

2ω′(δ)
− δ

2

)
ω′(δ)� (S26)

where ω(δ) = ω(δ;Rdθ × C�Rdθ × C�H���Σ) is the single class modulus (see Section 3.4
in Armstrong and Kolesár (2018)).

We make a continuity assumption on δ∗.

Assumption C.7. δ∗ is a continuous function of its arguments on the set B given in As-
sumption C.6.

Theorem C.6. Suppose that Assumptions C.2, C.3, C.5, C.6, and C.7 hold and let ĥ be de-
fined above with k̂ = k(δ∗(Ĥ� �̂� Σ̂)� Ĥ� �̂� Σ̂). Then the conclusion of Theorem C.4 holds.
If, in addition, δ∗ = δχ(Ĥ� �̂� Σ̂) for δχ the CI length optimizing choice of δ given in (S26),
then the half-length χ̂ satisfies

√
nχ̂= χ(θ�P)+ oP(1) uniformly over (θ�P) ∈ Sn, where

χ(θ�P)= min
δ

cvα

(
ω(δ)

2ω′(δ)
− δ

2

)
ω′(δ)� ω(δ) =ω

(
δ;Rdθ × C�Rdθ × C�Hθ��θ�P�Σθ�P

)
	

Proof. The result follows from using the same arguments as in the proof of Theo-
rem C.5, along with continuity of δ∗, to verify Assumption C.4. The form of the limiting
half-length for the optimal weights follows from properties of the modulus (see Sec-
tion 3.4 in Armstrong and Kolesár (2018)).
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C.6 Centrosymmetric case

Theorem 4.1 in Section 4 gives a bound for two-sided CIs in the case where C is cen-
trosymmetric. This follows from applying Theorems C.6 and C.2 in the centrosymmetric
case. In particular, comparing the asymptotic length in Theorem C.6 to the bound in
Theorem C.2 and using the fact that ω(δ;Rdθ × C� {0}�Hθ��θ�P�Σθ�P) = ω(δ; {0}�Rdθ ×
C�Hθ��θ�P�Σθ�P) = 1

2ω(2δ;Rdθ × C�Rdθ × C�Hθ��θ�P�Σθ�P) when C is centrosymmetric
gives the bound κ∗(Hθ��θ�P0�Σθ�P0�C) from the statement of Theorem 4.1. This corre-
sponds to the bound in Corollary 3.3 of Armstrong and Kolesár (2018). The universal
lower bound for κ∗ follows from the following result.

Theorem C.7. For any H, �, Σ, and C, the efficiency κ∗ given in equation (18) is lower
bounded by (

z1−α(1 − α)− z̃α�(z̃α)+φ(z1−α)−φ(z̃α)
)
/z1−α/2�

where z̃α = z1−α − z1−α/2 and � and φ denote the standard normal cdf, and pdf re-
spectively. The lower bound is sharp in the sense that it holds with equality if ω(δ) =
K0 min{δ�2z1−α/2}, for some constant K0.

Proof. Since cvα(b) ≤ b + z1−α/2, the denominator in equation (18) is upper bounded
by

min
δ

2 cvα

(
ω(δ)

2ω′(δ)
− δ

2

)
ω′(δ)

≤ 2 cvα

(
ω(2z1−α/2)

2ω′(2z1−α/2)
− z1−α/2

)
ω′(2z1−α/2)≤ω(2z1−α/2)	 (S27)

On the other hand, the numerator in equation (18) can be decomposed as

(1 − α)E
[
ω
(
2(z1−α −Z)

) | Z ≤ z1−α

]
= E
[
ω
(
2(z1−α −Z)

)
I{Z ≤ z1−α − z1−α/2}

]
+E
[
ω
(
2(z1−α −Z)

)
I{z1−α − z1−α/2 ≤Z ≤ z1−α}]	

Since the modulus ω(δ) is nondecreasing, the first summand is lower bounded by

E
[
ω(2z1−α/2) I{Z ≤ z1−α − z1−α/2}

]= ω(2z1−α/2)�(z1−α − z1−α/2)	

Since the modulus ω(δ) is concave, ω(2(z1−α −Z)) ≥ (z1−α −Z)/z1−α/2 ·ω(2z1−α/2), so
that the second summand is lower bounded by

ω(2z1−α/2)

z1−α/2
E
[
(z1−α −Z) I{z1−α − z1−α/2 ≤Z ≤ z1−α}]

= ω(2z1−α/2)

z1−α/2

(
z1−α

(
1 − α−�(z1−α − z1−α/2)

)+φ(z1−α)−φ(z1−α − z1−α/2)
)
�



Supplementary Material Sensitivity analysis using approximate GMM 21

where the equality follows by the formula for the expectation of a truncated normal ran-
dom variable. Combining the two preceding displays then yields

(1 − α)E
[
ω
(
2(z1−α −Z)

) | Z ≤ z1−α

]
≥ω(2z1−α/2)

z1−α(1 − α)− z̃α�(z̃α)+φ(z1−α)−φ(z̃α)

z1−α/2
� (S28)

where z̃α = z1−α − z1−α/2. Combining this with the bound in (S27) then yields the re-
sult. The sharpness of the bound for the case ω(δ) = K0 min{δ�2z1−α/2} follows from by
noting that in this case, both (S27) and (S28) hold as equalities.

For the one-sided case, we obtain the following bound.

Theorem C.8. Consider the setting of Theorem C.5, with C centrosymmetric. Then the
weights k̂ = k̂(δβ� Ĥ� �̂� Σ̂) with D = C are identical to the weights k̂(δβ̃� Ĥ� �̂� Σ̂) com-

puted with D = {0}, but with β̃ = �((zβ − z1−α)/2). Furthermore, letting ĉminimax denote

the lower endpoint of the CI computed with these weights (k̂(δβ� Ĥ� �̂� Σ̂) with D = C), we
have

lim sup
n→∞

sup
P∈P

sup
θ∈ΘI(P;Rdθ×{0}�Θn)

{√
nqβ�P

(
h(θ)− ĉminimax

)− 1
2
[
ωθ�P(δβ)+ δβω

′
θ�P(δβ)

]}≤ 0�

where ωθ�P(δ) = ω(δ;Rdθ × C�Rdθ × C�Hθ��θ�P�Σθ�P). For ĉ computed instead with D =
{0}, we obtain

lim sup
n→∞

sup
P∈P

sup
θ∈ΘI(P;Rdθ×{0}�Θn)

{√
nqβ�P

(
h(θ)− ĉ

)− 1
2
ωθ�P(2δβ)

}
≤ 0	

Proof. The first statement follows from Corollary 3.2 in Armstrong and Kolesár (2018).
The second statement follows from applying Theorem C.3 as in the proof of The-
orem C.5, noting that bias{0}(kθ�P�0) = 0, and using arguments from the proof of
Corollary 3.2 in Armstrong and Kolesár (2018). The last statement follows from Theo-
rem C.5 and the fact that ω(δ;Rdθ × C�Rdθ × {0}�Hθ��θ�P�Σθ�P)= 1

2ω(2δ;Rdθ × C�Rdθ ×
C�Hθ��θ�P�Σθ�P).

Thus, directing power toward the correctly specified case yields the same one-sided
CI once one changes the quantile over which one optimizes excess length. If one does
attempt to direct power, the scope for doing so is bounded by a factor of

κ
OCI�β∗ (Hθ��θ�P0�Σθ�P0�C) = ωθ�P(2δβ)

ωθ�P(δβ)+ δβω
′
θ�P(δβ)

	 (S29)

This gives a bound for the one-sided case analogous to the bound κ∗ in equation (18) for
two-sided CIs.

A consistent estimate of these bounds can be obtained by plugging in ω(δ;Rdθ ×
C�Rdθ × C� Ĥ� �̂� Σ̂) for ωθ�P(δ) = ω(δ;Rdθ × C�Rdθ × C�Hθ��θ�P�Σθ�P). Table 2 reports
estimates of this bound under different forms of misspecification in the empirical appli-
cation in Section 6.
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Appendix D: Global misspecification

We now describe two approaches to the construction of CIs that are robust to global mis-
specification. The first approach is generally applicable, and, for a one-sides CIs, yields
CIs that are asymptotically equivalent under local misspecification to the CIs proposed
in the main text. The second approach also exhibits this equivalence property for two-
sided CIs, but the regularity conditions it imposes may not be satisfied in all applica-
tions.

