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Appendix A: Proofs

The following result is crucial to Theorem 2.

Lemma. Let X and Y be random variables with marginal distributions FX and FY ,
where Y is the support of Y . Suppose continuously distributed random variable X is
weakly stochastically increasing in Y . Then

FX|Y (x|y) ≤ Pr(X ≤ x|Y = y)≤ F̄X|Y (x|y)�
where

FX|Y (x|y)=
⎧⎨
⎩

0� x < F−1
X

(
FY (y)

)
�

FX(x)− FY (y)

1 − FY (y)
� x≥ F−1

X

(
FY (y)

)
�

and

F̄X|Y (x|y) =
⎧⎨
⎩
FX(x)

FY (y)
� x≤ F−1

X

(
FY (y)

)
�

1� x≥ F−1
X

(
FY (y)

)
�

Furthermore, the bounds are sharp.

Proof. Take the lower bound first. Assume x ≥ F−1
X (FY (y)) since the bound is trivially

satisfied otherwise. Define g∗
x(·) := Pr(X ≤ x|Y = ·). Stochastic increasingness puts con-

straints on the class of functions, Gx, to which g∗
x(·) belongs:

Gx =

⎧⎪⎨
⎪⎩gx :

(1) gx
(
y ′′)≤ gx

(
y ′)� y ′ < y ′′

(2)
∫
Y gx(s)dFY (s) = FX(x)

(3) 0 ≤ gx(y) ≤ 1� y ∈ Y

⎫⎪⎬
⎪⎭ �
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The first constraint imposes stochastic increasingness. The second requires that the
conditional distribution integrate to the marginal. The third requires that the function
be bounded between zero and one. The lower bound, FX|Y (x|y), is therefore the mini-
mum of gx(y) where the minimization is over the function class Gx:

FX|Y (x|y) = min
gx(·)∈Gx

gx(y)�

Constraint (1) in the definition of Gx means gx(y) ≥ gx(y
′′) for all y ′′ ≥ y, which at the

lower bound will clearly bind, implying gx(y
′′) will equal some constant, Kx, for all y ′′ ≥

y. Constraint (3) will clearly bind with gx(y
′) = 1 for all y ′ < y. The remaining constraint,

(2), then determines the result:

FX(x) =
∫
Y
gx(s)dFY (s)

= FY (y)+
∫

[y�∞)∩Y
Kx dFY (s)

= FY (y)+Kx

∫
[y�∞)∩Y

dFY (s)

= FY (y)+Kx
(
1 − FY (y)

)
⇔ Kx = FX(x)− FY (y)

1 − FY (y)
�

Now take the upper bound. Assume x ≤ F−1
X (FY (y)) since the bound is trivially sat-

isfied otherwise. The upper bound for Pr(X ≤ x|Y = y), F̄X|Y (x|y), is the maximum of
gx(y) over gx(·) ∈ Gx:

max
gx(·)∈Gx

gx(y)�

Constraint (1) in the definition of Gx means gx(y) ≤ gx(y
′) for all y ′ ≤ y, which at the

upper bound will clearly bind, implying gx(y
′) will equal some constant, Cx, for all y ′ ≤ y.

Constraint (3) will clearly bind with gx(y
′′) = 0 for all y ′′ > y. The remaining constraint

then determines the result:

FX(x) =
∫
Y
gx(s)dFY (s)

=
∫
(−∞�y]∩Y

Cx dFY (s)

= Cx

∫
(−∞�y]∩Y

dFY (s)

= CxFY (y)

⇔ Cx = FX(x)

FY (y)
�

To see sharpness, let Y be marginally uniformly distributed on the unit interval. The
lower bound is obtained when conditional on Y = s for all s ∈ [0� y), X = Y almost surely
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and conditional on Y = s′ for all s′ ∈ [y�1] X is distributed uniformly on [y�1]. Note that
this satisfies (mutual) stochastic increasingness. Similarly, the upper bound is obtained
when conditional on Y = s for all s ∈ (y�1], X = Y almost surely and conditional on
Y = s′ for all s′ ∈ [0� y] X is distributed uniformly on [0� y]. Note that this also satisfies
(mutual) stochastic increasingness.

