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We consider inference in models defined by approximate moment conditions. We
show that near-optimal confidence intervals (CIs) can be formed by taking a gen-
eralized method of moments (GMM) estimator, and adding and subtracting the
standard error times a critical value that takes into account the potential bias from
misspecification of the moment conditions. In order to optimize performance un-
der potential misspecification, the weighting matrix for this GMM estimator takes
into account this potential bias and, therefore, differs from the one that is opti-
mal under correct specification. To formally show the near-optimality of these CIs,
we develop asymptotic efficiency bounds for inference in the locally misspecified
GMM setting. These bounds may be of independent interest, due to their implica-
tions for the possibility of using moment selection procedures when conducting
inference in moment condition models. We apply our methods in an empirical
application to automobile demand, and show that adjusting the weighting matrix
can shrink the CIs by a factor of 3 or more.

Keywords. Sensitivity analysis, confidence intervals, misspecification, general-
ized method of moments, semiparametric efficiency.
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1. Introduction

Economic models are typically viewed as approximations of reality. However, conven-
tional approaches to estimation and inference assume that a model holds exactly. In this
paper, we weaken this assumption, and consider inference in a class of models charac-
terized by moment conditions which are only required to hold in an approximate sense.
The failure of the moment conditions to hold exactly may come from failure of exclu-
sion restrictions (e.g., through omitted variable bias or because instruments enter the
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structural equation directly in an IV model), functional form misspecification, or other
sources such as measurement error, or data contamination.

We assume that we have a model characterized by a set of population moment con-
ditions g(θ). In the generalized method of moments (GMM) framework, for instance,
g(θ) = E[g(wi�θ)], which can be estimated by the sample analog 1

n

∑n
i=1 g(wi�θ), based

on the sample {wi}ni=1. When evaluated at the true parameter value θ0, the population
moment condition lies in a known set specified by the researcher,

g(θ0)= c/
√
n� c ∈ C�

The set C formalizes the way in which the moment conditions may fail, and it can then
be varied as a form of sensitivity analysis, with C = {0} reducing to the correctly specified
case.

We focus on local misspecification: the scaling by
√
n implies that the specification

error and the sampling error are of the same order of magnitude, and it ensures that the
asymptotic approximation captures the fact that it may not be clear from the sample
at hand whether the model is correctly specified. It also leads to increased tractabil-
ity, allowing us to deliver a simple method for inference on a structural parameter of
interest h(θ0), rather than a pseudo-true parameter. This tractability has made local
misspecification a popular tool for sensitivity analysis in applied work, especially fol-
lowing the recent influential paper by Andrews, Gentzkow, and Shapiro (2017).1 As with
any asymptotic device, our modeling of misspecification as local should not be taken to
mean that we literally believe that the model would be closer to correct if we had more
data. Rather, its usefulness should be judged by whether it yields accurate approxima-
tions to the finite-sample behavior of estimators and confidence intervals, which in our
case requires that the set C/

√
n be small relative to sampling uncertainty.

We propose a simple method for constructing asymptotically valid confidence inter-
vals (CIs) under this setup: one takes a standard estimator, such as the GMM estimator,
and adds and subtracts its standard error times a critical value that takes into account
the potential asymptotic bias of the estimator, in addition to its variance. A key insight
of this paper is that because the CIs must be widened to take into account the poten-
tial bias, the optimal weighting matrix for the correctly specified case (the inverse of the
variance matrix of the moments) is generally no longer optimal under local misspecifi-
cation. Rather, the optimal weighting matrix takes into account potential misspecifica-
tion in the moments in addition to the variance of their estimates: it places less weight
on moments that are allowed to be further from zero according the researcher’s specifi-
cation of the set C. We also show that an analogous result holds for other performance
criteria, such as estimation under the mean-squared error: the optimal weighting matrix
again trades off the potential misspecification of the moments against their precision,
although the optimal tradeoff is different.

To illustrate the practical importance of this result, we apply our methods to form
misspecification-robust CIs in an empirical model of automobile demand based on

1For recent empirical examples using local sensitivity analysis, see Gayle and Shephard (2019) or Duflo,
Greenstone, Pande, and Ryan (2018).
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Berry, Levinsohn, and Pakes (1995). We consider sets C motivated by the forms of local
misspecification considered in Andrews, Gentzkow, and Shapiro (2017), who calculate
the asymptotic bias of the usual GMM estimator in this model. We find that adjusting
the weighting matrix to account for potential misspecification substantially reduces the
potential bias of the estimator and, as a result, leads to large efficiency improvements of
the optimal CI relative to a CI based on the GMM estimator that is optimal under correct
specification: it shrinks the CI by up to a factor of 3 or more in our main specifications.
As a result, we obtain informative CIs in this model even under moderate amounts of
misspecification.

We show that the CIs we propose are near-optimal when the set C is convex and cen-
trosymmetric (c ∈ C implies −c ∈ C). To this end, we argue that the relevant “limiting
experiment” for the locally misspecified GMM model is isomorphic to an approximately
linear model of Sacks and Ylvisaker (1978), which falls under a general framework stud-
ied by, among others, Donoho (1994), Cai and Low (2004) and Armstrong and Kolesár
(2018). We derive asymptotic efficiency bounds for CIs in the locally misspecified GMM
model that formally translate bounds from the approximately linear limiting experiment
to the locally misspecified GMM setting. In particular, these bounds imply that the scope
for improvement over our CIs by optimizing expected length at a particular value of θ0
and c = 0 (while still maintaining coverage over the whole parameter space for θ and C)
is limited, even if one optimizes expected length at the true values of θ0 and c.

These efficiency bounds address an important criticism of our CIs: they require a
priori specification of the set C that defines misspecification, including both the mag-
nitude of misspecification and which moments are misspecified. In particular, one can-
not substantively improve upon our CI by, say, trying to use data-driven methods that
gauge misspecification magnitude or try to determine which moments are misspeci-
fied. These bounds have implications for procedures proposed by Andrews and Guggen-
berger (2009), DiTraglia (2016) and McCloskey (2020), who consider the case where some
moments are known to be correctly specified and no a priori bound is placed on the
magnitude of misspecification of the remaining moments. As we discuss in Section 4.3.2,
in this case our CI reduces to the usual CI based on the k1 correctly specified moments,
and our efficiency bounds show that CIs proposed in these papers cannot substantively
improve upon it.

Because we cannot use the data to determine the magnitude M of the set C, we rec-
ommend plotting our CIs as a function of the potential misspecification magnitude M ,
or reporting the smallest value of M for which a particular finding breaks down. Such
sensitivity analysis is easy to conduct under out proposed implementation. In particu-
lar, we show that, when the set C is characterized by �p constraints, the class of weight-
ings that trace out the optimal bias-variance tradeoff as a function of how much relative
weight we put on the bias can be easily computed by recasting the problem as a pe-
nalized regression problem. By exploiting this analogy, we develop a simple algorithm
for computing this class under �∞ constraints that is similar to the LASSO/LAR algo-
rithm (Efron, Hastie, Johnstone, and Tibshirani (2004), Rosset and Zhu (2007)); under
�2 constraints, the solution admits a closed form.2 Furthermore, as we discuss in Sec-

2An R package implementing our CIs under �p constraints is available at https://github.com/kolesarm/
GMMSensitivity.

https://github.com/kolesarm/GMMSensitivity
https://github.com/kolesarm/GMMSensitivity
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tion 3, this class of weightings is entirely determined by the shape of C; its magnitude
M only determines the optimal relative weight we should put on the bias. Thus, tracing
out the optimal weighting as a function of M can be done at essentially no additional
computational cost. Furthermore, to avoid having to reoptimize the objective function
with respect to the new weighting matrix, one can also form the CIs by adding and sub-
tracting our critical value from a one-step estimator (see Newey and McFadden (1994,
Section 3.4)) based on any initial estimate that is

√
n-consistent under correct specifica-

tion. We illustrate this approach in our empirical application in Section 6.
Our paper is related to several strands of literature. Our efficiency results are related

to those in Chamberlain (1987) for point estimation in the correctly specified setting (see
also Hansen (1985)) and, more broadly, semiparametric efficiency theory in correctly
specified settings (see, e.g., Chapter 25 in van der Vaart (1998)). As we discuss in Sec-
tion 4.3, some of our efficiency results are novel even in the correctly specified case, and
may be of independent interest. Kitamura, Otsu, and Evdokimov (2013) considered effi-
ciency of point estimators satisfying certain regularity conditions when the misspecifi-
cation is bounded by the Hellinger distance. As we discuss in more detail in Section 4.3.4,
our results imply that under this form of misspecification, the optimal weighting matrix
remains the same as under correct specification; both the usual GMM estimator and
the estimator proposed by Kitamura, Otsu, and Evdokimov (2013) can thus be used to
form near-optimal CIs, and both estimators have the same local asymptotic minimax
properties.

Local misspecification has been used in a number of papers, which include, among
others, Newey (1985), Berkowitz, Caner, and Fang (2012), Conley, Hansen, and Rossi
(2012), Guggenberger (2012), and Bugni and Ura (2019), and has antecedents in the lit-
erature on robust statistics (see Huber and Ronchetti (2009), and references therein).
Andrews, Gentzkow, and Shapiro (2017) considered this setting and note that asymp-
totic bias of a regular estimator can be calculated using influence function weights,
which they call the sensitivity, and show how such calculations can be used for sensi-
tivity analysis in applications (see also extensions of these ideas in Andrews, Gentzkow,
and Shapiro 2020 and Mukhin 2018). Our results imply that, if one is interested in infer-
ence, conclusions of such sensitivity analysis may be substantially sharpened by using
the misspecification-optimal weighting matrix, or, equivalently, the misspecification-
optimal sensitivity. In independent work, Bonhomme and Weidner (2020) provide a
framework for estimation and inference in misspecified likelihood models when the
misspecification set C is defined with respect to a larger class of models using statisti-
cal notions of distance. Our focus is on overidentified moment condition models, as in
Andrews, Gentzkow, and Shapiro (2017), and we are agnostic about how C is determined.
The proposal to use estimators that optimize an asymptotic bias-variance tradeoff using
the influence function is common to both papers. The efficiency bounds in Section 4 are
unique to the present paper.