Before describing the procedures in Appendices D.1 and D.2 below, let us briefly de-
scribe the setup. Under global misspecification, the true parameter θ0 satisfies

gP(θ0)= EPg(wi�θ0)= c̃� c̃ ∈ C̃� (S30)

where C̃ is fixed with the sample size n. To accommodate both local and global misspec-
ification with the same notation, we consider a sequence C̃ = C̃n of sets. Under global
misspecification C̃n is fixed with n, whereas, under local misspecification, C̃n = C/

√
n =

{c/√n : c ∈ C} where C is fixed with n. The rest of the setup is the same as the formal setup
in Section 4.2 and Appendix C: we are interested in a CI for h(θ) that satisfies the cover-
age condition in equation (20), where Sn = {(θ�P) ∈ Θn × P : gP(θ) ∈ C̃} denotes the set
of pairs (θ�P) such that θ is in the identified set under P .

For concreteness, we focus on GMM estimators. We treat the weighting matrix W as
given, and construct CIs that are asymptotically equivalent to the CIs given in Section 2.1
with sensitivity k′ = −H(�′W �)−1�′W . To make these CIs optimal under local misspec-
ification, we need to choose the weighting matrix W so that this sensitivity is optimal
under local misspecification. This can be done by computing the optimal sensitivity k̂

under local misspecification using first stage estimates, following our implementation in
equation (20), and then computing an equivalent GMM weighting matrix as described
in Remark 3.2.

D.1 CIs based on recentering the moments

Let Ic̃ be a family of CIs, indexed by c̃ ∈ C̃, such that, for each c̃, Ic̃ is asymptotically
valid for the GMM model defined by the moment function θ �→ g(wi�θ) − c̃. We con-
sider the CI I =⋃c̃∈C̃ Ic̃ . Since this CI contains a CI based on the moment conditions
θ �→ ĝ(θ)− c̃0, where c̃0 =EPg(wi�θ0) is the true value of c̃, it will have correct asymptotic
coverage under standard conditions. (While we omit a formal statement, we note that
this follows by showing that Icn has correct coverage under a drifting sequence of mo-
ment functions g̃n(wi�θ)= g(wi�θ)− c̃n for sequences c̃n ∈ C̃. This follows from the usual
arguments for asymptotic coverage of GMM estimators under correct specification.) As
we discuss in Appendix D.1.1 below, this CI can be computed using constrained opti-
mization, where the objective function will typically be smooth so long as θ �→ g(wi�θ)

is smooth. However, since the problem involves minimization of a GMM objective func-
tion, it will typically not be convex.

We now show that this approach can be used to construct a one-sided CI that is
asymptotically equivalent under local misspecification to the CI proposed in the main
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text. We consider CIs based on the GMM estimator θ̂W �c̃ = arg minθ[ĝ(θ)− c̃]′W [ĝ(θ)− c̃]
based on the moment function g(wi�θ) − c̃. Let �̂θ denote an estimate of the Jaco-
bian matrix �θ�P = d

dt ′EPg(wi� t)|t=θ. Under local misspecification, the identified set for

θ shrinks toward a point, so that the same estimate Σ̂ is consistent for Σθ�P uniformly
over the identified set. This is no longer the case under global misspecification, and
we instead need to use a class of estimates Σ̂θ for Σθ�P indexed by θ. In the i.i.d. case,

we can take Σ̂θ = 1
n

∑n
i=1 g(wi�θ)g(wi�θ)

′, in which case the estimate of Σ̂ in equa-

tion (20) corresponds to Σ̂ = Σ̂θ̂initial
. We allow for the possibility that W is data depen-

dent, in which case we will assume that it converges to some WP , which may depend
on the underlying distribution P . Let k̂′

θ = −Hθ(�̂
′
θW �̂θ)

−1�̂′
θW denote an estimate of

the sensitivity k′
θ�P = −Hθ(�

′
θ�PWP�θ�P)

−1�′
θ�PW . This gives the standard error seθ̂W �c̃

where seθ =
√
k̂′
θΣ̂θk̂θ/n. The nominal 1 − α one-sided CI based on the given c̃ is then

[h(θ̂W �c̃) − z1−α seW�c̃�∞). The lower endpoint of a one-sided CI that is asymptotically
valid for the set C̃ is then given by [ĉglob�∞) where

ĉglob = inf
c̃∈C̃
[
h(θ̂W �c̃)− z1−α seθ̂W �c̃

]
	

The CI proposed in the main text takes the form [ĉloc�∞) where

ĉloc = h(θ̂initial)+ k̂′ĝ(θ̂initial)− sup
c∈C

k̂′c/
√
n− z1−α

√
k̂Σ̂k̂/

√
n	

We assume that the sensitivity k̂ corresponds to the same GMM weighting matrix, so
that Assumptions C.2, C.3, and C.4 hold with kθ�P , �θ�P , Hθ and Σθ�P given above. In
addition, we use some further regularity conditions for the estimator θ̂W �c̃ .

Assumption D.1. The estimator θ̂W �c̃ satisfies

sup
c∈C

∣∣h(θ̂W �c/
√
n)− h(θ)− k′

θ�P

[
ĝ(θ)− c/

√
n
]∣∣= oP(1/

√
n)

and

sup
c∈C

∣∣k̂′
θ̂W �c/

√
n
Σ̂θ̂W �c/

√
n
k̂θ̂W �c/

√
n
− k′

θ�PΣθ�Pkθ�P

∣∣= oP(1)

uniformly over (θ�P) ∈ Sn, where C̃ = C̃n = C/
√
n.

Assumption D.1 imposes an influence function representation for the GMM esti-
mator θ̂W �c , and a uniform consistency condition for the asymptotic variance estima-
tor. We verify this assumption under primitive conditions in the linear IV setting in Ap-
pendix E.2.3. Note that, while the CI is robust to global misspecification, Assumption D.1
imposes conditions that are required only under local misspecification.

Theorem D.1. Let ĉloc and ĉglob be given above with C̃ = C/
√
n, where C is a compact set.

Suppose that Assumptions C.2, C.3, and C.4 hold for ĉloc, and Assumption D.1 holds for
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ĉglob, with the same kθ�P and Σθ�P , and assume that, for each P ∈ P , there exists θ ∈ Θn

such that (θ�P) ∈ Sn (i.e., the identified set for θ under each P ∈ P is nonempty). Then√
n(ĉloc − ĉglob) converges in probability to zero uniformly over P ∈ P .

Proof. Under these assumptions,

ĉglob = inf
c∈C

h(θ)+ k′
θ�P ĝ(θ)− k′

θ�Pc/
√
n− z1−α

√
k′
θ�PΣθ�Pkθ�P/

√
n+ oP(1/

√
n)

= h(θ)+ k′
θ�P ĝ(θ)− biasC(kθ�P�0)/

√
n− z1−α

√
k′
θ�PΣθ�Pkθ�P/

√
n+ oP(1/

√
n)

uniformly over (θ�P) ∈ Sn. The result follows by noting that this matches the asymptotic
expression for ĉloc given in equation (S25) in the proof of Theorem C.3.

The CI [ĉglob�∞) is valid under global misspecification under standard conditions,
and Theorem D.1 shows that this CI is asymptotically equivalent to the CI [ĉloc�∞) under
local misspecification.

D.1.1 Computation The problem of computing this CI can be written as a nested op-
timization problem, in which one minimizes the GMM objective function for a given c̃,
and then minimizes the lower endpoint of the CI over c̃. Alternatively, in the spirit of
recent papers on MPEC (e.g., Dubé, Fox, and Su (2012)), one can write this as an opti-
mization problem over θ, c̃ subject to the constraint that θ minimizes the GMM objective
under c̃:

min
θ�c̃

h(θ)− z1−α seθ s.t. θ = arg min
t

[
ĝ(t)− c̃

]′
W
[
ĝ(t)− c̃

]
� c̃ ∈ C̃	

In the case where ĝ(θ) is smooth, one may also relax the constraint that θ minimizes the
GMM objective by instead imposing only the first-order conditions:

min
θ�c̃

h(θ)− z1−α seθ s.t. �̂′
θW
[
ĝ(θ)− c̃

]= 0� c̃ ∈ C̃	

Since a constraint is relaxed, this can only make the resulting CI more conservative.