Proof of Theorem 2. Note that by definition

Pr
(
� ≤ t|Y(0)

)= Pr
(
Y(1) ≤ Y(0)+ t|Y(0)

)
�

Since Y(1) is stochastically increasing in Y(0), Lemma A applies to this case, taking x =
Y(0) + t; y = Y(0); FX = F1; FY = F0. Making these substitutions in the lemma’s result
gives the result in the theorem. The argument for the lower bound is similar. Bounds on
the conditional distribution of � given Y(1) can be obtained by imposing that Y(0) is
stochastically increasing in Y(1) in an analogous manner. Note that by definition

Pr
(
� ≤ t|Y(1)

) = Pr
(
Y(0) ≥ Y(1)− t|Y(1)

)= 1 − Pr
(
Y(0) ≤ Y(1)− t|Y(1)

)
since Y(0) is assumed to be continuously distributed. We can thus simply interchange
Y(1) and Y(0) in (1) and take the complement to obtain an upper bound:

FU
�|Y(1)

(
t|Y(1)

) :=

⎧⎪⎨
⎪⎩

1� Y(1)+ t < Ỹ (0)�
1 − F0

(
Y(1)+ t

)
1 − F1

(
Y(1)

) � Y(1)+ t ≥ Ỹ (0)�
(A1)

and similarly with (2) to obtain a lower bound:

FL
�|Y(1)

(
t|Y(1)

) :=

⎧⎪⎨
⎪⎩
F1
(
Y(1)

)− F0
(
Y(1)+ t

)
F1
(
Y(1)

) � Y(1)+ t ≤ Ỹ (0)�

0� Y(1)+ t ≥ Ỹ (0)�
(A2)

where Ỹ (0) := F−1
0 (F1(Y(1))).

Proof of Theorem 3. First, define D to be the set of continuous, bounded mappings
from Ȳ ×D to R

4 and E the set of bounded continuous mappings from Ȳ ×D to R
2. The

spaces Ȳ and D are defined in the statement of the theorem. One element of D, evaluated
at v = (y� t)′, is

θ(v) :=

⎛
⎜⎜⎜⎝

E
[
1(Yi ≤ y)

]
E
[
1(Yi ≤ y)Di

]
E
[
1(Yi ≤ y + t)Di

]
E[Di]

⎞
⎟⎟⎟⎠ �

Note that the estimand,

H(v) :=

⎛
⎜⎜⎝
F1(y + t)− F0(y)

1 − F0(y)
F1(y + t)

F0(y)

⎞
⎟⎟⎠ �
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can be written as a function of θ:

H =

⎛
⎜⎜⎜⎝
E
[
1(Y ≤ y + t)Di

](
1 −E[Di]

)−E[Di]
(
E
[
1(Y ≤ y)

]−E
[
1(Y ≤ y)Di

])
E[Di]

(
1 −E[Di] −E

[
1(Y ≤ y)

]+E
[
1(Y ≤ y)Di

])(
1 −E[Di]

)
E
[
1(Y ≤ y + t)Di

]
E[Di]

(
E
[
1(Y ≤ y)

]−E
[
1(Y ≤ y)Di

])

⎞
⎟⎟⎟⎠

= φ(θ)�

where φ : D→ E is a Hadamard differentiable map with Hadamard derivative evaluated
at θ(v) of

φ′
θ(h) = J(v)γ(v)h�

where Jacobians J and γ are defined in the statement of the theorem. Define Tn as

Tn(v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−1
n∑

i=1

1(Yi ≤ y)

n−1
n∑

i=1

1(Yi ≤ y)Di

n−1
n∑

i=1

1(Yi ≤ y + t)Di

n−1
n∑

i=1

Di

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

and note that Ĥ = φ(Tn). Given i.i.d. data, by the Donsker theorem,
√
n(Tn − θ) con-

verges uniformly to a Gaussian process with zero mean function and covariance func-
tion Σ(v� ṽ) given in the statement of the theorem. Then by Theorem 20.8 in van der
Vaart (1998), we have that

√
n(Ĥ −H) converges to a Gaussian process with zero mean

function and covariance function

J(v)γ(v)Σ(v� ṽ)γ(ṽ)′J(ṽ)′�

Proof of Theorem 4. Upper and lower bounds (5) and (6) on the overall distribution
of treatment effects can be written as a function of the following vector of intermediate
objects:

θ0 = (H�S�p)�

where H is defined in the text,

p = Pr(Di = 1)�

and S : M →R
2 is the following map from a Donsker class M to R

2:

S(m)=E
[
m(Yi�Di)

]
�
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Note that

m0(y�d) :=

⎛
⎜⎜⎜⎝

max
{
0�H1(y)

}
(1 − d)

1 −p

min
{
1�H2(y)

}
d

p

⎞
⎟⎟⎟⎠

is a member of a Donsker class as is

m̂(y�d)=

⎛
⎜⎜⎜⎝

max
{
0� Ĥ1(y)

}
(1 − d)

1 − p̂

min
{
1� Ĥ2(y)

}
d

p̂

⎞
⎟⎟⎟⎠

with probability approaching one. Defining Ŝ(m) := 1
n

∑n
i=1 m(Yi�Di), the sample coun-

terpart to θ0 is

θ̂ =

⎛
⎜⎜⎜⎜⎝

Ĥ

Ŝ(m)

1
n

n∑
i=1

Di

⎞
⎟⎟⎟⎟⎠ � m ∈ M�

Since M is Donsker, and given the result in Theorem 3, we have that
√
n(θ̂ − θ0)

converges in distribution to

G0 =
⎛
⎜⎝GH

GS

Gp

⎞
⎟⎠ ∈ 	∞(Ȳ ×D)2 × 	∞(M)×R�

The treatment effect distribution bounds (5) and (6) can be written as the following func-
tion of θ0:

φ(θ0) = S

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
(
H1(Yi)∨ 0

)
(1 −Di)

1 −p(
H2(Yi)∧ 1

)
Di

p

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

with sample counterpart

φ(θ̂)= Ŝ

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
(
Ĥ1(Yi)∨ 0

)
(1 −Di)

1 −p(
Ĥ2(Yi)∧ 1

)
Di

p

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ �

Noting that the condition in the theorem’s statement that Pr(F1(Yi + t) = F0(Yi)) = 0
means Pr(H1(Yi) = 0) = 0 and Pr(H2(Yi)= 1)= 0, the map φ is Hadamard differentiable
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with linear and continuous Hadamard derivative

φ′
θ0
(h) = hS

(
m0(Yi�Di)

)

+E

⎡
⎢⎢⎢⎣
h1(Yi)(1 −Di)1

{
HL > 0

}
1 −p

h2(Yi)Di1
{
HU < 1

}
p

⎤
⎥⎥⎥⎦+ hpE

⎡
⎢⎢⎢⎣

(
H1(Yi)∨ 0

)
(1 −Di)

(1 −p)2

−
(
H2(Yi)∧ 1

)
Di

p2

⎤
⎥⎥⎥⎦ �

for direction h = (h1�h2�hS�hp)
′. Theorem 2.1 in Fang and Santos (2018) applied to this

setting then implies

√
n

(
F̂L
� − FL

�

F̂U
� − FU

�

)
→φ′

θ0
(G0)�

Proof of Theorem 6. The proof follows the proof of Theorem 2, but with all probabil-
ities conditioned on D(1) >D(0).

Theorem. Let Ŷ (0) and Ŷ (1) be linear projections of potential outcomes on X with cor-
responding coefficients of determination R2

0 and R2
1. Then Cov(Y(1)�Y(0)) ≥ 0 implies

Corr
(
Ŷ (1)� Ŷ (0)

)≥ −
√(

1 −R2
0

)(
1 −R2

1

)
/
(
R2

0R
2
1

)
�

Proof. Define ε(1) = Y(1) − Ŷ (1) and ε(0) = Y(0) − Ŷ (0). Note that by construction
Cov(Ŷ (1)� ε(0)) = Cov(Ŷ (0)� ε(1)) = 0. Also, note that Var(ε(1)) = (1 − R2

1)Var(Y(1))
and Var(ε(0)) = (1 −R2

0)Var(Y(0)). Since ε(0) is orthogonal to Ŷ (1) and ε(1) is orthog-

onal to Ŷ (0), the covariance between potential outcomes can be written:

Cov
(
Y(0)�Y(1)

)= Cov
(
Ŷ (0)� Ŷ (1)

)+ Cov
(
ε(0)� ε(1)

)
� (A3)

The Cauchy–Schwarz inequality implies

Cov
(
ε(0)� ε(1)