The rest of this paper is organized as follows. Section 2 presents our misspecifica-
tion robust CIs. Section 3 gives step-by-step instructions for computing our CIs, along
with discussion of other practical issues. Section 4 presents efficiency bounds for CIs in
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locally misspecified models; it can be skipped by readers interested only in implement-
ing the methods. Section 5 discusses applications to particular moment condition mod-
els. Section 6 presents an empirical application. Additional results and proofs are col-
lected in the Appendices in the Online Supplementary Material (Armstrong and Kolesár
(2021)).

2. Misspecification-robust CIs

We have a model that maps a vector of parameters θ ∈ Θ ⊆ R
dθ to a dg-dimensional

population moment condition g(θ) that restricts the distribution of the observed data
{wi}ni=1. We allow the moment condition model to be locally misspecified, so that at the
true value θ0, the population moment condition is not necessarily zero, but instead lies
in a

√
n-neighborhood of 0:

g(θ0)= c/
√
n� c ∈ C� (1)

where C ⊆ R
dg is a known set. The set C may allow for misspecification in potentially all

moment conditions; we do not require that some elements of c are zero. Our goal is to
construct a CI for a scalar h(θ0), where h : Rdθ → R is a known function. For example, if
we are interested in one of the elements θj of θ, we would take h(θ)= θj . More generally,
the function h will be nonlinear, as is, for example, generally the case when θ is a vector
of supply or demand parameters, and h(θ) is an elasticity, or some counterfactual.

This setup allows (but does not require) both θ0 and h(θ0) to have the same inter-
pretation as in the correctly specified case, so that our CIs may still be interpreted as CIs
for the structural parameter, elasticity, or counterfactual of interest. For this interpreta-
tion, one typically needs to rule out forms of misspecification that affect the mapping
θ �→ h(θ). While we do not formally consider cases in which this mapping itself is mis-
specified, such cases are covered under a mild generalization of our framework, in which
h is a function of both θ and c.

Note that the interpretation of h(θ0), and the conceptual framework defining θ0 is
not affected by our modeling of the misspecification as local: given a set C̃n = C/

√
n, the

moment conditions g(θ0) ∈ C̃n describe the restrictions that the data generating pro-
cess and the researcher’s modeling assumptions place on θ0.3 The plausibility of these
restrictions is evaluated for a given sample size at hand; it does not depend on assump-
tions about how C̃n changes with n. While we focus on sequences C̃n = C/

√
n, we discuss

in Remark 3.3 how our insights can be used to construct CIs that are valid global mis-
specification, when C̃n is fixed with n.

To formalize the notion of asymptotic validity and efficiency of CIs, we will need to
allow the true parameter value θ0 as well as the vector c and the data generating process
(and hence the map θ �→ g(θ)) to vary with the sample size. For clarity of exposition, we

3Formally, for a given sample size n, θ0 may be set identified, and the identified set under a distribution
P is defined as the set of parameters θ0 that satisfy the moment conditions EPg(wi�θ0) ∈ C̃n where EP de-
notes expectation under P . We construct CIs that cover h(θ0) for points θ0 in the identified set (see Imbens
and Manski (2004), for a discussion of this notion of coverage). See Section 4 and Appendix C for formal
definitions of coverage and optimality of our CIs.



82 Armstrong and Kolesár Quantitative Economics 12 (2021)

focus here on the case in which these parameters are fixed. See Theorem 4.1 and Ap-
pendix C for the general case. Under some forms of misspecification, such as functional
form misspecification, there may be additional higher-order terms on the right-hand
side of (1); our results remain unchanged if this is the case. Again, for clarity of exposi-
tion, we focus on the case in which (1) holds exactly.

We assume that the sample moment condition ĝ(θ), constructed using the data
{wi}ni=1, satisfies

√
n
(
ĝ(θ0)− g(θ0)

) d→ N (0�Σ)� (2)

where
d→ denotes convergence in distribution as n → ∞. In the GMM model, the pop-

ulation and sample moment conditions are given by g(θ) = E[g(wi�θ)] and ĝ(θ) =
1
n

∑n
i=1 g(wi�θ), respectively, where g(·� ·) is a known function. However, to cover other

minimum distance problems, we do not require that the moment conditions necessarily
take this form. We further assume that the moment condition is smooth enough so that

for any θn = θ0 +OP(1/
√
n)� ĝ(θn)− ĝ(θ0)= �(θn − θ0)+ oP(1/

√
n)� (3)

where � is the dg × dθ derivative matrix of g at θ0. Conditions (2) and (3) are standard
regularity conditions in the literature on linear and nonlinear estimating equations; see
Newey and McFadden (1994) for primitive conditions. Finally, we also assume that h is
continuously differentiable with the 1 × dθ derivative matrix at θ0 given by H.

2.1 CIs based on asymptotically linear estimators

Under correct specification, when C = {0}, standard estimators ĥ of h(θ) are asymptoti-
cally linear in ĝ(θ0). This will typically extend to our locally misspecified case, so that for
some vector k ∈R

dg ,

√
n
(
ĥ− h(θ0)

) = k′√nĝ(θ0)+ oP(1)
d→ N

(
k′c�k′Σk

)
� (4)

where the convergence in distribution follows by (1) and (2). If in addition, the estimator
is regular (so that equality in equation (4) holds uniformly for θ in a

√
n-neighborhood

of θ0), then k will satisfy (see, e.g., Section 2 in Newey (1990))

H = −k′�� (5)

For example, in a GMM model, if we take ĥ= h(θ̂W ) where

θ̂W = argmin
θ

ĝ(θ)′W ĝ(θ)� (6)

is the GMM estimator with weighting matrix W , equations (4) and (5) will hold with
k′ = −H(�′W �)−1�′W (see Newey (1985)). Because the vector k determines the local
asymptotic bias of the estimator, we follow Andrews, Gentzkow, and Shapiro (2017), and
refer to k as the sensitivity of ĥ.

We now show how to construct misspecification-robust CIs based on an asymp-
totically linear estimator ĥ with a given sensitivity k. In Section 2.2, we show how to
choose this sensitivity optimally, to achieve the shortest CI among those based on reg-
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ular asymptotically linear estimators. In Section 4, we will show that, under this choice
of k, the resulting CI is (near) optimal not only within the class of CIs based on regular
asymptotically linear estimators, but among all CIs that satisfy the asymptotic coverage
requirement.

Let k̂ and Σ̂ be consistent estimates of k and Σ. Then by Slutsky’s theorem,

√
n
(
ĥ− h(θ0)

)√
k̂′Σ̂k̂

d→ N
(

k′c√
k′Σk

�1
)
�

Under correct specification, the right-hand side corresponds to a standard normal
distribution, and we can form a CI with asymptotic coverage 100 · (1 − α)% as ĥ ±
z1−α/2

√
k̂′Σ̂k̂/n, where z1−α/2 is the 1 − α/2 quantile of a N (0�1) distribution; this is the

usual Wald CI.
When we allow for misspecification, the Wald CI will no longer be valid. However,

note that the asymptotic bias k′c/
√
k′Σk is bounded in absolute value by biasC(k)/√

k′Σk where biasC(k) ≡ supc∈C |k′c|. Therefore, given c, the z-statistic in the preceding
display is asymptotically N (t�1) where |t| ≤ biasC(k)/

√
k′Σk. This leads to the CI

ĥ± cvα

(
biasC(k̂)√

k̂′Σ̂k̂

)
·
√
k̂′Σ̂k̂/

√
n� (7)

where cvα(t) is the 1 − α quantile of |Z|, with Z ∼ N (t�1). In particular, cvα(0) = z1−α/2,
so that in the correctly specified case, (7) reduces to the usual Wald CI. As we discuss in
Section 4, in the limiting experiment, this CI becomes equivalent to the fixed-length CI
proposed by Donoho (1994).

To form a one-sided CI based on an estimator ĥ with sensitivity k, one can simply
subtract its maximum bias, in addition to the standard error:

[ĥ− biasC(k̂)/
√
n− z1−α

√
k̂′Σ̂k̂/n�∞)� (8)

One could also form a valid two-sided CI by adding and subtracting the worst-case bias

biasC(k̂)/
√
n from ĥ, in addition to adding and subtracting z1−α/2

√
k̂′Σ̂k̂/n; however,

since ĥ cannot simultaneously have a large positive and a large negative bias, such CI
will be conservative, and longer than the CI in (7).

2.2 Optimal CIs

The asymptotic length of the CI in equation (7) is given by

2 · cvα
(
biasC(k)/

√
k′Σk

) ·
√
k′Σk/

√
n� (9)

To attain the shortest possible CI, we therefore need to use an estimator with sensitivity
that minimizes this expression. We restrict attention to asymptotically linear estimators
that are regular, so that we need to minimize (9) subject to (5). The CI length in equa-
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tion (9) depends on θ only through Σ. Furthermore, it depends on the sensitivity only
through the maximum bias, biasC(k), and the variance k′Σk. Therefore, rather than min-
imizing (9) directly over all sensitivities k, one can first minimize the variance subject to
a bound B on the worst-case bias,

min
k

k′Σk s.t. (5) and sup
c∈C

∣∣k′c
∣∣ ≤ B� (10)

and then vary the bound B to find the bias-variance trade-off that leads to the shortest
CI. In our implementation in Section 3, we focus on the case where C is characterized by
�p constraints, in which case a closed-form expression for the worst-case bias supc∈C |k′c|
is available, and it is computationally trivial to solve (10) directly or in Lagrange multi-
plier form. In general, when the set C is convex, one can reformulate (10) as a convex
optimization problem, leading to a computationally tractable solution (see Section 4).
One can also use (10) to determine the optimal sensitivity for constructing one-sided
CIs, if we use quantiles of excess length as the criterion for choosing a CI. We provide
details in Appendix C.