D.2 CIs based on misspecification-robust standard errors

In some cases, it may be possible to construct estimates B̂ of the worst-case asymptotic
bias of the estimator ĥ that are asymptotically normal. In such cases, one can construct
CIs that are valid under global misspecification by using misspecification-robust stan-
dard errors.

Let θ∗
c = argminθ(gP(θ) − c)′W (gP(θ) − c), so that under the model (S30), the true

parameter is given by θ0 = θ∗
c̃ , and the pseudo-true parameter, the estimand of the GMM

estimator θ̂ with weighting matrix W , is given by θ∗
0 . Note that θ∗

c depends on P , but we
leave this dependence implicit for clarity of notation. Hall and Inoue (2003) showed that
under regularity conditions, if C̃ is fixed with n,

√
n
(
ĥ− h

(
θ∗

0
)) d→ N (0�Ωh)�
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where, unlike in the correctly specified case, the asymptotic variance Ωh generally de-
pends on the weighting matrix W . Hall and Inoue (2003) also showed how to construct
consistent estimates of Ωh. Let BC̃ = maxc̃∈C̃ |h(θ∗

0) − h(θ∗
c̃ )| denote the worst-case bias.

Suppose that we have available an estimator B̂ of BC̃ , such that (ĥ� B̂) are jointly asymp-
totically normal. Then, by the delta method, for some asymptotic variances Ω+ and Ω−,
it holds that

√
n
(
ĥ− B̂ − (h(θ∗

0
)−BC̃

))
Ω

1/2
−

d→ N (0�1)�

√
n
(
ĥ+ B̂ − (h(θ∗

0
)+BC̃

))
Ω

1/2
+

d→ N (0�1)	

(S31)

Note that BC̃ , Ω+� and Ω− may depend on P , although we leave this implicit in the no-
tation.

If one has available estimators Ω̂+ and Ω̂− that satisfy

Ω̂+/Ω+
p→ 1� Ω̂−/Ω−

p→ 1� (S32)

one can construct one-sided CIs as [ĥ − B̂ − z1−αΩ̂
1/2
− /

√
n�∞), and (−∞� ĥ + B̂ +

z1−αΩ̂
1/2
+ /

√
n]. Two-sided CIs can be constructed as

C̃I = [ĥ− cvα
(√

nB̂/Ω̂
1/2
−
) · Ω̂1/2

− /
√
n� ĥ+ cvα

(√
nB̂/Ω̂

1/2
+
) · Ω̂1/2

+ /
√
n
]
	

The next result shows that these CIs are valid under global misspecification.

Theorem D.2. Suppose that the convergence in (S31) and (S32) holds uniformly over
(θ�P) ∈ Sn = {(θ�P) ∈Θn ×P : gP(θ) ∈ C̃}, with C̃ is fixed. Then

lim inf
n→∞ inf

(θ�P)∈Sn

P
(
h(θ) ∈ [ĥ− B̂ − z1−αΩ̂

1/2
− /

√
n�∞))≥ 1 − α	

Suppose, in addition, that B̂/BC̃
p→ 1 and |Ω+ − Ω−|/√nBC̃ → 0 uniformly over (θ�P) ∈

Sn. Then

lim inf
n→∞ inf

(θ�P)∈Sn

P
(
h(θ) ∈ C̃I

)≥ 1 − α	

The proof of this theorem is deferred to Appendix D.2.1. Under global misspecifica-
tion, when

√
nBC̃ → ∞, the condition |Ω+ − Ω−|/√nBC̃ → 0 holds if Ω+ and Ω− are of

the same order, which is typically the case. In this case, C̃I is asymptotically equivalent
to the CI [ĥ − B̂ − z1−αΩ̂−/

√
n� ĥ + B̂ + z1−αΩ̂+/

√
n]. Since in large samples, the uncer-

tainty about the endpoints of the identified set [h(θ∗
0) − BC̃�h(θ

∗
0) + BC̃] dominates by

the uncertainty about the location of the endpoints, it suffices to use a one-sided critical
value z1−α (see Imbens and Manski (2004), for a discussion).

Under local misspecification, if the estimator θ̂ is asymptotically linear with sensitiv-
ity k,

√
nBC̃ = bias√

nC̃(k) is bounded, so that the condition |Ω+ − Ω−|/√nBC̃ → 0 holds
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if Ω+ −Ω− → 0. This is indeed the case if
√
nB̂ = bias√

nC̃(k)+ op(1), since then Ω+ and

Ω− both equal k′Σk. In this case, C̃I is asymptotically equivalent to the CI in equation
(7). The CI thus automatically adapts to the misspecification magnitude.

Example D.1 (Linear IV model). To give an example of a setting in which the con-
dition (S31) holds, consider the linear instrumental variables (IV) model from Sec-
tion 5.1. In particular, suppose h=Hθ, and suppose that g(θ) = E[zi(yi − x′

iθ)] ∈ C̃, with
C̃ = {√nBγ : ‖γ‖ ≤ Mn}, B = E[ziz′

Ii], and for concreteness, suppose ‖·‖ corresponds to
an �2 norm. If Mn = M is fixed, this reduces to the local misspecification setup in the
main text, but if Mn = √

nM , the misspecification is global. Consider the 2SLS estimator
ĥ= k̂′∑n

i=1 ziyi, with k̂ = −H(�̂′Ŵ �̂)−1�̂′Ŵ , �̂= −n−1∑n
i=1 zix

′
i and Ŵ −1 =∑n

i=1 ziz
′
i; let

�= −E[zix′
i], W = E[ziz′

i]−1, and k = −H(�′W �)−1�′W .
Then h(θ∗

0) = Hθ + k′E[ziz′
Ii]γ/

√
n, and BC̃ = ‖k′E[ziz′

Ii]‖Mn/
√
n. Consider the esti-

mator B̂ = ‖k̂′ 1
n

∑n
i=1 ziz

′
Ii‖Mn/

√
n of the worst-case bias, which is the same as the esti-

mator bias√
nC̃(k̂)/

√
n under local misspecification used in the main text. Since B̂ and ĥ

depend on the data only through the sample means Sn = n−1(
∑

i ziz
′
i�
∑

i xiz
′
i�
∑

i xiy
′
i),

equation (S31) holds by the delta method, and consistent estimates Ω̂+ and Ω̂− of Ω+
and Ω− can be constructed using a consistent estimator of the asymptotic variance of
Sn, which yields the CI

C̃I = [ĥ− cvα
(
bias√

nC̃(k̂)/Ω̂
1/2
−
) · Ω̂1/2

− /
√
n� ĥ+ cvα

(
bias√

nC̃(k̂)/Ω̂
1/2
+
) · Ω̂1/2

+ /
√
n
]
	

Thus, relative to the CI described in the main text, C̃I differs only in that it uses vari-
ance estimates Ω̂+ and Ω̂− that are valid under global misspecification. If Mn = M , so
that misspecification is local, Ω̂+ = k′Σk + op(1) and Ω̂+ = k′Σk + op(1), and the CI is
asymptotically equivalent to the CI described in the main text.