)≤
√(

1 −R2
0

)
Var

(
Y(0)

)(
1 −R2

1

)
Var

(
Y(1)

)
�

Inserting this into (A3) yields an upper bound on the covariance between potential out-
comes:

Cov
(
Y(0)�Y(1)

) ≤ Cov
(
Ŷ (0)� Ŷ (1)

)+
√(

1 −R2
0

)
Var

(
Y(0)

)(
1 −R2

1

)
Var

(
Y(1)

)
�

This upper bound is nonnegative when

Cov
(
Ŷ (0)� Ŷ (1)

)≥ −
√(

1 −R2
0

)
Var

(
Y(0)

)(
1 −R2

1

)
Var

(
Y(1)

)
�

or, equivalently,

Corr
(
Ŷ (0)� Ŷ (1)

)≥ −
√√√√(

1 −R2
0
)(

1 −R2
1
)

R2
0R

2
1

�
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Appendix B: Incorporating covariates

For expositional simplicity, the bounds above were developed without additional co-
variates and assuming exogenous treatment assignment. In practice, the bounds may
be substantially tightened by incorporating additional covariates X . In this section, we
show how the framework can be extended to this cases.

When additional covariates are available that predict the outcome Y , the bounds
may be tightened by adopting the following conditional version of the stochastic in-
creasingness assumption.

Definition 1. Y(0) and Y(1) are mutually stochastically increasing conditional on
X if Pr(Y(1) ≤ t|Y(0) = y�X) and Pr(Y(0) ≤ t|Y(1) = y�X) are each nonincreasing in y

almost everywhere.

The following bounds on the treatment effect cdf conditional on Y(0) and X are
conditional versions of (1) and (2) and follow from the conditional mutual stochastic
increasingness condition above:

FL
�|Y(0)�X

(
t|Y(0)�X

) :=

⎧⎪⎨
⎪⎩

0� Y(0)+ t < Ỹ (1|X)�

F1|X
(
Y(0)+ t|X)− F0|X

(
Y(0)|X)

1 − F0|X
(
Y(0)|X) � Y(0)+ t ≥ Ỹ (1|X)�

FU
�|Y(0)�X

(
t|Y(0)�X

) :=

⎧⎪⎨
⎪⎩
F1|X

(
Y(0)+ t|X)

F0|X
(
Y(0)|X) � Y(0)+ t ≤ Ỹ (1|X)�

1� Y(0)+ t ≥ Ỹ (1|X)�

where Ỹ (1|X) := F−1
1|X(F0|X(Y(0)|X)); expressions for the treatment effect cdf condi-

tional on Y(1) and X are similar.
Bounds on the distribution of treatment effects conditional on Y(0) (or Y(1))

alone—which are frequently of greater interest than the distribution conditional on Y(0)
and X—can be obtained by integrating the conditional bounds over the conditional dis-
tribution of X given Y(0):

FL
�|Y(d)

(
t|Y(d)

) = E
[
FL
�|Y(d)�X

(
t|Y(d)�X

)|Y(d)
]
� (A4)

FU
�|Y(d)

(
t|Y(d)

) = E
[
FU
�|Y(d)�X

(
t|Y(d)�X

)|Y(d)
]
� (A5)

for d = 0 or 1. As before, bounds on the average treatment effect conditional on Y(d) can
be formed by integrating over the cdf bounds:

�L
(
Y(d)

) =
∫

t dFU
�|Y(d)

(
t|Y(d)

)
�

�U
(
Y(d)

) =
∫

t dFL
�|Y(d)

(
t|Y(d)

)
�

A simple method for computing bounds on the marginal cdf of the treatment effect is to
average over the bounds on the conditional cdf as before, though these bounds may not
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be sharp:

F̃L
� (t) = max

d∈{0�1}
E
[
FL
�|Y(d)�X

(
t|Y(d)�X

)]
� (A6)

F̃U
� (t) = min

d∈{0�1}
E
[
FU
�|Y(d)�X

(
t|Y(d)�X

)]
� (A7)

Sharp bounds may be computed by directly searching over the space of bivariate cop-
ulae that satisfy mutual stochastic increasingness condition to find bounds conditional
on X