Once the optimal sensitivity has been determined, we can implement an estimator
with this sensitivity as a one-step estimator. In particular, let θ̂initial be an initial

√
n-

consistent estimator of θ0, let k̂ = k + oP(1) be a consistent estimator of the desired
sensitivity k. Then the one-step estimator

ĥ= h(θ̂initial)+ k̂′ĝ(θ̂initial)

will have the desired sensitivity. This follows from the Taylor expansion

√
n
(
ĥ− h(θ0)

) =H
√
n(θ̂initial − θ0)+ k̂′√nĝ(θ̂initial)+ oP(1)

= (
H + k̂′�

)√
n(θ̂initial − θ0)+ k̂′√nĝ(θ0)+ oP(1)�

where the second line follows from (3). It then follows from (5) that the first term con-
verges in probability to zero, and ĥ satisfies (4).

3. Practical implementation

We now give step-by-step instructions for computing our CI. To make it easy to deter-
mine the sensitivity of the CI to the magnitude of misspecification, we consider sets
of the form C = C(M) = {Mc : c ∈ C(1)}, where the scalar M measures the magnitude of
misspecification. We discuss the exact specification of the set C(M) in Remark 3.1 below.

The fact that M simply scales the potential magnitude of misspecification leads to
a simplification when tracing out the optimal CI as a function of M . In particular, let
{kλ}λ≥0 be the bias-variance optimizing class of sensitivities that traces out the solutions
to equation (10) as we vary the bound B when C = C(1). The index λ determines the
relative weight on the bias; it can correspond to the Lagrange multiplier in a Lagrangian
formulation of (10), or we can simply take λ = B if we are solving (10) directly. Let Bλ =
biasC(1)(kλ). It then follows by a change-of-variables argument that biasC(M)(kλ)= MBλ,
and that kλ minimizes the asymptotic variance subject to this bound on worst-case bias
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over C(M). Thus, {kλ}λ≥0 is also a bias-variance optimizing class of sensitivities for C(M).
We therefore only need to compute the class {kλ}λ≥0 only once, even when a range of
values M is considered.

With this simplification, we can construct CIs for a range of values of M as follows:

1. Obtain an initial estimate θ̂initial and estimates Ĥ, �̂ and Σ̂ of H, �, and Σ.
In particular, for the GMM model, when ĝ(θ) = 1

n

∑n
i=1 g(wi�θ), we can take

θ̂initial to be the GMM estimator θ̂W = argminθ ĝ(θ)
′W ĝ(θ) for some weight ma-

trix W . The remaining objects are the usual quantities used to estimate the asymp-
totic variance of this estimator: Σ̂= 1

n

∑n
i=1 g(wi� θ̂initial)g(wi� θ̂initial)

′ (or, in the case
of dependent observations, an autocorrelation robust version of this estimate),
�̂ = d

dθ′ ĝ(θ)|θ=θ̂initial
(or, if g(θ�w) is nonsmooth, a numerical derivative as in Hong,

Mahajan, and Nekipelov 2015, or Section 7.3 of Newey and McFadden 1994) and
Ĥ = d

dθ′h(θ)|θ=θ̂initial
.

2. Compute the bias-variance optimizing class {k̂λ}λ≥0 that solves (10) with C = C(1)
and with Σ̂ in place of Σ. Algorithms and closed-form solutions for computing
{k̂λ}λ≥0 for particular choices of C(M) are discussed in Remark 3.1. Let Bλ =
supc∈C(1) |k̂′

λc|. For each M , let λ∗
M minimize the CI length4 2 cvα(MBλ/

√
k̂′
λΣ̂k̂λ) ·√

k̂′
λΣ̂k̂λ over λ.

3. For each M , construct the one-step estimator ĥλ∗
M

= h(θ̂initial)+ k̂′
λ∗
M
ĝ(θ̂initial), and

report the misspecification-robust CI under C(M)

ĥλ∗
M

± cvα
(
MBλ∗

M
/

√
k̂′
λ∗
M
Σ̂k̂λ∗

M

)
·
√
k̂′
λ∗
M
Σ̂k̂λ∗/n� (11)

Remark 3.1 (Choice of C(M)). A simple and flexible way of forming the set C is to take

C = C(M) = {
Bγ : ‖γ‖ ≤M

}
� (12)

where B is a dg ×dγ matrix and ‖·‖ is some norm. The matrix B can be used to standard-
ize moments, account for their correlations, or to pick out which moments are believed
to be misspecified. For instance, setting B to the last dγ columns of the dg × dg identity
matrix allows for misspecification in the last dγ moments, while maintaining that the
first dg − dγ moments are valid.

In light of our result in Section 4 that it is not possible to determine the set C in a data-
driven way, the normalizing matrix B and the baseline misspecification magnitude M

used should be chosen to reflect application-specific arguments about which forms of
misspecification are plausible; we can then vary M over other plausible choices as a form
of sensitivity analysis. We illustrate this in the context of our application in Section 6,
and we refer the reader to Conley, Hansen, and Rossi (2012) and Andrews, Gentzkow,
and Shapiro (2017) for additional examples and discussion. Alternatively, one can also
use measures of statistical distance such as the probability of detecting that the model is

4The critical value cvα(b) can easily be computed in statistical software as the square root of the 1 − α

quantile of a noncentral χ2 distribution with 1 degree of freedom and noncentrality parameter b2.
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misspecified to aid with interpretation of M , as suggested in Hansen and Sargent (2008)
or Bonhomme and Weidner (2020).

While it is not possible to determine M automatically, it is possible to obtain a lower
CI [Mmin�∞] for M , which can be used as a diagnostic check verifying that the values
of M considered are not too small. We develop such tests by generalizing the J-test of
overidentifying restrictions in Appendix B. We recommend reporting the lower bound
Mmin along with the plot of the optimal CI as a function of M . Reporting such a lower
bound is in line with a recent proposal by Masten and Poirier (2020) to report results
that are robust under a set C that is consistent with the observed data while being as
small as possible in some sense.

The norm ‖·‖ determines how the researcher’s bounds on each element of γ interact.
With the �∞ norm, one places separate bounds on each element of γ, which leads to a
simple interpretation: no single element of γ can be greater than M . Under an �p norm
with 1 ≤ p<∞, the bounds on each element of γ interact with each other, so that larger
amounts of misspecification in one element is allowed if other elements are correctly
specified. Depending on whether such interactions are desirable, we recommend setting
p = 2, or p = ∞.

For these choices of the norm, computing the class of optimal sensitivities {k̂λ}λ≥0
is particularly simple. In particular, when ‖·‖ corresponds to an �p norm, the worst-case
bias has a closed form, since by Hölder’s inequality, biasC(M)(k) = sup‖γ‖p≤1 M|k′Bγ| =
M‖B′k‖p′ , where p′ is the Hölder complement of p (p′ = 1 if p = ∞, while p′ = 2 if p =
2), and the optimal sensitivities {k̂λ}λ≥0 can be computed by casting the problem as a
penalized regression problem. We explain the connection to penalized regression, and
provide details in Appendix A.2.

When p = 2, so that ‖·‖ corresponds to the Euclidean norm, the problem is analo-
gous to ridge regression, and the optimal sensitivities in Step 2 of the implementation
take the form k̂′

λ = −H(�′Wλ�)
−1�′Wλ, where Wλ = (λBB′ + Σ̂)−1, with Bλ = ‖B′k̂λ‖2.

As an alternative to using the one-step estimator in Step 3 of the implementation, one
can implement this sensitivity directly as a GMM estimator with weighting matrix Wλ

(see also Remark 3.2 below). Relative to the optimal weighting matrix Σ−1 under correct
specification, the matrix Wλ trades off precision of the moments against their potential
misspecification.

When p = ∞, the penalized regression analogy leads a simple algorithm for comput-
ing the optimal sensitivities {k̂λ}λ≥0 that is similar to the LASSO/LAR algorithm (Efron
et al. (2004)). We give details on the algorithm in Appendix A.2. It follows from this al-
gorithm if B corresponds to columns of the identity matrix, as M grows, the optimal
sensitivity successively drops the “least informative” moments, so that in the limit, if
dg ≤ dγ + dθ, the optimal sensitivity corresponds to that of an exactly identified GMM
estimator based on the dθ “most informative” moments only, where “informativeness”
is given by both the variability of a given moment, and its potential misspecification. If
dg > dγ + dθ, one simply drops all invalid moments in the limit.

Remark 3.2. In Step 3 of our implementation, we use a one-step estimator ĥλ to com-
pute a CI that is asymptotically valid and optimal. Due to concerns about finite-sample
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behavior (analogous to concerns about finite sample behavior of one-step estimators in
the correctly specified case), one may prefer using a different estimator that is asymp-
totically equivalent to ĥλ. In general, one can implement an estimator with sensitivity k

as a GMM or minimum distance estimator by using an appropriate weighting matrix, so
that one can in particular replace ĥλ by h(θ̂W ), with the weighting matrix W appropri-
ately chosen. To give the formula for the weighting matrix, let �⊥ denote a dg × (dg −dθ)

matrix that’s orthogonal to �, so that �′⊥� = 0, and let �̂⊥ denote a consistent estimate.

Let S denote a dg × dθ matrix that satisfies S′�̂ = −I and k̂λ = SĤ ′. Then we can set
W = SW1S

′ + �̂⊥W2�̂
′⊥ for some nonsingular matrix W1, and an arbitrary conformable

matrix W2. It can be verified by simple algebra that θ̂W will have sensitivity kλ.

Remark 3.3 (Global misspecification). While we focus on the local misspecification set-
ting, in which the set C/

√
n shrinks with n at a 1/

√
n, one can use our insights about

optimal weighting to construct a CI that retains the near-optimality properties of the
above CI under local misspecification, while having correct coverage under asymptotics
in which this set shrinks more slowly or stays fixed with the sample size (the latter is
termed “global misspecification” in the literature). Let W be a weighting matrix that
leads to the optimal sensitivity, as described in Remark 3.2 above, and let Ic̃ be a CI
constructed from the GMM estimator with moment conditions θ �→ g(wi�θ) − c̃. Let
I = ⋃

c̃∈C/√n Ic̃ be the union of these CIs over possible values of c̃ in the set C/
√
n. Such

an approach was suggested in the context of misspecified linear IV by Conley, Hansen,
and Rossi (2012), although they did not consider adjusting the weighting matrix. The
resulting CI has correct asymptotic coverage under both local and global misspecifica-
tion, and, for one-sided CI construction, is asymptotically equivalent under local mis-
specification to the CI discussed above. We provide further details in Appendix D. In the
Appendix, we also discuss a second approach to constructing CIs valid under global mis-
specification based on misspecification-robust standard errors (Hall and Inoue (2003)),
which is applicable if the estimate of the worst-case bias under global misspecification is
asymptotically normal. The resulting one- and two-sided CIs are asymptotically equiv-
alent under local misspecification to the optimal CIs discussed above.