D.2.1 Proof of Theorem D.2

Proof. Let Z− = √
n(ĥ − B̂ − (h(θ∗

0) − BC̃))/Ω
1/2
− , and let Z+ = √

n(ĥ + B̂ − (h(θ∗
0) +

BC̃))/Ω
1/2
+ . Then

P
(
h(θ)≥ ĥ− B̂ − z1−αΩ̂

1/2
− /

√
n
)

= P
(
Z− ≤ √

n
(
BC̃ − (h(θ∗

0
)− h(θ)

))
/Ω

1/2
− + z1−αΩ̂

1/2
− /Ω

1/2
−
)

≥ P
(
Z− ≤ z1−αΩ̂

1/2
− /Ω

1/2
−
)≥ 1 − α+ o(1)�

where the equality follows by definition of Z−, the first inequality follows since BC̃ ≥
h(θ∗

0)− h(θ) by definition of BC̃ , and the second inequality follows since Ω̂
1/2
− /Ω

1/2
−

p→ 1,

Z−
d→ N (0�1), and since convergence in distribution to a continuous distribution im-

plies uniform convergence of the cdfs (van der Vaart (1998, Lemma 2.11)). To show the
result for the two-sided CI, let b = h(θ∗)− h(θ) denote the asymptotic bias. Then

P
(
h(θ) ∈ C̃I

)= P
(
cvα
(√

nB̂/Ω̂
1/2
−
) · Ω̂1/2

− /
√
n ≥ ĥ− h(θ)≥ − cvα

(√
nB̂/Ω̂

1/2
+
) · Ω̂1/2

+ /
√
n
)

= P
(
Z− + √

nb/Ω
1/2
− ≤A−

)+ P
(−Z+ − √

nb/Ω
1/2
+ ≤A+

)− 1�
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where A− = √
n(BC̃ − B̂)/Ω

1/2
− + cvα(

√
nB̂/Ω̂

1/2
− ) · Ω̂1/2

− /Ω
1/2
− and A+ = cvα(

√
nB̂/Ω̂

1/2
+ ) ·

Ω̂
1/2
+ /Ω

1/2
+ +√

n(BC̃ − B̂)/Ω
1/2
+ . Now, since Ω̂−/Ω−

p→ 1, applying first equation (S34) and
next equation (S35) in Lemma D.1 below yields

A− = √
n(BC̃ − B̂)/Ω

1/2
− + cvα

(√
nB̂/Ω

1/2
−
)+ op(1) = cvα

(√
nBC̃/Ω

1/2
−
)+ op(1)�

where the op(1) term is asymptotically negligible uniformly over Sn. By similar argu-

ment, A+ = cvα(
√
nBC̃/Ω

1/2
+ ) + op(1). By equation (S31), it therefore follows that, up to

a term that is asymptotically negligible uniformly over Sn, P(h(θ) ∈ C̃I) equals

P
(
Z + √

nb/Ω
1/2
− ≤ cvα

(√
nBC̃/Ω

1/2
−
))+ P

(
Z − √

nb/Ω
1/2
+ ≤ cvα

(√
nBC̃/Ω

1/2
+
))− 1� (S33)

where Z denotes as standard normal random variable. Fix ε > 0. To conclude the proof,
we will show that for n large enough, this expression is bounded below by 1 − α− ε.

Since equation (S33) is symmetric in Ω+ and Ω−, suppose without loss of generality
that Ω+ >Ω−. By the assumption of the theorem, for n large enough and η> 0 specified
below, |Ω1/2

− /Ω
1/2
+ − 1| ≤ η

√
nBC̃/Ω

1/2
+ .

We’ll consider two cases,
√
nBC̃/Ω

1/2
+ > z1−ε, and

√
nBC̃/Ω

1/2
+ ≤ z1−ε. Suppose first√

nBC̃/Ω
1/2
+ > z1−ε. Then, if b < 0, equation (S33) is bounded below by �(cvα(

√
nBC̃/

Ω
1/2
− ))+ 1 −α− 1 ≥�(cvα(

√
nBC̃/Ω

1/2
+ ))−α ≥ 1 − ε−α, where the last inequality follows

since cvα(t) ≥ t. If b is positive, it is bounded below by 1 − α+�(cvα(
√
nBC̃/Ω

1/2
+ ))− 1 ≥

1 − α− ε.
Next, suppose,

√
nBC̃/Ω

1/2
+ ≤ z1−ε. Then |Ω1/2

− /Ω
1/2
+ − 1| ≤ ηz1−ε, so that by equation

(S35), ∣∣cvα
(√

nBC̃/Ω
1/2
−
)− √

nBC̃/Ω
1/2
− − cvα

(√
nBC̃/Ω

1/2
+
)+ √

nBC̃/Ω
1/2
+
∣∣≤ ν�

where ν = ηz1−ε(z1−α/2 − z1−α). Therefore,

P
(
Z + √

nb/Ω
1/2
− ≤ cvα

(√
nBC̃/Ω

1/2
−
))

≥ P
(
Z + √

nb/Ω
1/2
− ≤ cvα

(√
nBC̃/Ω

1/2
+
)− √

nBC̃/Ω
1/2
+ + √

nBC̃/Ω
1/2
− − ν

)
= P
(
Z + √

nb/Ω
1/2
+ ≤ cvα

(√
nBC̃/Ω

1/2
+
)+ √

n(BC̃ − b)
(
Ω

−1/2
− −Ω

−1/2
+
)− ν

)
≥ P
(
Z + √

nb/Ω
1/2
+ ≤ cvα

(√
nBC̃/Ω

1/2
+
)− ν

)
≥ P
(
Z + √

nb/Ω
1/2
+ ≤ cvα

(√
nBC̃/Ω

1/2
+
))+ 1 − 2�(ν/2)�

where the last equality follows since infx{�(x − ν) − �(x)} = 1 − 2�(ν/2). It therefore
follows that the coverage probability in equation (S33) is bounded below by

P
(
Z + √

nb/Ω
1/2
+ ≤ cvα

(√
nBC̃/Ω

1/2
+
))+ P

(
Z − √

nb/Ω
1/2
+ ≤ cvα

(√
nBC̃/Ω

1/2
+
))

− 1 + (1 − 2�(ν/2)
)≥ 1 − α+ (1 − 2�(ν/2)

)
�

where the inequality follows by definition of cvα. Setting η = 2z1/2+ε/2/(z1−ε(z1−α/2 −
z1−α)) then implies that the right-hand side evaluates to 1 − α− ε. Thus, equation (S33)
is bounded below by 1 − α− ε, concluding the proof.
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Lemma D.1. The critical value cvα(t) satisfies, for any a > 0,

sup
b≥0

∣∣cvα(ab)/a− cvα(b)
∣∣≤ z1−α/2

|1 − a|
max{a�1} � (S34)

and

sup
b≥0

∣∣cvα(ab)− ab− cvα(b)+ b
∣∣≤ (z1−α/2 − z1−α)

|1 − a|
max{a�1} 	 (S35)

Proof. Since the function cvα is increasing and convex, with slope bounded by 1, for
b1� b2 ≥ 0

cvα(b1 + b2) ≤ b1 + cvα(b2)� (S36)

and for a ≥ 1 and b ≥ 0,

cvα(ba)/a+ cvα(0)(1 − 1/a) ≥ cvα(b)	 (S37)

Suppose a ≥ 1. Then by equation (S36)

cvα(ab)/a− cvα(b) ≤ (cvα(b)− b
)
(1/a− 1) ≤ 0�

since cvα(b) − b is bounded below by z1−α. On the other hand, by equation (S37), the
left-hand side is greater than − cvα(0)(1 − 1/a). If a ≤ 1, the same argument with ab and
b reversed then yields equation (S34).

To show equation (S35), suppose first that a ≥ 1. By equation (S36), cvα(ab) − ab −
cvα(b)+ b ≤ 0. On the other hand, by equation (S37),

cvα(ab)− ab− cv(b)+ b ≥ (cvα(ab)− ab− cvα(0)
)
(1 − 1/a) ≥ (1 − 1/a)(z1−α − z1−α/2)�

where the second inequality follows since cvα(ab) − ab ≥ z1−α and cvα(0) = z1−α/2. If
a < 1, the same argument with ab and b reversed then yields equation (S35).

Appendix E: Additional asymptotic results

E.1 Construction of a submodel satisfying Assumption C.1

We give here a construction of a submodel satisfying Assumption C.1 under mild con-
ditions on the class P . The construction follows Example 25.16 (p. 364) of van der Vaart
(1998).

Lemma E.1. Suppose that g(wi�θ) is continuously differentiable almost surely in a neigh-
borhood of θ∗ where EP0g(wi�θ

∗)= 0, and that, for some ε > 0,

EP0 sup
‖θ−θ∗‖≤ε

∣∣g(wi�θ)g(wi�θ)
′∣∣<∞ and EP0 sup

‖θ−θ∗‖≤ε

∥∥∥∥ d

dθ′ g(wi�θ)

∥∥∥∥< ∞	

Let

πt(wi) = C(t)h
(
t ′g
(
wi�θ

∗)) where h(x) = 2
[
1 + exp(−2x)

]−1
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with C(t)−1 =EP0h(t
′g(wi�θ

∗)). This submodel satisfies Assumption C.1, and the bounds
on the moments in the above display hold with P0 replaced by Pt .