FL
�|X(t|X) = inf

H(·�·)∈CSI

∫ ∫
1
(
F−1

1|X(v|X)− F−1
0|X(u|X) ≤ t

)
H(u�v)dudv�

FU
�|X(t|X) = sup

H(·�·)∈CSI

∫ ∫
1
(
F−1

1|X(v|X)− F−1
0|X(u|X) ≤ t

)
H(u�v)dudv�

which can then be averaged to produce bounds on the marginal cdf:

FL
� (t) = E

[
FL
�|X(t|X)

]
� (A8)

FU
� (t) = E

[
FU
�|X(t|X)

]
� (A9)

The bounds (A8) and (A9) are sharp, but in practice are prohibitively costly to calcu-
late as they require an infinite-dimensional optimization at each covariate value X . In
the application, we estimate the integrated conditional bounds (A6) and (A7), which are
slightly less tight but computationally feasible.

The conditional cdf bounds (A4) and (A5) can be consistently estimated by plugging
in consistent estimators for the conditional cdfs F1|X and F0|X . For the case where Di

is exogenous, the bounds can be constructed via the following steps for each untreated
observation j:

1. Nonparametrically regress an indicator 1(Yi ≤ Yj) on Xi in the untreated subsam-
ple and construct predicted value F̂0|X(Yj|Xj)

2. Nonparametrically regress an indicator 1(Yi ≤ Yj(0) + t) on Xi in the treated sub-
sample and construct predicted value F̂1|X(Yj(0)+ t|Xj)

3. Form estimates of the bounds

F̂L
�|0�X

(
t|Yj(0)�Xj

) := max
{

0�
F̂1|X

(
Yj(0)+ t|Xj

)− F̂0|X
(
Yj(0)|Xj

)
1 − F̂0|X

(
Yj(0)|Xj

) }
� (A10)

F̂U
�|0�X

(
t|Yj(0)�Xj

) := min
{

1�
F̂1|X

(
Yj(0)+ t|Xj

)
F̂0|X

(
Yj(0)|Xj

) }
� (A11)

The bounds (A4) and (A5) on the conditional distribution of treatment effects given
Y(0) can be constructed by nonparametrically regressing the estimates (A10) and (A11)
on Yi in the untreated sample. Bounds (3) and (4) on the conditional expectation of
treatment effects given Y(0) can be computed by numerically integrating the estimates
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for (A4) and (A5) on a discrete grid. Analogous steps can be followed for the distribution
of treatment effects given Y(1).

The bound estimates are themselves functions of estimators for potential outcome
conditional cdfs, F̂0|X and F̂1|X . Several methods exist for estimating conditional cdfs;
which is most suitable will depend on the specific empirical setting. For example, when
treatment is exogenous and X has continuous components, the semiparametric distri-
bution regression approach of Chernozhukov, Fernández-Val, and Melly (2013) may be
most appropriate. When X is discrete, standard least squares regressions where treat-
ment is fully interacted with X may be used.

Appendix C: Algorithm for approximating overall bounds

Let {C[i� j]}i=1�����k�j=1�����k be the elements of a k × k matrix which discretely approxi-
mates a bivariate copula function. By definition, each marginal distribution is uniform,
which implies the following constraints:

{
k∑

s=1

C[s� j] = 1

}k

j=1

�

{
k∑

s=1

C[i� s] = 1

}k−1

i=1

�

Stochastic increasingness means each conditional cdf is decreasing in the conditioning
dimension, which implies the following set of constraints:

{{
i∑

s=1

C[s� j] ≥
i∑

s=1

C[s� j + 1]
}k−1

j=1

}k−1

i=1

�

and {{ j∑
s=1

C[i� s] ≥
j∑

s=1

C[i+ 1� s]
}k−1

i=1

}k−1

j=1

�

Let the set of discrete copulae satisfying the above k2 + (k − 1)2 constraints be de-
noted Ck. Given estimates of the separate conditional distributions of Y(0) and Y(1)
given X (obtained possibly via the methods described in Section 3.2) the lower bound
on F�|X can be approximated by solving the following linear program:

min
{C[i�j]}

k∑
j=1

k∑
i=1

1
(
F−1

1|X
(
r(i)

)− F−1
0|X
(
r(j)

)≤ t
)
C[i� j]

subject to C[·� ·] ∈ Ck�

where

r(i) = i

n
− 1

2n
�
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The upper bound can be approximated by replacing the min with a max. Since the ob-
jective function and all constraints are linear, the program can be solved using effi-
cient dual-simplex linear programming routines. Unconditional bounds can then be
obtained by integrating the conditional bounds over X . In practice, the algorithm works
well for k≈ 100 and discrete X with a moderate number of cells.