Remark 3.4 (Other performance criteria). In addition to constructing a CI, one may
be interested in a point estimate of h(θ0), using mean squared error (MSE) as the cri-
terion. The steps to forming the MSE optimal point estimate are exactly the same as
above, except that, rather than minimizing CI length in Step 2, we choose λ to mini-
mize biasC(k̂λ)

2 + k̂′
λΣ̂k̂λ = MBλ + k̂′

λΣ̂k̂λ. Similar ideas apply to other criteria, such as
mean absolute deviation or quantiles of excess length of one-sided CIs (discussed in Ap-
pendix C). If λ is chosen differently in Step 2 the CI computed in Step 3 will be longer
than the one computed at λ∗

M , but it will still have correct coverage.

4. Efficiency bounds and near optimality

The CI given in equation (11) has the apparent defect that the local misspecification
vector c is reflected in the length of the CI only through the a priori restriction C imposed
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by the researcher. Thus, if the researcher is conservative about misspecification, the CI
will be wide, even if it turns out that c is in fact much smaller than the a priori bounds
defined by C. Moreover, this approach requires the researcher to explicitly specify the
set C, including any tuning parameters such as the parameter M if the set takes the form
C = C(M) that we considered in Section 3. One may therefore seek to improve upon
this CI by estimating the magnitude of c, or by estimating the tuning parameters, and
constructing a CI that is shorter if these estimates indicate that misspecification is mild.
Similarly, it may be restrictive to require that the CI be centered at an asymptotically
linear estimator: this rules out, for example, using a J-test to decide which moments to
use.

The main result of this section shows that, when C is convex and centrosymmet-
ric (c ∈ C implies −c ∈ C), the scope for improving on the CI in (11) is nonetheless lim-
ited: no sequence of CIs that maintain coverage under all local misspecification vectors
c ∈ C can be substantially tighter, even under correct specification. This result can be in-
terpreted as translating results from a “limiting experiment” that is an extension of the
linear regression model. We first give a heuristic derivation of this limiting experiment
and explain our result in the context of this limiting experiment. We then present the
formal asymptotic result, and discuss its implications in some familiar settings. Readers
who are interested only in implementing the methods, rather than efficiency results, can
skip this section.

We restrict attention in this section to the GMM model, in which ĝ(θ)= 1
n

∑n
i=1 g(wi�

θ), and we further restrict the data {wi}ni=1 to be independent and identically distributed
(i.i.d.). Similar to semiparametric efficiency theory in the standard, correctly specified
case, this facilitates parts of the formal statements and proofs, such as the definition of
the set of distributions under which coverage is required and the construction of least
favorable submodels. We expect that analogous results could be obtained in other set-
tings.

4.1 Limiting experiment

As discussed in Section 2.1, we can form CIs based on linear estimators with asymptotic
distribution N (k′c�k′Σk). This suggests that the problem of constructing an asymptot-
ically valid CI for h(θ) in the model (1) is asymptotically equivalent to the problem of
constructing a CI for the parameter Hθ in the approximately linear model

Y = −�θ+ c +Σ1/2ε� c ∈ C� ε ∼ N (0� I)� (13)

where �, H, and Σ1/2 are known, and we observe Y . One can think of this model as an
“approximately” linear regression model, with −� playing the role of the design matrix
of the (fixed) regressors, and c giving the approximation error. This model dates back at
least to Sacks and Ylvisaker (1978), who considered estimation in this model when C is
a rectangular set and Σ is diagonal. The analog of the asymptotically linear estimator ĥ
in (4) is the linear estimator k′Y . To see the analogy, note that k′Y − Hθ is distributed
N ((−k′� − H)θ + k′c�k′Σk), and restricting ourselves to estimators that do not have
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infinite worst-case bias when θ is unrestricted gives the condition (5). In the limiting ex-
periment, the analog of the CI (7) is given by the CI k′Y ± cvα(biasC(k)/

√
k′Σk) · √k′Σk.

Finding weights that minimize the length of this CI is isomorphic to the problem of find-
ing the sensitivity that minimizes the asymptotic CI length in (9).

For a general convex set C, the bias-variance optimization problem in equation (10)
can be reformulated as a convex programming problem, as shown in Low (1995). In par-
ticular, when the set C is centrosymmetric (see Appendix C for the general case), the
bias-variance optimizing class of weights {kλ}λ>0 is given by the class {kδ}δ>0, where

k′
δ = k′

δ�Σ���H�C = −(cδ − �θδ)
′Σ−1

(cδ − �θδ)
′Σ−1�H ′/HH ′ � (14)

and, for each δ, cδ, θδ are the solutions to the convex program

sup
θ�c

Hθ s.t. c ∈ C� (c − �θ)′Σ−1(c − �θ)≤ δ2/4� (15)

It then follows from Donoho (1994) that among fixed-length CIs based on linear es-
timators (CIs that take the form k′Y ± χ for some constant χ), the shortest CI in the
limiting experiment takes the form

k′
δ∗Y ± cvα

(
biasC(kδ∗)/

√
k′
δ∗Σ̂kδ∗

)
·
√
k′
δ∗Σkδ∗� (16)

where biasC(kδ) = −k′
δcδ, and δ∗ = argminδ>0 2 cvα(biasC(kδ)/

√
k′
δΣkδ) ·

√
k′
δΣkδ is cho-

sen to minimize the CI length. The CI in (11) is an analog of this CI, with δ playing the
role of the index λ.

The CI in (16) takes a familiar form in the special case in which C is a linear subspace
of Rdg , so that for some dg × dγ full-rank matrix B with dγ ≤ dg − dθ, C = {Bγ : γ ∈ R

dγ }.
Let B⊥ denote a dg × (dg − dγ) matrix that’s orthogonal to B. Then for any δ > 0, k′

δ =
k′

LS�B, where

k′
LS�B = −H

(
�′B⊥

(
B′⊥ΣB⊥

)−1
B′⊥�

)−1
�′B⊥

(
B′⊥ΣB⊥

)−1
B′⊥ (17)

is the sensitivity of the GLS estimator after premultiplying (13) by B′⊥, (which effectively
picks out the observations with zero misspecification). Since this estimator is unbiased,

the CI in (16) becomes k′
LS�BY ± z1−α/2

√
k′

LS�BΣkLS�B.

Like the asymptotic CI (11), the CI in (16) has the potential drawback that its length
is determined by the worst possible misspecification in C, leaving open the possibility
of efficiency improvements when c turns out to be close to zero. As a best-case scenario
for such improvements, consider the problem: among confidence sets with coverage at
least 1 − α for all θ ∈ R

dθ and c ∈ C, minimize expected length when θ = θ∗ and c = 0.
Note that this setup is even more favorable for potential improvements on our CI, since
it allows the researcher to guess correctly that θ is equal to some θ∗, and it allows for
confidence sets that are not intervals (in this case, length is defined as Lebesgue mea-
sure). Let κ∗(H���Σ�C) denote the ratio of this optimized expected length relative to the
length of the CI in (16) (it can be shown that this ratio does not depend on θ∗).



90 Armstrong and Kolesár Quantitative Economics 12 (2021)

If C is convex, a formula for κ∗(H���Σ�C) follows from applying the general results
in Corollary 3.3 in Armstrong and Kolesár (2018) to the limiting model. If C is also cen-
trosymmetric, then

κ∗(H���Σ�C) = (1 − α)E
[
ω

(
2(z1−α −Z)

) | Z ≤ z1−α

]
2 min

δ
cvα

(
ω(δ)

2ω′(δ)
− δ

2

)
ω′(δ)

� (18)

where Z ∼ N (0�1) and ω(δ) is two times the optimized value of (15). Furthermore,
we show in Theorem C.7 that the right-hand side is lower-bounded by (z1−α(1 − α) −
z̃α�(z̃α)+φ(z1−α)−φ(z̃α))/z1−α/2, where z̃α = z1−α−z1−α/2 for any H,�,Σ, and C, where
φ(·) denotes the standard normal density. For α = 0�05, this universal lower bound eval-
uates to 71�7%. Evaluating κ∗ for particular choices of H, �, Σ, and C often yields even
higher efficiency.

If C is a linear subspace, then ω(δ) is linear, and

κ∗(H���Σ�C) = (1 − α)z1−α +φ(z1−α)

z1−α/2
≥ z1−α

z1−α/2
� (19)

where the lower bound follows since φ(z1−α) ≥ αz1−α by the Gaussian tail bound 1 −
�(x) ≤ φ(x)/x for x > 0. This bound corresponds to that in Pratt (1961) for the case of a
univariate normal mean. The potential efficiency improvement essentially comes from
using prior knowledge of θ∗ to turn a two-sided critical value into a one-sided critical

value. Furthermore, it follows from Joshi (1969) that the CI k′
LS�BY ± z1−α/2

√
k′

LS�BΣkLS�B

is the unique CI that achieves minimax expected length. Thus, not only is the scope for
improvement at a particular θ∗ bounded by (19), any CI with shorter expected length at
some θ∗ must necessarily perform worse elsewhere in the parameter space.

For the one-sided CI (8), the analogous CI in the limiting experiment is [k′Y −
biasC(k)− z1−α

√
k′Σk�∞), and, as we discuss in Appendix C, to choose the optimal sen-

sitivity k, one can consider optimizing a given quantile of its worst-case excess length.
The results in Armstrong and Kolesár (2018) again give an efficiency bound for improve-
ment at c = 0 and a particular θ∗, analogous to (18) for the two-sided case. See Ap-
pendix C for details. If C is a linear subspace, then optimizing quantiles of worst-case

excess length yields the CI [k′
LS�BY − z1−α

√
k′

LS�BΣkLS�B�∞), independently of the quan-

tile one is optimizing. Furthermore, the efficiency bound implies that this one-sided CI
is in fact fully optimal over all quantiles of excess length and all values of θ, c in the local
parameter space.