Proof. Quadratic mean differentiability follows from Problem 12.6 in Lehmann and
Romano (2005), so we just need to show that equation (S14) holds, and that the deriva-
tive is continuous in a neighborhood of (t′� θ′)′ = (0′� θ∗′)′. For this, it suffices to show
that each partial derivative exists and is continuous as a function of (t ′� θ′)′ in a neigh-
borhood of (0′� θ∗′)′, and that the Jacobian matrix of partial derivatives takes the form in
equation (S14) at (t ′� θ′)′ = (0′� θ∗′)′ (see Theorem 4.5.3 in Shurman (2016)).

To this end, we first show that C(t) is continuously differentiable, and derive its
derivative at 0. It can be checked that h(x) is continuously differentiable, with h(0) =
h′(0) = 1, and that h(x) and h′(x) are bounded. We have, for some constant K,∣∣∣∣ ddtj h(t ′g(wi�θ

∗))∣∣∣∣= ∣∣h′(t ′g(wi�θ
∗))gj(wi�θ

∗)∣∣≤K
∣∣gj(wi�θ

∗)∣∣
so, since EP0 |gj(wi�θ

∗)| <∞, we have, by a corollary of the dominated convergence the-
orem (Corollary 5.9 in Bartle (1966)),

d

dtj
EP0h

(
t ′g
(
wi�θ

∗))=EP0

d

dtj
h
(
t ′g
(
wi�θ

∗))=EP0h
′(t ′g(wi�θ

∗))gj(wi�θ
∗)	

By boundedness of h′ and the dominated convergence theorem, this is continuous in t.
Thus, C(t) is continuously differentiable in each argument, with

d

dtj
C(t) = −[EP0h

(
t ′g
(
wi�θ

∗))]−2
EP0h

′(t ′g(wi�θ
∗))gj(wi�θ

∗)
which gives [ d

dtj
C(t)]t=0 = EP0gj(wi�θ

∗) = 0.

Now consider the derivative of

EPtg(wi�θ)= EP0g(wi�θ)πt(wi) = C(t)EP0g(wi�θ)h
(
t ′g
(
wi�θ

∗))
with respect to elements of θ and t. We have, for each j, k,

d

dtj
gk(wi�θ)h

(
t ′g
(
wi�θ

∗))= gk(wi�θ)h
′(t ′g(wi�θ

∗))gj(wi�θ
∗)	

This is bounded by a constant times |gk(wi�θ)gj(wi�θ
∗)| by boundedness of h′. Also,

d

dθj
gk(wi�θ)h

(
t ′g
(
wi�θ

∗))
is bounded by a constant times d

dθj
gk(wi�θ) by boundedness of h. By the conditions of

the lemma, the quantities in the above two displays are bounded uniformly over (t ′� θ′)′
in a neighborhood of (θ∗′�0′)′ by a function with finite expectation under P0. It fol-
lows that we can again apply Corollary 5.9 in Bartle (1966) to obtain the derivative of
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EP0g(wi�θ)h(t
′g(wi�θ

∗)) with respect to each element of θ and t by differentiating un-
der the expectation. Furthermore, the bounds above and continuous differentiability of
g(wi�θ) along with the dominated convergence theorem imply that the derivatives are
continuous in (t ′� θ′)′.

Thus, EPtg(wi�θ) is differentiable with respect to each argument of t and θ, with
the partial derivatives continuous with respect to (θ′� t ′)′. It follows that (t ′� θ′)′ �→
EPtg(wi�θ) is differentiable at t = 0, θ = θ∗. To calculate the Jacobian, note that

d

dt ′
EPtg(wi�θ)= C(t)EP0g(wi�θ)g

(
wi�θ

∗)′h′(t ′g(wi�θ
∗))

+EP0g(wi�θ)h
(
t ′g
(
wi�θ

∗)) d
dt ′

C(t)	

Evaluating this at t = 0, θ = θ∗, the second term is equal to zero by calculations above,
and the first term is given by EP0g(wi�θ

∗)g(wi�θ
∗). For the derivative with respect to θ at

θ = θ∗, t = 0, this is equal to �θ∗�P0 by definition. Thus, Assumption C.1 holds. Further-
more, the bounds on the moments of g(wi�θ) hold with Pt replacing P0 by boundedness
of πt(wi).

E.2 Example: Misspecified linear IV

We verify our conditions in the misspecified linear IV model, defined by the equation

gP(θ) =EP

(
yi − x′

iθ
)
zi = c/

√
n� c ∈ C�

where C is a compact convex set, yi is a scalar valued random variable, xi is a R
dθ valued

random variable and zi is a R
dg valued random variable, with dg ≥ dθ. The derivative

matrix and variance matrix are

�θ�P = d

dθ′ gP(θ) = −EPzix
′
i� Σθ�P = varP

((
yi − x′

iθ
)
zi
)
	

Let Θ ⊂ R
dθ be a compact set and let h : Θ → R be continuously differentiable with

nonzero derivative at all θ ∈ Θ. Let ε be given and let P be a set of probability distri-
butions P for (x′

i� z
′
i� yi)

′. We make the following assumptions on P .

Assumption E.1. For all P ∈ P , the following conditions hold:

1. For all j, EP |xi�j|4+ε < 1/ε, EP |zi�j|4+ε < 1/ε and EP |yi|4+ε < 1/ε.

2. The matrix EPzix
′
i is full rank and ‖EPzix

′
iu‖/‖u‖ > 1/ε for all u ∈ R

dg\{0} (i.e., the
singular values of EPzix

′
i are bounded away from zero).

3. The matrix Σθ�P = varP((yi − x′
iθ)zi) satisfies u′Σθ�Pu/‖u‖2 > ε for all u ∈ R

dg\{0}
and all θ such that there exists c ∈ C and n ≥ 1 such that EP(yi − x′

iθ)zi = c/
√
n.

Note that, applying Cauchy–Schwarz, the first condition implies EP |v1v2v3v4|1+ε/4 <

1/ε for any v1, v2, v3, v4 where each vk is an element of xi, zi or yi. In particular, zi(yi−x′
iθ)

has a bounded 2 + ε/2 moment uniformly over θ ∈Θ and P ∈ P .
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E.2.1 Conditions for Theorems C.5 and C.6 We first verify the conditions of Ap-
pendix C.5. To verify the conditions of Theorems C.5 and C.6 (which show that the
plug-in optimal weights k̂ = k(δ� Ĥ� �̂� Σ̂) lead to CIs that achieve or nearly achieve the
efficiency bounds in Theorem C.1 and Theorem C.2), we must verify Assumptions C.2,
C.3, C.5, and C.6.

Let

θ̂initial =
(

n∑
i=1

zix
′
iWn

n∑
i=1

xiz
′
i

)−1 n∑
i=1

zix
′
iWn

n∑
i=1

ziyi�

where Wn = WP + oP(1) uniformly over P ∈ P and WP is a positive definite matrix with
u′WPu/‖u‖2 bounded away from zero uniformly over P ∈ P . Let Ĥ = Hθ̂ where Hθ is the
derivative of h at θ. Let

�̂= − 1
n

n∑
i=1

zix
′
i� Σ̂= 1

n

n∑
i=1

ziz
′
i

(
yi − x′

iθ̂initial
)2
	

First, let us verify Assumption C.3. Indeed, it follows from a CLT for triangular arrays
(Lemma E.7 with vi = u′

n[zi(yi − x′
iθ)−Ezi(yi − x′

iθ)] with un an arbitrary sequence with
‖un‖ = 1 all n) that

sup
u∈Rdg

sup
t∈R

sup
(θ′�c′)∈Θ×C

sup
P∈Pn(θ�c)

∣∣∣∣P(
√
nu′(ĝ(θ)− gP(θ)

)√
u′Σθ�Pu

≤ t

)
−�(t)