Appendix D: Simulations

This section illustrates the bounds on the distribution of treatment effects derived above
using numerical simulations. The simulations adopt the following data generating pro-
cess. Untreated potential outcomes are generated asYi(0) = βXi+εi. The treated poten-
tial outcome is Yi(1) = Yi(0)+δ.1 The treatment indicator Di is assigned independently
of Xi and εi by random lottery whereby half the sample receives Di = 1 and half receive
Di = 0. The observed and unobserved variables are generated according to(

Xi

εi

)
∼N

(
0�

[
σ2
X 0
0 σ2

ε

])
�

In the simulated model, σ2
X is set to one and β is set to

√
R2 so that the variance of Yi(0)

remains equal to one, and the R2 between Yi(0) and Xi is R2 = 1 − σ2
ε . The simulations

vary σ2
ε from 0�01 to 1, corresponding to an R2 between Yi(0) and X from 0�99 to zero.

The simulations also vary the treatment effect size δ from −1 to 1.
The first set of simulations illustrates how the bounds on the average treatment ef-

fect conditional on Yi(0) vary across the values of Yi(0). These simulations set the R2

between Yi(0) and Xi to 0�7, corresponding to σ2
ε = 0�3 and β = √

0�7 ≈ 0�84 and set the
treatment effect size to δ = 1. Figure A1 plots the bounds (3) and (4) as a function of
Y(0). The bounds always include the true treatment effect δ = 1, and are tightest in the
middle of the Y(0) distribution, and widen in the tails. Notice that although in the sim-
ulated model the treatment effect is positive across the entire distribution of Y(0), the
bounds reach into negative territory for very high values of Y(0), since the stochastic
increasingness assumption allows for mean reversion; individuals with high values of
Y(0) have a larger probability of drawing a value of Y(1) lower than Y(0).

The second set of simulations shows how these bounds on the average treatment
effect conditional on Yi(0) depend on the informativeness of the covariate X . These
simulations set the treatment effect δ = 1 and vary the R2 between Yi(0) and Xi from
zero to 0�99. Figure A2 plots the bounds (3) and (4) at Y(0) = 0 (i.e., at the median) as a
function of the R2. They show that the bounds tighten dramatically as the covariate X

more strongly predicts outcomes.
The next set of simulations illustrates how bounds on the fraction of individuals

harmed by treatment (i.e., the treatment effect cdf evaluated at zero) conditional on
Y(0) depends on the size of the treatment effect δ. As above, these simulations set the

1The simulations adopt a constant treatment effect so that the benchmark “truth” is the clearest: the
fraction of individuals hurt will be one when δ < 0 and zero when δ ≥ 0, and the average treatment effect
conditional on Y(0) will be δ for all Y(0).
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Figure A1. Simulated bounds on the average treatment effect conditional on untreated poten-
tial outcome. The true treatment effect is one for all values of Y(0).

R2 between Yi(0) and Xi to 0�7. Figure A3 plots the bounds (A4) and (A5) evaluated at
zero as a function of δ for Y(0) = 0. Since the simulated model has constant treatment
effects, the true fraction is one on the left side of the graph (where the treatment effect
is negative) and zero on the right side. When the treatment effect is sufficiently large
in magnitude, the bounds are quite tight. When the treatment effect is zero or slightly
positive, the bounds are completely uninformative, spanning zero and one.

The next set of simulations shows how the bounds on the fraction of individuals hurt
conditional on Yi(0) depend on the informativeness of the covariate X . These simula-
tions set the treatment effect δ equal to one, and vary the R2 between Yi(0) and Xi from
zero to 0�99. Figure A4 plots the bounds (A4) and (A5) evaluated at zero as a function

Figure A2. Simulated bound on the average treatment effect conditional on Y(0)= 0 as a func-
tion of the R2 between Y(0) and X . The true treatment effect is one.
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Figure A3. Simulated bound on the fraction hurt by treatment conditional on Y(0) = 0 as a
function of the treatment effect. The true fraction is one when the treatment effect is negative
(left side of the plot) and zero when the treatment effect is positive.

of R2 for Y(0) = 0. Since the (constant) treatment effect in this simulation is positive,
the true fraction is zero. On the far left, where the covariate has no predictive power, the
bounds are quite wide, the upper bound reaching 0�3, but the bounds tighten dramati-
cally as R2 increases.