These efficiency results for the CI (16) in the limiting experiment suggest that the
scope for improvement over the CI in (11) should be limited in large samples. Theo-
rem 4.1, stated in the next section, uses the analogy with the approximately linear model
(13) along with Le Cam-style arguments involving least favorable submodels to show
that this bound indeed translates to the locally misspecified GMM model. For one-sided
CIs, we state an analogous result in Appendix C. We discuss the implications of these
results in Section 4.3.
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4.2 Asymptotic efficiency bound

To make precise our statements about coverage and efficiency, we need the notion of
uniform (in the underlying distribution) coverage of a confidence interval. This requires
additional notation, which we now introduce. Let P denote a set of distributions P of the
data {wi}ni=1, and let Θn ⊆R

dθ denote the parameter space for θ. We require coverage for
all pairs (θ�P) ∈Θn ×P such that

√
ngP(θ) ∈ C, where the subscript P on the population

moment condition makes it explicit that it depends on the distribution of the data.5

Letting Sn = {(θ�P) ∈ Θn × P : √
ngP(θ) ∈ C} denote this set, the condition for coverage

at confidence level 1 − α can be written

lim inf
n→∞ inf

(θ�P)∈Sn

P
(
h(θ) ∈ In

) ≥ 1 − α� (20)

We say that a confidence set In is asymptotically valid (uniformly over Sn) at confidence
level 1 − α if this condition holds.6

Among two-sided CIs of the form ĥ ± χ̂ that are asymptotically valid, we prefer CIs
with shorter expected length. To avoid issues with convergence of moments, we use
truncated expected length, and define the asymptotic expected length of a two-sided
CI at Pn ∈ P as lim infT→∞ lim infn→∞ EPn min{√n · 2χ̂�T }, where EP denotes expectation
under P .

We are now ready to state the main efficiency result.

Theorem 4.1. Suppose that C is convex and centrosymmetric. Let ĥλ∗ and χ̂∗
λ∗ be formed

as in Section 3. Suppose that Assumptions C.2, C.3, C.5, C.6, and C.7 in Appendix C hold.
Suppose that the data {wi}ni=1 are i.i.d. under all P ∈ P . Let (θ∗�P0) be correctly specified
(i.e., gP0(θ

∗)= 0) such that P contains a submodel through P0 satisfying Assumption C.1.
Then:

(i) The CI ĥλ∗ ± χ̂∗
λ∗ is asymptotically valid, and its half-length χ̂∗

λ∗ satisfies
√
nχ̂∗

λ∗ =
χ(θ�P)+ oP(1) uniformly over (θ�P) ∈ Sn where

χ(θ�P) = min
k

cvα
(
biasC(k)/

√
k′Σθ�Pk

)√
k′Σθ�Pk

with biasC(k) calculated with �= �θ�P and H =Hθ.

(ii) For any other asymptotically valid CI ĥ± χ̂,

lim inf
T→∞

lim inf
n→∞ EP0 min{√n · 2χ̂�T }

2χ
(
θ∗�P0

) ≥ κ∗(Hθ∗��θ∗�P0�Σθ∗�P0�C)�

5To be precise, we should also subscript all other quantities such as � and Σ by P . To prevent notational
clutter, we drop this index in the main text unless it causes confusion.

6In general, θ0 and h(θ0) may be set identified for a given sample size n (although our assumptions
imply that the identified set will shrink at a root-n rate). The coverage requirement (20) states that the CI
must cover points in the identified set for h(θ), as in Imbens and Manski (2004); see Appendix C.



92 Armstrong and Kolesár Quantitative Economics 12 (2021)

where κ∗(H���Σ�C) is defined in (18). Furthermore, for any H, Σ, �, and C, κ∗ ad-
mits the universal lower bound (z1−α(1 −α)− z̃α�(z̃α)+φ(z1−α)−φ(z̃α))/z1−α/2,
where z̃α = z1−α − z1−α/2 and φ(·) denotes the standard normal density.

The proof for this theorem is given in Appendix C, which also gives an analogous
result for one-sided confidence intervals. Assumptions C.2, C.3, C.5, C.6, and C.7, stated
in Appendix C, require that the conditions in Section 2 hold in a uniform sense over the
class P . In the Supplemental Materials, we give primitive conditions for these assump-
tions in the misspecified linear IV model. Assumption C.1, also stated in the Appendix,
requires that the class P be rich enough to contain a submodel that is least favorable
for the GMM problem, so that the class does not implicitly impose any other conditions
that could be used to make inference easier. In the Supplemental Materials, we provide
a general way of constructing a submodel satisfying these conditions.

The universal lower bound on κ∗ is new and may be of independent interest. For
α = 0�05, it evaluates to 71�7%. The universal lower bound is sharp in the sense that there
exist �, Σ, H, and C for which κ∗ equals this lower bound. In particular applications,
the efficiency bound κ∗ can be computed at estimates of �, Σ and H, and often, this
gives much higher efficiencies. We illustrate these bounds in the empirical application
in Section 6.

4.3 Discussion

To help build intuition for the efficiency bound in Theorem 4.1, and to relate this result
to the literature, we now consider some special cases. We first discuss the (standard) cor-
rectly specified case. Second, we consider the case in which some moments are known
to be valid, and the misspecification in the remaining moments is unrestricted. This case
may be of interest in its own right. We then discuss the general case. Finally, we discuss
the connection to certain statistical measures of distance considered in the literature.

4.3.1 Correctly specified case Suppose that C = {0}. This is in particular a linear sub-
space of R

dg , with B = 0, and B⊥ = I, the dg × dg identity matrix. Thus, in the lim-
iting experiment, the optimal CI uses the GLS estimator k′

LS�0Y , with kLS�0 given in
(17) (with B = 0). For testing the null hypothesis Hθ = h0 against the one-sided alter-
native Hθ ≥ h0, the one-sided z-statistic based on k′

LS�0Y is uniformly most powerful
(van der Vaart (1998, Proposition 15.2)). Inverting these tests yields the CI [k′

LS�0Y −
z1−α

√
k′

LS�0ΣkLS�0�∞). Since the underlying tests are uniformly most powerful, this CI

achieves the shortest excess length, simultaneously for all quantiles and all possible val-
ues of the parameter θ. For two-sided CIs, the results described in Section 4.1 imply

that the CI h′
LS�0Y ±z1−α/2

√
k′

LS�0ΣkLS�0 is the unique CI that achieves minimax expected

length, and the efficiency of this CI relative to a CI that optimizes its expected length at
a single value θ∗ of θ when indeed θ = θ∗ is given in equation (19). It evaluates to 84�99%
at α = 0�05.

Applying Theorem 4.1 to the case C = {0} gives an asymptotic version of the two-
sided efficiency bound. Furthermore, the CI in Theorem 4.1 reduces to the usual two-
sided CI based on θ̂Σ−1 . Thus, in this case, Theorem 4.1 shows that very little can be
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gained over the usual two-sided CI by optimizing the CI relative to a particular distri-
bution P0. Results in the appendix give an analogous result for one-sided CIs. In the
one-sided case, this asymptotic result is essentially a version of a classic result from the
semiparametric efficiency literature for one-sided tests, applied to CIs (see Chapter 25.6
in van der Vaart (1998)). In the two-sided case, the result is, to our knowledge, new.

4.3.2 Some valid and some invalid moments Consider now the case in which the first
dg − dγ moments are known to be valid, with the potential misspecification for the re-
maining dγ moments unrestricted. Then C = {(0′�γ′)′ : γ ∈ R

dγ } corresponds to a linear
subspace with B given by the last dγ columns of the identity matrix, and B⊥ given by the
first dg −dγ columns. Optimal CIs in the limiting experiment therefore use the estimator
k′

LS�BY , which is the GLS estimator based only on the observations with no misspecifi-
cation.

The one-sided CI based on k′
LS�BY achieves the shortest excess length, simultane-

ously for all quantiles and all possible values of the parameter θ. The two-sided CI

k′
LS�BY ±z1−α/2

√
k′

LS�BΣkLS�B is optimal in the same sense as the usual CI in Section 4.3.1:

it achieves minimax expected length, and its efficiency, relative to a CI that optimizes its
length at a single θ∗ and γ = 0, is lower-bounded by z1−α/z1−α/2. Theorem 4.1 formally
translates the efficiency bound from the limiting model to the GMM model, so that the
usual two-sided CI based on h(θ̂W (B)) is asymptotically efficient in the same sense as
the usual CI based on h(θ̂Σ−1) discussed in Section 4.3.1 under correct specification. Just
as with the results in Section 4.3.1, this asymptotic result is, to our knowledge, new. The
one-sided analog follows from the results in Appendix C. These results stand in sharp
contrast to the results for estimation, where the MSE improvement at small values of γ
may be substantial.

An important consequence of these results is that asymptotically valid one-sided CIs
based on shrinkage or model-selection procedures, such as one-sided versions of the CIs
proposed in Andrews and Guggenberger (2009), DiTraglia (2016) or McCloskey (2020)
must have worse excess length performance than the usual one-sided CI based on the
GMM estimator h(θ̂W (B)) that uses valid moments only. While it is possible to construct
two-sided CIs that improve upon the usual CI based on h(θ̂W (B)) at particular values of
θ and γ, the scope for such improvement is smaller than the ratio of one- to two-sided
critical values. Furthermore, any such improvement must come at the expense of worse
performance at other points in the parameter space.7 Therefore, in order to tighten CIs
based on valid moments only, it is necessary to make a priori restrictions on the potential
misspecification of the remaining moments.