∣∣∣∣→ 0

(note that u can be taken to satisfy ‖u‖ = 1 without loss of generality, since the formula
inside the probability statement is invariant to scaling). Note that this, along with com-
pactness of C, also implies that 1√

n

∑n
i=1 zi(yi − x′

iθ) = √
nĝ(θ) = OP(1) uniformly over θ

and P with P ∈ P(θ� c) for some c.
For Assumption C.2, we have

√
n(θ̂initial − θ)=

(
1
n

n∑
i=1

zix
′
iWn

1
n

n∑
i=1

xiz
′
i

)−1
1
n

n∑
i=1

zix
′
iWn

1√
n

n∑
i=1

zi
(
yi − x′

iθ
)
	

Since 1
n

∑n
i=1 zix

′
i converges in probability to −�θ�P uniformly over P by Lemma E.8 and

1√
n

∑n
i=1 zi(yi − x′

iθ) = OP(1) uniformly over P by the verification of Assumption C.3

above, it follows that this display is OP(1) uniformly over P and θ, as required. For the
second part of the assumption, we have

ĝ(θ̂initial)− g(θ) = − 1
n

n∑
i=1

zix
′
i(θ̂initial − θ)= �θ�P(θ̂initial − θ)+ (�̂− �θ�P)(θ̂initial − θ)	

The last term is uniformly oP(1/
√
n) as required since (θ̂initial −θ)= OP(1/

√
n) as shown

above and �̂ − �θ�P converges in probability to zero uniformly by an LLN for triangular
arrays (Lemma E.8). For the last part of the assumption, we have, by the mean value
theorem,

h(θ̂initial)−h(θ) =Hθ∗(θ̂initial)
(θ̂initial −θ)= Hθ(θ̂initial −θ)+ (Hθ∗(θ̂initial)

−Hθ)(θ̂initial −θ)�
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where θ∗(θ̂initial) − θ converges uniformly in probability to zero. Since θ �→ Hθ is uni-
formly continuous on θ (since it is continuous by assumption and Θ is compact), it fol-
lows that Hθ∗(θ̂initial)

− Hθ converges uniformly in probability to zero, which, along with
the verification of the first part of the assumption above, gives the required result.

For Assumption C.5, the first two parts of the assumption (concerning uniform con-
sistency of �̂ and Ĥ) follow from arguments above. For the last part (uniform consistency
of Σ̂), note that

Σ̂= 1
n

n∑
i=1

ziz
′
i

(
yi − x′

iθ̂initial
)2

= 1
n

n∑
i=1

ziz
′
i

(
yi − x′

iθ
)2 + 1

n

n∑
i=1

ziz
′
i

[(
yi − x′

iθ̂initial
)2 − (yi − x′

iθ
)2]

	

The first term converges uniformly in probability to Σθ�P by an LLN for triangular arrays
(Lemma E.8). The last term is equal to

1
n

n∑
i=1

ziz
′
i

(
x′
iθ̂initial + x′

iθ− 2yi
)
x′
i(θ̂initial − θ)	

This converges in probability to zero by an LLN for triangular arrays (Lemma E.8) and
the moment bound in Assumption E.1(1)

Finally, Assumption C.6 follows by Assumption E.1(2), and the condition that the
derivative is nonzero for all θ.

E.2.2 Conditions for Theorems C.1 and C.2 We now verify the conditions of the lower
bounds, Theorems C.1 and C.2. Given P0 ∈ P with EP0g(wi�θ

∗) = 0, we need to show that
a submodel Pt satisfying Assumption C.1 exists with Pt ∈ P for ‖t‖ small enough. To ver-
ify this condition, we take P to be the set of all distributions satisfying Assumption E.1,
and we assume that θ∗ is in the interior of Θ.

Let Pt be the subfamily given in Lemma E.1. This satisfies Assumption C.1 by
Lemma E.1 (the moment conditions needed for this lemma hold by Assumption E.1(1)),
so we just need to check that Pt ∈ P for t small enough. For this, it suffices to show that
EPt |xi�j|4+ε, EPt |zi�j|4+ε, EPt |yi|4+ε, EPt zix

′
i, and varPt (zi(yi − x′

iθ)) are continuous in t at
t = 0, which holds by the dominated convergence theorem since the likelihood ratio
πt(wi) for this family is bounded and continuous with respect to t.

E.2.3 Conditions for Appendix D In Appendix D, we proposed a CI that is asymptoti-
cally valid under global misspecification and asymptotically equivalent to the CIs con-
sidered in the rest of the paper under local misspecification. Specializing to the present
setting with misspecified IV, the CI is the union over c̃ of CIs that use the GMM estima-
tor θ̂W �c̃ based on the moment function θ �→ zi(yi − x′

iθ) − c̃. This estimator is given

by θW �c̃ = −(�̂′W �̂)−1�̂′Ŵ ( 1
n

∑n
i=1 ziyi − c̃) where �̂ = − 1

n

∑n
i=1 zix

′
i as defined above.

We estimate k′
θ�P = −Hθ(�

′
θ�PWP�θ�P)

−1�′
θ�PWP using k̂′

θ = −Hθ(�̂
′W �̂)−1�′WP . We es-

timate Σθ�P = varP(zi(yi − x′
iθ)) using Σ̂θ = 1

n

∑n
i=1 ziz

′
i(yi − x′

iθ̂W �c̃)
2 = 1

n

∑n
i=1 ziz

′
i[yi −
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x′
i(�̂

′W �̂)−1�̂′Ŵ ( 1
n

∑n
i=1 ziyi − c̃)]2. In addition to Assumption E.1, we assume that

the weighting matrix is given by a (possibly data dependent) sequence Wn such that
Wn − WP = oP(1) uniformly over (θ�P) ∈ Sn, where WP is some family of limiting
weighting matrices with u′WPu/‖u‖2 bounded away from zero and infinity uniformly
over P ∈ P . The population influence function weights are then given by k′

θ�P =
Hθ(�

′
θ�PWθ�P�θ�P)

−1�′
θ�P .

To verify the asymptotic equivalence result (Assumption D.1), we need to verify
Theorem D.1. To this end, first note that �̂ − �θ�P = oP(1) uniformly over (θ�P) ∈ Sn

by a law of large numbers (Lemma E.8). Thus, by the bounds on EPzix
′
i in Assump-

tion E.1, supc∈C |θ̂W �c/
√
n − θ̂W �0| = supc∈C |(�̂′W �̂)−1�̂′W c/

√
n| = OP(1/

√
n) uniformly

over (θ�P) ∈ Sn. Note that θ̂W �0 = θ̂initial where θ̂initial is defined in Appendix E.2.1 above,
so it follows from arguments in that section that θ̂W �0 − θ = OP(1/

√
n) uniformly over

(θ�P) ∈ Sn. Thus, supc∈C |θ̂W �c/
√
n − θ| = OP(1/

√
n) uniformly over (θ�P) ∈ Sn. Similarly,

we have supc∈C |Σ̂θW �c/
√
n
−Σ̂θW �c/

√
n
| = oP(1) and Σ̂θW �0 corresponds to the estimate used in

Appendix E.2.1 above, so that supc∈C |Σ̂θW �c/
√
n
−Σθ�P | = oP(1) uniformly over (θ�P) ∈ Sn

by arguments in Appendix E.2.1.
The last part of Assumption D.1 will now follow if we can show that supc∈C |k̂θ̂W �c/

√
n
−

kθ�P | = oP(1). Since we have already shown uniform consistency of �̂, this will follow so
long as supc∈C |Hθ̂W�c/

√
n
−Hθ| = oP(1) uniformly over (θ�P) ∈ Sn. This follows by the fact

that supc∈C |θ̂W �c/
√
n − θ| = oP(1) uniformly over (θ�P) ∈ Sn along with uniform continu-

ity of θ �→Hθ on Θ (since Θ is compact, continuity implies uniform continuity).
Finally, for the first display of Assumption D.1, note that, for some θ∗(c) on the line

segment between θ and θ̂W �c ,

h(θ̂W �c/
√
n)− h(θ)− k′

θ�P

[
ĝ(θ)− c/

√
n
]

= Hθ∗(c)(θ̂W �0 − θ)− k′
θ�P ĝ(θ)+Hθ∗(c)

(
�̂′W �̂

)−1
�̂′W c/

√
n+ k′

θ�Pc/
√
n

= Hθ(θ̂W �0 − θ)− k′
θ�P ĝ(θ)+Hθ

(
�̂′W �̂

)−1
�̂′W c/

√
n+ k′

θ�Pc/
√
n+Rn�θ�P(c)

= [−Hθ
(
�̂′W �̂

)−1
�̂′W − k′

θ�P

][1
n

n∑
i=1

zi
(
yi − x′

iθ
)− c/

√
n

]
+Rn�θ�P(c)�

where supc∈C
√
n|Rn�θ�P(c)| = oP(1) uniformly over (θ�P) ∈ Sn. The first display of As-

sumption D.1 now follows from the fact that 1
n

∑n
i=1 zi(yi − x′

iθ)− c/
√
n = OP(1/

√
n) (by

Lemma E.7) and −Hθ(�̂
′W �̂)−1�̂′W − k′

θ�P = oP(1) uniformly over (θ�P) ∈ Sn.