The next set of simulations shows how the bounds on the overall fraction of indi-
viduals hurt by treatment vary with the treatment effect size δ. Again, R2 is set to 0�7
for these simulations. Figure A5 plots the Williamson–Downs bounds (which make no
restrictions), our stochastic increasingness bounds calculated by integrating the condi-
tional bounds, and the stochastic increasingness bounds calculated by searching over

Figure A4. Simulated bound on the fraction hurt by treatment conditional on Y(0) = 0 as a
function of the R2 between Y(0) and X . The true fraction in the simulation is zero.
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Figure A5. Simulated bounds on the fraction hurt by treatment as a function of the treatment
effect. The true fraction is one when the treatment effect is negative (left side of the plot) and
zero when the treatment effect is positive. The solid bounds impose no restrictions. The short–
dashed bounds impose stochastic increasingness by integrating over the conditional (pointwise)
bounds. The long-dashed bounds impose stochastic increasingness uniformly by searching over
the space of copulae that satisfy stochastic increasingness.

the space of copula functions, each evaluated at zero, for a range of treatment ef-
fects sizes δ. All bounds are tightest when the treatment effect is large in magnitude.
The stochastic increasingness bounds are much tighter than the classical Williamson–
Downs bounds.

The next set of simulations shows how the bounds on the overall fraction of indi-
viduals hurt by treatment vary with the predictive power of the covariate X . Again, the
treatment effect δ is set to one, and R2 varies from zero to 0�99. Figure A6 plots the
Williamson–Downs bounds (which make no restrictions), our stochastic increasingness
bounds calculated by integrating the conditional bounds, and the stochastic increasing-
ness bounds calculated by searching over the space of copula functions, each evaluated
at zero, for a range of values of R2. Since the treatment effect is positive, the true fraction
is zero. On the left side of the plot, where the covariate has little explanatory power, the
bounds we propose are quite wide, spanning zero to 0�35. However, even these are much
tighter than the bounds that impose no restrictions, which span zero to over 0�6. As the
R2 between Y(0) and X increases, the bounds tighten substantially.

The next set of simulations demonstrates how the bounds on the treatment effect
cdf vary by treatment effect heterogeneity. To accomplish this, we modify the simulation
setup by replace the constant treatment effect δ by a variable treatment effect δi, so that
outcomes are generated according to

Yi(0) = βXi + εi�

Yi(1) = Yi(0)+ δi�
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Figure A6. Simulated bound on the fraction hurt by treatment as a function of the R2 be-
tween Y(0) and X . The true fraction is zero. The solid bounds impose no restrictions. The short–
dashed bounds impose stochastic increasingness by integrating over the conditional (pointwise)
bounds. The long-dashed bounds impose stochastic increasingness uniformly by searching over
the space of copulae that satisfy stochastic increasingness.

In order to hold fixed the marginal distributions of outcomes as the treatment effect

distribution varies, we generate the treatment effect as

δi = α0 + α1εi +ηi�

where ηi normally distributed with variance σ2
η = σ2

δ − α2
1σ

2
ε , and α1 = −0�5σ2

δ/σ
2
ε . We

generate εi and Xi as before. For these simulations, we set the R2 between Yi(0) and Xi

at 0�7, and the average treatment effect at α0 = 0�5. We vary the treatment effect stan-

dard deviation σδ between zero and one. Figure A7 plots the upper and lower bounds on

the fraction hurt (i.e., treatment effect cdf evaluated at zero) along with the true fraction

hurt for each value of σδ. Since the bounds depend only the marginal distributions of

potential outcomes, which do not change in our setup as the treatment effect distribu-

tion varies, the bounds are flat, although they always contain the truth.