4.3.3 General case According to the results in Section 4.3.2, one must place a priori
bounds on the amount of misspecification in order to use misspecified moments. This
leads us to the general case, where we place the local misspecification vector c in some
set C that is not necessarily a linear subspace. One can then form a CI centered at an es-
timate formed from these misspecified moments using the methods in Section 3. In the

7Consistently with these results, in a simulation study considered in DiTraglia (2016), the post-model
selection CI that he proposes is shown to be wider on average than the usual CI around a GMM estimator
that uses valid moments only.
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case where C is convex and centrosymmetric, Theorem 4.1 shows that this CI is near op-
timal, in the sense that no other CI can improve upon it by more than a factor of κ∗, even
in the favorable case of correct specification. Since the width of the CI is asymptotically
constant under local parameter sequences θn → θ∗ and sufficiently regular probability
distributions Pn → P0 (e.g., Pn → P0 along submodels satisfying Assumption C.1), this
also shows that the CI is near optimal in a local minimax sense. In the general case, The-
orem 4.1, as well as the analogous results for one-sided CIs in Appendix C are, to our
knowledge, new.

As we discuss in Section 3, we recommend reporting results for a range of sets C(M)

indexed by a scalar M that bounds the magnitude of misspecification. One may instead
wish to report a single CI based on a data-driven estimate of M , for example, by using a
first-stage J test to assess plausible magnitudes of misspecification. Formally, one would
seek a CI that is valid over C(M) while improving length when in fact ‖γ‖ � M , where
M is some initial conservative bound. When C is convex and centrosymmetric, Theo-
rem 4.1 shows that the scope for such improvements is limited: the average length of
any such CI cannot be much smaller than the CI that uses the most conservative choice
M , even when c = 0. The impossibility of choosing M based on the data is related to the
impossibility of using specification tests to form an upper bound for M . On the other
hand, it is possible to obtain a lower bound for M using such tests. We develop lower CIs
for M in Appendix B.

4.3.4 Cressie–Read divergences Andrews, Gentzkow, and Shapiro (2020) have shown
that defining misspecification in terms of the magnitude of any divergence in the Cressie
and Read (1984) family leads to a set C that asymptotically takes the form C = {Σ1/2γ :
‖γ‖2 ≤ M} = {c : c′Σ−1c ≤ M2}. The Cressie–Read family includes the Hellinger distance
used by Kitamura, Otsu, and Evdokimov (2013), who consider minimax point estimation
among estimators satisfying certain regularity conditions. Since this set C takes the form
discussed in Remark 3.1 with p = 2 and B = Σ1/2, it follows from the discussion in Re-
mark 3.1 that the optimal sensitivity corresponds to the GMM estimator with weighting
matrix (λBB′ + Σ)−1 = (λ + 1)−1Σ−1. Since this is proportional to the weighting matrix
Σ−1 that is optimal under correct specification, we obtain the same optimal sensitivity
k′

LS�0 = −H(�′Σ−1�)−1�′Σ−1 as in the correctly specified case discussed in Section 4.3.1.
As we show in Appendix A.1, this form of C leads to a closed form solution for the effi-
ciency bound κ∗.

The results above imply that any estimator with sensitivity kLS�0 is near optimal for
CI construction. In line with these results, the estimator in Kitamura, Otsu, and Evdoki-
mov (2013) has sensitivity kLS�0. Thus, the usual GMM estimator h(θ̂Σ−1) and the estima-
tor in Kitamura, Otsu, and Evdokimov (2013) are both near-optimal for CI construction,
even if one allows for arbitrary CIs that are not necessarily centered at estimators that
satisfy the regularity conditions in Kitamura, Otsu, and Evdokimov (2013). Also, because
they have the same sensitivity, under this form of misspecification, the usual GMM es-
timator h(θ̂Σ−1) and the estimator in Kitamura, Otsu, and Evdokimov (2013) have the
same local asymptotic minimax properties.
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4.4 Extensions: Asymmetric constraints and constraints on θ

If the set C is convex but asymmetric (such as when C includes bounds on a norm as well
as sign restrictions, or when C includes equality and sign restrictions, as in Moon and
Schorfheide (2009)), one can still apply bounds from Armstrong and Kolesár (2018) to
the limiting model described in Section 4.1. Our general asymptotic efficiency bounds
in Appendix C translate these results to the locally misspecified GMM model so long
as C is convex. Since the negative implications for efficiency improvements under cor-
rect specification use centrosymmetry of C, introducing asymmetric restrictions, such as
sign restrictions, is one possible way of getting efficiency improvements at some smaller
set D ⊆ C while maintaining coverage over C. We derive efficiency bounds and optimal
CIs for this problem in Appendix C. Interestingly, the scope for efficiency improvements
can be different for one- and two-sided CIs, and can depend on the direction of the CI
in this case. To get some intuition for this, note that, in the instrumental variables model
with a single instrument and single endogenous regressor, sign restrictions on the co-
variance of an instrument with the error term can be used to sign the direction of the
bias of the instrumental variables estimator, which is useful for forming a one-sided CI
only in one direction.

Finally, while we focus on restrictions on c, one can also incorporate local restric-
tions on θ. Our general results in Appendix C give efficiency bounds that cover this case.
Similar to the discussion above, these results have implications for using prior informa-
tion about θ to determine the amount of misspecification, or to shrink the width of a
CI directly. In particular, while it is possible to use prior information on θ (say, an upper
bound on ‖θ‖ for some norm ‖ · ‖) to shrink the width of the CI, the width of the CI and
the estimator around which it is centered must depend on the a priori upper bounds on
the magnitude of θ and c when this prior information takes the form of a convex, cen-
trosymmetric set for (θ′� c′)′. This rules out, for example, choosing the moments based
on whether the resulting estimate for θ is in a plausible range.

5. Applications

This section describes particular applications of our approach, along with a discussion
of implementation details appropriate to each application.

5.1 Instrumental variables

The single equation linear instrumental variables (IV) model is given by

yi = x′
iθ0 + εi� (21)

where, in the correctly specified case, Eεizi = E(yi − x′
iθ0)zi = 0, with zi a dg-vector of

instruments. This is an instance of a GMM model with g(θ) = E(yi − x′
iθ)zi and ĝ(θ) =

1
n

∑n
i=1 zi(yi − x′

iθ).
One common reason for misspecification in this model is that the instruments do

not satisfy the exclusion restriction, because they appear directly in the structural equa-
tion (21), so that εi = z′

Iiγ/
√
n+ ηi, where E[ziηi] = 0, and zIi corresponds to a subset I
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of the instruments, the validity of which one is worried about. This form of misspecifica-
tion has previously been considered in a number of papers, including Hahn and Haus-
man (2005), Conley, Hansen, and Rossi (2012), and Andrews, Gentzkow, and Shapiro
(2017), among others. Bounding the norm of γ using some norm ‖·‖ then leads to the
set given in equation (12), with B =E[ziz′

Ii].
Although the matrix B is unknown, for the purposes of estimating the optimal sensi-

tivity and constructing asymptotically valid CIs, it can be replaced by the sample analog
B̂ = n−1 ∑n

i=1 ziz
′
Ii. This does not affect the asymptotic validity or coverage properties

of the resulting CI. Under this setup, the parameter M bounds that magnitude of γ, the
direct effect of the instruments on the outcome. Therefore, the appropriate choice of M
will depend on the plausible magnitude of these direct effects; see, for example, Conley,
Hansen, and Rossi (2012) for examples and a discussion.

The linearity of the moment condition leads to simplifications in our implemen-
tation in Section 3. In Step 1, as the initial estimator, one can use the two-stage least
squares (2SLS) estimator

θ̂initial =
[(

n∑
i=1

zix
′
i

)′( n∑
i=1

ziz
′
i

)−1( n∑
i=1

zix
′
i

)]−1( n∑
i=1

zix
′
i

)′( n∑
i=1

ziz
′
i

)−1 n∑
i=1

ziyi�

This leads to the estimates �̂ = − 1
n

∑n
i=1 zix

′
i and Σ̂ = 1

n

∑n
i=1(yi − x′

iθ̂initial)
2ziz

′
i. Alter-

natively, if we assume homoskedasticity, we can use the estimator Σ̂H = 1
n

∑n
i=1(yi −

x′
iθ̂initial)

2 · 1
n

∑n
i=1 ziz

′
i. In the correctly specified case, the 2SLS estimator is only opti-

mal under homoskedasticity, while the GMM estimator with weighting matrix Σ̂−1 is
optimal in general. Due to concerns with finite sample performance, however, it is com-
mon to use the 2SLS estimator along with standard errors based on a robust variance
estimate, even when heteroskedasticity is suspected. Mirroring this practice, one can
use Σ̂H when forming the optimal sensitivity k̂λ∗

M
and worst-case bias in Step 2, but use

the robust variance estimate Σ̂ in Step 3 when forming the final CI in equation (11).
The CI will then be optimal under homoskedasticity, but it will remain valid under het-
eroskedasticity, just like the usual CI based on 2SLS with robust standard errors in the
correctly specified case.

If the parameter of interest linear in θ, h(θ) = Hθ, then the one-step estimator ĥλ∗
M

in Step 3 does not depend on the choice of the initial estimator (except possibly through
the estimate of Σ when forming the desired sensitivity):

ĥλ∗
M

= Hθ̂initial + k̂′
λ∗
M

1
n

n∑
i=1

(
yi − x′

iθ̂initial
)
zi = k̂′

λ∗
M

1
n

n∑
i=1

yizi +
(
H − k̂′

λ∗
M

1
n

n∑
i=1

zix
′
i

)
θ̂initial

= k̂′
λ∗
M

1
n

n∑
i=1

yizi�

where the second line follows since the sensitivities k̂λ∗
M

satisfy H = −k̂′
λ∗
M
�̂ = k̂′

λ∗
M

1
n ×∑n

i=1 zix
′
i. Since the estimator ĥλ∗

M
is linear, the worst-case bias calculations are the same
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under global misspecification, when the magnitude M of γ in equation (12) grows at
the rate

√
n. By using variance estimates that are valid under global misspecification

in place of the variance estimate k̂′
λ∗
M
Σ̂k̂λ∗

M
in the CI construction, one can ensure that

the resulting CI also remains valid under global misspecification. See Appendix D.2 for
details.