E.3 Auxiliary results

This section contains auxiliary results used in Appendix C. Appendix E.3.1 shows that
optimizing length over a set of the form G = R

dθ × D is without loss of generality, as
claimed in Appendix C.5. Appendix E.3.2 contains a result on the continuity of the opti-
mal weights with respect to δ, �, Σ, and H. Appendix E.3.3 states a law of large numbers
and central limit theorem for triangular arrays.
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It will be convenient to state some of these results in the general setup of Donoho
(1994), Low (1995), and Armstrong and Kolesár (2018). Using the notation in Armstrong
and Kolesár (2018), the between class modulus problem is given by

ω(δ) =ω(δ;F�G�L�K)

= supL(g − f ); s.t.
∥∥K(g − f )

∥∥≤ δ� f ∈ F� g ∈ G� (S38)

where F and G are convex sets with G ⊆ F , L is a linear functional and K is a linear
operator from F to a Hilbert space with norm ‖ · ‖. In our case, this is given by equation
(S10) in the main text, which fits into this setting with (θ′� c′)′ playing the role of f , Rdθ ×C
playing the role of F , K given by the transformation (θ′� c′)′ �→ −�θ + c, and with the
norm defined using the inner product 〈x� y〉 = x′Σ−1y. The linear functional L is given
by (θ′� c′)′ �→ Hθ.

E.3.1 Replacing R
dθ × D with a general set G In Appendix C.5, we mentioned that di-

recting power at sets that do not restrict θ is without loss of generality when we require
coverage over a set that does not make local restrictions on θ. This holds by the following
lemma (applied with U = R

dθ × {0}dg ).

Lemma E.2. Let U be a set with 0 ∈ U such that F = F − U (i.e., F is invariant to adding
elements in U ). Then, for any solution f̃ ∗, g̃∗ to the modulus problem

supL(g − f ) s.t.
∥∥K(g − f )

∥∥≤ δ� f ∈ F� g ∈ G + U�

where K is a linear operator, there is a solution f ∗, g∗ to the modulus problem (S38) for
F and G with g∗ − f ∗ = g̃∗ − f̃ ∗. Furthermore, any solution to the modulus problem (S38)
for F and G is also a solution to the modulus problem for F and G + U .

Proof. Let f̃ , g̃ + ũ be a solution to the modulus problem for F and G + U with g̃ ∈ G
and ũ ∈ U . Then f = f̃ − ũ, and g = g̃ is feasible for F and G and achieves the same value
of the objective function. Since it achieves the maximum for the objective function over
the larger set F × (G + U) and is in F × G, it must maximize the objective function over
F × G. Thus, f , g achieves the modulus for F and G and also for F and G + U . Since
the modulus for F and G is the same as the modulus over F and the larger set G + U , it
also follows that any solution to the former modulus problem is a solution to the latter
modulus problem.

E.3.2 Continuity of optimal weights We first give some lemmas under the general
setup (S38).

Lemma E.3. For each δ, let (f ∗
δ �g

∗
δ) be a solution to the modulus problem (S38), and let

h∗
δ = g∗

δ − f ∗
δ . Let δ0, δ1 be given, and suppose that ω is strictly increasing on an open in-

terval containing δ0 and δ1, and that a solution to the modulus problem exists for δ0 and
δ1. Then Kh∗

δ0
and Kh∗

δ1
are defined uniquely (i.e., they do not depend on the particular

solution (f ∗
δ �g

∗
δ)) and ∥∥Kh∗

δ0
−Kh∗

δ1

∥∥2 ≤ 2
∣∣δ2

1 − δ2
0

∣∣	
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Proof. Let f0 = f ∗
δ0

, f1 = f ∗
δ1

and similarly for g0, g1, h0, and h1. Let h̃ = (h0 + h1)/2.

Note that h̃= g̃− f̃ where g̃ = (g0 + g1)/2 ∈ G and f̃ = (f0 + f1)/2 ∈ F by convexity. Thus,
ω(‖Kh̃‖) ≥ Lh̃ = [ω(δ0) + ω(δ1)]/2 ≥ min{ω(δ0)�ω(δ1)}. From this and the fact that ω
is strictly increasing on an open interval containing δ0 and δ1, it follows that ‖Kh̃‖ ≥
min{δ0� δ1}.

Note that h1 = h̃ + (h1 − h0)/2 and 〈Kh̃�K(h1 − h0)/2〉 = ‖Kh1‖2/4 − ‖Kh0‖2/4 =
(δ2

1 − δ2
0)/4 (the last equality uses the fact that the constraint on ‖K(f − g)‖ binds at any

δ at which the modulus is strictly increasing). Thus,

δ2
1 = ‖Kh1‖2 = ‖Kh̃‖2 + ∥∥K(h1 − h0)/2

∥∥2 + (δ2
1 − δ2

0
)
/2

≥ min
{
δ2

0� δ
2
1
}+ ∥∥K(h1 − h0)/2

∥∥2 + (δ2
1 − δ2

0
)
/2	

Thus, ‖K(h1 − h0)‖2/4 ≤ δ2
1 − min{δ2

0� δ
2
1} − (δ2

1 − δ2
0)/2 = |δ2

1 − δ2
0|/2 as claimed. The fact

that Kh∗
δ0

is defined uniquely follows from applying the result with δ1 and δ0 both given
by δ0.

Lemma E.4. For each δ, let (f ∗
δ �g

∗
δ) be a solution to the modulus problem (S38), and let

h∗
δ = g∗

δ − f ∗
δ . Let δ0 and ε > 0 be given, and suppose that ω is strictly increasing in a

neighborhood of δ0, and that the modulus is achieved at δ0. Let g ∈ G and f ∈ F satisfy
L(g − f ) > ω(δ0)− ε with ‖K(g − f )‖ ≤ δ0, and let h= g − f . Then∥∥K(h− h∗

δ0

)∥∥2
< 4
[
δ2

0 −ω−1(ω(δ0)− ε
)2]

	

Proof. Let h∗ = h∗
δ0

, g∗ = g∗
δ0

and f ∗ = f ∗
δ0

. Using the fact that 〈K(h + h∗)/2�K(h −
h∗)/2〉 = ‖Kh‖2/4 − ‖Kh∗‖2/4, we have

‖Kh‖2 = ∥∥K(h+ h∗)/2
∥∥2 + ∥∥K(h− h∗)/2

∥∥2 + ‖Kh‖2/2 − ∥∥Kh∗∥∥2
/2	

Rearranging this gives∥∥K(h− h∗)/2
∥∥2 = [‖Kh‖2 + ∥∥Kh∗∥∥2]

/2 − ∥∥K(h+ h∗)/2
∥∥2
	 (S39)

Let δ′ = ω−1(ω(δ0)−ε). Since Lh>ω(δ′) and Lh∗ =ω(δ0), it follows that L(h+h∗)/2 >

[ω(δ′)+ω(δ)]/2 ≥ ω(δ′). Since (h+ h∗)/2 = (g + g∗)/2 − (f + f ∗)/2 with (g + g∗)/2 ∈ G
and (f + f ∗)/2 ∈ F , this means that ‖K(h + h∗)/2‖ > δ′. Using this and the fact that
[‖Kh‖2 + ‖Kh∗‖2]/2 ≤ δ2

0, it follows that ‖K(h− h∗)/2‖2 ≤ δ2
0 − δ′2 as claimed.