The final set of simulations investigates the finite-sample performance of inference

procedures based on the asymptotic results in Theorem 4. These simulations are based

on the following data-generating process:

(
Yi(0)
Yi(1)

)
∼N

((
0
0

)
�

(
σ2

0 0
0 σ2

1

))
�

so that the true treatment effect distribution is δi := (Yi(1) − Yi(0)) ∼ N(0�σ2
1 + σ2

0 ).

The lower bound on the treatment effect cdf implied by stochastic increasingness in this
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Figure A7. Simulated bounds on the fraction hurt by treatment as a function of the standard
deviation of the treatment effect distribution. The treatment effect is normally distributed with
a mean of 0�5. Y(0) is normally distributed with mean zero and standard deviation one. The
R-squared between Y(0) and the covariate is 0�7.

example is

FL
� (t) =E

⎡
⎢⎢⎣max

⎛
⎜⎜⎝0�

�

(
Yi(0)+ t

σ1

)
−�

(
Yi(0)
σ0

)

1 −�

(
Yi(0)
σ0

)
⎞
⎟⎟⎠
⎤
⎥⎥⎦ �

where � denotes the standard normal cdf. In each simulated dataset, we compute the
lower bound estimate based on (9), estimate its sample variance using the bootstrap,
apply Theorem 4 to construct nominal 95% confidence intervals for the lower bound,
and check whether the confidence interval covers the true lower bound. We then report
the coverage rate over 1000 simulated datasets. Figure A8 plots the coverage rate for a
nominal 95% confidence interval at sample sizes ranging from n = 100 to n = 1000 for
the cdf lower bound evaluated at t = 0�5, setting σ0 = 1 and σ1 = 2. In this case, the true
lower bound is about FL

� (0�5) ≈ 0�151. The figure shows the asymptotic approximation
is excellent in finite samples, even for sample sizes as low as 100, which is smaller than
our empirical example. The simulated coverage rate is very near the nominal rate over
the whole range of sample sizes considered. We also investigate the performance of the
inference procedure over the support of the treatment effect distribution. Figure A9 plots
the coverage rate over a range of values from t = −1 to t = 1, fixing the sample size at
n = 500. Here also we see the actual coverage rate is very close to the nominal rate over
the range of treatment effect values considered.

Appendix E: Bound estimation details

The empirical application in Section 4 reports estimates of bounds computed using the
Stata command tedistbounds command, available from the authors on request. The
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Figure A8. Simulated coverage rate of a nominal 95% confidence interval for the lower bound
of the treatment effect cdf evaluated at t = 0�5 using normally distributed potential outcomes as
described in the Appendix. Based on 1000 iterations.

Stata command implements estimation of the bounds in the context of an endogenous
treatment with and instrumental variable, handling exogenous treatments as a special
case where the instrument is identical to the treatment. The estimation proceeds as fol-
lows. First, we construct Abadie’s (2003) κ weights:

κ= 1 − D(1 −Z)

1 − τ
− (1 −D)Z

τ
�

Figure A9. Simulated coverage rate of a nominal 95% confidence interval for the lower bound
of the treatment effect cdf using normally distributed potential outcomes as described in the
Appendix and a simulated sample size of n= 500. Based on 1000 iterations.
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where τ = E[Z]. Next, for a chosen pair of values (y� t) we calculate the bound on the
conditional cdf of the compliers’ treatment effect distribution evaluated at t, condi-
tional on Y(0) = y by the following procedure. We first estimate F0|C�X(y|X) via a κ-
weighted least squares regression of 1(Y ≤ y) on treatment, covariates X , and interac-
tions of treatment with covariates. The fitted values from this regression where treat-
ment is zero comprise the estimates F̂0|C�X(y|X). Next, we estimate F1|C�X(y + t|X) via
a κ-weighted least squares regression of 1(Y ≤ y + t) on treatment, covariates, and their
interactions. The fitted values from this regression, but evaluated with treatment set to
one, comprise estimates F̂1|C�X(y + t|X). We then combine the estimates obtained this
way using formulae (A10) and (A11) to obtain the estimated bounds F̂�|0�X�C(t|y�X). To
obtain the bound on the unconditional distribution of compliers’ treatment effects, re-
peat this procedure with y set to each observed value of the outcome among the D = 0
subsample, and take a κ-weighted average:

F̂�|C(t) =

∑
i:Di=0

κiF̂�|0�X�C(t|Yi�Xi)

∑
i:Di=0

κi

�
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