Remark 5.1. This framework can also be used to incorporate a priori restrictions on the
magnitude of coefficients on control variables in an instrumental variables regression.
Suppose that we have a set of controls wi, that appear in the structural equation (21), so
that yi = x′

iθ+w′
iγ/

√
n+εi, and εi is uncorrelated with wi as well as vector of instruments

z̃i. If one is willing to restrict the magnitude of the coefficient vector γ, so that ‖γ‖ ≤ M ,
then one can add wi to the original vector of instruments z̃i, zi = (z̃′

i�w
′
i)

′. For example,
if one is concerned with functional form misspecification, one can define the control
variables to be higher order series terms. We then obtain the misspecified IV model with
the set C given by (12), with B = E[ziw′

i]. Thus, we can interpret this model as a locally
misspecified version of a model with wi used as an excluded instrument.

Remark 5.2. Instead of bounding the coefficient vector γ, one can alternatively bound
the magnitude of the direct effect z′

Iiγ. If all instruments are potentially invalid, zIi = zi,
and one sets C = {γ : E[(z′

iγ)
2] ≤ M}, then under homoscedasticity, this corresponds to

the case discussed in Section 4.3.4, where the uncertainty from potential misspecifi-
cation is exactly proportional to the asymptotic sampling uncertainty in ĝ(θ). Conse-
quently, in this case the optimal sensitivity is the same as that given by the 2SLS estima-
tor.

5.2 Omitted variables bias in linear regression

Specializing to the case where zi = xi, the misspecified IV model of Section 5.1 gives a
misspecified linear regression model as a special case. This can be used to assess sensi-
tivity of regression results to issues such as omitted variables bias. In particular, consider
the linear regression model

yi = x′
iθ+w∗

i + ε̃i� Exiε̃i = 0�

where xi and yi are observed and w∗
i is a (possibly unobserved) omitted variable. Cor-

relation between w∗
i and xi will lead to omitted variables bias in the OLS regression of

yi on xi. If w∗
i is unobserved, then we obtain our framework by making the assump-

tion
√
nEw∗

i xi ∈ C, for some set C, and letting ĝ(θ) = 1
n

∑n
i=1 xi(yi − x′

iθ). This setup can
also cover choosing between different sets of control variables. Suppose that w∗

i = w′
iγ,

where wi is a vector of observed control variables that the researcher is considering not
including in the regression. If γ is unrestricted, then by the results in Section 4.3.2, the
long regression of yi on both xi and wi yields nearly optimal CIs. If one is willing to re-
strict the magnitude of γ, it is possible to tighten these CIs, with the setting reducing
to that in Remark 5.1, with zi = (xi�w

′
i)

′. The same framework can be used to incorpo-
rate selection bias by defining w∗

i to be the inverse Mills ratio term in the formula for
E[yi | xi� i observed] in Heckman (1979).
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5.3 Functional form misspecification

Our setup allows for misspecification in moment conditions arising from functional
form misspecification. To apply our setup, one must relate this misspecification to the
bounds C on the moment conditions at the true parameter value. One approach to
bounding functional form misspecification is to use smoothness conditions from the
nonparametric statistics literature, such as bounds on derivatives (see, e.g., Tsybakov
(2009), for an introduction to this literature). Since these sets are typically convex (taking
a convex combination of two functions that satisfy a given bound on a given derivative
gives a function that also satisfies this bound), they typically lead to convex sets C, so
that our framework can be applied.

As a simple example, consider a nonparametric IV model with discrete covariates:

E
[
yi −m(xi) | zi

] = 0�

Suppose x takes values in the finite set X = {x̃1� � � � � x̃Nx} and zi takes values in the finite
set Z = {z̃1� � � � � z̃Nz }. This setting was considered by Freyberger and Horowitz (2015),
who place only nonparametric smoothness or shape restrictions on the unknown func-
tion m. To see the connection with our setting, we note that such restrictions can be
interpreted as bounds on specification error from a parametric model. If one models
these restrictions as local to a parametric family, one obtains our setting. In particu-
lar, let m(xi) = f (xi� θ0) + n−1/2r(xi), r ∈ R, where R is a nonparametric smoothness
class. For example, if xi is univariate, we can let f (xi� θ) = θ1 + θ2xi and define R to
be the class of functions with r(0) = r′(0) = r ′′(0) and second derivative bounded by
some constant M . This is equivalent to placing the bound n−1/2M on the second deriva-
tive of m(·), which corresponds to a Hölder smoothness class. We can then map this
to a misspecified GMM model, with the jth element of the moment function given by
gj(xi� yi� θ) = (yi − f (xi� θ0))I(zi = z̃j) and jth element of the misspecification vector c

given by Er(xi)I(zi = z̃j) = ∑
x̃∈X r(x̃)P(xi = x̃� zi = z̃j). Stacking these equations, we

see that c = Bγ where B is a matrix composed of the elements P(xi = x̃� zi = z̃j) and
γ = (r(x̃1)� � � � � r(x̃Nx))

′. As with the IV setting in Section 5.1, B is unknown, but can be
replaced by a consistent estimate based on the sample analogue. So long as the set R
is convex, we obtain convex restrictions on γ and therefore c, so that our framework
applies.

This example brings up an important point about the interpretation of h(θ). If the
object of interest is a functional of m(x) = f (x�θ0)+n−1/2r(x), then we will need to allow
the object of interest h(·) to depend on the misspecification vector directly, as well as
on θ. As discussed at the beginning of Section 2, this falls into a mild extension of our
framework. Alternatively, under a suitable parametrization of f and r, it is often possible
to define the object of interest to be function of θ alone. For example, if we are interested
in the derivative m′(x0) at a particular point x0 under a bound on the second derivative
of m(·), we can let f (x�θ) = θ1 +θ2x and define R to be the class of functions with r(x0) =
r′(x0) = r′′(x0) = 0 and second derivative bounded by M . Then m′(x0)= θ2.
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5.4 Treatment effect extrapolation

Often, the average effect of a counterfactual policy on a particular subset of a population
is of interest, and we would like to weaken the assumptions under which this effect is
point-identified. We have available estimates τ̂ = (τ̂1� � � � � τ̂m)

′ of the parameter τ, with
ĝ(θ) = τ̂ − Aθ, and g(θ) = τ − Aθ for a known matrix A. We would like to extrapolate
from these estimates to learn about the parameter of interest h(θ0) =Hθ0. The potential
extrapolation bias is captured by the assumption that g(θ0) ∈ C̃n, some convex set.

Note that, because the moment condition is linear in the parameter of interest,
asymptotic validity of our CIs does not require that the set C̃n takes the form C̃n = C/

√
n.

CIs given in equation (7) based on linear estimators of the form ĥ = k′τ̂ (such as min-
imum distance estimators), with C = √

nC̃n are valid under both local and global mis-
specification (i.e., under the assumption that the set C̃n is fixed as n → ∞).

One example that falls into this setup are differences-in-differences designs when
the parallel trends assumption is violated. Here, there are m time periods, with treatment
taking place in period T0. The (m−T0)-vector θ corresponds to a vector of dynamic treat-
ment effects on the treated, Aθ = (0′� θ′)′, and g(θ0) is a vector of trend differences be-
tween the treated and untreated, with g(θ0) = 0 if the parallel trends assumption holds.
Rambachan and Roth (2019) built on the framework in this paper to develop CIs in this
setting.

Another example that has been of recent interest involves nonseparable models with
endogeneity. Under conditions in Imbens and Angrist (1994) and Heckman and Vyt-
lacil (2005), instrumental variables estimates τ̂m with different instruments are con-
sistent for average treatment effects for different subpopulations. A recent literature
(Kowalski (2016), Brinch, Mogstad, and Wiswall (2017), Mogstad, Santos, and Torgov-
itsky (2018)) has focused on using assumptions on treatment effect heterogeneity to ex-
trapolate these estimates to other populations. Our framework applies if these assump-
tions amount to placing the differences between the estimated treatment effects and the
effect of interest in a known convex set.

6. Empirical application

This section illustrates the confidence intervals developed in Section 2 in an empirical
application to automobile demand based on the data and model in Berry, Levinsohn,
and Pakes (1995, BLP hereafter). We use the version of the model as implemented by
Andrews, Gentzkow, and Shapiro (2017), who calculate the asymptotic bias of the GMM
estimator with weighting matrix Σ−1 under local misspecification in this setting.8

6.1 Model description and implementation

In this model, the utility of consumer i from purchasing a vehicle j, relative to the out-
side option, is given by a random-coefficient logit model Uij = ∑K

k=1 xjk(βk + σkvik) −
8The dataset for this empirical application has been downloaded from the Andrews, Gentzkow, and

Shapiro (2017) replication files, available at https://doi.org/10.7910/DVN/LLARSN.

https://doi.org/10.7910/DVN/LLARSN
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αpj/yi + ξj + εij , where pj is the price of the vehicle, xjk the kth observed product char-
acteristic, ξj is an unobserved product characteristic, and εij is has an i.i.d. extreme
value distribution. The income of consumer i is assumed to be log-normally distributed,
yi = em+ςvi0 , where the mean m and the variance ς of log-income are assumed to be
known and set to equal to estimates from the Current Population Survey. The unobserv-
ables vi = (vi0� � � � � viK) are i.i.d. standard normal, while the distribution of the unob-
served product characteristic ξj is unrestricted.