Lemma E.5. Let h∗
δ�F�G�L�K = g∗

δ�F�G�L�K − f ∗
δ�F�G�L�K where g∗

δ�F�G�L�K , f ∗
δ�F�G�L�K is a so-

lution to the modulus problem (S38). Let δ0, L0, K0, F0, G0, and {δn�Ln�Kn�Fn�Gn}∞n=1 be
given.

Let H(δ�K�F�G) = {g− f : f ∈ F� g ∈ G�‖K(g− f )‖ ≤ δ} denote the feasible set of val-
ues of g − f for the modulus problem for δ, K, F , G. Suppose that, for any ε > 0, we have,
for large enough n, H(δ0 − ε�K0�F0�G0) ⊆ H(δn�Kn�Fn�Gn) ⊆ H(δ0 + ε�K0�F0�G0).
Suppose also that Lnh − L0h → 0 and ‖(Kn − K0)h‖ → 0 uniformly over h in H(δ0 +
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ε�K0�F0�G0) for ε small enough. Suppose also that ω(δ;F0�G0�L0�K0) is strictly increas-
ing for δ in a neighborhood of δ0. Then ‖Knh

∗
δn�Fn�Gn�Ln�Kn

− K0h
∗
δ0�F0�G0�L0�K0

‖ → 0 and
Lnh

∗
δn�Fn�Gn�Ln�Kn

−L0h
∗
δ0�F0�G0�L0�K0

→ 0.

Proof. For any ε > 0, g∗
δ0−ε�F0�G0�L0�K0

, f ∗
δ0−ε�F0�G0�L0�K0

is feasible for the modulus prob-
lem under δn, Fn, Gn, Ln, Kn for large enough n. Thus, for large enough n,

ω(δ0 − ε�F0�G0�L0�K0) = Lh∗
δ0−ε�F0�G0�L0�K0

≤Lnh
∗
δn�Fn�Gn�Ln�Kn

	

Taking limits and using the fact that (Ln −L)h∗
δn�Fn�Gn�Ln�Kn

→ 0, it follows that

ω(δ0 − ε;F0�G0�L0�K0)− ε ≤Lh∗
δn�Fn�Gn�Ln�Kn

for large enough n. By continuity of the modulus in δ, for any η> 0 the left-hand side is
strictly greater than ω(δ0 +ε;F0�G0�L0�K0)−η for ε small enough. Since g∗

δn�Fn�Gn�Ln�Kn
,

f ∗
δn�Fn�Gn�Ln�Kn

is feasible for δ0 + ε, F0, G0, L0, K0 for n large enough, it follows from
Lemma E.4 that∥∥K0

(
h∗
δn�Fn�Gn�Ln�Kn

− h∗
δ0+ε�F0�G0�L0�K0

)∥∥
< 4
[
(δ0 + ε)2 −ω−1(ω(δ0 + ε;F0�G0�L0�K0)−η;F0�G0�L0�K0

)2]
	

By continuity of the modulus and inverse modulus, the right-hand side can be made
arbitrarily close to zero by taking ε and η small. Thus,

lim
ε↓0

lim sup
n

∥∥K0
(
h∗
δn�Fn�Gn�Ln�Kn

− h∗
δ0+ε�F0�G0�L0�K0

)∥∥= 0	

It then follows from Lemma E.3 that limn→∞ ‖K0(h
∗
δn�Fn�Gn�Ln�Kn

− h∗
δ0�F0�G0�L0�K0

)‖ = 0.
The result then follows from the assumption that ‖(K0 − Kn)h‖ → 0 uniformly over
H(δ0 + ε�K0�F0�G0).

We now specialize to our setting. Let f ∗
δ�H���Σ

= (s∗0
′� c∗

0
′) and g∗

δ�H���Σ
= (s∗1

′� c∗
1
′)

denote solutions to the modulus problem in equation (S10) with F = R
dθ × C and

G = R
dθ × D. Let ω(δ;H���Σ) = ω(δ;Rdθ × C�Rdθ × D�H���Σ) denote the modulus.

Let h∗
δ�H���Σ

= f ∗
δ�H���Σ

− g∗
δ�H���Σ

and let K��Σ = Σ−1/2(−�� Idg×dg). Note that h∗
δ�H���Σ�C =

(s∗′� c∗′)′ where (s∗′� c∗′)′ solves

supHs s.t. (c − �s)′Σ−1(c − �s) ≤ δ2� c ∈ D − C� s ∈R
dθ 	 (S40)

Furthermore, a solution does indeed exist so long as C and D are compact and � and Σ

are full rank, since this implies that the constraint set is compact.
Let δ0, H0, �0, and Σ0 be such that δ0 > 0, H0 �= 0, and such that �0 and Σ0 are full

rank. We wish to show that K��Σh
∗
δ�H���Σ

is continuous as a function of δ, H, �, and Σ at
(δ0�H0��0�Σ0). To this end, let δn, Hn, �n, and Σn be arbitrary sequences converging to
δ0, H0, �0, and Σ0 (with Σn symmetric and positive semidefinite for each n). We will apply
Lemma E.5. To verify the conditions of this lemma, first note that the modulus is strictly
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increasing by translation invariance (see Section C.2 in Armstrong and Kolesár (2018)).
The conditions on uniform convergence of (Ln − L)h and (Kn − K)h follow since the
constraint set for h = g − f is compact. The condition on H(δ�K�F�G) follows because
(c − �s)′Σ−1(c − �s) is continuous in Σ−1 and � uniformly over c and s in any compact
set, and there exists a compact set that contains the constraint set for all n large enough.
We record these results and some of their implications in a lemma.

Lemma E.6. Let C and D be compact and let c∗
δ�H���Σ

, s∗
δ�H���Σ

denote a solution to

equation (S40). Let A denote the set of (δ�H���Σ) such that δ > 0, H ∈ R
dθ\{0}, � is

a full rank dg × dθ matrix and Σ is a (strictly) positive definite dg × dg matrix. Then
Σ−1/2(s∗

δ�H���Σ
− �c∗

δ�H���Σ
) is defined uniquely for any (δ�H���Σ) ∈ A. Furthermore, the

mappings (δ�H���Σ) �→ Σ−1/2(s∗
δ�H���Σ

− �c∗
δ�H���Σ

),

k(δ�H���Σ)′ =
(
s∗δ�H���Σ − �c∗

δ�H���Σ

)
Σ−1(

s∗δ�H���Σ − �c∗
δ�H���Σ

)
Σ−1�H/H ′H

and ω(δ;H���Σ) = Hs∗δ�H���Σ

are continuous functions on A.

E.3.3 CLT and LLN for triangular arrays To verify the conditions of Appendix C.5, a
CLT and LLN for triangular arrays (applied to the triangular arrays that arise from arbi-
trary sequences Pn ∈ P) are useful. We state them here for convenience.

Lemma E.7. Let ε > 0 be given. Let {vi}ni=1 be an i.i.d. sequence of scalar valued random

variables and let P be a set of probability distributions with EPv
2+ε
i ≤ 1/ε, 1/ε ≤ EPv

2
i

and EPvi = 0 for all P ∈P . Then

sup
P∈P

sup
t∈R

∣∣∣∣∣P
(

1√
n

n∑
i=1

vi/
√

varP(vi) ≤ t

)
−�(t)

∣∣∣∣∣→ 0	

Proof. The result is immediate from Lemma 11.4.1 in Lehmann and Romano (2005)
applied to arbitrary sequences P ∈ P and the fact that convergence to a continuous cdf
is always uniform over the point at which the cdf is evaluated (Lemma 2.11 in van der
Vaart (1998)).

Lemma E.8. Let ε > 0 be given. Let {vi}ni=1 be an i.i.d. sequence of scalar valued random
variables and let P be a set of probability distributions with EP |vi|1+ε ≤ 1/ε for all P ∈ P .
Then 1

n

∑n
i=1 vi −EPvi = oP(1) uniformly over P ∈ P .

Proof. The stronger result supP∈P EP | 1
n

∑n
i=1 vi −EPvi|1+min{ε�2} → 0 follows from The-

orem 3 in von Bahr and Esseen (1965).
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