The marginal cost mcj for producing vehicle j is given by log(mcj)= w′
jν+ωj , where

wj are observable characteristics, and ωj is an unobservable characteristic. The full vec-
tor of model parameters is given by θ = (σ ′�α�β′� ν′)′. Given this vector, and given a vec-
tor of unobservable characteristics, one can compute the market shares implied by util-
ity maximization, which can be inverted to yield the unobservable characteristic as a
function of θ, ξj(θ). One can similarly invert the unobserved cost component, writing it
as a function of θ, ωj(θ), under the assumption that firms set prices to maximize profits
in a Bertrand–Nash equilibrium. Given a vector zdj of demand-side instruments, and a
vector zsj of supply-side instruments, this yields the moment condition g(θ) = E[γ̂(θ)],
where

ĝ(θ)= 1
n

n∑
j=1

(
zdjξj(θ)

zsjωj(θ)

)
�

The BLP data spans the period 1971 to 1990, and includes information on essen-
tially all n = 999 models sold during that period (for simplicity, we have suppressed
the time dimension in the description above). There are 5 observable characteristics
xj : a constant, horsepower per 10 pounds of weight (HPWt), a dummy for whether air-
conditioning is standard (Air), mileage per 10 dollars (MP$) defined as MPG over av-
erage gas price in a given year, and car size (Size), defined as length times width. The
vector zdj consists of xj , plus the sum of xj across models other than j produced by the
same firm, and for rival firms. There are 6 cost variables wj : a constant, log of HPWt,
Air, log of MPG, log of Size, and a time trend. The vector zsj consists of these variables,
MP$, and the sums of wj for own-firm products other than j, and for rival firms. After
excluding collinear instruments, this gives a total of dg = 31 instruments, 25 of which
are excluded to identify dθ = 17 model parameters. The parameter of interest is average
markup, h(θ)= 1

n

∑
j(pj −mcj(θ))/pj .

One may worry that some of these instruments are invalid, because elements of zdj
or zsj may appear directly in the utility or cost function with the coefficient on the �th
element given by δd�γd�/

√
n or δs�γs�/

√
n, respectively. Here, δd� and δs� are scaling con-

stants so that, given the sample size n = 999 at hand, γd� has the interpretation that the
consumer willingness to pay for one standard deviation change in the �th demand-side
instrument zdj� is γd�% of the average 1980 car price, and changing the �th supply-side
instrument zsj� by one standard deviation changes the marginal cost by γs�% of the av-
erage car price. Andrews, Gentzkow, and Shapiro (2017) used this scaling in their sen-
sitivity analysis, and they discuss economic motivation for concerns about this form of
misspecification. By way of comparison, the estimates of the parameters β and ν in the
utility and cost function imply that consumers are on average willing to pay between 2�2
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and 10�0% of the average car price for a standard deviation change in one of the included
car characteristics, and that a standard deviation change in the included cost character-
istics changes the marginal cost by between 3�8 and 11�1% of the average car price. We
therefore interpret specifications of the set C that allow for |γs�| ≈ 1–2 (or |γd�| ≈ 1–2) as
allowing for moderate amounts of misspecification in the �th supply-side (or demand-
side) instrument.

We follow the implementation in Section 3. Given a set I of potentially invalid instru-
ments, we follow Remark 3.1 and consider sets C of the form (12), with ‖·‖ corresponding
to an �p norm with p ∈ {2�∞}, and B = B̃I · #I1/p, where B̃I is given by the columns of

B̃ =
(
E

[
zdjz

′
dj

]
diag(δd�) 0

0 E
[
zsjz

′
sj

]
diag(δd�)

)
�

and #I is the number of potentially invalid instruments. The scaling by (#I)1/p ensures
that the vector γ = M(1� � � � �1)′ is always included in the set. Andrews, Gentzkow, and
Shapiro (2017) reported the sensitivity of the usual GMM estimator under this form of
misspecification, considering misspecification in each instrument individually (so that
I contains a single element), and setting M = 1. However, if one is concerned about the
validity of several instruments, it is natural to allow I to contain all instruments the va-
lidity of which is questionable. In our analysis, we vary the set of potentially misspecified
instruments. We also vary M in order to assess the sensitivity of conclusions to different
amounts of misspecification. As we will see below, different choices of C lead to different
sensitivities for the optimal estimator, and using the optimal sensitivity can reduce the
width of the CI substantially relative to CIs based on the usual GMM estimator.

We use the estimate θ̂initial that corresponds to the GMM estimator based on
the weight matrix that’s optimal under correct specification, as reported in Andrews,
Gentzkow, and Shapiro (2017), and the estimates �̂, Ĥ, and Σ̂ are computed following
Step 1 of the implementation.

6.2 Results

To illustrate that using the sensitivity that is optimal under local misspecification can
yield substantially tighter CIs, Figure 1 plots the confidence intervals based on the op-
timal sensitivity, as well as those based on θ̂initial under different sets I of potentially
invalid instruments and �2 constraints on γ. It is clear from the figure that using the op-
timal sensitivity yields substantially tighter confidence intervals, relative to simply ad-
justing the usual CI by using the critical value cvα(·) to take into account the potential
bias of h(θ̂initial), by as much as a factor of 3�4. The intuitive reason for this is that by
adjusting the sensitivity of the estimator, it is possible to substantially reduce its bias at
little cost in terms of an increase in variance. Thus, for example, while the CI for the aver-
age markup based on the estimate θ̂initial is essentially too wide to be informative when
the set of potentially invalid instruments corresponds to all excluded instruments, the
CI based on the optimal sensitivity, [46�0�66�0]%, is still quite tight.
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Figure 1. Confidence intervals under �2 misspecification and M = 1 in the application to Berry,
Levinsohn, and Pakes (1995).

If a researcher is ex ante unsure what form of misspecification one should worry
about, as a sensitivity check, it is useful to consider the effects of different forms of mis-
specification. In Figure 2, we plot the optimal confidence intervals for different subsets
of invalid instruments, under both �2 and �∞ norms for γ. Although the choice of norm
matters when the number of potentially misspecified instruments is greater than one,

Figure 2. Optimal Confidence intervals under �2, and �∞ misspecification and M = 1 in the
application to Berry, Levinsohn, and Pakes (1995).
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Figure 3. Optimal confidence intervals under �2 misspecification the application to Berry,
Levinsohn, and Pakes (1995) as a function of misspecification parameter M , when all excluded
instruments are allowed to be potentially invalid.

the results are qualitatively similar. Comparing the results for different choices of the set
of potentially invalid instruments suggests that allowing supply-side instruments to be
invalid generally increases the average markup estimate, while allowing demand-side
instruments to be invalid has the opposite effect.

As it may be ex ante unclear what magnitude of misspecification is reasonable to al-
low for, as discussed in Section 3, it is useful to plot the optimal CI for multiple choices
of M . We do this in Figure 3 for p = 2, and we allow all excluded instruments to be poten-
tially invalid. One can see that while the CI is unstable for values of M smaller than about
0�4, for larger values of M , the estimate is quite stable and equal to about 50%. Even at
M = 2, one rejects the hypothesis that the optimal markup is equal to the initial estimate
h(θ̂initial) = 32�7%. This suggests that ignoring misspecification in the BLP model likely
leads to a downward bias in the estimate of the average markup. At the same time, it is
possible to obtain reasonably tight CIs for the average markup even under a moderate
amount of misspecification.

The J-statistic for testing the hypothesis that all moments are correctly specified
equals 426�7. Consequently, the hypothesis is rejected at the usual significance levels.
Furthermore, it can be seen from Figure 2 that the CIs for “all excluded” (that allow all
excluded instruments to be invalid at M = 1), and “all excluded demand” (that assume
validity of supply-side instruments) do not overlap. This implies that either the misspec-
ification in the demand-side instruments must be greater than 1% of the average care
price (M = 1), or else the supply-side instruments must also be invalid. Table 1 imple-
ments the specification test from Appendix B that gives lower CI [Mmin�∞] for M . The
results suggest that if one assumes only a subset of the instruments is invalid, the mis-
specification in the potentially invalid instruments must be quite large. For example,
if we assume that all instruments are valid except potentially the demand-side instru-
ments based on rival firms’ product characteristics, then the misspecification in these
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Table 1. J-Test of overidentifying restrictions in the application to Berry, Levinsohn, and Pakes
(1995) under different forms of �p misspecification.

Instrument set p= 2 p= ∞

D/F: # cars 10�21 10�21
S/F: # cars 15�00 15�00
Supply: Miles/dollar 16�31 16�31
All D/F 2�71 2�71
All D/R 5�36 5�55
All S/F 2�54 2�56
All S/R 4�06 6�84
All excluded demand 1�80 1�97
All excluded supply 1�60 1�72
All excluded 1�13 2�56

Note: The table gives the minimum value of M such that the test of overidentifying restrictions has p-value equal to 0�05.
“D/F”: Demand-side instrument based on characteristics of other cars produced by the same firm. “S/F”: Supply-side instru-
ment based on characteristics of other cars produced by the same firm. “D/R”: Demand-side instrument based on characteris-
tics of cars produced by rivals. “S/R”: Supply-side instrument based on characteristics of cars produced by rivals. “All excluded”:
All excluded instruments are potentially invalid.

instruments must be greater than M = 5�36. If we allow all instruments to be invalid,
then M ≥ 1�13.

Finally, to illustrate the implication of Theorem 4.1 that one cannot substantively
improve upon the CIs that we construct, we calculate the efficiency bound κ∗ for these
CIs in Table 2. The table shows that the bound is at least as high as the efficiency bound
for the usual CI under correct specification (given in (19) and equal to 84�99% at α =
0�05). Thus, the asymptotic scope for improvement over the CIs reported in Figure 2 at

Table 2. Efficiency bounds (in %) for one and two-sided 95% confidence intervals at c = 0 un-
der �p misspecification in the application to Berry, Levinsohn, and Pakes (1995).

Two-sided One-sided

Instrument set p= 2 p= ∞ p= 2 p= ∞

D/F: # cars 85�9 85�9 100�0 100�0
S/F: # cars 90�1 90�1 99�8 99�8
Supply: Miles/dollar 85�0 85�0 100�0 100�0
All D/F 85�5 85�7 100�0 100�0
All D/R 94�8 95�3 93�9 95�3
All S/F 88�6 89�1 99�7 99�7
All S/R 89�4 89�2 98�5 99�5
All excluded demand 95�4 96�4 95�0 97�3
All excluded supply 90�3 90�1 98�2 99�6
All excluded 97�0 97�5 99�5 98�2

Note: For two-sided confidence intervals, the table calculates the ratio of the expected length of a 95% confidence interval
that minimizes its length at c = 0 relative to the length of the CI in (16), given in (18). For one-sided confidence intervals, the
table calculates an analogous bound, given in Appendix C.6, when the confidence interval optimizes the 80% quantile of excess
length. Instrument set labels are describe in notes to Table 1.
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particular values of θ and c = 0 is even smaller than the scope for improvement over the
usual CI at particular values of θ under correct specification.
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